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PREFACE

This report represents an attempt to give a unified account of the problems which face the designer of an automatic computing machine. Although the report is directed principally at specialists, it has been written for a wider circulation. In consequence, there are many parts which are not original and will be familiar to those in the field. In addition to helping the non-specialist, the inclusion of this material helps to complete and balance the whole account.
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1.
INTRODUCTION

This report began as an attempt to describe the relay machine which has been constructed at Imperial College. In the course of writing this it became clear that a bald description of how it works gives no real understanding of the functioning of the machine. Of far greater interest is why the machine works in the way that it does. This reflects the fact that an understanding of the details of each part of the machine depends on an understanding of the relations between the parts.

Accordingly, it was decided to divide the report into two parts - the first giving the general ideas of machine construction and design used in the ICCE and relating these to the design of faster machines using electronic components - and the second giving details of the ICCE itself.

Certain details of the ICCE are included in Part I in order that certain topics discussed can be illustrated by concrete examples, but these details are so scattered in the report that the second part is necessary.

There are two distinct features of these automatic machines which distinguish them from all other computing machinery. These are the automatic nature of the machines and the great speed of their action. It is as well to start with a brief discussion of these two characteristics.

1.1
The Automatic Nature of these Machines

The term automatic was introduced to distinguish these machines from ordinary desk machines were human intervention between operations is necessary. It has rapidly grown to mean a machine which is capable of performing the most complicated calculation without human intervention and, moreover, can be used for almost any complicated calculation, ie is not restricted to one type of calculation - a general purpose machine.

The automatic characteristic is always limited by the capacity of the machine in storage and by the duration of trouble-free operation, and the limit-point can be extended or contracted according to the money spent on the machine. It is quite possible that a very useful machine could be built with a much lower capacity for uninterrupted operation than the modern machines and which would meet the needs of quite a large group of research workers, business accountants and so on, at a fraction of the cost of the modern machines.

Punched card equipment is a well established example of this kind of machine, but suffers two defects:

(a)
multiplication and division are difficult operations,

(b)
there is no adequate storage.

The first objection can be levelled also at the National Accounting machine. Both types of apparatus suffer from comparatively clumsy arrangements for setting the instructions on the machines.

The second main difference between automatic machines and all others is the possibility of discrimination by the machine. Punched card machines do have this feature but only in special forms.

If it can be manufactured cheaply, there is a market for a machine with the following characteristics:

(1)
the machine can perform the basic operations, add, subtract, multiply, divide.

(2)
it can be used like an ordinary desk calculator, if required, without any loss of efficiency.

(3)
it has several temporary storage registers in it.

(4)
it can be set to perform a series of instructions in order up to about 25 in number.

(5)
it has a discriminating facility which enables the machine to choose on a suitable test between repeating the cycle of instruction mentioned in (4) or of stopping.

(6)
the method of setting up the series of instructions should be such that changing the instructions requires no special equipment.

(7)
numbers can be inserted into the machine through a key-board and the contents of any register can be printed.

(8)
when used as an ordinary desk calculator the contents of the registers can be used in place of the keyboard.

(9)
the total speed of operation need only be comparable to a desk machine.

However, it is not the intention of this report to discuss such a machine. In fact, it is suspected that no great saving in cost would arise from the limitations imposed on the machine and that, using the ideas of this report, a fully automatic machine working at speeds comparable to the fastest known today could be built for the same money.

Notwithstanding this fact there are situations where such a semi-automatic machine would be more appropriate than a fully automatic one.

1.2
Speed of the Machines

The increased speed of the machines arises from two distinct causes. The first is the elimination of human intervention between the operations, while the second is the use of equipment with an enormously increased operating rate. The first is special case of the second if we regard the human operator as the transfer mechanism of an ordinary desk calculator. The automisatoin of the calculating process can be regarded as a process of removing the major bottle-necks in the old methods.

Any further increases in speed will arise either by a general increase in the operating speeds of components or by the removal of other “bottle-necks” in the computing process, i.e. by the more efficient use of available equipment. It is the realisation of the latter method which constitutes the problem of design of automatic computers.

2.
components of an automatic calculator

Any usable machine must be able to perform the following functions:

1
Store numbers
The Number Store

2
Perform arithmetic on these numbers
The Arithmetic Unit*

3
Receive numbers from the outside world
The Input Organ

4
Give the results of its calculations to the outside world
The Output Organ

5
Store the complete set of instructions necessary for any calculation and follow them in the correct order
The Instruction Store

*
The abbreviation AU will be used to denote Arithmetic Unit throughout the Report.

It is necessary to give considerable thought to the construction of the devices which will achieve these functions. It is a common experience that the rate of operation of any of the devices can be increased indefinitely by a similar increase in expenditure. However, if the total expenditure is limited then the problem arises how to distribute the available capital over the various parts to achieve the greatest overall speed for the fixed expenditure, and this in turn will involve consideration of the inter-relations between the components.

The first step in the solution of this problem will be a short discussion of the components.

2.1
The Number Store

Every operation of the machine will involve at least one number passing between the arithmetic unit and the store, either from the store to the unit to be one of the operands or in the reverse direction as the result of the operation. Consequently, each operation is lengthened by the access time of the store and this should be reduced as low as funds allow. Even in a more complicated machine in which numbers are extracted from and returned to the store while operations are being performed upon other numbers, it is necessary to reduce the access time to balance the computing rate, if time is not to be wasted.

If at static system of storage is used then the access time is almost nil, being only the time to establish a connection between the two units. This operation can be divided into two parts:

I. the choice of the connection to be made

II. the actual connection.

In even the simplest machine the first part can be carried out while the machine is carrying out other operations, and the effective access time is only the second part. For this type of storage, the cost of the store is almost directly proportional to the number of storage locations available and becomes unreasonably large for a large storage system. The access time is almost independent of the store size and varies inversely with the expenditure per unit of storage.

If a dynamic storage system is used, then the access time is variable and depends upon which store is required. On average, it will be half the cycle time of the system, but it can rise to a full cycle time, and it is desirable to base calculations on this as the access time. For such a system the cost of the store is almost independent of its size within certain limits. However, the access time is now proportional to the store size. If it is required to maintain the original access time while increasing the size n-fold then, using the same type of device, this can be achieved by arranging to have n-storage systems and a mechanism for connecting the arithmetic unit to the correct one. This can be regarded as providing two levels of storage, a comparatively long access time to the stores with comparatively small storage system S with immediate access time to the AU supplied by a set of stores with comparatively long access time to the stores of S. Such a device has a cost in excess of n times that of the original store.

Hence, if the access time is fixed the cost of providing a storage system will be roughly proportional to its size, no matter what type of storage is adopted. Thus the minimum size of store for useful working must be determined and this will involve a consideration of the type of problem for which the machine will be used.

2.2
The Arithmetic Unit

The basic operations of arithmetic are addition and complementation. These can both be produced from the single operation of subtraction as follows:


A + B = A - (-B)


- B = 0 - B

However, a subtraction unit is no less complex than an addition unit, while a complementation unit is usually very simple to construct, so that the simplicity achieved by reducing all arithmetic to one operation is more than offset by the inconvenience of having to “build up” addition from the basic operation.

In order to take advantage of the radix notation for expressing numbers when multiplying, it is essential to have an operation of shifting. Then multiplication becomes merely a succession of additions or transfers with shifts, and will take on the average (pn addition times for a multiplication by an n-digit number in the radix p. (This ignores the shifting times). This can be shortened by building a multiplication table into the machine which will give all the multiples of any multiplicand up to p-1. In some “short-cutting” schemes for multiplication the average number of addition times is reduced to ((p+2)n, while the table of multiples need only extend to:                                                     


When p=2, ie numbers are expressed in the binary scale, the need for a multiplication table disappears and the two methods of multiplication become the same.

Similarly, the distinction between methods of addition based on counting and those based on an addition table coincide for the binary scale.

The process of division is a tentative one, and once again is simplified by working in the scale of two.

It is these facts about the simplicity of the higher operations of arithmetic which are more important in the choice of scale than those usually advocated on the grounds of economy of storage space.

The speed of executing these operations should be chosen roughly to balance the access time of numbers, so that a twin action of searching for number and computing can be carried on together.

The most economical adder is obtained by working serially on each digit in turn, but to obtain the maximum advantage of such a serial adder, the adding must take place as one number is drawn from a store. This destroys the possibility of twin action for a machine with a cyclic store. A temporary register must be provided together with a “dynamicer”. A “dynamicer” is also required if a static store is used.

A parallel adder, provided with suitable carry-over arrangements, can add two n-digit numbers in the time taken for one digit on a serial adder, and this for a cost roughly n times that of a serial adder. Once again we have an example of the rough rule that speed is directly proportional to cost.

The total cost of any reasonable arithmetic unit is only a small fraction of the total for a complete machine and since its speed is one of the major factors controlling the overall speed, the possibility of devoting a larger proportion of the total cost than usual must be explored.

2.3
The Input Unit

For some problems it is possible to arrange that all the necessary input of numbers is made initially. For others,  the total storage space required prevents this and the data has to be introduced piece-meal as the calculation proceeds.

In the latter case, unless the machine can anticipate its future requirements, the time for an input is an idle time and corresponds to an increased access time for that number. Generally speaking, the mechanical devices in use for input are far slower than the components of the machine and lead to great increases of access time.

The anticipation of its requirements is easily effected, in principle, by arranging suitably the set of instructions, but because of the enormous difference in time scales of the input unit and the machine proper, it becomes very difficult in practice. If the machine is used to convert the number absorbed by the input into a suitable form for use in the machine (eg to convert from decimal to binary) this difficulty is exaggerated.

If the input is serial so that after each digit of input some arithmetic operations are necessary before the next input takes place, delays are inevitable unless a special arithmetic unit is provided to perform the required operations. If the input is parallel the cost for temporary storage increases but the delay is considerably reduced.

The average amount of delay per input that can be tolerated will clearly decreases as the quantity of input required for a problem increases. More accurately, the average amount of delay must be related to the average number of operations per unit in the calculation. Consequently, it is necessary to consider the type of problem that the machine will be used to solve.

2.4
The Output Unit

The largest quantity of output arising in a problem is in general much less than the corresponding amount of input, but on the other hand, the conversion process from binary to decimal, if it is needed, is rather more complex.

The same considerations apply to choosing between serial and parallel output, as for the case of input, and before a final decision can be taken the class of problem involved must be specified.

2.5
The Instruction Store

As with the number store the two important factors involved are access time and size. It is necessary to determine the minimum number of instructions that can be provided without reducing the effectiveness of the machine for the problems it is required to solve.

It is commonly recommended to combine the two storage systems and thereby achieve an increase in flexibility. It is claimed that this enables the machine to be used to solve problems requiring a large number store but only a small instruction store, or those with the opposite requirements, as well as those which require a moderate store of each kind. This advantage is largely offset by the necessity either of forcing the instructions into a coded form of the same length as a number, or of providing separate and different mechanisms for withdrawing numbers and instructions from the store.

The other advantage claimed for a mixed store is that instructions can be subjected to arithmetic operations to alter them. Such a process usually requires additional number storage to provide the “altering” operands. In practise the type of alterations required can be carried out with a simple counter working on far fewer digits rather than a whole number.

It will be seen later that the desirable access time characteristics of the two types of storage are not the same and, consequently, it may be more economical to provide two different stores and a special unit for altering instructions.

3.
classification of problems

It will be seen from the preceding brief account of the components that an economic appraisal of machine design is closely related to the type of problem which is to be solved on the machine. In particular, it depends upon the complexity of the problems, the amount of information that needs to be carried at any instant, the volume of data required and the total number of results required. It becomes clear, in fact, that although it is possible to build general purpose machines which are capable, in principle, of solving any problem given to them, such machines are liable to be inefficient at solving any of them and that the class of problems in mind has to be considerably restricted before the problem of designing a machine becomes meaningful.

If this process of restriction is carried to excess we are lead back to the construction of special purpose machines, which is the exact contradiction of the original aim of these machines, namely, to perform all computing mechanically. However, such a fine sub-division is unnecessary since nearly all computing tasks fall under one of three main headings:-

statistical and allied calculations

the construction of tables

numerical analysis

3.1
Statistical Calculations

The main characteristics of this type of calculation is the large amount of data which requires input and the small number of operations upon them. If the originic content of a calculation is defined as the average number of operations performed by the machine per input, then statistical calculations have a very low organic content. This definition of organic content is a little vague since it will depend upon the exact code used in the machine. However, it is quite a useful term to simplify general descriptions.

Electronic computers have already reached the stage when the arithmetic operations required in such calculations can be fitted into the mechanical time-lag between successive inputs, thereby effectively reducing the time for solving the problem to that of feeding in the data. Clearly for such calculations the central problem is the provision of improved and faster input devices. This will require an extensive programme of engineering research which is best carried out by the people most vitally concerned, the business machine manufacturers.

In many problems of this class it is not possible to arrange the calculation so that each number is used only once (at the time of its arrival in the machine) and so, if multiple input of the same data is to be avoided a large number store may be required.

The quantity of output from statistical calculations is very low in general and it is convenient to introduce two similar terms to organic content.

the productivity of a calculation is the average number of results printed per operation of the machine.

the condensation rate of a calculation is the average number of inputs per result.

Once again we have a certain vagueness of these terms which vary from machine to machine. These variations between machines can be used as measures of their efficiencies in various respects. We always have the result that the Organic content X productivity X condensation rate = 1. Hence a statistical calculation is characterised as having a low organic content and productivity and a high condensation rate.

3.2
The Construction of Tables

Problems of this type are characterised by a very low condensation rate and a high organic content. The productivity varies with the type of table, ranging from very high for simple tables such as annuity tables of PAYE income tax tables to very low for tables of complex mathematical functions.

Generally speaking, the possible rate of computing with an electronic calculator will exceed the possible rate of printing the results in this type of problem and once again the removal of this bottle-neck will involve engineering research into faster printers.

The need for such research is not so pressing as in the case of input devices since table-making is likely to become less important as automatic machines become more common. The use of these machines for commercial purposes will largely eliminate the need for many tables now used in that activity. For scientific work most the simpler functions are now extensively tabulated and the complexity of the higher functions reduces the productivity to a rate which does not present such severe problems of output. Such tabulations are rather better described as in the third class which we proceed to discuss.

3.3
Numerical Analysis

This class of problem comprises the vast bulk of computing required for scientific research and includes the solution of differential equations, the inversion of matrices, the solution of transcendental, algebraic and diophantine equations. These are all characterised by a high organic content and a low productivity.

Thus for these problems input and output rates are of secondary importance and so the problems of internal organisation of the machine require study first. We shall find that the rate of calculation for even these complex problems can tax the printing mechanisms and some study of this part of the process will be necessary later.

3.4
Discussion

This report concentrates on the design of machines intended for use on the last class of problem, and consequently is primarily concerned with the internal organisation of such machines.

Input and output devices will be required and a later section of the report considers the desirable characteristics for the most effective devices for these processes in the light of the main requirements of the machine.

Although the machines considered will be designed to solve the problems of numerical analysis, it must be possible to use the machines for problems of the other two types.

The discussion of the design problem is divided into several heads:

a) Storage 
Here the size and speed requirements of the two stores are analysed in further detail.

b) Coding
An analysis of computing is made to reach certain principles on which a rational method of coding instructions can be based.

c) The Characteristics of the Arithmetic Unit
This deals with the problems of scale, accuracy and range of numbers.

d) The Operation of the Arithmetic Unit
This discusses the problem of design of an AU to perform the required operations with the minimum equipment and to involve the minimum of control.

e) The control of the machine
The last main problem consists of arranging the code so that the control gives the required range of operations with the minimum amount of equipment.

These five topics occupy sections 4-8 of the report. The remainder of the report is concerned with a further analysis of computing and suggestions for special devices which aid the work of the programmes in various ways.




4.
storage

The requirements of the two forms of storage are considered separately.

4.1
Number Storage

The actual volume of number storage needed in problems of numerical analysis varies enormously from about 8 stores for the solution of a quadratic equation to several thousand for the inversion of a large matrix.

A large store with low access time increases the cost of the machine directly and indirectly. The larger the store the more digits are required in an instruction to specify any given storage position and the larger the units necessary for the selection of that store.

Viewing the matter from the programmer’s point of view is of some assistance here. He doesn’t and cannot think of the array of numbers involved in a calculation as individually different. He regards whole sets of numbers as of the same kind. For example, in the solution of a differential equation there is a group of numbers which are values of y and another group of dy/dx. The numbers in each group are distinguished by the value of the independent variable x and can be ordered by this quantity. Similarly the numbers involved in matrix calculations can be divided into groups as row (or column) vectors, the ordering within each group being by column (or row).

The programmer has to group the storage positions accordingly and so there is an advantage if the naming of the storage location follows a similar two-level system.

The second feature of programming which is relevant is the advantage taken of the repetitive nature of most computing. Part of any programme will take the form of a set of instructions which uses numbers from different groups in such a way that the repetitions of the set only differ in the actual numbers selected from the groups. There is usually a simple way of ordering the numbers in the groups so that each repetition consists of the basic set of instructions performed on the next numbers from each group.

The simplest example is the programme for a scalar product which consists of the pair of instructions multiply and add. The multiplication takes place on elements of two vectors and the addition is of the result to a partial sum. On each repetition the next elements in the vectors are used.

In more complex examples, the total cycle of operations might be much longer and the time between using successive elements of a group correspondingly longer.

It follows that the required access time of all numbers stored in the machine is not the same. There is a small set at any instant for which a very short time is desirable and a much longer set which will be required later. Consequently we can set up a small “address” system of say 32 immediately available stores, each backed by a large store of numbers “like” them, ie in the same group. Provision must be made for the contents of the local storage to be changed. This change can either be achieved automatically so that each time a store is connected to the AU a different number is available (the next in the group), or by an order, actual or implied in the programme. One possibility for an implied order to change the constants of a local store would be to add an extra digit to the address system and give each store two addresses. One would arrange for a change to take place after each entry to the store while the other would not.

In any case, at such a change the original contents of the local store must be replaced in the correct place in the backing store with calculated results.

The total cost of the number storage could be kept low since the low access time storage required it very limited.

The total size of the instruction store required is reduced, since the number of digits in addresses is reduced.

There is a simplification of the programmer’s task.

The need to alter addresses in instructions between successive utilisation’s of any cycle is largely eliminated, saving both the time of performing the alterations and the space in the instruction store to achieve this.

The possible disadvantages of such a scheme are:

There is an extra stage of transfer control introduced into the machine between the local storage and the backing storage.

There exists the possibility that the transfer at this level has not taken place before demand is remade at the local storage. Additional checking circuits are necessary to delay the operation of the machine until this has in fact taken place. Such delays, if frequent, can slow down the general rate of computing and consequently the access time of the backing storage must be matched to the machine computing rate so that this is a rare event.

The programmer is sometimes forced into rather artificial groupings of his numbers to utilise the number store to its fullest extent.

In practice not all the local stores require backing and quite a wide variety of problems can be solved with no more than 4-6 such stores. It is also possible to provide several varieties of such backing storage with different access times. This enables the cost of the storage to be reduced still further. The number of lower access time backing stores provided is limited to the number of groups of numbers in any problem which do require rapid changes.

4.2
Instruction Storage

Even the simplest problem involves a large number of instructions and if each instruction has a separate label in its address system the combination of the two storage systems would destroy the value of the idea of local storage with backing developed for numbers. However there is also a natural grouping of instructions which can also be used to reduce the address system required. The vast majority of instructions are followed in a prescribed order and it is only at isolated points in the programme that the machine has a choice, in its next instruction. The complete set of instructions naturally divide into groups, each group being ordered. We shall term such groups sequences.

By repeating the device of two levels of access in the instruction we may store the sequences of instructions as units and arrange to scan the instructions within these sequentially. The positions within a group do not need individual naming and the address systems need only cover the set of sequences. Once again there is a saving of instruction storage due to the smaller number of digits used to specify the next sequence of instructions in those special instructions which determine this.

Although the system of instruction storage has been reduced to the same form as that for numbers, there are three important differences which make the division of the store into two parts very desirable.

Firstly, the time roles of the two levels are completely different in the two cases. In the number store the access to local storage level is required fast, the access of local storage to backing storage can be slower. In the instruction store the serial access to the backing store is required fast while the more rarely used change at the local level can be slower. In the number store there is a constantly changing connection between the local instruction storage and the control unit is semi-permanent.

Secondly, the transfer from backing to local storage is optional in the number storage system, but must take place after each demand at the local storage in the instruction storage system. Lastly, the interchange between local and backing storage is symmetric in the number storage but not in the instruction storage. Each transfer in the number system draws on number out of the backing storage and puts one number back into it. In the instruction storage only the drawing out process is necessary.

It is best to regard the desirable form of instruction storage not as a modification of the number storage, but rather as a storage system in which the stores are grouped so that there is free access to the groups, but only serial access to the freely chosen group.

It only remains to discuss the problem of altering instructions to enable it to be decided whether the stores are separated or not.

If the stores are not separated then arithmetic operations can be used to modify instructions; if they are separated a separate unit is required to do this. Such a unit would be about as complex as an adder at the worst, while at best it could be very mush simpler. The additional cost of this unit must be weighed against the additional costs caused by:

the need for a more complex selection control involved with a larger address system

the need for extra storage space for the additional digits in the address

the reduction of access time to local storage for instruction to the same level as that required for numbers

the reduction of access time of local storage to backing storage for numbers to the level required for instructions.

This last cause is likely to be very serious since, if cyclic (or circulating) storage is used for backing, the cycle time of the store for numbers will need to be the same as the word access time for instructions.

It is very unlikely that these additional costs would be less than a separate unit. But we may go further and inquire if the need for altering instructions cannot be removed altogether. The main use of this facility is to alter the address in instructions and so enable the same operations to be performed on different numbers in successive applications of a basic set of instructions. The technique of two level number storage proposed largely eliminates the necessity for such manipulations. Is it possible to extend the process so that all alterations of instructions become unnecessary?

It may happen that a basic cycle of instructions is very short so that the numbers of a group are required in rapid succession, eg in forming a scalar product. There are several possible methods of dealing with this.

For a limited number of local stores the backing store has the same access time as the local stores. This makes the backing store more expensive, but any method of dealing with this situation is bound to increase the cost, either directly or indirectly.

Use several local stores to hold the vector and scan them in order. This increases the basic cycle of instructions and tends to waste number storage since each backing store usually contains less than its full complement of numbers.

To associate several local storage positions with a group and arrange that these contain the successive numbers of the group that a shift throughout the set takes place when ordered - the second to the first, and so on, filling the last from the backing store. This also involves increasing the basic cycle of instructions, but will not involve storage waste.

In other problems, eg the solution of differential equations, several numbers of the same group may be required in each basic cycle. This can be dealt with by:

Treating each number of the group involved in any cycle as belonging to different groups. This means that several backing stores all contain the same numbers and is wasteful of storage space.

The device of (a) above can be used, the shift order being given after each cycle.

A similar arrangement of local stores without the backing store is frequently sufficient.

These devices cover the needs for systematic alteration of addresses in instructions; there remains the problem of more complex alterations that cannot conveniently be forced into such a form. These can be solved by the use of “algebraic” addresses. In this two local storage addresses are reserved for this purpose. One address leads to a store in the normal way and this store controls a tree or matrix arranged so that if an attempt is made to use the second address, then the actual store used is that whose number is in the first store. We shall give the name TREE to the special address and the TREE STORE to the special store.

Suppose we have a sequence of instruction f(X) which involves the store numbered X; on each application of the sequence the value of X is different. We can construct a sequence ( which will compute the next value of X on each successive application. Let ( store these values in TREE STORE. The complete programme for achieving the desired result is the alternation of ( with f (TREE). The problem of constructing ( is no more complicated than constructing the sequence which would alter X in the sequence f(X).

If required several such address pairs can be provided but experience of programming of ICCE indicates that if the other devices are available this will not be necessary.

This disposes of the alteration of addresses and the vast bulk of the alteration of instructions. However, it sometimes happens that a programme involves two lengthy sequences which only differ in a few operations and could be replaced by one if these operations could be altered between successive uses of the sequence(s). Of such cases, the most important one is where the discrepancy lies in one operation, being an addition in one sequence and a subtraction in the other. Suppose the operation is A(B(C.* This may be replaced by the pair ( B(C, A + C(C. Now suppose we provide in the address system a single digit trigger which can be set up by passing certain numbers to that address (eg if the trigger is in the sign position it will be set up by all negative numbers). Call this store SGN. Suppose further that the machine has an instruction which passes B to C if SGN is off, -B to C if it is on; this can be written (SGN)B(C. The pair of instructions can be written (SGN)B(C, A + C(C, and then the required difference between successive passages through the sequence can be pre-arranged by putting SGN on or off before entering the sequence.

* We use the three address code here for convenience.

More rarely still, a general change of instruction may be required; f1 (X,Y) (Z in one sequence and f2 (U,V) (Z in the other, say. Replace the variable instruction by the triad

f1 (X,Y) (Z

f2 (U,V) (Z

TREE(Z

Here W is a 6TH storage position. One version of the sequence is obtained by pre-setting TREE STORE to Z, and the other by setting it to W.

The final need for altering instructions is in the organisation of commonly occurring groups of instructions. Such groups may be used in a calculation in a variety of places and it will often be necessary to arrange to use the same physical set of instructions to conserve the instruction to direct the calculation to the appropriate part of the programme after each passage through the group. This instruction contains in some form a specification of the part of the programme to be followed next. If this specification can be given as an address of a number store, this can contain the necessary information to direct the programme correctly and the contents of the store adjusted before each passage through the group.

Thus, with the provision of very few extra facilities the need for altering instructions can be eliminated. This has the following advantages:

No provision for high-speed input to the instruction store during the operation of the machine is necessary and this simplifies the control of the store.

It reduces the actual storage of instructions since those necessary for altering others are not required.

The proportion of indirect instructions (those which organise only the calculation and do not affect the arithmetic required) is reduced, increasing the rate of real calculation.

The programmer is relieved of one of the more tedious parts of his work, checking the effects of the modifying instructions on the basic instructions. This is understood to be a frequent source of error.

These advantages are overshadowed by the further advantage that the instruction storage need not be erasable. This can produce a startling decrease in the cost of storage. For relay machines, each local instruction store can be made from punched tape, read serially by a single reading head.

For an electronic machine it is proposed to try using punched tape with a whole battery of reading heads electrically isolated by rectifiers. Another possibility is to use film strip, with photo-electric cells and an optical system to read it.

The various characteristics of these and other more conventional storage systems are discussed in the next section.

4.3
Characteristics of Storage Systems

Storage systems are usually classified as parallel or serial, cyclic or non-cyclic, and erasable or non- erasable, and the following sub-sections deal with the relevance of these characteristics in choosing the type of storage for numbers and instructions.

4.3.1
Cyclic Vs non-cyclic: dynamic Vs static

These classifications are closely connected, although not exactly the same. A dynamic store is one in which the storage medium is constantly undergoing change in some manner; a static store is on in which a permanent deformation of the medium acts as the record. Thus a mercury delay line is a dynamic store, a magnetic drum a static one.

A cyclic storage is one in which the whole pattern of the stored information becomes available at successive instants in time at some accessible point in the system, (referred to as the reading head). In a non-cyclic store there is no such point and a conscious selection of different parts of the store is necessary to obtain any piece of information. Mercury delay lines and magnetic drums are both cyclic, while an array of relays forms a non-cyclic system. Some cathode-ray rube storage systems are also non-cyclic.

Both dynamic and cyclic storage involve movement; dynamic storage movement of a deformation in a medium, cyclic storage movement of the deformation relative to a scanning point.

For cyclic storage there is only one switch mechanism selecting the required information at the correct time instant, and this gives an economic method of obtaining access to the information. However, if the information required is scattered at random in the store, the access time is effectively the cyclic time, and this, for an n-digit cycle is n times the digit access time, becoming large for large storage systems. Thus for number storage, it is suitable only at the second level of storage. If the information is required in order and can be used sufficiently quickly, then the access time can be reduced by reading from the store continuously, when the access time is reduced to the intervals between successive digits or groups of digits. Thus a cyclic store of the appropriate speed may forma  very suitable storage for instructions at the second level.

Non-cyclic storage involves a more elaborate switching mechanism and becomes expensive for large storage systems. However, the access time is merely the switch selecting and operating time an can be reduced to very low levels indeed. Thus it is ideal for the first level of number storage, since the small address system involved will not incur too much expense. Although the speed is not required it is also the natural choice for the first level of instruction storage.

Punched paper tape plays a very special role in storage systems since it has characteristics intermediate between that of cyclic and non-cyclic storage. In other cyclic storage the passage of information past the reading head is at a steady rate and synchronising mechanism must be employed to obtain the desired numbers.

In punched tape the passage need not be regular and can be controlled from the machine which can step the tape forward over one number at a signal. Thus as in cyclic storage we have access to the information in order but now instead of a regular delay between successive digits there is instantaneous access but each access is followed by “dead-time” - the time to move tape. Thus providing the intervals between demands never falls below some certain value there are no delays. In true cyclic storage any departure from regularity involves delay and a lengthening of the interval causes the delay to rise to a full cycle time.

This characteristic of punched tape is very suitable to the requirements of instruction storage. The various operations performed differ in complexity and in the time to perform them and this irregularity of the rate of computing must be reflected in the rate of withdrawing words from the instruction store if there is to be no time loss.

It is therefore important to devise storage systems working at speeds comparable to electronic speeds with this same characteristic and this will be considered after the other characteristics have been discussed.

4.3.2
Parallel Vs Serial

These terms refer to the mode of access of the machine to the store and in principle either method can be used on cyclic or non-cyclic storage. In practice, serial access to non-cyclic storage produces no appreciable saving of equipment over parallel access but, of course, is much slower. Thus serial access will only be considered for cyclic storage.

In this case since the access time for randomly placed digits is the cycle time the change in access time between serial and parallel access is not very great. For serial storage only one piece of equipment is needed for reading as opposed to one for each digit for parallel storage but if the cycle time is maintained constant the capacity of the store is reduced and after duplicating the equipment sufficiently to produce the same capacity there is very little difference in the total equipment required for the two methods of access.

Thus the question of cost plays a very small part in determining the type of access used. A much more important factor is the type of AU used. Scanning mechanisms are required if a parallel storage is used with a serial AU while staticising arrangements are needed to use serial storage with a parallel AU. Hence it is desirable to match the storage system to the AU used, which in turn is settled by considerations of the time intervals between successive instructions being commenced and the cost of the AU.

4.3.3
Erasable Vs Non-erasable

There is no question of using non-erasable storage for number storage. We have shown that non-erasable storage can be used for instruction storage.

For relay machines, punched tape forms a very cheap form of storage but the mechanical inertia of the moving mechanism makes it too slow for use with electronic machines.

For such machines it is suggested that two other possibilities should be considered.

the use of punched tape in which each row is read by contacts. Small low capacity rectifiers can be used to isolate the rows from each other.

the use of film strip with an optical scanning system and photo-electric readers. Such system would only need very light moving parts and might yield a cheap, moderately fast store of the type required.

Both these forms of storage can be arranged to give the same access time characteristics (on a greatly reduced time scale) as punched paper tape.

4.4
The Relation between the AU and the Storage Systems

We may now discuss the type of AU required to operate most efficiently with the form of storage described and to consider the balance of operating speeds of the two components.

Some machines use the two storage systems in turn, using the instruction store to find what to do and then the number store to find what to do it on. If the access times to these two stores are widely different then the effective speed of the machine is almost entirely governed by the slower speed. Any attempt to increase the rate of access to one store increases the expenditure on that part of the machine and under the restraint of constant total expenditure reduces the amount spent on the other store. The mathematical problem of determining the optimum balance of these factors cannot be formulated sufficiently precisely with the available data on the relation of cost to speed and a rather more empirical approach is necessary.

Other machines work by what may be described as twin action in which the process of reading and preparing for one operation takes place while the preceding one is being performed. For such machines a balance of access rates to the two stores is essential for efficient working are more complicated than mere balance of operating rates.

This discussion has taken place as if there were a continuous range of possible access times from which to choose. In practice the problem is complicated by the fact that there are really only a series of short ranges about several widely spaced values. Arranged in order of decreasing access time these are:

a) 
Funded paper tape
access time for reading and moving 25-100 milliseconds time for punching and moving 50-200 milliseconds.

These figures are for a row of tape and the lower figures are possible only for short rows of five positions or less.





b)
Relay storage with relay gates
access time 10-60 milliseconds.

c)
Magnetic drum storage and rotating film-strip storage
access time 25-200 microseconds per digit, cyclic storage with cycle time of 10-20 milliseconds.

d)
Mercury delay lines
access time .25-2.0 microseconds per digit, cycle time almost any multiple of this up to 2 milliseconds.

e)
Cathode ray tube storage
similar to (d).

f)
Static paper tape store with rectifiers
access time .25 -2.0 microseconds.

No matter how simple the machine, the capacity of the instruction store must extend to several hundred instructions and so, as a starting point for the design of a machine, we shall take each of the types enumerated above as the form of low access time storage for instruction and consider the necessary operating speed of the AU and the optimum form of number storage.

4.4.1
Punched tape instruction storage

The ICCE is a machine of this type. It is not reasonable to attempt to achieve an operating rate of ten or more operations per second with relays, and if electronic equipment is used this rate can be exceeded many times. Consequently, if relays are used, a parallel AU will be necessary and the fastest relay storage possible for the first level of number storage. This will still leave the possible rate of instruction input higher than that necessary. This can be remedied in part by a partially serial input of the instructions reducing the effective rate of input and reducing the number of channels, gates, etc, required in this storage system. It will be seen later that this serial input of instruction is advantageous for other reasons. The special characteristics of punched tape storage mentioned earlier enable any remaining mis-match of input and computing rates to be tolerated without time loss.

In the ICCE the number backing stores are attached to four local stores and consist of punched tape devices (equipped with copying arrangements to give the effect of a cyclic erasable store). These will probably be supplemented, or even supplanted, by magnetic drum storage.

4.4.2
Relay storage

A machine using this form of instruction storage fails to take advantage of any of the special characteristics required of instruction storage, and would be extremely extravagant without producing any great increase of speed over a punched tape machine.

4.4.3
Magnetic Drum Storage

If the instructions are read from the drum on successive revolutions of the drum, the operating rate is about 20 milliseconds per operation and it is comparatively easy to produce an AU working serially at this speed. Serial magnetic drum storage of numbers at the local level of storage would also be quite feasible, and the advantages of a two-level storage system are largely wasted.

Such a machine would be far slower than necessary. The instructions could be stored serially on the drum and read off as they appear under the rounding head. This reduces the time for an operation by about ten to thirty times. The AU would have to be parallel acting and the first level of number storage would also be parallel. Storage on “flip-flops” or noon tubos would be a very suitable form of storage and would not be intolerably expensive for the comparatively small amount required. Backing storage could be on magnetic drums, or possibly mercury delays lines.

The time required for different operations is widely different (eg a multiplication is made up of a set of additions) and so the rate of instruction input has to be slowed down to give time for the longest of these. This will lead to a waste of time for the computing part of the machine which will stand idle after performing the quicker operations.

A machine using rotating film strip and photo-electrical reading could be used in place of a magnetic drum at about the same operating speed. Such a form of instruction storage involves rather more expense in ancillary apparatus without any real advantage.

If a film strip storage can be devised in which the scanning can be advanced one row at a time sufficiently rapidly, then it will be possible to climinate the idle time of the AU.

If this can be arranged it would also be possible to use punched tape in place of the firm strip, thereby reducing the cost still further.

4.4.4
Mercury delay line storage

As with a magnetic drum storage, there will be two methods of using such a form of storage. The first involves removing each instruction after a cycle time has elapsed. This is the technique used in most of the currently existing or projected machines using this form of storage. The second would need an extremely fast AU and if the fastest possible parallel AU and number storage is provided, it is doubtful if operations can be completed in the passage of time required to extract an operation. Hence it would be necessary to space the instructions out in the delay line. If this spacing is uniform then the AU will be idle after the quicker operations, as in the magnetic drum machine. If the spacing is variable the time losses can be eliminated at the expense of a complicated in programming and a possible loss of space in the instruction storage.

The ACE, now working at N.P.L., is a machine working on those lines, although this only has a serial AU, and uses delay line storage for numbers. Experience indicates that the difficulties of programming are soon mastered and that it is possible to reduce the loss of space to very low proportions indeed.

If a machine were constructed using a parallel AU and high-speed parallel static storage on “flip-flops” or neon tubes at the first level of number storage, it would be 10 to 20 times as fast as the ACE.

Such enormous operating rates on even the most complex calculations would bring the problems of input and output to the fore again, and without the development of suitable external organs such speeds would be largely wasted.

4.4.5
Static Paper Tape Storage

A store of this kind has exactly the same access characteristics as a punched tape with a very much smaller “dead time”. The successive rows of the tape are read by energising the set of contacts behind the row, using a counter and a resistance matrix to choose the row. A “dead time” of five microseconds is easily obtainable. Once again this is a far faster rate than can be utilised with the fastest parallel AU.

The same device as is used in the ICCE of serial input of the instruction can be used to match the two components. Number storage at the first level can be on “flip-flops” or neon tubes and backed by magnetic drums (or, for some stores, mercury delay lines).

Such a machine can be regarded as an electronic version of the ICCE, capable of achieving speeds comparable with ACE, but at considerably less cost.

4.5
Summary

The main decisions concerning storage that have arisen from this discussion are:

To store numbers and instructions separately.

To use a two-level system of storage in both cases.

To arrange that access to the first level shall be non-cyclic and parallel in both cases.

To use cyclic storage at the second level of number storage with parallel or serial access, according to choice.

To use cyclic (preferably non-uniform-storage at the second level or instruction storage.

To use a parallel operating AU.

To work the machine, if possible, with twin action.

5.
coding

The design of a code for an automatic machine must arise from a study of the actual processes of computing. Research into the fundamentals of mathematics has concentrated on showing how all the complex operations required can be built out of simple concepts such as “and”, “or” and “not”. If a machine is capable of testing for the truth of propositions framed in terms of these concepts, then it can be organised to perform arithmetic of any kind.

However, such an “atomic” machine would not be very useful as the programmer would have to think, at least initially, in very find detail about such simple elements of his calculation as additions or subtractions. The machine must synthesise the elementary propositions to perform each such basic operation by a single command; the problem is how complex these syntheses should be. It is quite possible to conceive a machine which is so complex that a single command would result in the inversion of a matrix and another in the solution of a quartic equation. Such complexity is felt to be unnecessary because these large problems can be broken down into simple parts, often common to different large problems. As problems are broken into smaller and smaller parts, the possibility of using the parts in different problems increases, but the rate of increase slowly decreases until further sub-division has no more effect. The best sub-division is that which creates the largest possible complexes, so that nearly all of them are used in nearly all problems.

The task of analysing various processes of computing into component parts and determining the set of instructions to be included in the code from such an analysis would be an enormous task and rather difficult to carry out even if time and energy permitted, since it is not easy to make the formulation of the task sufficiently precise without introducing certain arbitrary conventions. However, such an analysis already exists in the present practice of hand or desk machine computing. This has been evolved over several generations and gives a sub-division of computing which is familiar to all interested in the subject. Consequently, a near approach to the best code for present day machines is one in which each set of elementary operations which is regarded as a unit by computers can be given to the machine as a single command. This will have the social advantage that programme construction will be easier to learn for the average computer.

Any simpler code which involves building up these socially accepted basic operations from simpler operations has several disadvantages. Firstly, the programmer’s problem is more complicated and involves more instructions for any particular problem. This in turn increases the amount of instruction storage needed, and increases the time for solving the problem since each basic operation would need several instructions to be set up instead of only one.

It would be unwise to regard our present mode of thinking about computing as unchanging. In the course of time it will develop and the existence of automatic computing machines will be a powerful factor in this process. The new ways of thinking about computing will be more complex than the present ones regarding whole sets of operations as a single operation. Machines whose code involves a simpler mode of thought than that current can only hold back such developments.

5.1
The Basic Arithmetic Instructions

Clearly the list of basic instructions should include the four rules of addition, subtraction, multiplication and division. Root extraction can be thought of as a basic operation or not, without any great loss one way or the other, as it is a comparatively rare component of most calculations.

Movement of the radix point is also a basic operation and the various forms of this must be included. These are:

moving the point a fixed number of places;

moving the point by a number of places calculated by the machine;

moving the point so that the number lies in a fixed range.

These movements are usually achieved by shifting the number in some register. Such shifts should not need to be regarded as multiplication by powers of the radix.

A computer regards taking the negative of a number or its modulus as a single step in a calculation. The temptation should be resisted of economising by providing only one of “subtract” and “negate” since, although one can be obtained from the other, computer do not think of these relations between them and they are performed as separate operations.

In almost all calculations certain simple multiples of a number X such as 3/4X  and 2/3X are required. A computer does not regard these factors 3/4 or 2/3 as numbers but as part of the programme. The product is regarded as produced by a process different from multiplication; indeed, for the simpler multiples the result is obtained mentally. It would be convenient if this mode of thought could be preserved and extended by including the formation of such simple multiples as basic operations. The inclusion of these operations will remove the need to store these simple multiples which will considerably ease the number of storage problem.

These latter operations of shifting, negating, modulating and taking a multiple, involve only one operand, as distant from the four basic arithmetic operations which involve two. This difference forms a very convenient classification of the instructions; the two kinds will be referred to as one- and two-operand instructions, respectively.

5.2
Coding the basic arithmetic instructions

Of the two common forms of code in use today, that known as the three-address code is based on two-operand instructions, and specifies an operation ( to be performed - two storage positions A and B containing the operands and a storage position C to hold the result. This is usually written A ( B (C.

This type of coding completely disregards the connected character of a calculation. Frequently the result of one operation is one of the operands in the next operation, and it is wasteful of time and instruction storage space to specify a destination for a number in one operation and to re-specify it as a source in the next.

The second common form of coding avoids this difficulty (although it arose for completely different reasons) and is known as the one-address code. In this code each instruction specifies only an operation and one operand. Thus the more transportation of numbers between the store and the AU are included as operations. The complete operation A ( (C breaks into three:

A(A.U.

B ( (A.U.)

A.U.(C


while a pair

A ( B (C

C ( D (A


becomes four

A(A.U.

B ( (A.U.)

D ( (A.U.)

A.U.(A

The objections to such a code are two-fold.

Firstly, each instruction now no longer corresponds to a step in a computer’s picture of a calculation. Some of the instructions merely redistribute the information in the machine and a computer does not regard this as a step in his calculation. Secondly, this code does not completely eliminate the redundancy in the instruction information. The specification of addresses has been reduced to the minimum necessary at the expense of adding to the number of digits used to express the operations carried out. Finally, although time has been saved on unnecessary number transport, there will be a waste in setting up several instructions rather than only one.

How is it possible to obtain the advantages of both of these two systems without their attendant disadvantages? In the course of a calculation we may require to perform an operation on two numbers from the store or on one from the store and the result of the last operation. We may wish to keep a record of the result by placing it in the store, or it may form only one of the operands in the next instruction. Suppose we denote any appropriate register in the AU as ( then the four versions of the operation ( which are required are A ( (, A ( ((C, A ( B, A ( B(C where A, B, and C are specified stores.

Suppose the code includes four such versions of each basic operation ((+, -, x, (). Then two extra digits are required for each specification of an operation; but this increase in digits is more than counter-balanced by the saving of digits on redundant addresses or transfer instructions. In addition, such a mode of operation ensures that no time is wasted by either of the methods involved in the conventional codes. The main change this code produces is that the operation words become of variable length, consisting of an operation part and one, two or three addresses, according to the version.

The apparent difficulty can be overcome and turned to advantage by breaking each instruction into component parts and regarding each component as a unit of instruction storage, which we shall call a word. An instruction is then a group of words, the first specifying the operation and those following such addresses as are required.

These words will be fairly short and generally much shorter than numbers. This requirement adds force to the decision to store numbers and instructions separately since then the work length can be chosen independently of the number length.

This breaking of instructions into parts has an advantage for their input. We have seen that a partially serial input is desirable to obtain a better match of operating speeds. The various words of an instruction are not all required together, but in order as the operation proceeds.

For economy of storage, the number of first level storage positions must equal the number of operations in the code, but this limitation is not very restrictive since a word length of 5-7 binary digits is very suitable for either part. the operation word of the group implicitly specifies how many addresses will be required and the machine uses the following words in turn, leaving the first word of the next instruction available at the conclusion of the operation.

The one-operand instructions can be dealt with in the same way. Consider a shift by a calculated amount. Suppose the amount of shift is stored in S, then the number to be shifted may be in a store X, or on the AU register (; the result may be required later on only for an operand in the next instruction. Four versions are required which may be written:

( Sh S;    ( Sh S(Y;   X Sh S;    X Sh S(Y

Here Y is another specified store. As before, there are one, two or three addresses required.

Similarly, in the shift to standard form the amount of the shift will need recording, but the number shifted, or the result, may not need specifying in the instruction. For a multiple none, one or two addresses will be required, according to whether the number involved is already in the AU and the results needs recording.


5.3
Complex Operations

If required, more complex operations can be devised using even more than three addresses without a basic alteration of the instruction storage system. For example, it would be possible to fabricate an instruction to form:

 n
( xi2
I=1

with n+2 words; operation, n, X1, X2,..Xn. The operation word would have to organise the machine to use the next word as a count on the number of times a cycle of squaring and adding was allowed.

In the sequel it will be shown how in the ICCE this idea is extended to allow the machine to perform whole complexes of operations as a single coded instruction without altering the main structure of the machine.

The reduction of the number of the digits in the basic unit of instruction storage has several advantages from the point of view of economy of component in the machine.

(a)
For parallel access to the store the cost of channels, gates etc, is reduced.
(b)
For serial access the time to collect a unit is reduced. This is really part of the economic advantage of the speed match of components discussed in Section 3.

Twin action becomes far easier to achieve since the necessary duplication of components is reduced.

The same decoder associated with address selection can be used for each number as required; this is also true of the one-address code, but in the three address code three decoders are required.

5.4
Matching the code and control

The preceding discussion has implicitly assumed a serial ordering of inputs to the AU during each operation. Simultaneous input to the AU involves two distinct “highway” buses and two gates to each store. Such an added expense is justified only if the input time is a significant proportion of the operation time.

We have agreed to use parallel non-cyclic static storage for numbers at the first level of number storage and, consequently, a major part of an input (or output) time is the withdrawal of the name of the store involved from the instruction store. Thus, a natural consequence of using the “variable-address” code advocated here is the use of serial inputs and a single highway.

Thus each operation in such a machine will follow the same pattern of phases.

First input (omitted for one-opened operations).

Second input (omitted in two versions of each operation).

The arithmetic.

Output (omitted in two versions of each operation).

Set up the new operation.

The control of the machine must contain components which are responsible for the execution of these phases, and the complete instruction is obtained by connecting these units together in the appropriate way. The machine must contain a control store which holds the current operation word and which ensures the correct connections; (this is termed the operation store). The various operations may be classified into three mutually independent pairs of groups according to whether a first input is required, a second input is required, and if an output is required.

If the instructions are suitably numbered, this classification can correspond to a single digit of the “name” and hence the inclusion of the three units responsible for the inputs and output into the network will each depend on a single element of the operation store. This leads to a great simplification of the operation decoder and illustrates a principle of machine design which will be studied later, namely the matching of the machine control and the instruction code.

5.5
Ancillary Instructions

There are certain other instructions apart from arithmetic which a machine must be able to perform before it can be completely automatic, these are concerned with discrimination, input, output stopping and so on. Before we consider these there is one feature of our arithmetic operations which has not been considered.

5.5.1
Direct and Indirect instructions

One of the most startling discoveries that any computer who starts programming for an automatic machine very soon makes is the large amount of unconscious work he performs in hand or desk computing in calculating the position of radix points, in counting how many times a cycle of operations had been repeated, and so on, which must, on an automatic machine, be written in as part of the programme. The operations which achieve these results may be referred to as indirect, since they do not contribute to the actual calculation but merely organise it. These operations which perform arithmetic which actually reflect the algebra of the process are referred to as direct. Equally we shall refer to the results of operations as direct or indirect. These terms are not precise, as some operations may be considered in either or both categories, but they are very convenient for general descriptions.

The general pattern of any calculation consists of a few direct instructions followed by some indirect ones, and so on. This alteration of direct and indirect instructions leads to an increase in the transportation of numbers (our of the AU and back in again later) above that necessary if only the direct instructions were performed.

Moreover, the results of the indirect instructions are of a different character from the direct results. They are counts of one kind or another; counts of the number of cycles of operations the machine had performed, counts of the number of shift that a number has suffered  and so on. Hence they are essentially integers and are subjected only to operation of adding or subtracting. Their possible range is much less than that of the direct results and so will not use all the digits of an ordinary number.

Hence the inter-mixture of direct and indirect operations leads to waste on two counter, the advantages of the variable address code is partly dissipated and the number storage is not fully used.

Hence it is suggested that these two types of instruction should be completely separated, and another simplified AU provided to add and subtract the indirect numbers which should be stored in a separate “short” number store. The provision of this extra unit is the only additional expense involved in this suggestion and this will certainly be counter-balanced by the saving in the cost of storage.

The separation of the store into two parts will also save a digit in the addresses (or alternatively allow twice the storage without an increase of word length) since positions in the two stores can be given the same numbers without fear of confusion. The store S used to hold the amount of shift required or that to record the shift in a standard form shift will be short stores.

The most general operation required on “short” numbers is of the form ( x ( y(z where the signs may take all possible values and the sources of the numbers x, y and z are allowed to vary.

If we require to transfer a number we may set x = 0 and take all signs positive. To negate a number we take x = 0 and the second sign negative. For counting we set x = 1, the second sign positive and the first positive or negative according to whether we wish to count up or down. For such counting operations the result is usually returned to the storage position from which the original number is drawn. In this case there is no point in specifying this storage position twice.

These features form convenient classifications for constructing the coding of the different “indirect” or “short” instructions. We shall illustrate one possible coding in a later section.

5.5.2
Discrimination

It is always possible to reduce the discrimination test to one single form and that usually used is the sign of the number in some register of the AU. However, this reduction is sometimes rather tedious and certainly will not reflect the normal mode of thought of a programmer. Thus it is desirable that several tests should be available for such discriminations. The list of tests should certainly include the sign and zero value of the two AU’s. Sometimes the test function is more rationally calculated long before the test can be actually made and so the test result needs storing. For this purpose single digit stores in the sign position are adequate and the test can be made directly on this trigger to avoid a dummy operation to bring the test number into the AU. The trigger SGN introduced in Section 4.2 is an example of such a one-digit store which is also used for another purpose.

The group of words which make up this order must include the address of the sequence in the instruction store which will be followed if the test is satisfied. It is unnecessary to name the address of the sequence to be followed if it is not satisfied since this can always be at the same address as the sequence now being followed. Each address in the instruction storage will in fact contain a set of sequences and not merely one. It follows that a further word in the group must specify which of the set is required.

5.5.3
External Organ Control

There remain the instructions for controlling the external organs.

There must be instructions for reading in numbers which interpret these as integers or fractions or in any other suitable way. Such instructions must specify to which storage position the input is required and, if more than one input is provided, from which of them the input is to take place.

Generally input takes place in quantity and in this case the numbers can be passed into the second level of storage. In this case the number of inputs required can be described by a word in the group constituting the input instruction.

In the same way output will be controlled by an instruction (or instructions) which will specify the storage position whose contents are to be printed (or punched) and the unit on which this shall occur. There will also need to be instructions to control other functions of the printing unit such as line feed and carriage movement.

The details of these instructions will depend very largely on the individual equipment used as external organs but is clear that the process of sub-division of the instructions into words is still quite feasible and even desirable.

5.5.4
Other Instructions

Often the machine may be switched into a series of different states eg, to work at double the normal precision or to round up products.

This should be controllable by the programmer. In ACE and other machines there are triggers in the number storage system in the sign position which control these states and can be switched on or off by passing numbers of the correct sign to them. If 2 level storage with a small address system is being used it is not possible to sacrifice addresses for this purpose. Moreover, it is undesirable that a programmer should have to remember what almost amounts to a trick to effect this conditioning.

Consequently a set of conditioning orders or instructions are a useful addition to the code. The group of words constituting these instructions specify the condition it is desired to alter.

Lastly, there should be an instruction which enables the machine to be stopped when all useful work has finished.

5.6
Coding of Ancillary Instructions

It is clear that the totality of instructions required is quite large and will exceed the number possible if the instruction word length is small. If the word length is increased sufficiently to embrace all the instructions then the possible address system becomes larger than required and leads to a waste of digits.

Most of the ancillary instruction occur individually far less frequently than the individual basic arithmetic instructions. Thus an increase of word length introduces extra unnecessary digits into most of the instruction words also.

The solution to this dilemma is suggested by the results of information theory. In this theory it is shown that an efficient encoding of a message uses a short set of symbols for the most frequently occurring messages and longer sets for the less frequent ones. We shall be utilising this result if we introduce a second word to completely specify some of the less frequently used instructions.

For example, all the discrimination orders can be grouped together and the instruction group of words for any such order can be headed by the same word. A word following (referred to as a type word) can specify the test required.

Similarly all short number arithmetic can be grouped under one instruction name and a type word included in the instruction group to specify the type of operation required. The conditioning orders can also be grouped in the same way.

The adoption of this feature in coding will involve building two small control stores and associated decoders instead of one large one. The number of digits in the pair of stores will exceed that required if only one large one is used but the extra cost involved will be counter-balanced by the saving of storage space for instruction digits. In any case simple and cheap techniques can be used for smaller decoders which will not work for larger ones (resistance matrices).

The use of this grouping technique also matches more accurately the mode of thought of a programmer and by classifying the instructions makes the learning of the code easier.

5.7
An Example - the ICCE code

To illustrate the principles of coding derived above we shall consider the ICCE code. In this the basic word length is 5 binary digits. For the basic arithmetic operations the optional inputs and outputs are controlled by digits 1, 4 and 5 of the operation word. Digits 2 and 3 sub-divide each of the groups of one and two-operand instructions. Thus if each operation word is written as n=4p+q; p controls the arithmetic while q controls the optional input and the optional output.

q
Binary Form



0
00
No input or output


1
01
No input but output


2
10
Input but no output


3
11
Input and output


p
Binary Form



0
000
---


1
001
Multiples
One

2
010
Shift to standard form
operand

3
011
Shift
instructions

4
100
Addition
Two

5
101
Subtraction
operand

6
110
Multiplication
instructions

7
111
Division







The value p = 0 is reserved for encoding the ancillary instructions and in this case the usually meaning for q does not apply. The corresponding four values of n are used to specify special sets of instructions:

n


0
Sequence control (Discrimination Orders)

1
Programme Orders

2
Transfer

3
Short Arithmetic






5.7.1
Multiples

Since the multiples are individually less frequently used than the other arithmetic operations and need one less address word than they do all multiples are grouped under one instruction label and the specification completed by means of a type word.

Negating a number, taking the modulus, using the conditional negation (SGN)( introduced in Section 4.2 are all included in this group. Another “multiple” clears the AU while yet another transfers the content of the other register a in the AU (which receives the first input) to the normal register (.

The complete list of multiples is given below:

0
4/7*
8
4/5
16
2
24
1/2

1
0(
9
3/4
17
-2
25
-1/2

2
2/3
10
5/8
18
4
26
1/4

3
a/b((
11
7/8
19
-4
27
-1/4

4
Modulus
12
9/16
20
8
28
1/8

5
-1
13
11/16
21
-8*
29
-1/8

6
SGN
14
13/16
22
16
30
1/16

7
--
15
16/16
23
-16*
31
-1/16

(  clears the AU
(  transfers a to (
*  Not incorporated in ICCE at present


5.7.2
Sequence Control

This operation word (n=0) is followed by a type word which specifies the test upon which the discrimination is based and determines the behaviour initiated by that test. If the type word is written as 4p+q then p determines the test:

p




0
Unconditional
4
Sign of trigger “SGN”

1
Sign of short AU
5
Sign of trigger “sgn”

2
Zero value of short AU
6
Sign of long AU

3
----
7
Zero-value of long AU*


* Not incorporated in ICCE at present.

The unconditional case is included to ease organisational problems of instruction storage arising from limited capacity at the second level.

Sometimes it may be convenient to change the first level of direct connection of the instruction store is the test is satisfied; at other times it may be better to do this if the test is not satisfied. In the former case we say the discrimination is positive, in the latter negative. Digit 4 of the type word controls this feature of the control.

Normally control is switched to a known place but at the conclusion of a frequency used sub-routine, control may be switched to a variety of places and this is facilitated by letting the named place in the group of words constituting the instruction be, not the address in the storage system, but the address in the number system of the short store which contains the required address. Such a change of control is termed selective.

Hence the behaviour of the machine after the test is controlled by the value of q as is laid out in the following table:

q


0
Normal and positive

1
Selective and positive

2
Normal and negative

3
Selective and negative

In ICCE the paper tape instruction storage, mounted on drums is driven back to the place next required at that address and the third word in the group specifies how many sequences the drum being left must move over to reset it to the required place. The fourth word of the group names the address of the next “away” sequence either directly (in the normal case) or indirectly (in the selective case).

The ordering of these tests has been chosen to help with starting the machine. When the machine is switched on control may be set at any instruction storage position (selected by a uni-selector). But the first 4 words available to the machine will be all zeros. Hence the first instruction obeyed has a code 0, 0, 0, 0. This is a sequence control, unconditionally away to address 0, without moving the original drum. Hence one instruction can always bring the machine to a standard position initially.

5.7.3
Programme Orders

This is a group of instructions which include all the other ancillary operations other than short arithmetic. The operation word 1 is followed by a type word which further sub-divides the group.

Type word


0
---

1
Conditioning Orders

2
Programme Stop

3
Copy Control

4
Clear short store

5
Drum Control

6
Input

7
Print unit line feed

8
Fixed sub-routines

Conditioning Orders

A third word follows the pair 1,1 to specify which condition is to be switched on or off. Thus, for example, 1,1,4 switches on the double length condition and 1,1,20 switches it off. If the machine is already in the desired condition the operation has no effect.

Programme Stop

The triad 1,2,X brings the machine to a stop and displays the binary form of X, enabling different stops in the same programme to be distinguished. The machine is provided with a button which on being pressed allows the machine to continue with the next instruction. Thus the machine may be stopped to allow more cards to be added to the feed or for any other manual adjustment.

Copy Control

The second level of number storage in ICCE consists of paper tape and arrangements are provided for copying of a tape as numbers are read into the first level. The operation group 1,3,x,y arranged that when copying takes place tape x is copied on to tape y.

Clear Short Store

The group 1,4,x clear short store x.

Dum Control

On certain occasions the setting of a drum may require correction. The group 1,5,x,y drives drum y over x sequences.

Input

In ICCE input is by means of a Hollerith card feed. A five digit signed integer can be read from a card, converted to binary form and stored in a store x. The instruction group for this is 1,6,x.

Input in quantity to the second level of storage is also possible. In this case a fly lead normally plugged to card count is plugged to a seventh column on the card. This column is only punched for the last card in each group, and input continues until a whole group has been absorbed.

Print Unit Line Feed

The results from ICCE are printed on the print bank of a Hollerith tabulator. In order to lay out the results on the page it must be possible to move the paper up. A conditioning order (1,1,5) enables this to occur after every number printed but if several numbers are required in each row it is best to leave this condition permanently off and to move the paper with this instruction. 1,7,x moves the paper through x rows. Other means are provided for selecting the position of printing on the row.

Fixed Sub-routines

Certain commonly occurring sequences of instructions are permanently wired into ICCE and these can be called into effect by the code group 1,8,x. Here x specifies which sequence is required. Any further addresses required are included in the group. Thus converting a number to decimal form and printing is one sequence. 1,8,1,x converts and prints the number in store x, treating this as having the exponent found in short store 28.

5.7.4
Transfer

It is sometimes necessary as part of the indirect processes of computing to transfer numbers from one store to another. The group 2,Y,X transfers a number from X to Y (note the inversion or order). This transfer takes place without affecting the contents of the AU.

5.7.5
Short Arithmetic

The operation word 3 is followed by a type word whose digits control the various characteristics of the operation.

Digit 1

This controls whether the output is to the same store as the second input or not.

Digits 2 and 3

These control the first input

digit
digit
1st Input

2
3


0
0
0

0
1
1

1
0
No input

1
1
From a store

Digit 4

This controls the sign of the first input. It is ineffective in the 1st and 3rd cases above.

Digit 5

This controls the sign of the second input. Perhaps some examples will help.

Counting down

Here the first input is 1 taken with a negative sign and the output is to the second input. Thus to count down on store x we use the instruction group 3,22,x.

Negating a number

Suppose we wish to put the negative of the number in short store x into short store y. The first input is zero. The second input and output are to different stores and the sign associated with the second input is negative; that associated with the first does not matter. Hence either of the groups 3,1,x,y or 3,3,x,y will effect the desired transfer.

As a last example suppose we wish to increase each of u,v,w by x*. this can be effected most economically by the three instructions (3,28,x,u) (3,24,v) (3,24,w).

* More strictly, we should say “increase the contents of each store u,v,w by that of x” but generally very little confusion arises from the looser terminology.

5.8
Summary

The main conclusions of this section may be summarised as:

1. The code of instructions should be designed so that the operations regarded by a computer as a single step are available as single commands.

2. Each instruction should consist of a group of short words.

3. The leading word in each group specifies the operation (or group of operations) - this is the OPERATION word.

4. The more rarely used instructions are grouped suitably under one operation word and further specified by a second word - the TYPE word.

5. Further details of storage positions involved in the execution of the operation are given by other words arranged in the order of their use by the machine. These are ADDRESS words.

6. The ordering of the instructions in the code is arranged as far as possible so that each digit of the operation word controls one feature of the operation.

The realisation of the last objective will need a study of methods of constructing AU’s, and here we see an example of the type of circular predicament that is a characteristic difficulty of an analytical approach to the design problem in machine construction. 

The construction of an AU depends on the types of operations required, which in turn depend on the type of calculation being performed; the selection of the set of operations and their encoding in a systematic and economical manner will depend on the method of constructing the AU.

6.
the characteristics of the arithmetic unit

Before the construction of an arithmetic unit can be discussed certain decision must be taken concerning the type of numbers that the machine will use.

6.1
Radix

There are in practice only two possible values for the radix, namely 10 and 2. If the decimal scale is used then 10 stable state devices are required for static storage or these must be built out of the combination of 5 state devices and 2 state devices, or some other type of device must be used with redundant states. The use of binary coded decimal schemes involving four 2-state devices is the best example of this. Thus, the decimal system is likely to be uneconomic in storage although this may not always be the case.

If the binary scale is used storage is easy but the problem of the conversion from decimal and back to decimal has to be faced. It is generally accepted that this problem is not sufficiently serious to outweigh the other advantages of the binary scale.

The main advantage, as has already been noted, of the binary scale is the simplicity of the higher operations of economy of storage. Accordingly we shall assume work in the binary scale and consider the problems of input and output in a later section.

This decision applies only to machines constructed to solve the class of problem which involves numerical analysis. A machine for statistical calculations might very well use a decimal number system.

6.2
Accuracy of Numbers

In a machine with a parallel AU and parallel storage of numbers at the first level of storage the cost of storage varies linearly with the number of digits in each number and so a decision on the number of digits is fairly easily settled by the economic limit set to the machine.

There is a small operating advantage in fixing the number of binary digits to be in excess of the number required to give a specified number of decimal digits. This reduces the difficulties of round-up in the conversion process back to decimals for output. In ICCE the choice has been made at 19 binary digits (20 with sign) which is about 21/3 binary digits in excess of the number required to give 5 decimal digits. In a larger machine 31 digits (32 with sign) would be convenient for working to 9 decimal digits.

6.3
Range of Numbers

The position of the binary point is a topic on which there is heated controversy but which is largely illusionary. For the addition of numbers it is completely immaterial and for the multiplication and division of numbers it is only a matter of the positioning of the result relative to the operands. If means are provided of obtaining all the digits of a product and of obtaining as many digits of a quotient as we choose then the shifting operations incorporated will enable us to convert the results under one convention into those of another. The choice of convention should be made so that:

The number of shifting operations involved to compensate for the effects of the convention are minimised.

It requires the minimum amount of work by the programmer to calculate the magnitude of such shifts.

An analysis of various problems under different conventions would be needed to determine the best convention, if it exists, and this is a thankless task which it is unlikely will ever be done. In fact, the best convention will almost certainly vary with the class of problem. For example, if only number theory problems require solution then the numbers should be treated as integers, but this convention would be very unsuitable for general analytical work.

In practice, numbers will require shifting either to keep them within whatever range is dictated by the convention or to prevent loss of digits and so will be kept in “floating form”. If this is so then the best convention to satisfy condition (ii) is that which keeps the number in the range (-1,1). This is because the exponent of a product of numbers with exponents x and y is x+y. All other ranges give a more complicated rule. The rule for addition is unaltered by the range.

Some machines are equipped to deal with numbers in floating form so that, for example, on taking the product of two numbers the two exponents are also added or on adding two numbers the required relative shift is made before the addition and the resulting exponent calculated.

This involves a considerable complication of the AU and this must be weighed against the saving in time it will produce. The main factor in this judgement is the proportion of operations in which such floating work is necessary. If this is small, then for the majority of operations time will be wasted and only saved for the minority. In addition to this disadvantages all numbers will need exponents, thus increasing the store size necessary.

Experience indicates that only certain key numbers need exponents and that often a common exponent can be used for a whole block of numbers. It appears more economical in both equipment and time to programme such “floating” operations as are required.

6.4 
Negative Numbers

There are two methods of representation of negative numbers possible:


as a modulus with a sign digit

as a complement of the equivalent positive number with a sign digit

With the range convention adopted, and treating the sign digits as a units place (2o) the negative of x is stored as 2-x-2-p  for a p-digit number if (b) is adopted.

Unless the AU contains a separate device for subtraction to that for addition, the addition of numbers of different sign will require a complementing device if (a) is used. There is a slight advantage in using (b) and this will be assumed.

Since complements to 1’s are used end-around carry must be provided to compensate for the “elusive one” when adding two negative numbers or a positive and a negative number with a positive sum.

It should be noted that in this convention there are two forms of zero - a set of 0’s (positive form) and a set of 1’s (negative form).

6.5
Summary

1) The machine should, in general, work in the binary scale to ease the problems of engineering the higher functions of arithmetic.

2) Numbers should have sufficient binary digits in excess of the number required for a given decimal accuracy to ease the problems of round-up on conversion.

3) Provision should be made for programming operations with a “floating” binary point. The results of multiplication and division should be given on the convention that numbers stored in the range (-1,1).

4) Negative numbers should be stored in the complements convention.

7.
the operation of the arithmetic unit

We require to construct an AU with the following characteristics:

there is a parallel action on the numbers sent to it. 

the operands are sent to the unit in order along a common bus.

it shall operate on numbers in the binary scale, with the complement convention for negative numbers and restricted to the range (-1,1)

the unit shall be capable of adding, subtracting, multiplying, dividing, shifting, forming complements and taking moduli.

7.1
General properties of the AU

Since there is serial input to the unit and parallel operation there must be at least one store in the unit for operands and in practice it is convenient to have two. Let us call these ( and (.

Suppose we devise a mechanism controlled by ( and ( which, when stimulated, produces the sum of the numbers stored on a set of lines in some suitable form. We discuss the construction of such a mechanism in a later section.

If these lines are connected back to the storage system then the sum is preserved and an addition has been effected. If, however, the result is one of the operands in the next operation it will be required in one of ( and (. Let us assume it is required in (. It is logically impossible to put the result in ( without first storing it in a new place; otherwise, as ( is altered the output is also altered and an oscillatory condition is created. Thus we must have a third store (. This store need only be used for a short time and it may be possible to use some very simple storage device. In some machines condensers have been used.

Thus the operation of addition consists of setting ( by the adding mechanism and then re-setting ( from (. The optional output can then take place from (.

Now consider subtraction. We might build a similar mechanism which gives the difference of the numbers on ( and ( but such a mechanism would be equally expensive. A mechanism to give the complement of the number on ( is much less expensive. With this and an adding mechanism subtraction of ( from ( can be effected by setting ( to -(, passing this back to (, then setting ( from the adding mechanism and finally passing ( back to (.

The process of shifting a number must follow similar lines. To move the contents of a store one place some temporary storage must be provided. Suppose it is possible to connect ( to ( with digits one place out of correspondence; then if ( is passed to ( and back to (, ( will have been shifted one place.

For a backward shift then sign digit of ( must be copied into the vacant sign place on ( created by the shift, while the last digit is discarded. For a forward shift the sign digit is discarded. For a forward shift the sign digit is copied into the vacant last place on ( to represent a zero. Digit 1 of ( will pass into the sign place on ( and unless the shift has produced a number beyond the permitted range this will be the same as that originally in the sign place.

The initial and final value of the sign digit in ( gives a test for numbers growing beyond the range. If numbers are being shifted to standard form the process should stop when sign and first digit are different, ie so that one further shift would produce “spill”.


These three mechanisms for adding, complementing and shifting can be incorporated into one by constructing a mechanism which can produce on its output lines

the sum of ( and (
the number (
the complement of ( by stimulation of one of three points which we shall label A, T, C respectively.

The output lines are connected to ( by three gates n,b,f. The gate n gives a direct or normal connection while b and f give a shift back and forward respectively. The process of stimulating one of the points A,T,C with one of the gates n,b,f energised and then transferring the contents of ( back to ( is termed a cycle. Each operation so far described can be obtained by a set of cycles. Thus:



STIMULATION

OPERATION
NUMBER OF CYCLES
GATE
Cycle 1
Cycle 2
.....
Cycle n

ADDITION
1
N
a




SUBTRACTION
2
n
C
A



HALVING
1
b
T




DOUBLING
1
f
T




SHIFT m 

Places back
m
b
T
T
....
T

SHIFT m

Places forward
m
f
T
T
,....
T

For a shift to standard form the cycle stimulation is fixed at T with the f gate on but the number of cycles is not predetermined. Cycling continues until the sign and first digits of ( are different.




We can produce the modulus of a number by allowing the sign of the number on ( to control either (a) the stimulus called in a single cycle of (b) the number of cycles. Generally (b) is more easily engineered. The conditional negation SGN(() can be arranged similarly by allowing the trigger SGN to control the cycling characteristics. ( can be cleared by calling one cycle with no stimulation. The output will be zero (positive form) and this is passed back to (. These operations are summarised in the table below.




STIMULATION

OPERATION
NUMBER OF CYCLES
GATE
Cycle 1
Cycle 2
..

SHIFT To S.f
Till (SGN DGT (
( DGT 1
f
T
T
... T

NEGATING
1
n
C



MODULUS a)
1
n
T if (SGN=0

C if (SGN=1



MODULUS b) 

1.
1 if ( SGN = 0

2 if ( SGN = 1
n
T
C


MODULUS b)

2.
0 if ( SGN = 0

1 if ( SGN = 1
n
C



SGN (
0 if ( SGN = 0






1 if ( SGN = 1
n
C



CL (
1
n
None



Suppose we wish to form a simple multiple of the number X on ( such as 3/4x. Assume ( clear and call 2 cycles each of A with b gate on. The first cycle produces 1/2X in (. The output at the next cycle is ((X=(X)=3/4X and this is passed back to (.

The following table shows the necessary cycle characteristics for this and several other multiples:




STIMULATION

MULTIPLE
NO OF CYCLES
GATE
CYCLE 1
CYCLE 2
CYCLE 2
CYCLE 3

3/4 
2
b
A
A



5/8
3
b
A
T
A


7/8
3
b
A
A
A


11/16
4
b
A
A
T
A

In practice, it is a multiple of ( which is required. Suppose that initially ( is set to the same number as ( then the cycle pattern is altered in cycle 1 to T instead of A.

This technique will produce any multiple which can be written as n x 2-p  for integer n and p. In ICCE the highest value of p used is 4 and this is the maximum number of cycles whose characteristics need control.




Certain other multiples can be provided with no increase of control. For example 1/3 may be written as:



X is constructed by calling 4 cycles according to the pattern ATAT with b gate on (assume X in ( and ( clear). A further 4 cycles shift this back to become 

 

X and if the stimulation is repeated 

X will be added again. If this cyclic pattern is repeated indefinitely then 

X will be formed in (.

In practice, the cycles can cease as soon as the original 

X has been shifted out of ( (eg after 5 sets of 4 cycles for ICCE). As before, the number X is normally on ( and has to be transferred to ( before cycling starts.

Any multiple whose binary representation is periodic with period 4 can be formed in this way, ie all multiples 

 for integer n. The most useful multiples are obtained for n = 5, 10, giving 1/3, 2/3 and n = 3,6,9,12, giving 1/5, 2/5, 3/5, 4/5.

If the cyclic stimulation can be arranged to have period 3 then multiples of the form 

 can be obtained. Multiples of the form 

 require a periodicity of 6 while those of the form 

 need a periodicity of 10. Both of these latter involve too much equipment in the control to be worth while.

In all these multiples, the cycle stimulation pattern has been obtained from the binary form of the multiplier and it is clear how to proceed to make the AU perform a general multiplication.

To form the product of X and the number of (, we start with ( clear, call as many cycles as there are digits in a number and control the stimulation pattern with the digits of X 1’s giving rise to A and 0’s to T. To form the leading digits of the product in ( we need the b gate on and scan the digits of X from the least significant to the most.

The simplest means of scanning the digits of the multiplier is to store it  in a shifting register, inspect the last digit and arrange to shift after or during each cycle. A shifting mechanism can be used similar to that in the main unit consisting of a store ( into which the multiplier is placed, and a store ( connected to it by a b gate and with facilities for returning the contents of ( to (. Each cycle of the main unit can cause a cycle of this shift unit giving the required shift. The inspection of the last digit takes place in (.

Division is a tentative process and can be constructed by a system of subtractions (additions of complements) or transfers and shifts. The selection is based on the sign of the result of the tentative subtraction. Examples of cycle patterns which, repeated for each digit, will produce the successive partial remainders and effect the division are given below:

I
Divisor on (, divided by (
CYCLE NO.
GATE
STIMULATION

1
n
C

2
n
A

3
n
C

4
f
A if ( SGN = 1

T if ( SGN = 0

II
Complement of divisor on (, divided by (
CYCLE NO.
GATE
STIMULATION

1
n
A

2
n
C

3
n
A if ( SGN = 1

T if ( SGN = 0

4
f
C

Schemes in which the number of cycles per digit vary are rather difficult to fit into the general pattern developed for the remaining operations. There is a considerable engineering and organisational advantage in arranging that the gate n, b or f chosen shall remain the same throughout all cycles. In ICCE this restriction allows these gates to be constructed of slow speed multicontact relays. However, it does not seem possible to arrange a system of cycle stimulation which will produce the partial remainders under this restriction.

This difficulty is overcome in ICCE by allowing the stimulation to change during each cycle if necessary. It starts on each cycle as A, the sign digit on ( is inspected and if this is incorrect the stimulation changes to T. The modified ( is then transferred back to (. This is repeated for the right number of cycles with the f gate on and ( containing the complement of the divisor. Since the store ( has to set twice the cycle rate is reduced to half normal. Even so, division only takes twice as long as multiplication as opposed to 4 times as long with any of the other system suggested.

The quotient from such a division can be built up by supplying a 1 if A is finally used in any cycle and an O if T is finally used. The digits may be stored in (. If this shift mechanism is also provided with an f gate then feeding the correct digit into the last place will produce the quotient correctly placed in (.

This division technique has one limitation; it assumes that the divisor is not less than ( the magnitude of the divided. If this is not so the result will always be of magnitude 1-2-p (p number of digits in a number). In practice the divided and divisor can be put in standard form before division and the quotient shifted accordingly.


FIGURE 1    SCHEMATIC OF THE ARITHMETIC UNIT


Another possible technique which might be faster is the use of a non-restoring process but this will not be considered here.

A schematic diagram illustrating the necessary components for an AU is given in Figure 1. The description above makes it clear that an effective unit cannot be built with less than these 5 stores.

The account of multiplication and division has assumed that the numbers involved are all positive. Some provision must be made for dealing with negative numbers. In multiplication there are three cases:

multiplicand negative, multiplier positive

multiplicand positive, multiplier negative

multiplicand negative, multiplier negative

A) Here the result is negative and the process described above will work without alteration providing that the initial clearing of ( is to the negative form of zero. That this is so is best seen by noting that this change will ensure that at every stage of the cycling the partial results will be the exact complements of those obtained with the corresponding positive multiplicand and hence the final result is the complement of that for the positive multiplicand.

B) This could be obtained correctly by subtracting ( from ( for each 0 in the multiplier and transferring ( for each 1, but, if subtraction is not available as a single operation, this involves a variable number of cycles and is difficult to engineer. The method employed in ICCE is to complement both multiplicand and multiplier and so reduce to case (a).

C) Here the answer is positive and can be found by the usual process after complementing both numbers.

Hence the necessary modifications to take account of signs in multiplication are:

clear ( to positive or negative form according to sign of result.

complement ( if ( is negative and complement reading of (.

The need to complement ( has already been anticipated in the division operation and the complementing of ( only involves the interchange of connection to the T and A stimulation points during cycling.

In division the modifications to account for sign are simple. 

If the quotient is to be positive, ( is complemented.

If the quotient is to be negative, the feed out of digits to ( is reversed.

The decision to change from A to T is based on a comparison of ( and (.

There is one other difficulty in multiplication which must be mentioned. The b gate when used for shifting arranges that the sign digit of ( is copied in the sign position on (, In multiplication the result from the adding mechanism may, before shifting back, appear to exceed the capacity of the register ie, the sign digit of the output may be different from that of (. A normal backward shift would copy this incorrect sign digit into (. Consequently during multiplication the sign digit for ( must be supplied from elsewhere; the sign digit of ( is a suitable place and this is the source used in ICCE.

A similar difficulty does not arise in division since for every cycle the final number on ( is always of the same sign.

7.2
The Organisation of the Arithmetic Unit

In addition to the ability to organise the cycling according to the principles outlined in the preceding section the control of the machine must be able to prepare the machine for the cycling. In particular when required ( must be cleared, ( must be transferred to ( or ( must be complemented.

These preliminary operations can be organised by a similar system of cycles. Suppose the “adding” mechanism has in addition to the stimulation points T, C, A two others T’, C’ which produce on the output bus the contents of ( or its complement. Let another gate be provided so that the contents of ( can be passed back to ( instead of (, if required.

Let there be two preliminary cycles, the first passing ( back to (, the second passing ( back to (. In both cycles the n gate is opened. Then the preliminary operations can be obtained as shown in the following table.

PRELIMINARY OPERATION
CYCLE 
1
CYCLE
 2

( ( (
T
T

COMP (
C’
T

CLEAR (
T’
NONE

COMP ( and CLEAR (
C’
NONE

In ICCE ( is composed of slow speed relays and is not altered during the main cycling. The advantages of a systematic method of achieving the necessary preliminary operations are reduced due to the slow operating time of the relays in (. Separate mechanisms are provided for these preliminary operations.

It may be possible to obtain an AU which can perform more arithmetic operations (eg root taking) within a systematic system of transfers of the kind involved in the Au described here but which contains more stores and in which there is a wider possibility of transfers. In any extension of this kind the following facts should be borne in mind.

Each increase in the possibilities of transfer adds to the complexity of the controlling mechanism.

Such an increase is only advantageous if it results in a significant increase in speed or enables an essential operation to be performed as a single command.

As many connections as possible should be made the same for all the cycles of any individual operation.

As far as possible, the whole set of operations should follow a common pattern of events, the differences being obtained by altering the details of the pattern.

This indicates that, at the present development of computing and with the operations that are needed as single commands, that the AU described in the last section meets all the needs for an automatic machine.

There is an interesting development of this technique being investigated by the Mathematical Laboratory at Cambridge. In this scheme the AU consists of 6 stores and includes a subtraction unit. The basic step is a transfer from one store to another through one of three gates n,b,f. Operations are fabricated by a set of such transfers, termed a micro-programme. The number of features that the machine must control is reduced by imposing the limitation that only a sub-set of the possible transfers are available and these are effected by “wiring-in”.

This sub-set is (with an exception to be mentioned later) scanned in a fixed order. The different operations are obtained by starting the chain of transfers generated by this ordering at different points. In practice the sub set may be divided into mutually exclusive chains and a great deal of ingenuity (and often a little inefficiency) is needed to obtain all the operations required without requiring too large a set of possible transfers.

Operations such as multiplication and division cannot be effected by a fixed set of transfers and this difficulty is met by introducing a device which enables the fixed ordering to be split after any transfer according to the sign of the number in a store at the end of that transfer.

The scheme seems to be ideal for constructing an experimental machine which can be adapted with very little rebuilding from one set of operations to another, and would be invaluable for practical work in the design of an efficient code. But, for the simpler codes at least, it is likely to be an inefficient method of achieving any particular code with in equipment or time. A final verdict must, of course, await some practical results.

7.2
The Adding Mechanism

The adding mechanism is required to produce the number on ( or its complement on the output lines as well as the sum of the two numbers. If all three functions can be produced with equal speed then it is possible to organise the cycling on a synchronous basis without loss of time. The number on ( can be obtained in the time it takes to open a gate and to compete with this speed it is clear that the adding mechanism proper must operate without involving the propagation of carries.

The possibility of achieving “instantaneous” addition is best seen by regarding each digit of the two numbers as a Boolean variable and each of the digits of the sum as a Boolean function based on these 2n variables (for a machine dealing with n digit numbers). Then, in principle, a tree or matrix can be constructed to produce each of these Boolean functions.

Once the possibility is recognised the networks are best developed in terms of the familiar processes of adding and carrying. At each digital stage there are two functions to be determined; the actual sum digit and the carry. For each function there are two cases; when there is a carry from the previous stage and when there is no such carry.
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FIGURE 3    SIMPLE ADDING NETWORK

For each case it is possible to construct a 2-point network based on corresponding digits of ( and ( which will give the sum digit as output at one point when the other is used as an input of steady potential. Equally it is possible to construct 3 point networks based as before with 2 outputs, being the carry and its complement, and one input. One and only one output is stimulated for each of the 4 possible configurations of these networks. Symbols for these networks are given in Figure 2.

The outputs of the 3-point networks can be used to stimulate the inputs of the next stage as shown in Figure 3.

This produces an instantaneous adder providing the networks are design so that no stimulation of one output by another output produces a stimulation of the corresponding input. In electronic circuits valves, used as relays, usually ensure this but in static relay networks rectifiers would be needed. These are inadmissible in the carry networks since 20 rectifiers in series would produce an alarming potential drop.

This difficulty can be overcome by adding a third carry network. The original networks are modified so that each only gives an output if this cannot feed back through the other ie only if the other network if stimulated would give the complementary carry. The extra network gives the carry or its complement in the two cases now omitted by the original modified networks. The inputs of this third network are connected together and stimulated with the initial no carry line. Figure 4 shows the modified adder.

There are no feed back difficulties with the sum networks since one and only one of each pair can be conducting for any of the 4 cases.
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End-around carry can be accomplished by feeding the output carrylines from the sign place as the inputs to the last digital place. In this case the only stimulation is at the inputs of the third carry networks. If these give no outputs (when the digits are complementary) for each digital position then there is no output on the sum lines and the carry lines are not energised at all. This occurs when ( and ( are set to exactly complementary numbers; a zero result is always in the positive form. This is of importance in controlling the processes of division.

FIGURE 4    MODIFIED ADDING NETWORK

7.4
Summary

1. An AU can be built which is parallel acting and performs all the required operations by means of a set of cycles.

2. This AU contains 5 registers or stores and an AU cannot be built with less than this number.

3. Certain ancillary operations connected with sign correction in multiplication and division can also be organised in a set of cycles.

4. It is possible to construct an “instantaneous” adder not involving a propagation of carries, and with this the cycling process can be made synchronous.

8.
the control of the machine

Just as a machine can be broken into parts for descriptive purposes so the control of the machine will divide into a set of mechanisms for organising the separate components and an overall or main control which organises the relations between the components. This last task involves organising a set of signals in the correct order to achieve each operation. This organisation in its turn involves checking that each component has completed its task before the next signal is sent.

8.1
Methods of Checking

There are two main methods of checking available.

physical checks that the step is completed.

a time check that the step has had time to be completed.

Of these the former seems, at first sight, to be the more attractive since it gives a comprehensive check both on the timing and the actual functioning. The ideal situation is that the actual equipment operated is inspected by a checking mechanism, but this is difficult to achieve in practice and generally the checking mechanism consists of a device worked in parallel to the actual device with a comparable time of operation. Such schemes, typified by the use of a check contact on a multi-contact relay, only give a partial check on the functioning and contain an element of time-checking.

The equality of operating time of the computing and checking mechanisms is merely nominal and because of the variability of operating times of all mechanisms the checking mechanism must either operate a delay before giving the check signal or must take so much longer to operate on the average than the computing mechanism, that chance variability can have no adverse effect.

This last alternative has transformed the checking into a time check while the former can be spoken of as semi-physical.

In a machine using cyclic storage the time between successive digits passing the reading station forms a natural unit of time and in such machines this unit is generally chosen so that the basic steps can be performed in less than this unit. Thus time check is applied to these steps with no cost for checking equipment. Longer times for checking more complex steps can be obtained as multiples of the unit by utilising line or ring counters.

If the various basic steps are of very different operating times then this synchronisation involves waste of time. The saving in equipment for checking however may be spent on speeding up the general rate of operation and in practice give a more economical control.

In a machine with non-cyclic storage there is no natural unit of time and the provision of time check for each component is necessary. It is still possible to use one time-delay for all components, adjusting its operating time to cover all basic steps, but this may not be the best solution in this case. Since an expenditure on checking must be made, this may be better spent on several crude time delays used to time different events than on one good delay (in practice a master oscillator). The crude delays would need greater time tolerances than a single one (to allow for the larger  chance variations) but the better matching of the checks to the operating times may nevertheless lead to a saving of time.

In practice, a machine is sufficiently complicated to allow some of its parts to work synchronously and others asynchronously. The present tendency to divide machines into the two categories synchronous and asynchronous and to attempt to discuss the relative merits of these types has largely missed the point that synchronous action is merely a suitable form of checking applicable to certain apparatus.

It is quite possible to have both forms of checking in the same machine. In ICCE, for example, the storage for numbers is on relays with groups of relays to act as gates. For economy multi-contact relays are used and these can be semi-physically checked by adding a set of series connected contacts to these relays and allowing a circuit through them to operate a relay, thus giving enough delay to cover the individual contacts on the same relay. Since only one gate is open at any one time the check contacts on different gates can be in parallel and a common delay can be used to give the check signal.

The arithmetic unit is, to give adequate speed, constructed of high-speed relays and since most forms of these have only one contact, time checking will be necessary. Using the form of adding mechanism described in Section 7.3 it is possible to make each of the operations of adding, transferring and complementing take an equal time and so a standardised cycle is used independent of the stimulation involved. This part of the machine is synchronous and is driven from a motor operated pulse generator.

8.2
Multiple Action

We have already spoken of a machine having twin action. This is a special case of a more general mode of action in which all the components work simultaneously, being controlled by signals from each other.

Such a mode of action must be contrasted with a single action machine in which one step is taken at a time, each being checked before the next starts. Such a mode of action involves a much simpler control but will necessarily be much slower. A doubling or even trebling of the rate of action is possible. The cost of the more complex control is unlikely to cause a corresponding increase in cost but the complexity may lead to unreliability and shorter trouble-free operating time and greater maintenance costs.

Generally the components of a machine will operate at different speeds (although the purpose of the preceding discussion has been to minimise these differences) and the organisation of the machine in multiple action is very difficult if all components are time checked.

If checking is physical or semi-physical the integration of the components is quite feasible.

This mode of action can be made more specific by considering some examples.

In ICCE the process of removing instruction words from the punched tape is rather complicated since the words are stored in pairs on the tape. Most of this process proceeds while the machine is calculating. When a word has been used the main control which clears the word no longer wanted and replaces it with the next and then sends a check signal back to the control. The remaining processes for drawing a word from the tape proceed at their own rate and any further demand by the main control cannot be met until they have been completed.

Certain selection processes in the machine are achieved with uniselectors. For many of these the main control presets some condition to stop the switch at the correct point and then sends a signal to start it hunting. The hunting and other processes can occur simultaneously; there is a check system provided by the hunting control which will not allow the main control to continue past any point in its operation which involves the uni-selector being at rest in its correct position.

Finally, the transfer of numbers at the first level of storage to the second level proceeds automatically after each use of those local stores provided with backing.

In an electronic machine using static paper tape storage for instructions very similar devices to those in ICCE would be required working at the appropriately faster speeds. In a machine using magnetic drum storage the instruction words can be read off the drum and staticised while the preceding words are utilised by the machine.

In fact, for any machine using a serial input of words to fabricate an instruction, twin action of this kind is very desirable since otherwise the access time for instructions is unduly lengthened beyond that required in the more conventional codes.

8.3
The Phases of an Operation

The process of matching the code and the control involves describing the action of the machine in its execution of each operation in terms of a common pattern and arranging that the variations of this pattern are controlled by the code word in as simple manner as possible. 

Since the ancillary operations are diverse in character, initially, we shall only consider the arithmetic operations. We have already seen in Section 5.4 that for such operations the machine follows a pattern of 5 main phases. With the further information available on the mode of operation of the AU it is possible to examine this pattern in more details and to make a slight regrouping.

1. The Input Stage    In this, inputs to ( and/or ( take place according to the number of operands required and the version of the operation under execution.

2. The Pre-cycling Stage   In this, the various adjustments to the AU are made; ( is cleared in multiplication, or passed to ( in certain multiples, and ( is complemented if necessary. Also the arrangements for the number and characteristics of the cycles are made and the correct gate b,n,f energised.

3. The Cycling Stage   In this, the correct number of cycles are performed according to the pre-arranged plan.

4. The Post-cycling Stage   In this, the AU is reset to its original condition (if required), the word specifying the type of multiple is removed, the number of cycles in a shift to standard form is placed in a short store and any other adjustments of this kind made.

5. The Output Stage   In this, an output to a store takes place if required.

6. Checking and Resetting Stage   In this, all the apparatus used is checked for reversion to normal state and the operation code word removed and replaced by the next.

The control of stages 2 and 5 has already been discussed and their inclusion or exclusion from the operation only involves switches controlled by 3 digits of the code word. This aspect will be ignored in what follows.

The table (following page) lists for the three remaining phases the exact conditions required for each of the 7 operations. From this table it is clear that the components used in the pre-cycling stage a word removal is only required for the one-operand operations but apart from this rule the other components are used in a manner difficult to classify in a simple manner.

The cycling conditions are a little more amenable to systematisation. The characteristics are one of (i) fixed by varying from cycle to cycle (ii) fixed at T throughout all cycles (iii) controlled by the condition of the AU. Suppose the mechanism which controls the stimulation in case (iii) needs switching on and if not switched on will give a constant stimulation T. Then the choice can be made between (i) fixed control or AU control (ii) Au control switched on or off. This classification gives the following distribution of the operations:

Number of Operands in Instruction
Cycle Characteristics
AU control Mechanism switched


Fixed Control
Control by AU


One
Multiples
Shift to SF Shift
Off

Two
Addition

Subtraction
Multiplication

Division
On



PRE-CYCLING STAGE
CYCLING CONDITIONS
POST CYCLING STAGE

No B.F.
OPERATION
(-- o
Comp (
CL (
Short Store Input
Cycles
Gate
Charact-eristics
Word Removal
Short Store Output
Recomp (

1,001
Multiples
According to Type word
--
--
--
Fixed according to type word
According to type word
Fixed: according to type word
Yes 
--
--

2,010
Shift to S.F.
--
--
--
--
Controlled by digits in (
f
T for all cycles
Yes
Yes
--

3,011
Shift
--
--
--
Yes
Controlled by short store input
b for +ve input 

f for -ve input
T for all cycles
Yes
--
--

4,100
Addition
--
--
--
--
Fixed:

a) 1

b) 2
n
Fixed

a) A

b) T,A
--
--
--

5,101
Subtraction
--
--
--
--
Fixed 2
n
Fixed C,A
--
--
--

6,110
Multiplication
--
According to signs of ( and (
Yes
--
Fixed
b
Controlled by AU
--
--
As for Comp (

7,111
Division
--
According to signs of ( and (
--
--
Fixed
f
Controlled by AU
--
--
As ford Comp (

Thus the digit which controls the ( input can also control if the AU control mechanism is switched on or not. Equally by a suitable ordering of the instructions one other digit can control which form of control for cycle characteristics is used. If the order of the table (and that of ICCE) is used then this is digit 2.

The number of cycles is determined in three ways:

Fixed in advance

Controlled by the digits of (
Controlled by a short store

With the coding already suggested it only falls into the latter category if digit one is a nought and digit two is a one and the former two are distinguished by a digit 3. Thus this branching involves a degenerate tree of three elements. Another simple tree can determine the gate required. In practice a single tree can be used to perform all the necessary functions and this is “tapped” in various ways to give the required results. Thus the suggested coding o the arithmetic operations will lead to considerable saving of equipment in building trees.

This process can be extended in the ordering of the multiples so that as far as possible the carious digits of the type word each control one aspect of the cycling characteristics. It is not possible to achieve this aim entirely but a little care reduces the necessary trees to very simple ones indeed.

8.4
The Main control of a Machine

In a machine in which the component parts of an operation proceed sequentially it is natural to envisage the different parts of the operation when stimulated and these components are stimulated in order by a main control. The matching of control characteristics to code discussed in the last section enables this component selector to be constructed economically. Figure 5 illustrates in diagrammatic form the elements of a control for a machine working of the code suggested.

In this diagram the symbol:

[image: image5.wmf]

denotes a binary switching element which reproduces a potential applied to the input at one of the outputs. in its normal state the output energised will be that from the blank cell; in its excited state the output from the shaded cell will be energised. In a relay machine this represents a single change-over contact on a relay. In an electronic machine a “flip-flop” can be used. Those elements which have numbers in them are controlled by the corresponding digit of the operation word. The letters correspond to more complex functions of the state of the machine as follows:

0 ;
the element is energised if and only if digit 2 of the operation word is energised and digit 3 is not.

S ;
this is energised if the sign of the short store input is negative.

T ;
this is controlled by the digits of the type word.

Z ;
this element is energised if (a) digit 2 of the operation word is energised and (b) either:


(I)
digit 3 is not energised and ( has negative sign,

     or
(ii)
digit 3 is energised and ( and ( have the same signs.

In case (ii) Z will not switch off after the complementation of (.

The symbol:

[image: image6.wmf]Õ

Õ


represents a control mechanism which performs the function described in its body if the black spot is energised and, when the function has been completed, energises the white spot 0.

The symbol:



denotes a tree based on the digits of the type word in which excitation of the root produces a corresponding excitation of a set of the outputs varying according to the “value” in the type store.
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FIGURE 5   THE MAIN CONTROL OF THE MACHINE
The mode of operation should be fairly clear. If START is energised then ( input will take place or not according as digit 4 is on or off and in either case switch 1 will be energised which will in turn initiate an ( input or no according to the state of digit 1 and so on throughout the network. The lines of the network unite to start cycles and after their conclusion branch out again to accomplish the post-cycle stage and output if required. The energisation of FINISH can remove the potential at START, reset the operation store, check that all control mechanisms are back to normal and reapply the START signal for the next operation.

It should be noted that the control mechanisms for ( input, input, short store output and output are assumed to contain a mechanism for changing the instruction word but that short store input does not do so.

The mechanism for recomplementation of ( after the cycle can be omitted if it is never necessary to assume the contents of ( are unchanged by multiplication or division.

The number of cycles required can be set into a register, and the actual cycles counted and stopped by a coincidence unit between the counter and the register. Thus the short store input is to this register while in the other cases the register is set from the network directly. The register need not hold the cycle number since the lines initially feeding this register can remain energised throughout the cycling. This has the advantage that this register will then clear automatically between operations. It also explains why the short address word is not changed in the control mechanism, short store input.

The mechanism for the control of cycle characteristics is also connected to this counter so that the correct stimulation for each cycle may be provided.

In practice, various check mechanisms are inserted into the network to ensure that the signals sent out have accomplished their various functions.

A corresponding analysis for the control for short arithmetic can be made and such an analysis led to the ICCE code for this set of operations discussed in Section 5.7.5. The general problem of encoding all ancillary operations efficiently is fairly easy since the diversity of actions required ensure that a complete “treeing-out” is necessary.

8.5
Summary

1) Most methods of checking involve some form of time-check and the method employed in any instance depends on the type of mechanism in use.

2) Multiple action will in general speed up the operation of a machine with less than a proportionate increase in cost.

3) Twin action of calculating and withdrawing numbers from the instruction store is very desirable for a machine using serial input of instruction data.

4) An analysis of the different functions to be performed in each operation enables great simplifications to be made in the control of the machine.

9.
a further analysis of computing

The general features of an automatic computing machine have been derived from the general features of computing and have led to several quite radical proposals for such a machine.

It is therefore pertinent to enquire if there are any special features of computing which are of sufficient importance to be reflected in the machine as special devices.

There are three relevant topics of this kind.

9.2
The Maintenance of Accuracy

In any long calculation there is an inevitable loss of accuracy due to the curtailment of processes at a finite stage and the only completely effective solution to this problem is to work with more significant places than are required in the final answer and to obtain estimates of the error at various stages, and if necessary to repeat the calculation with more figures still. The uncritical application of this technique can make the computation need an enormous number of significant figures initially. To reduce this number to reasonable bounds certain other precautions must be taken in the course of the work.

The main losses of accuracy arise from the following causes:

Truncation of numerical processes to a fixed number of places (the most frequent source of this error is in multiplication and division).

The loss of significant digits on subtraction of two nearly equal quantities.

The loss of digits involved in preventing numbers growing out of the range of the machine. This arises in a more acute form in automatic machines since the steps to prevent this must be taken before any calculation is performed and loss due to an overcautious attitude is almost inevitable.

There are traditional remedies for each of these dangers:

(i) the collection of all the digits of a product and the carrying out of certain critical stages of the calculation at increased precision.
(ii) the rounding-up of products and quotients according to some suitable convention to minimise truncation error.

(i) A re-examination of the analytical problem to avoid such arithmetic steps. Sometimes it is possible to give an analytic approximation for such differences which enable greater accuracy to be obtained.
(ii) Working this part of the calculation at double precision. Notwithstanding these remedies this remains the most pernicious problem of computing.

An arrangement of the programme so that steps to counteract the effect of numbers growing too large are only taken when the results of the calculation show them to be necessary.

The implications of these on machine design and construction are now considered in turn.

9.1.1
Double precision (or double-length) working

If the machine is being used to solve problems to an accuracy which are not really beyond its economic reach, then the use of double length working will constitute a minority of the operations obeyed by the machine.

If the code were extended to cover double length operations it would become inefficient since the less frequently used double length operations would occupy the same digit space as the more commonly used single length or normal operations. It is a characteristic of work of this kind that for certain parts of the calculation double length numbers are involved, followed by parts in which only single length numbers are used and so on. There is a stability in time of the type of number used and so the adaptation of the machine to interpret the ordinary operations as applying to double length numbers becomes a feasible solution. If this change of interpretation is controlled by a switch which the machine itself can control as a conditioning order (see Section 5.5.4) then the automatic character of the calculator can be preserved working through a whole problem with the correct interpretation for each part of it.

The basic requirements for double length work are:

The double-length product of two single length numbers must be available.

It is desirable to be able to shift double length numbers as a single operation.

The addition of two double length numbers must be possible.

If these are available then a double length multiplication can be built out of 4 ordinary multiplication’s, 3 shift and 3 additions. Such a building up from single components to what a computer regards as a single step is justified in this case because of its rare occurrence and because just such manipulations are necessary and familiar in manual computing when this is being carried out to an accuracy beyond the normal reach of the machine.

In practice double length addition must be built out of two ordinary additions since the adding unit will only cope with carries over the range of a single length number. This also prevents the direct division by a double length number. However division by a single length number into a double length dividend is possible.

The least significant half of a product can be collected in the ( register of the AU and a double length number shifted by storing the two parts in  and ( and ganging these registers together as a single shifting register. This ganging will also enable the back part of a dividend to enter as division proceeds rather than the zeros introduced in single length work. A second division without a input will produce the second part of the quotient. Since the back part of the dividend of this division is the first quotient instead of the correct zeros there may be an error in the last figures of this second part.

The input and output control circuits must be adapted so that input and/or output involving both ( and ( will take place for certain operations; these are listed in the table below:


INPUT
OUTPUT

OPERATION
NORMAL
DOUBLE LENGTH
NORMAL
DOUBLE LENGTH

Multiples
(
(, (
(
(, (

Shift to S.F.
(
(, (
(
(, (

Shift
(
(, (
(
(, (

Addition
(, (
(, (
(
(

Subtraction
(, (
(, (
(
(

Multiplication
(, (
(, (
(
(, (

Division
(, (
(, (, (
(
(

A convention can be established that when double input or output occurs that involving ( occurs first. Each address in a normal instruction will require a pair of words for such inputs and outputs, the first named being the store containing the most significant part of the double length number.

A simple mechanism will be required to arrange that the sign digit of the most significant half of a double length output is copied into the sign position of the least significant half during multiplication.

A little care is necessary in using multiples while the machine is in the double length condition. Only those multiples which do not involve addition can give double length precision to operations on double length numbers. However all sub-multiples of single length numbers can be obtained correctly to double length if care is taken to clear ( to the same sign as the resulting sub-multiple (providing these are obtained without the use of complementation).

9.1.2
Round-up

By the same arguments as for double length work it is more economical to provide this facility by the use of a conditioning order than by an extension of the code.

Round up in multiplication is very easily achieved by changing the clearing operation to one which sets the ( register to ( or -( according to the sign of the final product. This is a trivial modification if clearing is achieved by a cycling technique. The round-up convention used here always rounds up products exactly ( in the last place.

A popular round-up convention for division consists of terminating a positive quotient with a 1 independent of the result of the division (and a negative quotient with a zero). This can be engineered easily on the output from the ( register but this has the disadvantage that the quotient from a division if used directly as a multiplier in a subsequent operation will be unrounded. This can usually be avoided by inverting the order of the operations.

9.1.3
Number control

If the programme is arranged so that results which are in danger of exceeding the bounds set are shifted back, then, since it will not be possible for the programmer to predict if any given sum will involve a shift or not, the exponent of certain numbers will be unknown. Thus the calculation must proceed “floating” in some form. For each sum which can exceed capacity a short store for its exponent must be provided.
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Suppose two positive numbers which are stored in X and Y with a common exponent in short store x are added and the result is to be stored in Z with its exponent in z. If the sum of X and Y exceeds capacity (or to use the colloquial term “spills”) then with an AU which uses the complement convention for negative numbers this will appear as a negative number and a discrimination on the sign of ( will detect “spill”. If spill has occurred then the sum must be halved. The normal halving operation will not produce the correct result since this will be treated as a negative number. This can be corrected by adding 1-2-p  where the least significant digit of numbers is stored in 2-p). Finally the exponent in x must be increased by 1 and placed in z. Hence the complete programme reads:

The convergence on the next operation will involve at least one further unconditional discrimination order. U contains the correcting number 1-2-p.

A similar process will give the correct answer if the two operands are negative (spill by addition cannot occur if the operands are of different sign) but a complete programme must sort out the signs of the two operands and direct the machine to the appropriate part of the programme. All this will be rather time-consuming and if applied to each addition performed can lead to a drastic reduction of operating speed.

Thus it is necessary to consider what additional mechanisms can be provided to reduce this time. Some machines have arrangements which enable all additions to be performed “floating” with spill correction but this is a substantial complication of the AU and makes every addition take a longer time instead of only those which are known to be able to spill. This will not be considered here.

The sorting out of signs is the most troublesome piece of arithmetic involved, but it is a simple matter to construct a mechanism which for every addition compares the sign digits of the operands and when they are equal, compares them with that of their sum. If these are different it can set a trigger which we shall call SPL. In many machines such a comparator is used  to stop the machine if spill occurs, but it is more useful to arrange that the trigger can correct for the error which arises in shifting.

Suppose that while SPL is on the sign digit for the output in a backward shift from ( instead of ( (as in multiplication) and that SPL is connected to a counter, so that after one arithmetic operation it is put off again. This ensures that if after spill a backward shift is called for then the correct half-sum will be obtained. It remains to arrange that this shift only takes place if spill has occurred. This could always be done by including SPL in the set of tests made for discrimination, but there is a neater way which avoids the formation of very short sequences.

Regard SPL as a one digit short store in the units place. Then the triad:

X + Y

x = SPL(z

( Sh SPL(Z

will produce the correct result in all cases. If spill has not occurred the last two operations are dummies, but the difference in time to perform these rather than the discrimination order and the output from the AU involved is negligible.

It may be that the programmer is confident that spill will never occur due to addition and consequently that no provision need be made for it. In this case a check on the programmer’s prediction can easily be made by arranging SPL to stop the machine if it comes on. This facility can be switched on and off by a conditioning order.

Shifts forward which cause spilling should not in general occur and a similar mechanism can be provided to set a trigger if spill by shifting occurs, and normally this can stop the machine. Occasionally it may be necessary to test the value of some particular digit and sign position. Some provision should be made for switching the alarm off by a conditioning order.

9.2
Exact Operations

For some problems the machine will require exact results. The provision of double length facilities ensure that exact answers to multiplication are possible, exact answers to additions are always possible and it only remains to arrange that the result of a division can be obtained as a quotient and a remainder.

This merely requires that the division process shall cease after a certain number of cycles (varying from case to case) and not continue for the usually full number. The number of cycles actually required is one more than the difference between the exponents of dividend and divisor assuming these both in standard form. This can be calculated by two operations of short arithmetic and made available in a short store x.

Thus in “integer division” the number of cycles must be controlled by the contents of this small store. The usually argument inhibits the extension of the order code to accommodate two forms of division and a conditioning order can be provided to re-interpret a normal division. In the code used in ICCE the necessary change in the control is very simple. The normal shift operation involves controlling the number of cycles by the contents of a short store and the code numbers for this and division only differ in digit 1. A simple switch controlled by the conditioning can arrange that the network is modified to give the desired result.

Normally the cycling with shift forward automatically clears ( of any previous number but in this case there will not be sufficient cyclines in general and ( must be cleared. This can be arranged to occur at the time that ( is cleared in multiplication. The clearing must be to the form of zero corresponding to the sign of the result.

The quotient is obtained as an integer with the binary point supposed at the back of (. The remainder is found in ( shifted forward by the contents of x and can be replaced in the correct position by the operation (Shx.

9.3
Simple Numbers

Just as a computer learns to consider certain simple multiples as being generated without multiplication, so certain simple numbers enter calculations without being regarded as part of the number storage of the problem. The best example of such a number is 1 or 2(. Others are numbers with a single digit ie 2-p (P = 0,1,2.....) and simple binary fractions p/32 n=1, 2.....31. the choice of denominator 25 = 32 arises from the 5 digits of the instruction words as we shall see.

Just as the multiples are regarded as part of the programme and are stored with the instructions, so these simple numbers should be regarded as part of the programme and stored with the instructions. This can be achieved by reserving certain store addresses for this purpose. These addresses are used in the programme followed by a type address which specifies one of the special numbers.

Thus ICCE contains an address called BIN (short for binary) so that the pair of addresses BIN, p produces the number p/32 on highway or equivalently p on the short store highway. There is also an address EXP (short for exponent) so that the pair of addresses EXP, p produces the number 2-p on highway.

In fact there are no stores containing these numbers at all. They are obtained by connecting the instruction store bus or a derivative of it to highway by means of a gate.

The inclusion of these devices reduces quite considerably the number storage required. It is true that this is at the cost of instruction storage but far less of this is required (5 digits per number) and instruction storage is far cheaper than number storage at the first level.

It should be noted in passing that although in general the machine may not handle numbers as large as 1 it is possible to form 1-x from the number x in store X by the operation (EXP, 0) -X.

In ICCE there is a third special address called CONST (short for constants) so that the pair of addresses (CONST, p) produces on highway the pth of a list of universal constants. This list, which can extend to 32, contains such numbers as:




These numbers are provided by making fixed connections to highway through special gates. Each number has been brought to standard form by multiplying by a suitable power of 2.

9.4
Summary

1) It is possible to facilitate the maintenance of accuracy by the provision of special devices.
(a) a conditioning of the machine to enable certain operations to be performed at double normal precision.
(b) a conditioning of the machine to perform round-up of products and quotients.
(c) ancillary comparators and triggers to reduce the programming for number control.

2) It is desirable and easy to provide a conditioning of the machine which enables “integer division” to be performed.

3) Certain simple numbers used frequently in all programmes can be stored in the programme by the provision of simple mechanisms.

10.
the organisation of complexes of instructions

In the discussion on constructing a suitable code for an automatic machine it was recognised that the division of problems into parts which formed the operations of the machine involved an arbitrary selection of the dividing points and we choose to make this in such a way that the general features of desk computing would be preserved.

At the same time it was noted that the existence of automatic machines would bring out certain new features in computing and in due course sets of operations would be regarded as units. Certain frequently occurring sets already take on this independent existence. Examples are those sets which effect the conversion of numbers from one scale to another.

In conformity with our usually practice, we must now enquire if it is possible to arrange that these sets of operations regarded by the programmer as a single unit can be incorporated into the code as single operations in the programme. We may start this discussion by considering one solution to this problem which has been developed extensively at the Mathematical Laboratory, Cambridge.

10.1
Library sub-routines

The idea of library sub routines is that these frequently occurring sets of operations are programmed once and for all in as general form as possible and then the programme for all the real problems given to the machine are constructed from these basic programmes.

The group at Cambridge have reduced this technique to a standard pattern utilising the erasable character of their instruction store. Suppose as a simple example the problem can be broken up into parts a and b, executed in succession for each of which a library programme A or B exists. Then a main programme is constructed as follows:

A set of instructions which sets all addresses in A to their correct values.

An instruction which plants a link in A to ensure that after the machine has completed this programme A the next operation obeyed by the machine will be the first of those in (4) below.

An instruction which transfers control to A, ie arranges that the next instruction obeyed is the first one in A.

A set of instructions which sets all addresses in B to their correct values.

Plant link in B to (7).

Transfer control to B.

Stop order.

Thus the machine alternates between obeying instructions in the main programme and in the library routines.

Consider a more complicated example. Suppose the complete programme consists of the parts a,b,c executed in the pattern a,bbb,ccc, repeated four times. Let the routines A,B,C enable the machine to execute the parts a,b,c. Construct a routine D which simply counts down on from 3 and leaves the routine on link 1 if the count number is zero and on link 2 if it is not. Let E be a similar routine which counts down from 4. The main programme then consists of the following:

Set addresses in A,B,C as required.

Plant links as follows:
in A to start of B


in B to start of D


in C to start of D

link 1 in E to (6)

link 2 in E to (3)

Set D and plant link 1 to (5); link 2 to start of B.

Transfer control to A.

Reset D and plant link 1 to start of E; link 2 to start of C, transfer control to C.

Stop order.

In more complicated examples the addresses used in B and C may change on successive uses and then further programmes must be constructed to alter the addresses.

The erasable nature of the instruction store is utilised in two ways in this technique:

To set the addresses in each programme correctly

To organise the correct transfer of control after each part has been performed.

It is not necessary to have erasable storage to accomplish these functions.

Each programme in the library can use certain standard positions for the numbers involved and the required numbers transferred to them in the main programme. This leads to a certain wastage of number storage. An alternative is to arrange the library version of each programme (on punched cards or tape) in such a way that as it is fed into the machine the various addresses required can be set to the values needed by simple ancillary equipment. This is the method employed in ICCE.

The address required at the end of each programme can be filled in as the programme is fed into the machine as suggested in (I) for ordinary addresses. In addition the selective control introduced in Section 5.7.1 can be used and adjustments made in the main programme by transferring numbers to the appropriate short store.

Thus, if desired, the library routine technique can be utilised for machines using non-erasable storage without any great trouble. However, in the next section certain objections to this technique will be raised.

10.2
Limitations of library routines

The purpose of library routines is to free the programmer from the fine details of the computing and enable him to consider only the broad outlines of the problems. It is not and cannot be completely successful in this objective while at the same time preserving computing efficiency.

The set of instructions comprising each routine is put together assuming that certain limitations are satisfied and there are always a surprising number of variants of these limitations possible and useful. As a simple example we can consider the construction of a routine for forming square roots. We have to decide the following points:

How will the machine behave if presented with a negative number? The machine may 
(i) stop
(ii) determine the root of the modulus and set a trigger to denote the imaginary nature of the root
(iii) proceed as if the number were positive (and therefore perform nonsense arithmetic).

What assumption will be made about the exponent of the number? The machine may give the correct result if the exponent is (I) zero (ii) positive (iii) negative (iv) even (v) odd, or any of the possible combinations of these conditions.

Is it necessary to ensure that every digit of the root is correct or can an error in the last place be tolerated?

Is the result required truncated or rounded, to single length accuracy or double length?

Will the exponent of the root be required or not?

For a more complex problem such as the formation of a scalar product, which involves whole sets of numbers instead of merely one number, the possibilities are even more numerous. If the numbers can be assumed to be of all the same sign, or equal exponent, small enough to ensure the sum remaining below the upper limit of the AU, and only single length accuracy is required, then a very simple programme suffices. If any of these limitations are removed the problem becomes more difficult and if no assumption can be made it is very difficult indeed.

It is always possible to devise a programme for any problem which makes the least assumptions possible and takes into account all the foreseeable difficulties, but such programmes will involve precautions completely unnecessary in almost all its applications and will be a very inefficient use of the machine. If several programmes are provided for each job the grosser inefficiencies can be avoided but if the alternatives provided are sufficiently numerous to eliminate these inefficiencies the task of selecting the correct one for any given problem becomes serious.

In this case the original aim of eliminating a detailed consideration of the programme is not fulfilled since a careful study of the types of number arising in the problem is necessary. It is true that this study is not as tedious and time consuming as the actual construction of the programme but it remains a bar to a wide view of the problem.

It might be thought that the difficulty could be met by constructing a programme which considers each individual problem on its merits and provides just those refinements necessary to obtain the correct result, thereby avoiding the time wasted on unnecessary steps. Unfortunately the time saved on arithmetic must now be spent in conducting the tests whether the arithmetic need be done, and there is little saving in time.

In some cases such a programme would be very wasteful indeed because before an assumption can be made the whole data of the problem must be inspected which might easily take almost as long as the problem itself.

This consumption of machine operating time to make tests which appear to take place instantaneously in manual computing is one of the chief characteristic differences between the two types of computing and is a weakness of automatic machines. We shall consider in the next section if there are any special steps which can be taken in the construction of a machine to help to eliminate this weakness.

10.3
Mechanised Programmes

In many frequently used programmes a large part of the operating time is used to construct suitable test functions to decide if certain steps need to be included in the calculation or not. These test functions are difficult to calculate with the machine’s normal code of operations but are often easily physically realised inside the machine.

Most tests can be made with a few comparators and triggers attached to the relevant components of the machine and their cost is negligible to the total cost of the machine. If they can be arranged to reduce the time required to perform important programmes they will lead to increases of operating rate in excess of the addition cost.

Perhaps some examples will explain the type of test under discussion. We require a programme to add two double length numbers together. Suppose these are stored in X1, X2 and Y1, Y2 and the result is required in Z1, Z2. The basis of the programme can be written as follows:

C/0 D L ON
arrange machine to work double length

X2 + Y2 ( Z2
add back ends together to store

B Sh BIN 19
shift back part of answer into ( leaving any carry in 19th place of (

X1 + (
add part of front end on

X1 + ( ( Z1
complete the addition, and store

This assumes the special arrangements for spill discussed in Section 9.1.3. If these are not incorporated the machine would have to test sign of first sum and arrange to add 2-19 to second sum if necessary.

There are several modifications to make to this programme before it will work for all numbers.

The final sum may spill

a) the last addition causes the spill

b) the addition of X1 to carry digit from back part spills

(a) can be dealt with by the standard technique of Section 9.1.3 but (b) cannot be dealt with in this way. If X1 + ( is shifted back then Y1 must be shifted before being added. This shift will lose the back digit which will then not be added in.

This difficulty can be overcome by adding front ends first and storing the sum. If spill occurs we can either arrange to shift both double length numbers back one place or we can “remember” the spill on a trigger (call this RMBR) and shift the final sum back. Either method involves storing SPL. After this the back ends are added shifted and then the stored front end added on.

The programme now reads:

C/0 D L ON
arrange machine to work double length

X1 + Y1 ( Z1
add front ends together and store

SPL ( RMBR
remember spill, if any

CL SPL
clear spill control so that it may operate normally in the next operation

X2 + Y2
add back ends together

( Sh BIN 19
shift back part into ( leaving carry in digit 19 of (

Z1 + (
add front part

SPL ( RMBR

RMBR( SPL
setting SPL on if either SPL or RMBR were one

( Sh SPL(Z1,Z2
shifting sum to allow for possible “spill” and store answer

z + BPL ( z
changing exponent of sum

CL SPL
clearing spill to ensure that programme leaves machine normal

In this we have assumed that RMBR is a special trigger that is not cleared before an input to it and can only be cleared by a clear instruction. Without this trigger the construction of SPL V RMBR presents further difficulties.

2)  The two numbers are of opposite sign and the signs of the sums of the back and front ends are different. 

The difficulty here arises from the special form of complementation used. End-around carry provides the elusive one required to give the correct answer for a positive sum of a positive number with a negative one. If double length numbers are being added the end carry from the sign position should feed into the back place of the back part of the number. In fact, it will feed into the back place of the front part. If both parts have positive sums then the end-around carry from the front part will supply the required “carry” from the back part. In this case and the complementary one where both sums are negative the correct answer will be obtained. In the other two cases the result will not be correct and certain correcting numbers will need to be added.

As a numerical example to show the effect of this process, consider the case with 3 digit numbers:

X1 = 0.111
Y1  = 1.001

X2 = 0.101
Y2  = 1.001

The various states of the AU are given below:


(
(

X1 + Y1 (Z1
0.001
-

X2 + Y2
1.110
-

( Sh BIN 3
1.111
.110

Z1 + (
0.001
.110

Thus the result will be 0.001110 as opposed to the correct sum

0.111101

1.001001
0.000111

The programme must now be modified to test if the corrections are required and to make them, if necessary. The sign(s) of the sums collected for the test must be complemented if spill(s) has(ve) occurred.

The programme now reads as in the table opposite.

Such a complex set of operations to perform a simple task such as this can hardly be tolerated. It is only fair to mention in passing that with a serial addition unit these difficulties do not arise. However, such complicated discriminations also occur in other simple problems.

C/0 D L ON


X1 + Y1 ( Z1


SPL ( RMBR


Z1 ( SGN
Store sign of sum

SGN + SPL ( SGN
store true sign of sum

CL SPL


X2 + Y2 ( sng
add back ends together and store sign

sgn + SPL ( sgn
store true sign

( Sh BIN 19


Z1 + (


sgn + SGN ( SGN
from test function

SGN = 1 if numbers different sign

SGN = 0 if numbers same sign

S/C SGN
discrimination order

If no correction required proceed as before. Otherwise continue as below:

s/c  sgn
discrimination order to give signs of corrections required

C1 - (
C1 ((Z1
correcting Z1 and Z2 with C1 

-((Z1
Z2-C1(Z1
which is 1 - 2-19

Z2+C1(Z2

(no spill is possible if these corrections are required)

If special triggers and comparators are built into the machine and arranged so that they modify the spill control arrangements, then the programme can be reduced to:

C/0 D.L
ON

X1 - Y1 ( Z1

X2 + Y2 *

( Sh BIN 19

Z1 + ( *

SPL + z ( SPL

( Sh SPL ( Z1, Z2

The correction to the numbers can be effected if the two additions marked * are performed with the end-around carry lines reversed when the signs differ and this can be arranged with triggers and comparators.

A second, more simple, example is that of rounding up a numbers of unknown signs. Suppose a quantity on ( is shifted back p places and added to some other number and we wish to avoid truncation error. If ( is positive we simply add 2-(20-p) to ( and then shift. If ( is negative we must subtract this amount. This can be programmed as:

( ( SGN

(((
2-(20-p)+(
SGN (
If a trigger is provided which copies the original sign of ( and modifies the pair of operations:

2-(20-p) + (
into
2-(20-() - (

(((
-(
when ( is negative, then the round-up has been achieved in half the operations. The trigger must alter the set of words 16, 22, 20-p, 4, 4 into 20, 22, 20-p, 4, 5.

The operation of these triggers and comparators must be arranged to be optional. If their operation is controlled by a conditioning order two additional operations are required to switch them off and on and this should be avoided if possible.

It is desirable that the modifications of the normal operating procedure of the machine should take place in some systematic manner for each programme which involves it. The following arrangement seems to cover all the possibilities:

Prior to the programme as a whole provision is made for switching on all ancillary mechanisms needed throughout the programme and of making any modifications of control required.

Prior to each operation in the programme ancillary mechanisms used in that particular operation are switched on and local modifications of control made.

Thus it is necessary to interpolate in turn ancillary mechanisms into the network shown in Figure 4. It scarcely adds to the complication to arrange at the same time that the successive operation and type words required are drawn from a special store and not from the general instruction store. Addresses required in the programme can either be supplied from the general store or directly by special switching.

If this last stop is taken we have completely mechanised programmes which need only special words in the main programme to call them in and to name the necessary addresses. Thus in ICCE for double length addition it is necessary to write in the program only the words 1, 8, 4, X1, Y1, X2, Y2, z, Z1, Z2. The initial output of X1 + Y1 needed in the programme is sent to store 4, which is reserved as working space in mechanised programmes. The details of the interpolations for this programme are given below for illustration.

Pre-Programme Interpolation
   switch D/L on
OPERATION
PRIOR INTERPOLATION

X1 + Y1 ( COM(4)
Modify output control to give output to 4 and not to send a signal to instruction word control.

X2 + Y2
Store SPL and then clear. Switch on half rate cycling. Store sign on ( corrected for spill. Arrange to energise carry reversal if initial sum in following operation has a sign (corrected for spill) which differs from stored sign.

( Sh BIN 19
Modify short store input to give BIN without sending a word control signal.

COM + (
Modify ( input to be from 4 without sending a word control signal. Energise carry reversal if used in the last addition.

SPL + z ( z
Set SPL if required. Modify inputs in short arithmetic to use SPL without sending a word control signal.

( Sh SPL ( Z1 Z2
Modify short store input to give SPL and not to send word control signal.

The specially supplied instruction words are 19,18,12,19,16,3,28,15 in that order (for the ICCE code). This list of modifications seems rather alarming, but in practice, most of them are concerned with address control and be omitted at the expense of adding to the list of instruction words required effect the programme. However, these modifications involve only two binary switching elements in each of the input and output control circuits, which are set from the interpolation and cleared after each operation.

In a relay machine such as the ICCE these interpolations are easily effected by the use of uniselectors which can also provide the additional instruction words required. In a machine using electronic components the problem may be a little more difficult, but the use of decatrons as multiway switches may provide a solution.

In the ICCE several such mechanised programmes are provided and facilities are provided for adding many more as the need for them arises. The additions to create a new programme take only a few hours to build into the machine. In a machine in which the need for modifications had been realised at the start, it would be possible to organise matters so that this time could be considerably reduced by providing plug boards and fly-leads for connections between the machine and comparators, triggers and similar equipment. This would enable mechanised programmes to be built to order for individual problems.

10.4
Summary

1) It is always possible to organise programming on a library basis.

2) This organisation inevitably involves loss of computing efficiency.

3) It is possible to reduce the computing necessary in some programmes by the provision of special comparators and triggers.

4) This provision can be organised in a systematic manner to give mechanised programmes.

11.
the external organs

The discussion has so far ignored the problems of input and output as they were considered of secondary importance for the design of machines required to deal with problems of numerical analysis.

In a relay machine the time of input and output (excluding any conversion needed) is comparable to the time for an operation and so is only an insignificant part of the total operating time. In an electronic machine experience seems to indicate that each result is calculated in a time comparable to the time taken to print or punch it. Equally data can be used at about the rate of possible input.

Superficially, this seems an ideal state of affairs which enables a multiple action of computing, taking in numbers and printing to be carried on simultaneously. Unfortunately, the rate of delivery of results and the rate at which data are required by the machine are very irregular, and to enable multiple action to be used a buffer store of considerable size is required.

Once the necessity for a buffer store is accepted, it becomes an attractive proposition to provide completely separate units which can prepare data in a form for entering into the buffer store and which read results from the store and prints or punches them. If the machine is being used on a routine basis the equipment can be working on three problems at a time; one part printing the results of the last problem, one part computing the present one and the last part preparing the input for the next. If this “off-line” technique is adapted then the amount of equipment for conversion can be adjusted more exactly to the computing rate of the main machine.

Such an off-line technique has a serious disadvantage for computing relating to research (as opposed to development) work. The exploratory nature of the work means that quite unexpected results may appear from the calculation and may mean that to continue the calculation is unnecessary. Unless results are displayed as the calculation proceeds it is not possible to stop the machine in such an eventuality.

Without “off-line” working it must be accepted that using commercial equipment for the external organs the machine may be forced to stop during their operation. These stops can be reduced to a minimum by using equipment with multiple action (reading or printing whole sets of digits at one time) and by providing certain ancillary equipment.

The need for speed and multiple action indicates that telegraph punched tape input for input and teleprinter or electrically operated typewriter for output are unsuitable. Incidentally, commercial punched tape equipment is not claimed by the makers to be completely reliable and experience indicates that such a claim would be false.

Restricting attention to commercially available devices, the alternatives are punched card feed for input and Hollerith type printing bank units for output. To increase the rate of operation the processes of conversion must be considered.

11.1
Input Conversion

We assume a decimal input which must be converted to binary form. The only possibility for the first stage of this conversion seems to be to decode each decimal digit as a tetrad of binary digits - the so-called binary coded decimal.

The usual method of continuing the conversion is to assume the number is an integer and to multiply the leading digit by 10, add the next digit and multiply by 10, add the next digit and so on, till all the digits are exhausted. Thus the conversion of numbers will require n multiplication’s and n additions for an n decimal digit number. If the multiplication is performed by adding the number to itself shifted forward two places, and shifting the result one further place, the process can be reduced to 3n additions and 3n shifts.

Another method which can be used involves dividing the least significant digit by 10, adding the next digit and so on. This gives a suitable conversion for fractions but since division by 10 cannot be pre-fabricated as easily as multiplication by 10, this will not be considered here.

Both of these methods suffer from the defect that the parallel input of digits is not fully utilised, since the binary forms of the successive digits are used in turn. There is an alternative method of conversion which does not have this disadvantage and involves fewer arithmetic operations at the expense of a little ancillary equipment.

Imagine the digits of the binary coded decimal arranged in an array; the different decimal digits being given by columns. Thus the number 95136 gives the array:


Decimal Digits

Power of 2
1
2
3
4
5

3
1
0
0
0
0

2
0
1
0
0
1

1
0
0
0
1
1

0
1
1
1
1
0

Consider the rows of such an array. These are decimal numbers with binary digits. If that in the row labelled r is Nr then the complete number is:

23N3+22N2+2N1+N0 = 2{2(2N3+N2) + N1}+N0
For an n-digit number there are only 2n possible decimal numbers with binary digits and it is easy to construct a tree or matrix based on these n variables, which produces the binary equivalent of such decimal numbers.

With such a device the conversion can be reduced to 4 additions and 3 shifts for a number of any digital length, and full use is made of the parallel input of digits. It lacks the advantage of the serial input technique that the number of decimal places in input is fixed, or at least limited to the maximum settled for the conversion tree. If a number with more digits is required, then the digits must be partitioned into groups, each group converted and the required number built up from these by multiplication by powers of 10 and addition. However, if the number of digits in the conversion tree roughly matches the length of the number stores, such abnormal inputs will involve storage of each number in several stores, and calculation will have to proceed by multiple length. If the length of the numbers is greater than double length, it may be more convenient to work in a mixed radix, regarding each number store as holding a digit in the radix 10n. This involves programming in detail the basic operations of arithmetic. Such a technique is often necessary for number theory work.

11.1.1
Adjustment of Range

In practice the numbers introduced into the machine will have decimal exponents and the binary equivalents of the numbers must be corrected for these exponents and the exponent replaced by a binary one.




The decimal exponent is usually liquidated by a process of multiplying or dividing by 10 successively. In order to keep the result in a reasonable position in the store the multipliers used are:

and a binary exponent is built up by adding 4 or subtracting 3 at each stage.

This process is quite lengthy for a large exponent and leads to errors of conversion due to round-up or truncation of the successive products. These can be avoided by using the digits or the correct power of 10 as a single multiplier. Such powers of 10 can be permanently available in the machine as part of the universal constants. The machine must be able to control which power is selected and this can be controlled by the contents of a short store.

The short store can be connected to a tree or matrix which operates the correct constant store when demand for it is made. Another short storage position can be arranged to give the binary exponent of the multiplier. This will also be controlled by the tree which can be a relay operated device, since by setting the store first at least the time for an input elapses before it is used.

11.2
Output Conversion

The usual process for conversion of binary numbers to decimal assumes the number to be positive and in standard form. Multiplication by 10 gives a number which exceeds one and has an integral part which is the binary coded form of the leading digit of the decimal equivalent. This is obtained in the machine by multiplying by  5/8 = 10/16  and collecting the first 4 binary digits. These digits are liquidated by shifting forward 4 places. The further decimal digits of the number are determined by repeating this process on the remaining fraction.

A similar process is available for conversion of integers using a division process. For this “integer” division as discussed in Section 9.2 is required and the successive binary coded digits are found as the successive remainders.

Both these processes suffer the defect that the decimal digits are produced serially. Analogous devices to that used for input which produces all the digits of the decimal equivalent at the same time involve rather more complicated equipment. The binary number must be written as a weighted sum of numbers in some high radix with binary digits. If each third digit is regarded as forming a number in the octal scale with binary digits, then the number can be written as N0+2N1+4N2. To utilise this representation it is necessary to build a converter of numbers in the octal scale with binary digits into their decimal equivalents. It is also necessary to provide a decimal adding mechanism which forms the sum of one input with twice that of a second input. Three applications of this equipment will produce the required number. A similar arrangement using a representation of the number as a weighted sum of four numbers in the scale of 16 can also be used. Such methods involve very complicated decoding mechanisms and cannot be seriously considered.

There also exist methods which utilise a decimal adding mechanism and can proceed without using the AU of the machine. Suppose a mechanism is provided which can form the sum of a single decimal digit (( 7) with eight times a given decimal number and replace the decimal number by the result. If a decoder is fixed to a store containing the binary number to be converted, which gives the decimal equivalents of the successive triads of binary digits and feeds these to the adding mechanism, then the decimal equivalent is formed in this mechanism, then the decimal equivalent is formed in this mechanism when the digits are exhausted. This will convert integers. For conversion of fractions a similar mechanism, which can form the sum of a decimal digit and 1/8  of a given number, is required.

In electronic machines any ancillary equipment of this kind must be capable of performing this conversion process quickly enough to make the increase of printing time negligible, ie it must work at electronic speeds. If, as is the case for a large number of problems, printing is already a bottleneck delaying the machine, any extra time in printing is an extra delay to the machine and in these cases the machine might just as well spend this waiting time doing the conversion. Thus there does not appear to be any great value in providing ancillary conversion equipment for output.

In a relay machine the conversion process inside the machine is considerably longer than the printing time and the time between printings would allow the conversion process to be performed by quite slow external equipment. Thus it is proposed to construct such ancillary equipment for the ICCE. At the present time, conversion is performed inside the machine by a mechanised programme.

11.2.1
Adjustment of range

The numbers converted will have, in general, associated exponents and it is necessary to liquidate these prior to the conversion. this can be partially achieved by successive multiplication by 5/8 or 4/5 , according to sign, until the binary exponent reaches the range 0-2. Then a shift completes the liquidation process. The equivalent decimal exponent is built up by counting the number of multiplication’s.

There is also a lengthy operation giving rise to rounding or truncation error, and can be avoided by a similar mechanism to that employed for input. A network tree or matrix based on the digits of a store used to contain the binary exponent can produce the binary digits of the correct multiplier, the binary form of the final shift required and the binary form of the decimal exponent. This last is needed to control the position of printing on the print unit. If such a store and converter is provided it can also be used in the input conversion. The exponent of each number for input is a binary one chosen sot hat the equivalent decimal exponent is the one required and will not involve a shift.

In the ICCE such a decoder is provided. This only stores the binary form of the positive powers of 10 and converts the multiplication order in the mechanised programme effecting conversion into a division when required. The power of 10 obtained is adjusted to effect the first multiplication by 5/8 and the shift number adjusted to allow for a change of binary point one place forward. This shift is necessary since the shift 4 places forward after each multiplication must destroy all the 4 leading digits and so a sign place must not be kept. Negative numbers are complemented before the conversion starts and the sign stored. A table of the exponents and shifts involved is given below.

BINARY-DECIMAL EXPONENT CONVERTER
Bin -ve
Dec
Shift
Bin +ve
Dec
Shift

31
10
0
0
1
-1

30
10
-1
1
1
-2

29
10
-2
2
0
1

28
9
1
3
0
0

27
9
0
4
0
-1

26
9
-1
5
1
1

25
8
1
6
1
0

24
8
0
7
1
-1

23
8
-1
8
2
1

22
7
1
9
2
0

21
7
0
10
2
-1

20
7
-1
11
3
1

19
7
-2
12
3
0

18
6
1
13
3
-1

17
6
0
14
3
-2

16
6
-1
15
4
1

15
5
1
16
4
0

14
5
0
17
4
-1

13
5
-1
18
5
1

12
4
1
19
5
0

11
4
0
20
5
-1

10
4
-1
21
6
1

9
4
-2
22
6
0

8
3
1
23
6
-1

7
3
0
24
6
-2

6
3
-1
25
7
1

5
2
1
26
7
0

4
2
0
27
7
-1

3
2
-1
28
8
1

2
1
1
29
8
0

1
1
0
30
8
-1

0
1
-1
31
9
1

11.2.2
Round-up




The round-up of numbers for printing is a little vexing. The difficulties can be illustrated with ICCE which prints 5 decimal figures. After liquidation of the binary exponent the number should have 5 x 10-6 added to it. In ICCE 5/8 of this number is available and so the round-up number required is:

ie about 3 in the last place of ( (remembering that the binary point is now one place forward). If only 3 is added in the last place the rounding up will cause some numbers with a 6th decimal digit in the range 5-6 to fail to round up. It is possible to compensate for this partially by adding further round-up numbers after the following multiplication’s. The numbers are successively 2,7,6,8. However the additions of these numbers will not always produce the correct round up for two reasons:

The first is best seen by example. Suppose that the decimal equivalent of the number after reduction to zero exponent is 

(4.999951). If this were converted without round up we should obtain 0.49999, whereas the true rounded value is 0.50000. If it were possible to add the correct round up number 3.2768x2-20 the number on ( after round up would be 

[4.999951]+3.2768x2-20 = 

[4.999951+5x10-6] = 

[5.000001]. Hence the number provided would be correct. However if only 3x2-20 is added the number on ( after round up will be 

[4.999951+

x10-6] = 

[4.999997] and the first decimal of the number printed will be a 4 and no subsequent additions can alter this to a 5.

The second difficulty arises from the truncation of the result of converting the original number to one with zero exponent. If the final shift is backward then since digits beyond the 20th are not retained an average round up of 3.7768 is required. If the number is shifted forward one place the last digit will be zero and this introduces an error which can be compensated for one the average by using a round up number 4.2768. Finally if a shift forward of two places occurs the round up should be 5.2768 on average. Since these round ups are only averages certain rounds ups on the numbers printed will not be correct.

These difficulties are characteristic of the problem arising generally if round up is attempted by rounding the binary number before conversion unless additional digits are used throughout. Without these extra digits, the only way to ensure the correctly rounded number is to compute an extra decimal digit and to round the decimal number obtained. This rounding process must either be performed on a degenerate decimal adder or by an elaborate programme inside the machine to effect the same result. In most problems, the difficulties of the main calculation prevent the final digit being completely reliable so that the extra error of the imperfect round up produced by the simpler technique is not very important.

11.2.3
The layout of results

If a Hollerith type print bank is used for printing it is possible to choose the position on a given row in which any result shall be placed. It is necessary to be able to control this positioning from inside the machine. This can be effected by providing two short stores in the machine whose contents control the bank and position in each bank respectively that the number printed shall occupy.

It is then possible to programme the machine to lay out its results in any desired pattern by altering the contents of these stores before each printing and by instructing the machine to move the paper when required. However such a programme can become lengthy and it is possible to provide certain facilities to reduce the size of the programme.

A typical layout consists of numbers printed in some order across the page, the order remaining the same for each row. The rows are arranged in blocks and the blocks are arranged in sets separated by wider gaps to correspond to pages.

It is possible to arrange that such a layout can be achieved automatically with such parameters as the order across a row, the number of rows in each block, the number of blocks in a page, and the number of spaces between block and pages, all controllable from a plug-board.

In ICCE such a plug-board is provided and a conditioning order enables the programmer to use the preset layout when required but to revert to normal control for other parts of the printing.

11.3
Summary

1) Although it is possible to use an off-line technique for input and output in routine calculations, this is not desirable in research.

2) Parallel input of digits can be used, in conjunction with ancillary mechanisms to perform conversion to binary form with only 4 additions.

3) Ancillary mechanisms for output are not necessary or desirable for electronic machines but can be used to advantage with a relay machine.

4) The adjustment of range in input and output can be helped by certain simple decoders.

5) The round up of numbers printed is liable to be imperfect unless very great care is taken.

6) The layout of the printed results can be made easier by the addition of simple equipment.

12.
the checking of programmes

It will be necessary, for almost all problems to construct new programmes and then these programmes will need checking. Also the part of the programme which links the various parts together will need checking.

The ultimate test of the accuracy of any programme is the performance of the machine when using it. If this accords with expectation then there cannot be any serious fault in the programme but of course it does not follow that it is completely correct. It may be, for example, that rounding errors are allowed to grow too fast and that ultimately the results produced are incorrect. This cannot be detected by the behaviour of the machine because only the broad pattern of the results can be known before-hand. More than this would mean the problem was already solved.

The elimination of such faults with certainty is almost impossible. Sometimes it is possible to slightly modify the programme so that it will solve some problem with a well-known solution and this does give an almost certain check. A simple example of this is given by the adaptation of a programme to solve the radial wave equation y’’+f(x)y=0 to one which gives the solution sinx of y’’+y=0. It is then only necessary to check that the calculation of f(x) is performed correctly and that the programme will work with more rapidly changing values of y’’. However the solution to the problem of checking can only be applied to the simpler situations.

Another partial check consists of reformulating the problem and its solution by a completely different programme. If the two programmes give the same result it may be supposed how often the same assumption will be made unintentionally in both programmes; if the assumption is false the results will both agree and both be wrong.

The last resort is to have a programme checked by another programmer who reconstructs from the programme what will happen in the machine. To make this reconstruction more than a mere decoding of the individual operations, this checking programmer must be told the broad outlines of the computation so that he can frame his reconstruction in terms of that outline.

The detection of such small errors is, and is likely to remain, a difficult problem. There is the completely different problem of detecting and eliminating gross errors in a programme rapidly. These errors will lead to the machine behaving completely differently from expectation or to it producing obviously absurd results.

It is generally recognised that taking the machine through the instructions manually one at a time, and inspecting the results after each operation, is very wasteful of time. The fault usually lies in one part of the programme only and to reduce the speed of operation for the whole programme is clearly uneconomic. A second objection is that, no matter how elaborate the equipment for viewing intermediate results or the state of the machine, conditions in the machine room are not ideal for the study of these results.

Consequently, efforts have been made to make the machine itself prepare a printed list of partial results and checks on its behaviour in a problem. This enables the machine to work at nearly its full rate and gives a permanent record of its behaviour for details study later.

The Cambridge group has been very active in this field. The general principle adopted has been to construct a programme which extracts an instruction of the programme under test, records any information required for the printed check, performs the operation, records any result required, changes the record of the position reached in the programme, repeats the whole process on the next instruction and continues in this manner until the entire programme has been completed. General library programmes of this kind have been prepared which can be used on any programme and will give one type of information or another, according to the type of fault suspected. This technique is an enormous improvement on the “one-shot” technique, but it still involves treating each instruction in the same way and slowing the whole programme down. If the fault is restricted to one part it is more economical to apply tests which gradually eliminate the parts of the programme that are free from error. This can be achieved if the normal programme under test is allowed to run at its own rate over whole sets of  instructions before tests are made.

Two main types of faults can be distinguished:

The machine does not perform the operations of the programme in the order intended; 

The numbers calculated are clearly wrong.

To detect the first type of fault it is clearly sufficient to interfere with the natural functioning of the machine at discrimination orders, since these are the only instructions which can lead to a mistake in the order to execution. The second type of fault will occur between these discrimination orders and tests at these instructions enable the fault to be located within a sequence. Further localisation of the fault can be achieved by inspection of the programme or by “one-shotting” through that sequence.

Thus a programme checking arrangement based on interference with the machine’s discrimination orders only will give a very rapid method of detecting errors, and it is proposed to build such arrangements in the ICCE.

Suppose the programme to be tested is called T and its component sequences are T1,T2,T3,... arranged in some pattern; then in its most general form the checking programme is C with sequences C11,C12,C21,C31,C32,... It is arranged that after the sequence Tr has been performed the machine proceeds to Cr1 or Cr2, according to the result of the test made in the discrimination order at the end of Tr. At the conclusion of Cr1 or Cr2, the machine proceeds to the next sequence in T.

In practice C could be much simpler and might only consist of a few sequences, the same pair being used in conjunction with several sequences of T. As an example, if the fault is believed to be in the ordering arrangements, then there need be only two sequences in C-C1 which prints + and C2 which prints -, or equivalent symbols. The succession of signs printed would enable the fault to be traced. If the ordering of the sequences depended on the values of long numbers calculated during the problem, then four sequences would be needed. C11 and C12 which print + or -, according to the test value, and C21 and C22 which also print the contents of a selected set of stores. Then the sequences which involve discrimination on long numbers would be followed by one of C21, C22, the remainder by C11, C12.

When, with the use of such checks the fault has been located within a sequence, another check programme can be used which will stop the machine before it reaches this sequence and enable the machine to proceed for this sequence under an individual control of the type used at Cambridge or even by “one-shotting”.

In a machine with erasable instruction storage this method of checking can easily be achieved by scanning the programme under test in the machine and altering the discrimination orders appropriately.

In the ICCE and any other machine using non-erasable instruction storage a little ancillary equipment is needed. The control circuit of the discrimination order must be capable of modification (by manual switching is sufficient) so that control is always directed away to one of two special addresses according to the test result. At the conclusion of the test sequence control is directed back to the correct address. A store must be provided which is either supplied with the address of the sequence being left or with that to follow it at each sequence control.

13.
conclusion

In a report covering such a wide range of topics as this does and on such a controversial and unsettled subject, there are bound to be parts with which a reader may disagree; there will be conclusions and statements which are regarded as wrong. Many of these criticisms will be of a minor character and will be proved in the light of future experience.

However, there are likely to be two major criticisms which it might be well to meet here. The first of these will regard the solutions to the various problems of the efficient utilisation of a machine as being ad-hoc and arbitrary. Such critics will feel that a unified approach to the solution of these various problems is required and that this is best given by programming than engineering.

It may be replied to this criticism that the introduction of special devices into the machine is for just those problems of computing which are both important and difficult to overcome in the way suggested. The need for special devices arises from the actual nature of the problem, from the failure of the problem to fit into a unified account of computing as we can give at present, rather than from a subjective preference for ad-hoc devices. In fact, the initial part of the report is clearly intended to give just such a unified approach to the construction of a machine, a unification through engineering rather than through programming.

The second criticism will be directed at the complexity of the machine built according to the ideas of this report. Each individual piece of ancillary equipment may be justified to ease some individual problem, but the whole set of pieces may create problems of engineering and maintenance on a higher level and may lead to a decision to dispense with all ancillary equipment.

The plea for simplicity in a machine of the size involved for any kind of useful work is really a plea for standardisation of components; for the building of a machine from a multiplicity of simple units. This plea has two justifications. Firstly, the construction of the machine is simplified, and secondly, the maintenance of the machine is easier. We feel that too much weight is attached to these advantages. The total number of any unit required will never reach such a level that mass production methods of construction can be applied. The initial design problem for such units, so that they can be used in a variety of circumstances is almost as arduous as the design of several different units. The only real advantage of construction lies in the elimination of the physical part of the design work, the lay-out of the components, and so on.

As to maintenance, the repetition of parts will not lead to any decrease in the amount of maintenance required. In fact, most of the ancillary equipment is so simple that the servicing will not present as big a problem as in the main machine. In practice, the components of a machine do not all require the same amount of maintenance and it is a familiar phenomenon that break-down may persistently occur in the same unit of a set of “identical” units. The amount of time necessary to learn the circuits of the machine is increased by using different components, but this cannot be considered as a major factor in deciding the structure of a machine.

There is danger of confusing logical simplicity in a machine with technical simplicity. Many modern machines are logically simple but the technical details involve complexities no less than those which would arise in a machine with a more complex logical structure.
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