Logic and Materialism

Greg Michaelson

March 15, 2024






Contents

1 Logic and materialism

1.1 Introduction . . . . . . . .. ...
1.2 Logic overview . . . . . . . . ...
1.3 Logic and dialectics . . . . . . . . ... oL o
1.4 Mathematical forms. . . . . . . . ... 0oL
1.5 Syllogisms . . . . . . ..
1.6 After Aristotle . . . . . . . .o
1.7 The Laws of Thought . . . . . . ... .. ... ... ... ......
1.8 Logical operations and truth tables . . . . . . .. ... ... .....
1.9 Mathematising logic . . . . . . .. . ... L
1.10 Frege and the foundations of mathematics . . . . . . .. .. ... ..
1.11 Numbers and induction . . . . . . .. .. .. ... Lo
1.12 Infinity and infinitesimals . . . . . . . . ... ... ... ... ...,
1.13 To infinity, and beyond . . . . . . . . ...
1.14 Summary . . . . . ..

2 Logic and dialectical materialism

2.1 Introduction . . . . . . ...
2.2 Hegel and logic . . . . . . . . . .. . ...
2.3 Engelsand logic . . . . . . ...
2.4 Dietzgen, Dialectical Materialism and logic . . . . . . . ... ... ..
2.5 Russell’s paradox and Principia Mathematica . . . . ... ... ...
2.6 Hilbert’s Programme . . . . . . . ... ... .. .. 0.
2.7 Meta-theory and logical schools . . . . . . ... ... ... ......
2.8 Intuitionism . . . . .. ..o
2.9 From the Bolshevik revolution to Menshevising Idealism . . . . . ..
2.10 Menshevising Idealism and logic . . . . . . .. ... ... ... ....
2.11 Menshevising Idealism and British Marxism . . . .. .. .. ... ..
212 SUmMmary . ... e

3 The crisis in logic and the apotheosis of anti-formalism
3.1 Imtroduction . . . . . . . ...
3.2 Encoding formulae . . . ... ... 0oL

S ot O



CONTENTS

3.3 Godel and completeness . . . . .. ... 55
3.4 Turing and termination . . . . . .. .. ... Lo 56
3.5 The Church-Turing thesis . . . . . . .. .. ... ... ... ..... 60
3.6 British dialectical materialist responses . . . . . . .. ... ... ... 61
3.7 Soviet logic after Menshevising Idealism . . . . . ... .. ... ... 62
3.8 Digital computers . . . . .. ..o 63
3.9 Analogue computers . . . . .. ..o 64
3.10 Cybernetics . . . . . . . .. 65
3.11 Linguistics . . . . . . . .. . e 67
3.12 The revival of Soviet logic . . . . . .. .. ... ... ... 69
3.13 Stalin on linguistics . . . . . . . .. .. Lo 71
3.14 Constructivism . . . . . . . . .. .. 74
3.15 Conclusion . . . . . . . . . . .. 76
Language, automata and meaning 79
4.1 Language and meaning . . . . . . . . ... ... 79
4.2 Model theory . . . . . . . .. 81
4.3 Badiou, model theory and materialism . . . ... .. ... ... ... 83
4.4 Automata . . . . . ... 84
4.5 Machines and semantics . . . . . . . ... ... .. 84
4.6 Language games . . . . . . . . . . ..o 86
4.7 Mesolithic capitalism . . . . . . . .. ... ... 87
4.8 Grammars . . . .. .. e 90

4.9 Conclusion . . . . . . . . 93



Chapter 1

Logic and materialism

1.1 Introduction

Clearly then it is the function of the philosopher, ie the student of the
whole of reality in its essential nature, to investigate also the principles
of syllogistic reasoning.

Aristotle, The Metaphysics|Aristotle(1933), p161]

Since antiquity, many long lived trans-national state systems have been explicitly
founded on some organised religion as their explicit dominant ideology. In the current
era, examples include Roman Catholicism, for the Holy Roman, Spanish, Portuguese,
and French Empires, Islam, for the Ottoman Empire, and Anglicanism, for the British
Empire. With one major exception, there have been no such systems based on secular
philosophies; even the United States empire is openly deist?, if not outright Christian.

That one exception is dialectical materialism, the philosophy of the world com-
munist movement since the late 19th century. Just as billions of people were taught
the dominant religions in the empires that embraced them, so billions of people
have been taught dialectical materialism, in the former USSR and European social-
ist states until 1989, and in China, and extant socialist states, to the present. The
reach of dialectical materialism should not be underestimated. Thus, in 2021, the
Anglican church had 85 million communicants|Wikipedia(2021)]: markedly less than
the Chinese Communist Party with 95 million members[Statista(2021)].

In its materialist component, dialectical materialism is profoundly progressive,
rejecting all forms of idealism, and actively promoting science and rationality as the
means for humanity to understand and transform the world. However, as we shall
explore, the dialectical component is much more problematic, philosophically and
ideologically.

In particular, in the USSR, dialectical materialism was deployed for partisan pur-
poses, both to suppress opposition, and to constrain what were deemed appropriate

In God We Trust, as their official motto proclaims.
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areas for scientific investigation. The effects on Soviet genetics, with what was effec-
tively Lamarckianism promoted over Mendelism, are well documented|Lecourt(1977)].
Here, we will focus on the less well known impact on the study of formal logic, which,
nonetheless, had profound implications for the development of Soviet mathematics,
in particular Computer Science and practical computing.

To do so, we will trace:

e the origins of logic alongside dialectics in antiquity, as tools of reasoning and
argument;

e the mathematical formalisation of logic from the 19th century;
e the displacement of dialectics by an evolving mathematical logic;

e the conceptualistion of logic and dialectics in Hegelian and then Marxist phi-
losophy;

e and the Marxist critique of formalism.

We will also touch on the Marxist critique of mechanical materialism, as it bears
on our argument. In a later chapter, we will look at how computation offers a
universalising framework for a resurgent mechanical materialism.

This is a brief account, cherry picking selected aspects of a rich and complex field.
Here, the discussion is almost entirely in a European context. While individuals are
highlighted, they most certainly were not working in vacuums. Logic, like all science,
is very much a community activity. For a comprehensive history of formal logic,
including Indian, see Bochenski[Bochenski(1961)].

1.2 Logic overview

Before we look at the relationships amongst materialism, logic, and dialectics in more
depth, we will briefly survey contemporary understanding of logic, to enable us to
frame its development. Cockshott et al[Cockshott et al.(2012)Cockshott, Mackenzie, and Michaelson]
provides a more detailed account.
A logic is a formalised system for reasoning. It is important to note that logic is
about truth values (ie true and false) rather than the truth. The things we reason
about are assumed to be true or false independently of logic. They may be factual,
or hypothetical, or speculations, or beliefs. Logic cannot in itself establish whether
or not something is truthful; rather it is concerned with correct reasoning.
When we say logic is formalised, we mean that there are rules for:

e constructing statements to reason about, ie grammar or syntax;

e giving meaning to statements, ie semantics;
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e manipulating statements to establish their properties, commonly whether they
are always, or partially, true or false, ie through proof or evaluation.

We will further explore these below, but we won’t exhaustively or formally treat them
here.

A logical argument proceeds from premises, also known as assumptions, to con-
clusions. Reasoning steps are through rules of inference, a modern form of the more
convoluted syllogism of antiquity, discussed in subsequent sections.

A syllogism has the general three term form:

premaisey
premises
conclusion

and reads as: given premzise; and premises, we can conclude conclusion.

For example, suppose A and B are statements, and we accept that if A is the case
then B is the case. Then, if we take it that A is the case, we will reasonably infer
that B is the case as well, that is B logically follows from A. In syllogistic form, this
is:

1. A
2. if A then B

3. B

This fundamental rule of contemporary logic is known as Modus Ponems, or the
method of affirming. For example, consider:

1. Bastet is a cat
2. if Bastet is a cat then Bastet likes fish
3. so Bastet likes fish

This seems entirely reasonable.
In arguments, people may vociferously question whether or not A is the case, or
whether or not B actually follows from A. For example, consider:

1. Bastet is a warrior goddess
2. if Bastet is a warrior goddess then Bastet defends the king
3. so Bastet defends the king

We might argue:

e there are no goddesses;
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there are goddesses but no warrior goddesses;

there are warrior goddesses but Bastet isn’t one;

Bastet is a warrior goddess but there is no king;
e Bastet is a warrior goddess but she doesn’t defend the king;
e ctc.

But if we accept the truth of ‘Bastet is a warrior goddess’, and of ‘if Bastet is a
warrior goddess then she defends the king’, then clearly ‘Bastet defends the king’ is
an unimpeachable conclusion.

That is, in the general case, nobody questions the deduction of B, assuming that
both A, and A implies B, are the case. Any argument is about the premises, whose
truth or falsity is ultimately determined outside of logic?, not the deduction.

In contemporary logic, we now distinguish propositional from predicate logic. It
is common to refer to both as calculi, after George Boole, who called his pioneering
system, discussed below, the Calculus of Logic[Boole(1854)].

Propositional logic is to do with propositions (ie simple statements) being true
or false. Propositions are built from truth values, and variables that abstract over
them. Propositions may be negated (not), and combined through disjunction (or),
conjunction (and), and implication (if...then...).

Predicate logic is then to do with propositions about collections of things, and
their members, being true or false. Predicate logic extends propositional logic truth
values and variables with predicates, which are functions that return truth values.
Further, in predicate logic, propositions may be quantified, to express universal prop-
erties, that is all things having some property, and existential properties, that is some
things (ie at least one) having some property.

We also distinguish pure logics, which are not about anything in particular, from
applied logics, which are about specific domains of things. Just as predicate logic
extends propositional logic, an applied logic may be formed by adding additional
domain specific rules to a pure logic, typically as domain specific predicates®. We
will focus on the domains of numbers and of sets, and will talk about number theoretic
and set theoretic predicate logic or calculus.

As we shall discuss, from antiquity until the later 19th century, all of these aspects
of logic were conflated.

A key philosophical question concerns the status of truth values and rules of
inference, as part of a wider question about the status of mathematical entities like
numbers and functions. Are they just marks on paper? Do they have some deeper
ideal reality? Or are they, as we shall argue, components of materialised mathematical
systems, abstracted from, and with strong correspondences, to material reality?

2Though perhaps through intermediate logical arguments.
3 Applied logics may also be constructed ab initio.
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1.3 Logic and dialectics

Logic and dialectics are core components of the materialist dialectic*. However,
untangling logic and dialectics is a curiously difficult business.

Let’s start in the middle. In the medieval European education system, the cur-
riculum was based on the Seven Liberal Arts[Abelson(1906)], codified particularly
from Boethius’s translations of Aristotle[Marenbon(2009)]. These Arts were divided
into the Trivium, consisting of Grammar, Logic and Rhetoric, taught before the
Quadrivium, consisting of Arithmetic, Geometry, Astronomy and Music.

The separation of Logic from the mathematical sciences, of Arithmetic, Geometry
and Astronomy, is very striking. Note that such distinctions dominated education
until the late 18th century. They will have strongly influenced those with the means
and opportunities to attend grammar schools® and universities, particularly many of
the philosophers and scientists discussed above.

Aristotle actually refers to dialectics rather than logic. In The ‘Art” of Rhetoric[Aristotle(1926)],
he distinguishes rhetoric, concerned with informal persuasion, from dialectics, con-
cerned with formal reasoning through the syllogism (p13). This implies that logic is
part of dialectics.

Aristotle notes that both rhetoric and dialectics employ syllogistic and induc-
tive reasoning. For reasoning based on the dialectical syllogism, all steps must be
made explicit. However, for the rhetorical syllogism, the enthymeme, steps may be
elided. Further, dialectical induction is based on finding patterns, whereas rhetorical
induction is based on concrete examples. Overall:

The function of Rhetoric, then, is to deal with things about which we
deliberate, but for which we have no systematic rules; (p23).

The implication is that dialectics is systematic.

Aristotle also distinguishes sciences, concerned with particular domains, from both
rhetoric and dialectic, as universally applicable modes of discourse. This is reflected
in the subsequent Trivium/Quadrivium distinction, with the Trivium providing the
pure tools for reasoning and arguing about the Quadrivium applied domains.

He further says that, as someone develops richer understandings of a domain:

... the more he will unconsciously produce a science quite different from
Dialectic and Rhetoric. For if once he hits upon first principles, it will no
longer be Dialectic or Rhetoric, but that science whose principles he has
arrived at. (p31)

Clearly this applies to the dialectics/logic dynamic itself. As we shall see, as logic
became more mathematically grounded, so the space for dialectics shrank, much

4We'll later explore how this is related to dialectical materialism, but note that the transposed
word use as adjective or noun is significant.
5To use the British nomenclature.
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as wider scientific advances shrank the space for both religion and philosophy, as
discussed in earlier chapters.

In The Organon (Prior Analytics) [Aristotle(1962b)], Aristotle further abstracts
logic from both dialectics and science, in discussing types of premises for syllogisms
(p200 & 202). A demonstrative (ie scientific) premise is true and based on ‘funda-
mental postulates’, whereas, for a dialectical premise, a choice may be made between
two ‘contradictory statements’. Then, for a syllogism, a premise is simply true or
false, regardless of origin. That is, for both science and dialectics, once some premise
is established, a syllogism may be applied to draw a conclusion.

1.4 Mathematical forms

We saw above that Logic in the Trivium was distinguished from the mathematical
sciences of Arithmetic, Geometry and Astronomy in the Quadrivium. Further, in The
Metaphysics [Aristotle(1926)], Aristotle says that there is hierarchy in mathematics:

. mathematics too has divisions, — there is a primary and a secondary
science, and others successively, in the realm of mathematics. (p151)

and, in considering how philosophy is layered, distinguishes universal (ie pure)
mathematics, from specific (ie applied) mathematical sciences:

One might indeed raise the question whether the primary philosophy is
universal or deals with some one genus or entity; because even the math-
ematical sciences differ in this respect — geometry and astronomy deal
with a particular kind of entity, whereas universal mathematics applies
to all kinds alike. (p297)

Aristotle, a Platonist by training, nonetheless appears uncommitted as to the
metaphysical status of mathematics, but notes that, for his master, mathematics lies
between material reality and pure idea:

Further, he [Plato] states that besides sensible things and the Forms there
exists an intermediate class, the objects of mathematics [footnote: ie arith-
metical numbers and geometric figures|, which differ from sensible things
in being eternal and immutable, and from the the Forms in that there are
many similar objects of mathematics, whereas each Form is itself unique.

(p45)

For Platonists, the forms are abstract ideals which nonetheless are real ([Plato(1937),
Plato(1962)]). For example, in the Timaeus|[Plato(1888)], Plato discusses what are
known as the Platonic solids: regular polyhedra, like pyramids, cubes and so on.
Then, we can observe and make individual Platonic solids of different sizes, which
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are plainly physically different from each other, and are imperfect. Standing back, we
can see that, say, arbitrary physical cubes share the characteristic of six square faces,
and we use the same equations to calculate their surface areas or volumes. That
is, we use mathematical abstractions to characterise the form of arbitrary physical
cubes. Nonetheless, we can consider differences amongst mathematical cubes, for
example that one is half or twice the size of another. So, the ideal Platonic cube
form is further abstracted from all mathematical cubes.

We will argue that mathematical objects have material being in their physical
representations within symbol systems. So, for example, the ideal cube is no more
than the mathematical cube, itself a materialised construct that characterises physical
cubes.

We will return to this in discussing identity as one of the fundamental laws of
thought.

1.5 Syllogisms

Aristotle’s formulations of syllogisms are key to pre-modern logic. We will now look
in slightly more depth at these, but we won’t give a formal treatment. For a succinct
account, see Smith[Smith(2017)].

Aristotle explores syllogisms in The Organon, considering reasoning about prop-
erties of individual and collections of things, and about things from particular and
general domain. He makes considerable use of concrete examples, which, as we saw
above, he called rhetorical induction.

First of all, in On Interpretation[Aristotle(1962a)], Aristotle defines the syntax
of propositions, but without using any notation. Single sentences are composed of
nouns, and verbs that act on them, and may be further conjoined. Propositions
are then sentences which are affirmations or denials, and subjects may be univer-
sal or singular. On Interpretation also introduces the key notion of contradictory
propositions.

Thus, Aristotle enunciates four fundamental schemes for propositions, commonly
expressed as:

e A: universal affirmative, eg all X are Y;
e [: particular affirmative, eg some X is Y;
e E: universal negative, eg no X is Y;

e O: particular negative, eg some X is not Y

These schemes all have the structure: subject is/are predicate. Here, X, Y and Z
may be replaced consistently by concrete nouns. The initial letters A, I, E and O are
the classical identifiers.

Then the three syllogistic figures explored in Prior Analytics[Aristotle(1962b)]
may be expressed as:
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1. Pis@; Qis R; Pis R

2. Pis@Q; PisR;Qis R
3. PisR;Qis R; Pis @

Note that these are second level schema, where P, () and R may be replaced by one
of the four proposition forms A, I, E and O, to give a first level schema.

The validity of these figures then depends on whether the terms we substitute
for P, Q and R are universal or particular, and which subjects and predicates are
common to which terms.

For example, the first figure where all terms are universal (AAA), is valid:

A:all X isY
A:allY is Z
A:all Xis Z

Here, the predicate of the first term is the subject of the second term, and the
predicate of the second term is the subject of the third term. Note that we accept
that this is a valid syllogism, because of how we understand ‘all’ and ‘is’.

Note that this validity is independent of what concrete nouns we replace X, Y
and Z with. That is, the validity does not depend on the semantics of a particular
instance.

However, the first figure with universal first and third terms, but a particular
second term (AIA), is invalid:

Arall XisY
I: some Y is Z
A:all Xis Z

The relationships between the subjects and predicates in the terms is the same as in
the first example. However, from the second term, some Y are not X, and so, from
the first term, there may be an X which is one of those Y's which isn’t a Z. Here,
our argument depends on the semantics of ‘some’ implying ‘not all’.

Aristotle exhaustively considers all the universal /particular and subject/predicate
possibilities for the three figures, dismissing many by deriving contradictions. He also
shows how the second and third figure may be reduced to the first figure.

Overall, Aristotle developed a framework both for constructing and analysing
arguments, that was in widespread use until the revolutions in logic and mathematics
in the mid 19th century.

6ie their informal semantics.
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1.6 After Aristotle

Aristotle’s work was translated to Latin by Boethius [Marenbon(2009)], who lived
around 475 to 526 C.E. Subsequently, it was effectively lost to European thought for
several hundred years, until it was ‘rediscovered’ from Arab scholars. Aristotelian
philosophy then gained steady traction amongst a significant movement of medieval
Catholic scholars, now known as Scholasticism. As we mentioned above, the articula-
tion of the Seven Liberal Arts, and their division into the Trivium and Quadrivium,
was core to European education, especially after the establishment of the first Uni-
versities from the late 11th century onward under the imprimatur of the Vatican.

France was a centre of syllogistic reasoning, particularly at the University of
Paris. In the mid-17th century, the Port-Royal Logic|Buroker(2014)] was developed
by Arnauld and Nicole, who had studied at the Sorbonne. Though they were clerics,
they adhered to Jansenism, a sect in doctrinal conflict with mainstream Catholicism,
and were heavily influenced by Descartes.

The Port-Royal Logic, published in 1662, retained the A, I, E and O syllogis-
tic forms, but it had a more sophisticated term structure that allowed subordinate
propositions. This made both semantics and reasoning more complex. The book
became a key text on logic until well into the 19th century. It went into 63 editions,
including 10 in English, and was in use at Oxford and Cambridge Universities.

Nonetheless, Aritotelian logic fared less well in England after the Reformation,
where the state ideology of Catholicism was displaced by Anglicanism, the English
compromise with Protestantism. Francis Bacon (1561-1626), progenitor of what
many view as the doleful British tradition of empiricism, rejected formal syllogism
entirely. In Novum Organon|[Bacon(1901)]7, from 1620, he argues that logic is a tool
of persuasion, not reason, and promoted induction from observation as the means to
understanding;:

XI. As the present sciences are useless for the discovery of effects, so the
present system of logic is useless for the discovery of the sciences.

XII. The present system of logic rather assists in confirming and rendering
inveterate the errors founded on vulgar notions than in searching after
truth, and is therefore more hurtful than useful.

XIII. The syllogism is not applied to the principles of the sciences, and is
of no avail in intermediate axioms, being very unequal to the subtilty of
nature. It forces assent, therefore, and not things.

XIV. The syllogism consists of propositions; propositions of words; words
are the signs of notions. If, therefore, the notions (which form the basis
of the whole) be confused and carelessly abstracted from things, there
is no solidity in the superstructure. Our only hope, then, is in genuine
induction. (pl12-4).

"Riffing on Aristotle’s Organon.
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Bacon’s critique rested on his requirement for a unitary system of reasoning. He
argued that Logic, in which he conflates syllogistics and dialectics, cannot furnish
this as it is unable to correct for unfounded premises.

Thomas Hobbes (1588-1679), whose philosophy may be characterised as material-
ist, was more measured than Bacon. In 1655, he gave a succinct account of Aristotle’s
logic in De Corpore [Hobbes(1839)]. While he rejected Aristotelian metaphysics, he
viewed syllogistic reasoning as computational, by strong analogy with arithmetic.
Thereafter, while logic continued to be taught at Oxford and Cambridge, there was
little academic interest in syllogistics until the early 19th century, when its revival
was wholly separated from dialectics.

The work of Richard Whately (1787-1863), the Archbishop of Dublin in the Angli-
can Church of Ireland, was particularly influential. In Elements of Logic[Whately(1845)],
written in 1826, he robustly defended logic, emphasising its universal applicability,
and the need to separate it from its subject matter. In an engaging analogy with
arithmetic, he argues:

All numbers (which are the subject of Arithmetic) must be numbers of
some things, whether coins, persons, measures, or any thing else; but
to introduce into the science any notice of the things respecting which
calculations are made, would be evidently irrelevant, and would destroy its
scientific character: we proceed therefore with arbitrary signs representing
numbers in the abstract. So also does Logic pronounce on the validity of
a regularly constructed argument, equally well, though arbitrary symbols
may have been substituted for the terms; and, consequently, without any
regard to the things signified by those terms. And the possibility of doing
this (though the employment of such arbitrary /symbols has been absurdly
objected to, even by writers who understood not only Arithmetic but
Algebra) is a proof of the strictly scientific character of the system. (p34-
35)

Thus, Whately asserted that the strength of logic lay precisely in abstraction.

1.7 The Laws of Thought

The same period saw steady progress in the mathematisation of logic, culminating in
George Boole’s seminal algebraic treatment in The Laws of Thought ([Boole(1854)])
in 1854. The book’s title derived from the notion that thinking is underpinned by
immutable laws. These go to the heart of the fundamental properties of reality, and,
hence, why the syllogism can capture unimpeachable reasoning.

Most accounts of the laws of thought describe what Stanley Jevons (1835-1882)
termed the three primary laws [Jevons(1903)]:

1. The Law of Identity. Whatever is, is.
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2. The Law of Contradiction. Nothing can both be and not be.

3. The Law of Excluded Middle. Everything must either be or not be. (p117)

The Scot William Hamilton® (1788-1856), a contemporary of Whately and Boole,
discussed in detail the laws’ origins in Aristotle’s writings. In his posthumous Lectures
on Metaphysics and Logic[Hamilton(1866)], published in 1860, Hamilton reiterated
the separation of logic from metaphysics, and logic’s universal applicability. For
Hamilton, there was something essential about the laws of thought, circumscribing
even the deity:

Whatever violates the laws, whether of Identity, of Contradiction, or of
Excluded Middle, we feel to be absolutely impossible, not only in thought
but in existence. Thus we cannot attribute even to Omnipotence the
power of making a thing different from itself, of making a thing at once
to be and not to be, of making a thing neither to be nor not to be.
These three laws thus determine to us the sphere of possibility and of
impossibility; and this not merely in thought but in reality, not only
logically but metaphysically. (p98)

There has been considerable disputation over the status of each law, especially
the Law of the Excluded Middle (LEM), and whether or not there are further laws.

1.8 Logical operations and truth tables

Before we discuss the development of modern mathematical logic, we will briefly
survey how the semantics of logical constructs may be formalised. Aristotle, and his
successors, focused on grammar as central to constructing correct arguments, and
depended on meanings and reasoning expressed in everyday language. Thus, much
discussion of logic prior to, and indeed after, Boole was about what exactly logical
operations meant.

Today, we use truth tables to give logical operators precise meanings, as promoted
by Ludwig Wittgenstein (1889-1951) [Wittgenstein(1961), pp32-33]. We assume the
basic truth values of true and false. Core operations are: negation (not) as reversing
true and false premises; conjunction (and) as requiring both premises to be true; and
disjunction (or) as requiring either or both premises to be true. See the tables in
Figure 1.1:

Note that this form of disjunction is called inclusive. We can also define exclusive
disjunction (xor), which is true if either premise is true, but not both. See Figure
1.2.

In logical reasoning, material implication, that is ‘implies’ or ‘if...then...", is central
to forming rules of inference. For:

8Not to be confused with the Irish mathematician William Rowan Hamilton.
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X not X | X Y Xand Y | X Y XoryY

true false | false false false false false false

false true | false true false false true true
true false false true false  true
true true true true true true

Figure 1.1: Logical operations: negation, conjunction and inclusive disjunction

X Y X xorY
false false false

false true true
true false true
true true false

Figure 1.2: Exclusive disjunction

X implies Y

we wouldn’t like X to be true at the same time that Y is false. That is, we require
the effect of:

not (X and not Y)

Figure 1.3 shows the corresponding truth table. This feels counter intuitive, as ‘X
implies Y’ is true whenever X is false. Here the distinction between logical and real
world notions of truth is stark: a logical implication which evaluates to true certainly
does not permit us to deduce anything about the real world, unless we know that
the first premise is true. Indeed, a true implication resting on a false first premise is
termed vacuously true.

Overall, there are sixteen operations on two premises. For each of four possible
combinations of premise values:

false false
false true
true false
true true

X Y not Y X and notY mnot (X and not Y)

false false true false true
false true false false true
true false true true false
true true false false true

Figure 1.3: Implication
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the value of an operation can be either true or false, so there are 2*2*2*2 combi-
nations. All sixteen can be derived from ‘not and”, which has been exploited in
computer hardware design.

1.9 Mathematising logic

While Leibniz (1646-1716) had explored the formalisation of logic well before Boole,
his work was lost until the early 20th century[Lenzen(2017)]. Thus, Boole (1815-
1864) is now recognised as the progenitor of modern logic, particularly propositional
calculus. In The Laws of Thought[Boole(1854)], Boole’s intention was:

... to investigate the fundamental laws of those operations of the mind by
which reasoning is performed; to give expression to them in the symbolical
language of a Calculus, and upon this foundation to establish the science
of Logic and construct its method; (p1)

Boole thought that the laws of human thought were quite literally mathematical:

There is not only a close analogy between the operations of the mind in
general reasoning and its operations in the particular science of Algebra,
but there is to a considerable extent an exact agreement in the laws by
which the two classes of operations are conducted. (p6)

Boole’s key insight was that, if a Universe of discourse is represented as ‘1’, and
Nothing as ‘0’, then logical operations on classes of things have arithmetical equiva-
lents. Thus:

e r=x is identity;

e rxy, usually written zy, is things that are both x and y, that is intersection of
classes;

e 1ty is things which are either = or y, that is union of classes;
e -y is those xs which aren’t ys, that is difference between classes;
e 1-x is the class of not-x, that is negation.

Hence, algebraic techniques may be deployed to manipulate them.
It is straightforward to read off a propositional logic from Boole’s system, where
1 is true and 0 is false. See Figure 1.4, which may be contrasted with Figure 1.1°.
The information theorist Claude Shannon noted in 1938[Shannon(1938)] that the
correspondence between Boole’s calculus and logic could be applied to switching
circuits.

9Note that Boole did not use truth tables. However, on p76 he effectively presents the truth
table for negation.
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X 1l-x|x y xXXy|xX y x4y

0 1 10 0 0 0 0 0

1 0 (0 1 0 0 1 1
1 0 0 10 1
11 1 1 1 1

Figure 1.4: Logical operations as arithmetic: negation, conjunction and inclusive
disjunction.

Boole explicitly restricted the values of his calculus to 0 and 1 [Boole(1854), p37]'°,
Thus the apparently problematic

trueor true=>1+1=2

resolves to 1.

As well as the above notation, based on 1, 0, variables, and arithmetic operators,
Boole also introduced ‘v’ to stand for ‘all’; so ‘(1-v)” would mean ‘not all’, or ‘some
or none’.

Boole developed his logic with examples drawn from a range of domains, including
contemporary economics and theology. He stated premises baldly, without discus-
sion, and focused on what might be logically concluded from them. In so doing, he
showed how logical arguments in everyday language might be formalised. He fur-
ther demonstrated that all the Aristotelian syllogistic figures were subsumed by his
approach.

Despite his book’s title, Boole barely discussed the three laws of thought con-
sidered above. However, he called 2*> = z the ‘fundamental law of thought’ (p49),
and used it to develop the principle of contradiction through the following algebraic
argument!!:

1. suppose x is some class;

2. x = x, that is, a class is the same as itself;

3. xx = x, that is, intersecting a class x with itself doesn’t change it;
4. so 0 = z-zz, by subtraction from both sides;

5. so 0 = z(1-x), by factorisation.

ie Nothing is  and not z. The final steps depend on classic algebraic techniques.
Overall, while Boole was critical of scholastic logic, he acknowledged its impor-
tance:

10This is reminiscent of programming languages like C, where false is 0 and true is any positive
integer.
Hyeconstructed from pp 49-51
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. [scholastic logic| is not a science, but a collection of scientific truths,
too incomplete to form a system of themselves, and not sufficiently funda-
mental to serve as the foundation upon which a perfect system may rest.
It does not, however, follow, that because the logic of the schools has
been invested with attributes to which it has no just claim, it is therefore
undeserving of regard. A system which has been associated with the very
growth of language, which has left its stamp upon the greatest questions
and the most famous demonstrations of philosophy, cannot be altogether
unworthy of attention. (pp241-2)

Boole’s conceptualisation still conflated reasoning about things and about col-
lections of things, and his notation, though cunning, is clumsy. Still, he enabled
arithmetic certainty in chains of reasoning: that is, with Boole, logic truly became a
matter of computation, as Hobbes had sought.

Boole’s novel approach met with opposition. Thus, Jevons|Jevons(1903)] wrote:

... Dr Boole regarded Logic as a branch of Mathematics, and believed that
he could arrive at every possible inference by the principles of algebra.
The process as actually employed by him is very obscure and difficult;
and hardly any attempt to introduce it into elementary text-books of
Logic has yet been made. (p191)

The Aristotelian separation of logic based on syllogistic figures from mathematics
persisted well into the 20th century. For example, Williams’[Williams(1913)] popular
book on logic from 1913 was little changed from Jevons. It still foregrounded the
laws of thought, and didn’t mention Boole. Nonetheless, despite infelicities in Boole’s
system, his work has proved foundational, and marked a fundamental break with the
longstanding Aristotelian tradition.

1.10 Frege and the foundations of mathematics

The German matematician Gottlob Frege (1848-1925) turned Boole’s work on its
head, and sought to found arithmetic, and then mathematics, on logic. The mathe-
matical logic that underpins Computing ultimately flows from Frege’s.

Frege’s Begriffsschrift'? [Frege(1967a)], published in 1879, was subtitled:

a formula language, modeled upon that of arithmetic, for pure thought

The emphasis on ‘pure thought’ is very much in the Aristotelian tradition of sepa-
rating reasoning from that which is reasoned about.

Here, Frege introduced a number of fundamental innovations. While, like Boole,
he used variables and arithmetic operators, he replaced the Aristotelian notions of
subject and predicate with those of argument and function, so ‘X has the property

12 jterally ‘conceptual writing’.
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Y’ would be written ‘Y(X)’, and ‘X and Y are related by R’ as ‘R(X,Y’)’. Further,
he based all rules on material implication and negation, showing how to derive the
other logical operators, and all syllogistic forms, from them. Finally, he introduced
an operator for universal quantification, that is for talking about all members of a
class having some property.

Frege deployed a novel syntax-graph notation'® to elucidate chains of reasoning,
augmented with abbreviations which behave rather like macros in programming, that
is, rules for textual substitution. This notation was subsequently replaced by the more
usual equational form.

In The Foundations of Arithmetic[Frege(1953)], from 1884, Frege elaborated his
logicist philosophy of mathematics. He explicitly sought to disassociate logic from
subjective philosophy, which he called psychology, and asserted the strong connection
with mathematics. However, he also criticised mathematics for accepting incomplete
proofs, requiring that every step should be made explicit. Today this is a character-
istic of computer based proofs.

In Basic Laws of Arithmetic|[Frege(1964)], published in 1893, Frege was frank that
logic could not be justified by external appeal:

The question why and with what right we acknowledge a logical law to be
true, logic can answer only by reducing it to another law of logic. Where
that is not possible, logic can give no answer. (pl5)

In the Basic Laws of Arithmetic, Frege mounted a sustained critique of psychological
logic. His ostensible target was Benno Erdmann (1851-1921), whose book of elemen-
tary logic was published in 1892 [Erdmann(1907)]. However, he used his critique to
expand his arguments for the separation of logic from idealist philosophy, and for its
conceptual unity with mathematics:

And that is how our thick logic books come into being; they are bloated
with unhealthy psychological fat that conceals all more delicate forms.
Thus a fruitful cooperation between mathematicians and logicians is made
impossible. While the mathematician defines objects, concepts and rela-
tions, the psychological logician is spying upon the origin and evolution
of ideas, and to him at bottom mathematician’s defining can only ap-
pear foolish, because it does not reproduce the essence of ideation. He
looks into his psychological peep-show and tells the mathematician: ‘I see
nothing at all of what you are defining’. And the mathematician can only
reply: ‘No wonder, for it is not where you are looking for it’. (p24-5)

In Begriffsschrift, Frege explored how to base the notion of number on relative
positions of symbols within abstract sequences. He further developed this approach
in The Foundations of Arithmetic, which was fully formalised in Basic Laws of Arith-
metic. We will later discuss the crisis in mathematical logic at the end of the 19th

13The introduction of novel notations has bedeviled the development of programming languages.
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N |sum1lto N =|N*N+1)/2 =
1 1] 1%2/2 1
2 | 142 3| 2*3/2 3
3 | 1+243 6 | 3%4/2 6
4 | 1424344 10| 4%5/2 10

Figure 1.5: Summing

century, when Russell showed that Frege’s system gave rise to paradoxes of self-
reference.

1.11 Numbers and induction

Aristotle was concerned with systematising reasoning about properties of collections
of things. We have explored the syllogistic, or deductive approach, based on syllogistic
rules of inference from assumed properties. Aristotle distinguished this from inductive
reasoning, that is identifying patterns in collections of things.

Inductive reasoning was placed on a formal footing by Giuseppe Peano (1858-
1932), who unified notions of number, set and induction. As we shall see, Russell
and Whitehead pursued Frege’s project of founding all mathematics on logic by re-
formulating Frege’s system in Peano’s terms.

Peano’s approach[Peano(1967)], from 1889, was based on a very simple conception
of successive numbers, starting with one!* and repeatedly adding one. Thus:

2= 1+1
3=2+1=1+1+1
4 =341 =2+1+1 = 141+1+1

Peano next presented having a property as akin to being in a collection with well
defined characteristics, much like Boole and Frege. He then defined induction over
collections of numbers by considering common properties of their members regarded
as a sequence.

In general, for an inductive proof, we assume that some property holds for 1.
Then, suppose N is an arbitrary number. If assuming that the property holds for /V,
we can prove that it holds for N+1, then the property must hold for all numbers,
as we can work our way forward from 1 to any number. That is, the property is an
inductive pattern for the number sequence.

As an example, consider summing numbers, as shown in the first two columns of
Figure 1.5. Suppose we hypothesise that the sum to N is N times N+1 divided by
2, as shown in the third column. We can see this holds for 1:

147t is now usual to start at zero.
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1*(1+1)/2 =1*2/2=2/2 =1
And, with a little manipulation, the sum to N+1 will be:

(N+1D)*((N+1)+1)/2 =
(N+1)*(N+2)/2 =
(N*¥(N42)+1*(N+2))/2 =
(N*N+N*2+N+2)/2 =
(N*N+N+N*2+2)/2 =
(N*(N+1)42*(N+1))/2 =
N« (N +1)/2+(N+1)

That is, the sum to N+1 is the sum to N, ie N*(N+1)/2, plus N+1.

This style of inductive proof is central to many areas of mathematics, comple-
menting the traditional proof by contradiction. It is also the basis of the fundamental
programming technique of recursion, where computations over collections are defined
in terms of computations over sub-collections, down to an empty collection.

Now, in our example, we have verified the hypothesis that the sum from one to N
is half the product of N and N+1. But we didn’t explain where that hypothesis came
from. As with deduction, induction is a process of formalising a property once we
have one to reason about. Coming up with an inductive property in the first place,
that is identifying hypothetical patterns, is to do with the practice of mathematics.

Induction appears to justify counting without limit. How then might we charac-
terise such seeming infinity?

1.12 Infinity and infinitesimals

In the Metaphysics|Aristotle(1933)], Aristotle distinguishes between potential and
actualised infinities:

Infinity and void and other concepts of this kind are said to ‘be’ poten-
tially or actually in a different sense from the majority of existing things.
e g that which sees, or walks, or is seen. For in these latter cases the pred-
ication may sometimes be truly made have without qualification, since “
that which is seen is so called sometimes because it is seen and some-
times because it is capable of being seen: but the Infinite does not exist
potentially in the sense that it will ever exist separately in actuality it is
separable only in knowledge. (Book IX, Part 6, p447).

Zeno of Elea ( 495-430 BC) had constructed paradoxes that revolve around being
able to divide things indefinitely, and hence into an infinite number of components
[Dowden()]. Aristotle dealt with such paradoxes at length in Physics. In Metaphysics,
he deployed the distinction between potential and actual infinities, to contest indefi-
nite division:
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Figure 1.6: Integration by summing areas

For the fact that the process of division never ceases makes this actuality
exist potentially, but not separately. (Book IX, Part 6, p447)

The calculus of Newton and Leibniz raised acute problems of divisabilty [Tiles(1989)].
In particular, integration involves summing the values of a function for successive val-
ues of vanishingly small difference. Consider Figure 1.6, which shows the curve for
some function y = f(x).

We can approximate the area under the curve by dividing it into rectangles of
width dx and height f (x;), and summing the areas:

f(0) *dx+f (x1) *dx+f (x9) ¥dx+. . . +f (x;) *dx. ..

Of course, for each rectangle, there remains a vaguely triangular shape, between it
and the curve, which is not accounted for. These accumulate as an error value. If we
can make dx smaller then the error becomes smaller. How small can dx become?

This boils down to how many values there are in between the start and end values
of the integration. If there are an infinite number, then the difference between them
is zero. But then we have a paradox of summing an infinity of zeros giving a non-zero
result: equivalent to the paradoxes of repeatedly dividing time and space that Zeno
explored.

The practical solution is to sum the function for smaller and smaller values of
dx, until the difference between successive sums is small enough not to be concerned
about. That is, the integration converges towards some acceptable value. There are
precise analytic solutions for some classes of function, and the resulting values are
explained as ‘at the limit’ of the equivalent sums of differences. However, the limit
is often treated as if it is at infinity, that is the as if the range of integration is an
actualised infinity.
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1.13 To infinity, and beyond

The characterisation of infinitesimals and infinity was central to the work of Georg
Cantor (1845-1918), which underpinned the crisis in mathematical logic in the late
19th and early 20th centuries. Cantor’s work was refined over several decades, so here
we will present a summary rather than recapitulating his arguments.Tiles provides a
thorough account|Tiles(1989)]. We will go into rather more detail than earlier, as we
will need this for subsequent discussion.

First of all, we will distinguish the integers, which have finite representations as
sequences of digits, from the rational numbers, which have finite representations as
the ratios of two integers, but may have infinite expansions if an attempt is made to
divide the numerator by the denominator. For example:

10/3 ==> 3.3333333333...

Those numbers which cannot be represented as the ratio of two integers are called
the real numbers. Examples are m and e. Such numbers also have infinite expansions,
but are expressed as formula for calculating them, for example by summing series of
rational numbers.

Now, if unbounded division is acceptable, then there appears to be an infinity
of real numbers between two rational numbers. Cantor sought to characterise this
continuum using set theory.

We will write sets as between the braces { and }, with elements separated by
commas, for example the set of even numbers:

{2,4,6,8,10}

The empty set is {}. Note that we consider sets with the same elements as identical,
and only include unique members, so {1,2} is regarded as the same as {2,1}, and
{1,1} is strictly just {1}.

We distinguish ordinal and cardinal numbers. Ordinal numbers may be used as
indices into ordered sets. So, for the set of even numbers, the 1st element is 2, the
2nd element is 4, the 3rd element is 6, and so on. Here we use the ordinals 1, 2, 3...to
select elements of the set, in order. Cardinal numbers are used for sizes of set. So
the cardinality of the set of even numbers above is 5.

We further distinguish finite and infinite sets. For finite sets, like that of even
numbers above, the cardinality is also the ordinal number for the last element. But,
for an infinite set, the cardinality can’t be an ordinal number, as there is no last
element by definition.

Cantor was particularly concerned with properties of infinite sets. Now, while
an infinite set clearly cannot be constructed in finite time, some infinite sets can be
given finite characterisations. In particular, we can specify algorithms to enumerate
some infinite sets, that is to generate successive members. And an algorithm is a
finite materialised description.
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For example, the infinite set of numbers can be enumerated by starting at 1
and repeatedly adding 1. Note that the previous sentences is a finite description.
However, it specifies a potentially infinite computation, which cannot be completed
by a materialised system, which must necessarily be finite.

A set is said to be countable, or denumerable, if its members can be put into one
to one correspondence with some set of integers. For example, for our set of five even
numbers:

1+ 2
24
36
4+ 8
5 <> 10

Thus, an enumerated set is in this sense countable, even though it may be infinite,
as its members can be put into one to one correspondence with the infinite set of
integers. For example, to generate the set of even numbers, successively double the
integers. So the set of all even numbers can be put into one to one correspondence
with the set of all integers. This may seem counter intuitive as only half of a finite
set of integers are even.

Many other infinite sets derived from the integers can be put into one to one
correspondence with them. This includes the rational numbers, which we can sys-
tematically enumerate as follows:

1 1/1
2 1/2
3 2/1
4 2/2
5+ 1/3
6 < 3/1
7T 2/3
8 < 3/2
9+ 3/3

In order to compare properties of infinite sets, Cantor used the Hebrew symbol R
(aleph) with successive subscripts to denote their cardinalities as transfinite numbers.
Thus, the set of integers has cardinality Ny (aleph nought), as do all countable sets.

However, using a diagonal argument, Cantor sought to demonstrate that the real
numbers are not enumerable, and hence not countable. First of all, a real number
can’t be expressed as a ratio of two integers, so must have an infinity of decimal digits.
Each of of those decimal digits can be put into one-to-one correspondence with the
integers, so we can index them with ordinal numbers. Suppose we could enumerate

1

the real numbers, so the digits of the ith real number d; were d}, d?, d? and so on,
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set power set cardinality

{1} {{3{1}} 2
{1,2} {HA13.{23{1,2}} 4
{123} {H{15{2h{3},{1,2},{1,3}.{2,3}.{1,2,3}} 8

Figure 1.8: Power sets

as in Figure 1.7. We can make a new real number 0.n'n?n3nt... where the first digit
n! is different to the first digit of the first real di, the second digit n? is different to
the second digit of the second real d3, the third digit n? is different to the third digit
of the third real d3, and so on. This new real can’t be in the enumerated sequence,
so there must be more real numbers than Ny, so the reals are not enumerable. We’ll
come back to the cardinality of the reals shortly.

Now, as well as sets of integers, it seems legitimate to make sets of sets. For
example, we could make the countability of our set of five even numbers explicit as
an ordered set of sets of integers and their doubles:

{{1,2},{2,4},{3,6},{4,8},{5,10}}

In particular, given a set, we can construct a set of all of its subsets, known as the
power set. We start with the empty set {}, and then add all the single elements, pairs
of elements, triples of elements and so on, ending with the whole set. See Figure 1.8.

A power set always has greater cardinality, that is more members, than the original
set: for a set of N elements, the power set has 2"V elements: see the third column of
Figure 1.8. In particular, if the set of integers has cardinality Ny, then the power set
of integers has cardinality 2%, denoted R! (aleph one). Thus, the powerset of integers
is uncountable, as N; is necessarily bigger than Ny. Cantor then demonstrated that
the set of real numbers also has cardinality N.

From an Aristotelian perspective, Cantor’s diagonalisation argument is illegit-
imate, because it presupposes an actualised infinity of real numbers, to arbitrary
precision. For a finite set of ‘real’ numbers, represented to fixed precision, diagonali-
sation produces a number which is already present.
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1.14 Summary

We motivated this chapter with the observation that logic had proved problematic
for dialectical materialism, the world view of the communist movement. Dialectical
materialism is derived from the materialism of Marx and Engels, so we have briefly
followed the development of logic from Aristotle to the period when Marx and Engels
were active in the middle and late 19th century. In particular, we have seen how logic,
as reasoning, became increasingly separated from dialectics, as premise formulation,
as it was placed on a mathematical basis.

We have said little about the world views of the logicians we have considered.
These will become far more pertinent in Chapter 2, when we consider Engels’ reac-
tions to post-Aristotelian developments in logic, and how this influenced dialectical
materialism. In Chapter 3, we will explore the crisis in mathematical logic brought
about by the representation of logic in itself, and the responses of logicians.
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Chapter 2

Logic and dialectical materialism

2.1 Introduction

...to regard the syllogism as merely consisting of three judgments is a
formalistic view that ignores the relation of the determinations which
alone is at issue in the inference. It is altogether a merely subjective
reflection that splits the connection of the terms into isolated premises
and a conclusion distinct from them:

All humans are mortal,
Gaius is a human
Therefore Gaius is mortal.

One is immediately seized by boredom the moment one hears this infer-
ence being trotted out, a boredom brought on by the futility of a form
that by means of separate propositions gives the illusion of a diversity
which is immediately dissolved in the fact itself.

G. Hegel, The Science of Logic[Hegel(2010), p592-3]

We will next turn to the treatment of formal logic in the Marxist tradition. We
will say less here about logic itself, and focus on interpretations, and their practi-
cal consequences. The whole discussion is framed by dialectics, discussed in earlier
chapters, and by wider ideological struggles over its status in the Soviet Union. The
latter is lucidly explored in Helena Sheehan’s excellent Marxism and the Philosophy
of Science[Sheehan(1985)].

2.2 Hegel and logic
The idealism of Georg Hegel (1770-1831) is central to European philosophy. Unlike

the British tradition, which broke with Aristotle before reviving logic, dialectics is at
the heart of Hegel’s epistemology. Here we will explore Hegel’s approach to logic.

29
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The title of Hegel’s book The Science of Logic [Hegel(2010)] seems strange from
an Aristotelian perspective. As we saw, Aristotle counterpoises dialectics to science,
as a form of persuasion rather than an autonomous way of understanding how the
world works, and to syllogistic logic, as a source of premises rather than a method
for reasoning about them. Still, it is salutary that Hegel does view logic as being
amenable to scientific exegesis.

As the quote at the start of this chapter suggests, Hegel was highly sceptical about
the value of separating the form of a syllogism from its context of application. That
is, the syllogism itself is of no interest. Rather, its importance lies in how it connects
particular premises (determinations) to particular conclusions, which in turn depends
on prior reasoning to establish relationships amongst premises. As we shall see, this
attitude is a recurrent feature of dialectical materialism.

Nonetheless, Hegel does systematically explore the syllogistic forms!, and consid-
ers how they relate to each other, using dialectical transformations. But he deploys no
formal notation other than denoting the terms in syllogisms as universal (U), singular
(S), or particular (P), a simplification of the earlier practice. Like his predecessors,
Hegel uses terse argument and examples.

Hegel’s attitude to syllogistic logic is further illuminated in the Prologue to The
Science of Logic. First of all, he noted that science and commonsense had displaced
metaphysics, as well as the notion that logic taught one how to think. Nonetheless,
logic was retained amongst the sciences ‘probably for the sake of a certain formal
utility’, though ‘its shape and content have remained the same throughout a long
inherited tradition’ (p8).

For Hegel, thought is held in language and that the form of language determines
thought, for which German is clearly superior(!) (Preface to Second Edition, pl2).
And logic is central to the human condition:

So much is logic natural to the human being, is indeed his very nature.
If we however contrast nature as such, as the realm of the physical, with
the realm of the spiritual, then we must say that logic is the supernatural
element that permeates all his natural behavior, his ways of sensing, in-
tuiting, desiring, his needs and impulses; and it thereby makes them into
something truly human, even though only formally human — makes them
into representations and purposes. (p12)

Here, he explicitly disagrees with Aristotle’s position:

‘In so many respects’, says Aristotle in the same context, ‘is human nature
in bondage; but this science, which is not pursued for any utility, is alone
free in and for itself, and for this reason it appears not to be a human
possession’. (pl4, citing Aristotle, Metaphysics, 982b)

Hegel argues that, on the contrary, logic is about abstract thought which is why it is
taught to young people, with concrete matters coming later. Here, quite apart from

'For over 30 pages in the cited translation.
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Hegel’s unawareness of how privileged such education was, he reflects the distinction
between the Trivium and Quadrivium, which must have still been current.

For Hegel, a major benefit of logic lies in its utility as an abbreviation because
of its universality. However, because logic shorn of content cannot attain truth, it is
hardly surprising that it has been rejected by common sense as barren:

Regarding the formulas that define the rules of inference which in fact
is a principal function of the understanding, however mistaken healthy
common sense might be in ignoring that they have their place in cognition
where they must be obeyed, and also that they are essential material for
rational thought, it has nonetheless come to the equally correct realisation
that such formulas are indifferently at the service just as much of error
as of sophistry, and that, however truth may be defined, so far as higher
truth is concerned, for instance religious truth, they are useless — that in
general they have to do only with the correctness of knowledge, not its
truth. (p18)

Here, Hegel’s position is reminiscent of Hobbes’.
Hegel argues that the separation of form and content is illusory:

It is soon evident that what in ordinary reflection is, as content, at first
separated from the form cannot in fact be in itself formless, devoid of
determination (in that case it would be a vacuity, the abstraction of the
thing-in-itself); that it rather possesses form in it; indeed that it receives
soul and substance from the form alone and that it is this form itself
which is transformed into only the semblance of a content, hence also into
the semblance of something external to this semblance.(p18-9)

Hegel goes on to considerably expand on this position in the Introduction. Herein
lie the roots of the rejection of formalism, that is the study of logic independently of
content, in dialectical materialism.

2.3 Engels and logic

The revolutionary world view of Karl Marx (1818-1883) and Frederic Engels (1820-
1895) is premised on scientific materialism. Their inversion of Hegel’s idealism, trans-
forming Hegelian dialectics into a methodology for changing as well as interpreting
the world, is discussed above. Here, we will explore how they retained Hegel’s re-
jection of formalism, with profound implications for the practice of logic in actually
existing socialism.

Marx wrote practically nothing about dialectics or syllogistic logic. In the In-
troduction to Grundrisse [Marx(1973)], he makes a passing analogy between Hegel’s
Universal-Particular-Individual syllogistic form and production-distribution /exchange-
consumption. Stuart Hall views this as satirical[Hall(1973)].
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Engels, in contrast, made a number of references to logic in his later work. In
Anti-Diihring[Engels(1954b)], from 1877, he strongly asserted the subordination of
logic in its union with dialectics. First of all, he reasserts Aristotle’s position that,
once a science is sufficiently specialised, it becomes independent of any wider episte-
mology. Syllogistic logic, now termed formal, and dialectics, as the laws of thought,
are independent of philosophy:

That which still survives, independently, of all earlier philosophy is the
science of thought and its laws — formal logic and dialectics. Everything
else is subsumed in the positive science of nature and history. (p40)

This formulation was repeated in the 1880 Socialism: Utopian and Scientific[Engels(1951a)],
which was extracted from Anti-Diihring. And Engels reiterated this in 1886, in Lud-
wig Feuerbach and the End of Classical German Philosophy [Engels(1951b)]:

For philosophy, which has been expelled from nature and history, there
remains only the realm of pure thought, so far as it is left: the theory of
the laws of the thought process itself, logic and dialectics. (p363)

Returning to Anti-Diihring, Engels argues that mathematics has to borrow axioms
from logic, which are ‘expressions of the scantiest thought-content’ (p60). Following
Hegel, he says that that logical axioms alone ‘do not cut much ice’, and to make
progress it is necessary to draw on geometry (p61). His main plaint is that Diihring
emphasises the independence of pure mathematics from experience, rather than ac-
knowledging its abstraction from reality (p61).

Engels says that dialectics is more powerful than formal logic:

Even formal logic is primarily a method of arriving at new results, of
advancing from the known to the unknown — and dialectics is the same,
only much more eminently so; moreover, since it forces its way beyond
the narrow horizon of formal logic, it contains the germ of a more com-
prehensive view of the world. (p186).

Further, formal logic is only significant for elementary mathematics. In higher math-
ematics, indeed in all new science, dialectics is needed to advance:

Elementary mathematics, the mathematics of constant quantities, moves
within the confines of formal logic, at any rate on the whole; the math-
ematics of variables, whose most important part is the infinitesimal cal-
culus, is in essence nothing other than the application of dialectics to
mathematical relations. In it, the simple question of proof is definitely
pushed into the background, as compared with the manifold application of
the method to new spheres of research. But almost all the proofs of higher
mathematics, from the first proofs of the differential calculus on, are from
the standpoint of elementary mathematics strictly speaking, wrong. And
this is necessarily so, when, as happens in this case, an attempt is made to
prove by formal logic results obtained in the field of dialectics. (p186-7)
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Nonetheless, his characterisation of formal logic involving constants rather than
variables suggests a fundamental misunderstanding. This was also Marx’s view of
mathematics, as shall see below. And Engels betrayed a curious contempt for math-
ematics:

The abstract requirement of a mathematician is, however, far from being
a compulsory law for the world of reality. (p75)

Finally, in the posthumously published Dialectics of Nature[Engels(1954a)], En-
gels revisited these themes. Once again, dialectical logic is superior to formal logic,
because it integrates both analysis and reasoning:

Dialectical logic, in contrast to the old, merely formal logic, is not, like
the latter, content with enumerating the forms of motion of thought, ie
the various forms of judgment and conclusion, and placing them side by
side without any connection. On the contrary, it derives these forms out
of one another, it makes one subordinate to another instead of putting
them on an equal level, it develops the higher forms out of the lower.
(p296)

Engels acknowledges that, despite developments in natural and historical sciences,
formal logic has an essential and knowable quality:

The number and succession of hypotheses supplanting one another — given
the lack of logical and dialectical education among natural scientists —
easily gives rise to the idea that we cannot know the essence of things
(Haller and Goethe).[189]* This is not peculiar to natural science since
all human knowledge develops in a much twisted curve; and in the his-
torical sciences also, including philosophy, theories displace one another,
from which, however, nobody concludes that formal logic, for instance, is
nonsense. (p319)

Nonetheless, once again, Engels firmly rejects mathematical abstraction:

What they [mathematicians and natural scientists| charge Hegel with do-
ing, viz., pushing abstractions to the extreme limit, they do themselves
on a far greater scale. They forget that the whole of so-called pure math-
ematics is concerned with abstractions, that all its magnitudes, strictly
speaking, are imaginary, and that all abstractions when pushed to ex-
tremes are transformed into nonsense or into their opposite. (p359)

Finally, in his notes for Dialectics of Nature, Engels distinguishes between math-
ematical operations, which could be proved by ‘material contemplation’, and logical
deductions, which could only be proved by deduction:

2This note refers to poems by Haller and Goethe.
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Calculative reason—calculating machine!—Curious confusion of mathe-
matical operations, which are capable of material demonstration, of proof
because they are based on direct, even if abstract, material contemplation,
with purely logical ones, which are capable only of proof by deduction,
hence are incapable of the positive certainty possessed by mathematical
operations—and how many of them wrong! Machine for integration; cf.
Andrews’ speech, Nature, Sept. 7, 76.3173 [Engels(1987)]

The nature of infinity had also concerned both Engels and Diihring. Diihring’s
writings about infinity, were rather tetchily dismissed by Cantor:

It is peculiar that Diihring himself admits on page 126 of his paper that for
the possibility of ‘unlimited synthesis’ there must be a reason, which he
designates as ‘for understandable reasons, utterly unknown’. This seems
to me a contradiction[Cantor(1996), p917]

Engels, in turn, criticised at length Diihring’s notion of infinity. However, Engels
confuses countabilty with counting:

But what of the contradiction of ”the counted infinite numerical se-
ries”? We shall be in a position to examine this more closely as soon
as Herr Diihring has performed for us the clever trick of counting it.
[Engels(1954b), p74]

We will return to infinity in Chapter 4.

2.4 Dietzgen, Dialectical Materialism and logic

Joseph Dietzgen (1828-1888) met Marx during the 1848 German revolution, and
subsequently became his friend. Self-educated, Engels credited him, in Ludwig Fuer-
bach and the end of Classical German Philosophy, with independently discovering
the materialist dialectic:

And this materialist dialectic, which for years has been our best working
tool and our sharpest weapon, was, remarkably enough, discovered not
only by us but also, independently of us and even of Hegel, by a German
worker, Joseph Dietzgen. (2)*[Engels(1951b)] (p350-1)

Note the formulation ‘materialist dialectic’. This is sounds like a form of dialectic
grounded in materialism. But this does not exclude materialism grounding other
modes of analysis. So we may admit a non-dialectical materialist science.

3Thanks to Slava Gerovitch for this reference, indirectly from [Gerovitch(2002)] (p48) after

Yanovskaya.
“Note 2 refers to Dietzgen’s The Nature of Human Brainwork, Described by a Manual

Worker|[Dietzgen(1902)] from 1869
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Burns[Burns(2002)] argues that Dietzgen coined the expression ‘dialectical ma-
terialism’, having read Engels on Feurbach, in his Fzcursions of a Socialist into the
Domain of Epistemology|Dietzgen(1887)] from 1887 5. This apparent point of trivia
highlights how slippery these notions are.

‘Dialectical materialism’ sounds like a variety of materialism that is grounded
in dialectics, that is one which admits no other forms of analysis. As we shall see,
dialectics and science are increasingly conflated in subsequent Marxist philosophy, and
it was disputed that one could be separated from the other. Scientific materialism
that was not avowedly dialectical was termed mechanical.

To return to logic, in his most mature work, The Positive Qutcome of Philoso-
phy[Dietzgen(1906b)], Dietzgen conflated the premises of formal logic with the de-
ductions made from them. He credits Aristotle with developing syllogistic logic, using
Modus Ponems as an example:

He showed clearly and definitely, excellently and substantially, how logical
deductions should be made in order to arrive at positive understanding.
All dogs are watchful. My pug-dog is a dog, therefore it is watchful. What
can be more evident? (XIII)

But Dietzgen confuses critiquing premises with critiquing the deduction:

The premise from which he deducted the watchfulness of dogs in general,
was handed down by tradition and had been accepted on faith. But was
it founded on fact? Could there not be some dogs who lacked the quality
of watchfulness, and might not our pug-dog be very unreliable, in spite of
all exact deductions? (XIII)

Dietzgen goes on to cite Bacon’s (and Descartes’) rejection of syllogistic logic:

Both of them were disgusted with Aristotle and with his formal logic,
particularly with the subtleties of scholasticism. It did not satisfy this
new epoch to found positive understanding on traditional contentions
and exact deductions therefrom. (XIII)

As with Hegel, what is needed is a new synthesis of logic and dialectics. Dietzgen’s
great strength lies in making explicit the class perspective of dialectics, in particular
in an earlier collection of letters to his son Letters on Logic Especially Democratic-
Proletarian Logic[Dietzgen(1906a)]. Here, he criticises class (ie bourgeoisie) logic for
rationalising exploitation as natural, by emphasising difference:

The enemies of democratic development, in attacking the idea of free-
dom and equality, point to the manifoldness of nature, the individual
differences of men, the distinctions between weak and strong, wise and
fools, men and women, and consider it tyranny to attempt to equalise

5Thanks to Ken Macleod for referring me to Burns.
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that which nature has made different. They cannot understand that like
things may be different and different things alike. They are blinded by
their class logic which sees only the differences, but not the unity, not the
transfusion of all classes. (Eleventh Letter)

This leads Dietzgen to associate formal logic with class logic, because it is based on
reasoning from premises as separated aspects of things. However, he rejects the sec-
ond law of thought, that contradictions demonstrate invalid premises, in an argument
that is explicitly transcendental:

Class logic teaches that contradictory things cannot exist. According to
it, a thing cannot be genuine and false at the same time. This class logic
has a narrow conception of existence. It has only observed that there are
many different things in nature, but has overlooked the fact that all these
things have also a general nature. We, on the other hand, recognise that
every thing, every person, is a part of the infinite world and partakes of
its general nature, is eternal and perishable, true and untrue, great and
small, one sided and many fold, in short contradictory. (Eleventh Letter)

However, Dietzgen has no time for logicians, because, echoing Hegel, they separate
logic from its content:

The formal logicians are as ignorant as they are roguish, when they persist
in discussing the intellect or thought in the traditional manner as if they
were isolated things, while ignoring the necessary connection of the object
of the logical study with the world of experiences. This interconnection
leads to an explanation of truth and error, of sense and nonsense, of god
and idols, and this is very inopportune for the professors. For this reason
this unwelcome problem is handed over to the mystical departments, to
metaphysics and religion, so that these venerable pillars of official wisdom
may continue their services to the ruling classes. (Fourth Letter)

Early on in Letters, Dietzgen deploys an analogy of a potter to reject formal logic,
saying that thoughts cannot be separated from actions, nor form from content:

These adherents of formal logic may be compared to a maker of porcelain
dishes who would contend that he was simply paying attention to the
form of his dishes, pots, and vases, but that he did not have anything
to do with the raw material, while it is evident that he is compelled to
form the body in trying to embody forms. These things can be separated
by words only, but not by actions. In the same way as body and form,
the finite and infinite or so-called celestial spheres, the physical and the
metaphysical, are inseparable. (Third Letter)

Here, Dietzgen seems to forget Marx’s famous observation in Capital Volume 1[Marx(1970)]
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But what distinguishes the worst architect from the best of bees is this,
that the architect raises his structure in imagination before he erects it in
reality. (pl174)

Familiar with Aristotelian syllogistic logic, Dietzgen makes the reasonable criticism
that it could not adequately capture multifaceted properties of things:

Gold and sheet iron are unlike metals, but they have the same metallic
likeness. That like things are different and different things alike, that
it is everywhere only a question of the degree of difference, of formal
differences, this is overlooked by ‘formal’ logic and by all who seek truth
in any logical diagram or fetich, instead of in the eternal, omnipresent
existence of the inseparable universe. (Eighth Letter)

Invoking his revolutionary principles, he says in the later The Positive Qutcome of
Philosophy

The philosophers should abandon their old hobby of trying to prove any-
thing by syllogisms. Nowadays, a case is not substantiated by words, but
by facts, by deeds. The sciences are sufficiently equipped, and thus the
‘possibility of understanding’ is demonstrated beyond a doubt. (XIII)

While Dietzgen is no longer part of the mainstream Marxist canon, he was highly
influential before the Bolshevik revolution. In the Introduction to the 1902 combined
edition of The Nature of Brain Work, Letters on Logic and Positive Qutcome of
Philosophy, Anton Pannekoek wrote:

a thorough study of Dietzgen’s philosophical writings is an impor-
tant and indispensable auxiliary for the understanding of the fundamental
works of Marx and Engels.[Dietzgen(1906b), p7ff]

We will explore Marxist responses to logic after the Bolshevik Revolution. First,
we shall backtrack to key developments in formal logic at the start of the 20" century,
the formulation of a common research programme for logic, and the emergence of
different logical schools.

2.5 Russell’s paradox and Principia Mathematica

At the end of the 19" century, Frege’s system was seen as the pinnacle of formal logic,
on the high road to formalising mathematics. Alas, this was short lived. In 1902,
Bertrand Russell (1872-1970) wrote to Frege[Russell(1967)] identifying a fundamental
contradiction at the heart of his system.

In Frege’s system, predicates are characterised by sets of items that satisfy some
property. Russell’s paradox involves observing that predicates may or may not apply
to themselves. Equivalently, sets may or may not have themselves as members.

Suppose we write the set:
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{peach, pear, plum}

we are drawn to interpret these symbols as fruit names. But they have no necessary
interpretations. Maybe they’re the names of guinea-pigs. We might equally notice
that they all start with the letter ‘p’” and are in alphabetic order. We could equally
well have written:

{parsnip, pea, potato}

Suppose we do interpret these sets as of names of fruit and vegetables, with the
common property of being edible. Then, we could make a new set of sets of names
of edible things:

{{peach, pear, plum}, {parsnip, pea, potato}}

If we name the sets:

fruit = {peach, pear, plum}
vegetables = {peach, pear, plum}

we can make sets of set names, for example:
edible = {fruit, vegetables}

We may interpret a name as an invitation to replace it with what it stands for, but
we are not obliged to do so.

Now, a predicate applying to itself, represented as a set containing itself, sounds
like it should lead to an infinite expansion. However, this may be avoided through
the use of its name instead of its contents. That is, there are finite representations
of apparently infinite constructs.

Clearly, none of these sets contain themselves. Thus, we can make a set of sets
that do not include themselves:

not-self = {fruit, vegetables, edible}
In turn, this set does not include itself, so maybe it should:
not-self = {fruit, vegetables, edible, not-self}

But if it is included in itself, then it does include itself and so it shouldn’t.

This is not merely an academic exercise: we can demonstrate this on any computer
with a folder system. It is commonplace to make links from folders to other folders.
Then, one way to make it easier to get from the bottom of a large folder back to the
top is to make the last entry a link to the folder itself. Thus, we can make a new
folder with links to folders that don’t have links to themselves. Should that folder
link to itself or not?

Russell’s paradox drew into question the whole prospect of formalising mathe-
matics in logic. As Frege responded to Russell [Frege(1967b)]
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The second volume of my Grundgesetze is to appear shortly. I shall no
doubt have to add an appendix in which your discovery is taken into
account. If only I already had the right point of view for that!

Nonetheless, Russell, and his former teacher Alfred North Whitehead (1861-1947),
embarked on trying to systematically ground mathematics in a formal logic that was
broadly equivalent to Frege’s or Cantor’s. The three volumes of Principia Mathe-
matica (PM) [Whitehead and Russell(1910, 1912, 1913)] appeared between 1910 and
1913, and reconstructed a significant portion of mathematics. However, their ‘ram-
ified theory of types’, an attempt to formalise restrictions on how sets might be
nested, to avoid paradoxes of self reference, was quickly deemed unsuccessful. While
PM is now little read, not least because of its non-standard notation, it has long
been heralded as foundational.

2.6 Hilbert’s Programme

Hilbert’s Programme, formulated by David Hilbert (1862-1943), framed the conduct
of formal logic in the 20" century, and to this day. The ‘programme’ was not a
settled statement of purpose like a manifesto: rather, it was codified from Hilbert’s
evolving conceptions.

We can see the roots of Hilbert’s programme in his 1904 response to Russell’s
paradox, On the foundations of logic and arithmetic[Hilbert(1967)]. He began by
characterising leading mathematicians’ views on the foundations of mathematics.
Leopold Kronecker (1823-1891) was called a dogmatist for accepting integers as im-
plicitly existent, without recourse to foundations. Herman van Helmholtz (1821-1894)
was termed an empiricist for only accepting existence derived from experience, thus
ruling out thought experiments as the basis for theories. Elwin Christoffel (1829-
1900) was termed an opportunist. While he had opposed Kronecker’s rejection of
irrational numbers, he sought positive reasons for accepting them. Frege’s work was
acknowledged as foundational, but his system was criticised for a lack of rigour, giving
rise to paradoxes of self reference. Here, Hilbert writes:

Rather, from the very beginning a major goal of the investigations into
the notion of number should be to avoid such contradictions and to clarify
these paradozes.® (p130)

Hilbert went on to characterise Richard Dedekind (1831-1916) as following a tran-
scendental method, as he assumed actualised infinities of objects. We will return to
this position, which Aristotle had criticised. Finally, Hilbert said that Cantor, while
distinguishing consistent and inconsistent sets, gave no criteria for distinguishing

them, necessitating subjectivist assumptions’.

6Ttalics in original.
7Arguably, Hilbert’s potted summaries gave fuel to the Marxist opponents of formal logic, for
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Hilbert concludes these remarks by saying that all these difficulties could be over-
come by what he called the aziomatic method. Further, the paradoxes might be
avoided by acknowledging the co-dependence of logic and arithmetic, and concur-
rently developing their laws.

Formal systems are based on azioms, elementary formula which are true for all
arguments, and rules of inference, for constructing or proving theorems, additional
true formula, from axioms and other theorems. The Laws of Thought, derived from
Aristotle, might be seen as progenitors of axioms. Then, the axiomatic method
involves finding sets of independent axioms that, together with appropriate rules,
are adequate for elaborating all of some domain. For example, Hilbert had already
thoroughly applied this approach to formalising geometry in 1899[Hilbert(1950)].

Hilbert placed great stress on the consistency of axiomatic systems, that is that
it should not possible to use them to derive contradictions. The impossibility of
establishing consistency was to prove key to the later crisis in mathematical logic.

In a subsequent paper, Aziomatic Thought[Hilbert(1996a)], Hilbert first referred
to a ‘programme’®, developing his objectives in greater detail. As well as consis-
tency, he wished to determine the solvability in principle of arbitrary mathematical
questions, to be able to check the results of mathematical activity, and to determine
whether or not there might be simpler proofs. Here, Hilbert also returned to the old
Aristotelian problem that so exercised Marxists, that of ‘the relationship between
content and formalism in mathematics’ (p1113).

Notably, the ability to decide whether a not a mathematical question was solvable
in a finite number of steps:

... goes to the essence of mathematical thought. (p1113)

This is still commonly referred to as the Entscheidungsproblem - the decision problem.

There are lots of other decision problems, for example, whether or not two formu-
lae are equivalent, but proof of properties in a finite number of steps was seen as key.
Indeed, in demonstrating the impossibility of so doing, Alan Turing laid the basis
for digital computing. And, by not taking in the practical significance of Turing’s
theoretical work, quite openly promoted by John von Neumann, the Soviet Union
was late to develop computers.

2.7 Meta-theory and logical schools
Hilbert thought that mathematical abstractions should, and could, be explored in-

dependently of any content of application. But Hilbert’s programme required that
mathematics itself should be subject to mathematical reasoning. That is, there should

whom terms like dogmatist, empiricist and subjectivist had strong philosophical and political reso-
nances.
8[55] To be sure, the execution of this programme is at present still an unsolved task. (p1115)
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be a metamathematics, with mathematics as its contents, but only to establish the
consistency of axioms[Hilbert(1996b)].

Now, mathematics is expressed in a language®, with symbols, syntax and seman-
tics. Thus, mathematics was to become its own metalanguage, a language for talking
about language.

In the decades following Russell’s paradox, three schools of formal logic emerged,
reflecting different responses. We may characterise them according to what they ac-
cepted as admissible mathematical entities, and what forms of mathematical reason-
ing about them was admissible, that is, how meta-mathematics might be conducted
[Kleene(1952)]. This boiled down to their attitude to infinity.

The logicists, exemplified by Frege and Russell, accepted both infinite mathemat-
ical entities and infinitory reasoning, like Cantor’s. They were Platonists, in that
they accorded existence to ideal mathematical entities. Hence, they were idealists.

Next, the formalists, like Hilbert, accepted infinite mathematical entities as ob-
jects of study, but sought to only use finite reasoning. The existential status of
mathematical entities was not of concern.

Finally, the intuitionists took the most radical stance. Building on Kronicker, they
would only accept finite constructions in both mathematics and meta-mathematics,
appealing to mathematical intuition. They also rejected the Law of the Excluded
Middle (LEM), that is that it is not possible for something and its negation to be
simultaneously true.

There were profound, and sometimes vituperative, disagreements between propo-
nents of these different schools. Nonetheless, their formal systems were actually very
closely related. In particular, Ewald[Ewald(1996)] argues that ‘formalist’ is a mis-
leading term for Hilbert (p1106), as well as one he latterly rejected (p1107). Given
Hilbert’s insistence on finitary reasoning, his disputes with the intutionists was effec-
tively ‘an internal feud among constructivists’ (p1116).

2.8 Intuitionism

One response to Cantor was to entirely reject non-finitary methods, and, in effect,
real numbers. Thus, in 1886, Kronecker argued that particular results found by
manipulating infinite sequences were only admissible if they could be reconstructed
without going ‘beyond the concept of a finite series’, using arithmetic over integers
[Kronecker(1996), p947].

Subsequently, Brouwer’s intuitionism was concerned with the reconstruction of
formal logic from a small number of ‘intuitive’ concepts, using constructive, finite
techniques. In 1908, Brouwer published a critique of classical logic, whose themes
recur in all his later writing [van Atten and Sundholm(2017)]. First of all, Brouwer
thought that logic separate from mathematics led to unfounded conclusions:

90r, perhaps, many slightly different, but heavily connected, languages.
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... logical argumentations, which, after all, consist in mathematical trans-
formations in the mathematical system that makes [the observations|
intelligible, may derive unlikely conclusions from scientifically accepted
premises, when carried out independently of observation. (p38)

Against the Formalists, Brouwer thought that logic should be grounded in math-
ametics, itself grounded in both observation and primordial intuitions of basic truth:

. all paradoxes disappear, when one restricts oneself to speaking only
of systems that explicitly can be built out of the Ur-intuition, in other
words, when instead of letting mathematics presuppose logic, one lets
logic presuppose mathematics (p40)

Nonetheless, he suggests that, independently of mathematics, argument by syllogism
and contradiction are both acceptable (p27,29). However, he rejects the LEM!Y, that
it is not possible for both something and its negation to be true (p29ff). This implies
that one or other must be true, not allowing for the status of either to be uncertain.
Similarly, Brouwer rejects double negation as cancelling, because something not being
not true may still leave its status indeterminate.

Brouwer further argues that LEM:

... demands that every supposition is either correct or incorrect, mathe-
matically: that of every supposed fitting in a certain way of systems in
one another, either the termination or the blockage by impossibility, can
be constructed. The question of the validity of the principium tertii ex-
clusi [ie LEM] is thus equivalent to the question concerning the possibility
of unsolvable mathematical problems. (p42)

Brouwer was happy with LEM in finite cases, as it may be checked exhaustively.
He was also happy with its application to infinite cases, so long as they may be
constructed by induction. However, Brouwer objected to arguments from entities
which are assumed to exist, if their existence cannot be demonstrated. In particular,
he rejected assumptions of completed infinities.

In 1921, in an overview of intuitionist set theory[Brouwer(1998a)], Brouwer further
objected that the Axiom of Comprehension:

on the basis of which all things with a certain property are joined
together into a set ... (p23)

is unreliable because it is not constructive. That is, enunciating a predicate does
not guarantee that anything exists that satisfies it. This ability to argue about sets
with assumed properties was central to formal logic, but also led to paradoxes like
Russell’s. It is certainly not possible to construct a set of all sets, which requires a

Oertis exclusi
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completed infinity. So is it legitimate to base an argument on the set of all sets which
are not members of themselves?

Bouwer’s notion of ‘ur-intuition’ is plainly idealist. His subjectivism is made
explicit in his later work. For example, in Mathematics, Science and Language
[Brouwer(1998b)] from 1929, he writes:

Obviously, a causal sequence has no existence other than that of a corre-
late of a tendency of the human will towards mathematical acting; there
is no question of an existence of a causal coherence in the world inde-
pendent of man. On the contrary, the so-called causal coherence of the
world is the outward-acting force of human thought, serving a dark func-
tion of the will, making the world more or less defenseless, like the snake
that renders its prey powerless through its hypnotic stare or the inkfish
through its darkening spray. (p46)

2.9 From the Bolshevik revolution to Menshevis-
ing Idealism

It is not possible to do justice to the catastrophic events of the first quarter of the
20" century, killing millions of people and devastating the lives of millions more,
without appearing to trivialise them. Nonetheless, from our current perspective, the
key outcome of the 1914 to 1919 world wide war was the establishment of the Soviet
Union[Carr(1950-1978)], the first state governed by a mass party explicitly committed
to materialism.

Following the Civil War (1917-1923), the Soviet focus was on reconstruction,
and immediately bettering people’s lives. Once it was clear that wider international
revolution had stalled, the overwhelming priority was to stabilise and strengthen the
Union. For this, and for building towards a Communist future, science was deemed
central.

With a shortage of experts, lost through war or emigration, the state could not ini-
tially afford to place too much premium on the ideological rectitude of the remaining
non-Communist intelligentsia, provided their loyalty was assured. At the same time,
the expanding education system, under Communist direction, steadily produced a
new generation of ‘Red expert’ scientists and engineers, who were explicitly commit-
ted to Soviet objectives, but who necessarily worked alongside the pre-Revolutionary
cohorts.

Mathematics had a central role, and this period saw the growth of two world class
mathematical centres, in Moscow and Leningrad. While pure mathematics research
continued, the emphasis was on applied mathematics. Overall, formal logic was not
prominent.

Nonetheless, the status of formal logic was still contested, even amongst polarisa-
tions within the Bolsheviks over the direction that the Soviet Union should take. For
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example, in 1921, Lenin[Lenin(1965)], in discussing Trotsky’s Trade Unions proposal,
attacked Bukharin for his neglect of dialectical logic'!:

When Comrade Bukharin speaks of “logical” grounds, his whole reasoning
shows that he takes—unconsciously, perhaps—the standpoint of formal
or scholastic logic, and not of dialectical or Marxist logic.

Still respecting divisions deriving from Aristotle, Lenin saw formal logic as part of a
lower level education, and criticised it for not going beyond form:

Formal logic, which is as far as schools go (and should go, with suitable
abridgements for the lower forms), deals with formal definitions, draws
on what is most common, or glaring, and stops there.

Dialectical logic demands that we should go further.
As with Engels and Dietzgen, Lenin sought dialectical unity of logic with its contents:

...dialectical logic holds that “truth is always concrete, never abstract”,
as the late Plekhanov liked to say after Hegel.

His [Bukharin’s] approach is one of pure abstraction: he makes no attempt
at concrete study,...

After Lenin’s death in 1924, the struggles between different Bolshevik factions be-
came acute. These took place against the background of the New Economic Policy
(NEP), which, contrary to socialist aspirations, had introduced a substantial market
component, to try to accelerate recovery following the exigences of the pragmatic
command economy of War Communism. To over simplify, the ‘left’ faction promoted
a speedy transition from the NEP to a planned economy, whereas the ‘right’ faction
sought a slower change. And these struggles were deeply entangled with jockeying
for position, and a settling of scores.

As Sheehan[Sheehan(1985)] systematically explores, the relationship of science to
philosophy became an important component of these disputes, at both ideological and
practical levels. Two positions developed. On the one side, the relevance of dialectics
to science was questioned. This was in keeping with the Aristotelian tradition that
mature sciences developed autonomously of their dialectical roots. This position was
characterised by opponents as mechanist, descended from the mechanical materialism
that Marx and Engels had opposed. On the other side, was a renewed emphasis on
dialectics. This appeared to be in keeping with the mainstream Marxist tradition,
drawing on Hegel.

Initially, ideological struggles within scientific discourse were against the ‘right’
tendency, characterised rhetorically as Menshevik, Here, the dialecticians under De-
borin gained the upper hand against the mechanists. Within mathematics, this led

1Tt is hard to imagine a contemporary head of state arguing about the status of logic in a debate
about Trade Unions, let alone during a Civil War.
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to an increased repudiation of formal logic. The dialecticians’ ascendancy was short
lived. During subsequent struggles against the ‘left’ tendency, an over dependence
on dialectics was characterised as idealist. As Friedmann subsequently wrote, in the
telling titled Revolt Against Formalism in the Soviet Union [Friedmann(1938)]:

But the critics of mechanism, carried away by their zeal, fell into the
opposite extreme of idealism. This required a ‘struggle on two fronts’ as
the theoreticians of the Party call it. Apparently it was faults in practice
which here too called attention to the theoretical problems. (p307)

However, the defeat of this tendency did not result in the rehabilitation of logic.
Rather, both positions were conflated as Menshevising idealism, and formal logic in
the Soviet Union increasingly stalled until the early 1950s.

2.10 Menshevising Idealism and logic

The outstanding mathematician Andrei Kolmogorov (1903-1987) exemplified the new
generation of Red experts. His 1925 paper On the principle of the excluded mid-
dle[Kolmogorov(1967)] offered a critique of formalism and intuitionism, but also
showed how classical and intuitionist logic might be reconciled, within an intuitionist
framework.

Brouwer had argued that it was illegitimate to use both the LEM and transfinite
premises to establish finitary results. Kolmogorov demonstrated that such finitary
results still stood without recourse to either.

With the intuitionists, Kolmogorov accepted that, in the absence of other evi-
dence, contradictory terms should be regarded as indeterminate. Further, with the
intuitionists, he questioned whether transfinite premises had any meaning, even if
they might be used to reach finitary results.

Kolmogorov’s characterisation of formalism, as uncommitted to choice of premises,
sounds akin to Aristotelian dialectics. Noting that a contradiction may be resolved
by adding one of the opposed terms as an axiom, he observed that, from a formalist
perspective:

The selection of the formula taken as the new axiom, from each pair of
contradictory formulas, is thus subject only to considerations of conve-
nience. (p417)

Further, while formalist logic attributed no meaning to axioms, intutionism was based
on axioms that ‘express facts given to us’ (p417). This is the Hegelian, and also dialec-
tical materialist, position of an integrated, content-full logic. However, Kolmogorov
still identified ‘mathematical logic’ as a distinct component of mathematics:

.. we do not isolate a special ‘mathematical logic’ from general logic, but
we admit only that the originality of mathematics as a science creates for
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logic special problems, that are investigated by a specialised ‘mathemat-
ical logic’. (p418)

Here, Kolmogorov did not take an explicitly partisan philosophical, as opposed to
mathematical, stance.

However, as Vucinich[Vucinich(1999)] explores, in that same year of 1925, So-
viet ideologues explicitly attacked the idealism underpinning Cantor’s results, in the
philosophical journal Under the Banner of Marzism. Vucinich notes that no attempt
was made to find a materialist alternative to Cantor (p117-8), and that, while less
attention was paid to Hilbert, dialectical logic was counterpoised to formal logic
(p118-9). Nonetheless, the attacks were against Cantor’s set theory, rather than
Soviet mathematicians (p122). The former Leningrad School mathematician G. G.
Lorentz[Lorentz(2002)] notes that, in the same period, an algebraic school in Kiev
was closed, under the direction of the Ukrainian Communist party, and its scholars
dispersed to other centres.

The Red experts Ernst Kolman (1892-1979) and Sofia Yanovskaya (1896-1966)
provided a clear statement of the dialectical materialist position in 1931, in Hegel and
Mathematics, also published in Under the Banner of Marzism[Kolman and Yanovskaya(1931)].
Repeatedly citing Anti During, and the recently available Dialectics of Nature, they
emphasised the roots of dialectical materialism in Hegel, while criticising his dialec-
tics.

Kolman and Yanovskaya summarised and rejected the schools of logic we identified
above: intuitionism for depending on a prior: assumptions; logicism for unifying logic
and mathematics, and identifying the laws of reason with axioms and theorems; and
formalism for treating logic independetly of content. They further reject ‘mechanistic
empiricists’ who see mathematics as part of physics, and Mach for psychologising.
Overall:

Thus none of these philosophical schools, which all grasp one and only one
side of reality, is in a position to understand the link between mathematics
and practice and its laws of development. Hegel alone gave mathematics
a definition such as grasped the essence of the matter, a definition which,
quite independently of Hegel’s views, is actually profoundly materialist.

Nonetheless, taking a class standpoint on mathematics does not involve rejecting it:

on the contrary it [bourgeois mathematics| must be subjected to a
reconstruction, since it represents the material world, albeit one-sidedly
and distortedly, nevertheless objectively.

Kolman and Yanovskaya identify attempts to reduce analysis to arithmetic as ulti-
mately leading to:

the well-known paradoxes of set theory which destroyed the whole
structure, not only of mathematical but also logical (sic), which had been
specially erected for that purpose.
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Thus, though for very different reasons, they shared the intuitionist suspicion of
Cantor’s infinities.

At the time, Yanovskaya was translating and editing Marx’s recently rediscovered
manuscripts on mathematics, which appeared in 1933[Marx(1983)]. In discussing
Taylor’s theorem, Marx wrote:

This leap from ordinary algebra, and besides by means of ordinary algebra,
into the algebra of variables is assumed as un fait accompli, it is not proved
and is prima facie in contradiction to all the laws of conventional algebra

. In other words, the starting equation ... is not only not proved but
indeed knowingly or unknowingly assumes a substitution of variables for
constants, which flies in the face of all the laws of algebra - for algebra,
and thus the algebraic binomial, only admits of constants, indeed only two
sorts of constants, known and unknown. The derivation of this equation
from algebra therefore appears to rest on a deception. (p117)

It is as if Marx can only accept variables as place holders for actually existing values,
rather than for values in general. This muddleheadedness gets to the heart of the
Hegelian critique of formalism in logic: that it is illegitimate to remove content from
logic, here constants, by abstraction to variables, that may in turn be replaced by
arbitrary values. Engels’ assertions about variables and abstraction, noted above,
may well derive from discussions with Marx.

Of course it is perfectly legitimate to abstract over any constants, or indeed formu-
lae, in an equation, provided such abstraction is made explicit'?. However, Kolman
and Yanovskaya quote Marx without further comment.

In 1932, Kolmogorov explored an approach to intuitionism that was acceptable to
dialectical materialism. In On the Interpretation of Intuitionist Logic[KKolmogorv(1998)],
he reformulated intuitionistic logic as a calculus of problems, and showed that it is
formally equivalent to Heyting’s formalisation of Brouwer’s logic. Cunningly, Kol-
mogorov avoided the critique of form without content, and that of variables general-
ising constants, by focusing on problems, which are grounded in reality:

...intuitionistic logic should be replaced by the calculus of problems, for
its objects are in reality not theoretical propositions but rather problems.
(328)

That is:

. the concepts ‘problem’ and ‘solution of a problem’ can be employed
without misunderstanding in all cases that occur in the concrete areas of
mathematics. (p329)

12This proved a key feature of subsequent mathematical logic, and is now a widely used technique
in programming.
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This slight of hand substitutes abstraction over concrete problems for abstraction
over premises.
Interestingly, Kolmogorov refers to the rules of his logic as ‘computational’ (p334).
The idea of mathematics as computation is central to our conception of materialism.
Thus, intuitionism was the foundation of the Soviet school of constructive logic.
Ironically, constructivism is now a core approach for the theory and practice of pro-
gramming languages.

2.11 Menshevising Idealism and British Marxism

The Communist Party of Great Britain (CPGB) was formed in 1920. A Marxist-
Leninist party, the CPGM was explicitly aligned with the Communist Party of the
Soviet Union, and promoted the dialectical materialist world view. While it never
enjoyed the mass membership, or electoral success, of other Western European com-
munist parties, it had considerable influence in the trades unions.

The CPGB is often seen as a relatively philistine organisation, more focused
on day to day struggles than theory. Nonetheless, a significant number of what
are now known as public intellectuals were members. These regularly appeared on
the radio, and in popular print media, and their books were produced by main-
stream, non-aligned publishers, as well as the Party press. Werskey’s The Visible
College[Werskey(1978)] provides a through account of this milieu in the 1930s. Of
particular interest to us are the mathematicians Hyman Levy (1889-1975) and David
Guest (1911-1938).

Guest, who died fighting with the International Brigades in Spain in 1938, seems
to have been the British Marxist who most closely studied the debates around foun-
dations of mathematics. In 1929, in Mathematical Formalism|Guest(1939a)], he ob-
served that Polish logicians had found contradictions in Russell and Whiteheads’s
Principia Mathenmatica. He also suggested that Hilbert’s desire to formally demon-
strate the consistency of mathematics was floored because the only way to do so was
to ‘produce a set of mental objects satisfying them’ (p210). Ultimately, this depended
on being able to minimally characterise the finite integers, a deep problem for Hilbert
and the intuitionists.

In The ‘Understanding’ of the Propositions of Mathematics, from 1930[Guest(1939b)],
Guest critiqued the LEM on the familiar grounds that it is meaningless to simulta-
neously consider a proposition and its negation. Further, he said that mathematical
propositions are like empirical propositions, in that they may be overturned by new
evidence. In contrast, properties of concrete instances may be established by carry-
ing out processes, giving as an example trying to establish whether or not a specific
number is prime. This seems similar to Kolmogorov’s view of logical rules as compu-
tational.

Shortly before his death, Guest appeared sympathetic to intuitionism. In a review
of E. T. Bell's Men of Mathematics [Guest(1939c¢)], he contrasted the reformism of
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Principia Mathenmatica with the ‘revolutionary challenge of the ‘Intuitionists”!3:

But what is this but the spirit of dialectics breaking through the hard
shell of formal logic, within which so much scientific thought has been
imprisoned in the past! (p256).

At the International Congress of the History of Science and Technology, held
in London in 1931, the dialectical materialist position on logic was presented by
Kolman. In his paper The Present Crisis in the Mathematical Sciences and General
Outlines for Their Reconstruction[Kolman(1931)], Kolman surveyed what he saw as
the current contradictions of mathematics:

All the profound contradictions of mathematics—the contradiction be-
tween the singular and the manifold, between the finite and the infinite,
the discrete and the continuous, the accidental and the necessary, the ab-
stract and the concrete, the historical and the logical, the contradiction
between theory and practice, between mathematics itself and its logical
foundation—all are in reality dialectical contradictions.

While acknowledging some value in Hilbert’s approach, Kolman criticised formal logic
for ignoring the historical necessity of the concept of number:

As for Hilbert’s axiomatics, it is true that it is of use in explaining the
logical connections between individual mathematical concepts, but, since
it represents a construction post factum it, too, is unable to give a correct
picture of development.

And, as before, Kolman dismisses both logical atomism and intuitionism as idealist:

It is a matter of indifference whether the world of mathematical concepts
is regarded as a world of rigid immovable universals, as it is by the logists,
or whether it is looked upon as the sphere of action of the free becom-
ing as it is by the intuitionists. ... The most refined finesses of finitism,
of metalogic, of mathematical atomistics, merely express the anxiety of
bourgeois mathematicians to separate themselves from matter and dialec-
tics by the veil of formal logic, guiding them directly into the desert of
scholasticism.

Levy and Guest were both present at the Soviet sessions. The dialectical materialist
position on analysing science more widely was presented by Boris Hessen (1893-
1936) in a paper on Newton. In his eulogy for Guest, The Mathematician in the
Struggle[Levy(1939)], Levy reported that the audience seemed nonplussed, but Guest
spoke in support of Hessen. In the same article, Levy made explicit the link between
the disputes in Marxism over politics and economics, and:

B¢reformist’ and ‘revolutionary’ again have strong negative and positive resonances, respectively,

for Marxists.
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. struggles and confusions of a highly theoretical and abstract nature.
In this, David could bring to bear his very valuable knowledge of mathe-
matical logic... (p157).

Subsequently, Guest seems to have largely abandoned mathematics research for
wider educational and Marxist activity. His teaching notes on Marxist philosophy
were published posthumously as A Text Book On Dialectical Materialism|[Guest(1939d)].
In a short section on Dialectics and Formal Logic, Guest reiterated the line that for-
mal logic, which he characterised as the ‘logic of common sense’ (p68), was based on
absolute abstractions, and hence was:

unable to grasp the inner process of change, to show its dialectical
character. (p68)

To go beyond this, dialectical logic was required: attempts to further develop formal
logic lead to metaphysical thinking. Here, Guest cited Engels’ association of formal
logic with lower mathematics, and dialectical logic with higher mathematics, from
Anti-Dihring. As we shall see, Turing’s work in this period laid the basis precisely for
characterising ‘the inner process of change’, further shrinking the space for dialectics.

In 1934, a several prominent CPGB members contributed to the collection Aspects
of Dialectical Materialism [Levy et al.(1934)Levy, MacMurray, Fox, Arnott, Bernal, and Carritt].
In his paper A Scientific Worker Looks at Dialectical Materialism [Levy(1934)], Levy
summarised the orthodox account but ended it with an Aristotelian circumscription
of dialectics:

. the so-called laws of the dialectic ... appear to add little or nothing
to the detailed methods of analysis that scientific workers have produced
In a sense, they cannot be expected to add anything to these, for
they profess to stand above science ... For science, therefore, it [dialec-
tical materialism| is an interpretative method rather than a method of
investigation.[Levy(1934)] (p30)

In the same collection, the X-ray chrystallographer J. D. Bernal (1901-1971) also
sought to distance dialectics from science, echoing Levy in his paper Dialectical Ma-
terialism|[Bernal(1934)]:

It [dialectical materialism] is not a critique of science; it does not claim to
be a substitute either for experimental method or for the logical proof of
laws or theories, but it does in a very important way supplement science
by providing a definite method of coordinating the larger groups of special
sciences and in pointing the way to new experiment and discovery (p98)

2.12 Summary

We have ended this chapter in the early 1930s, when formal logic seemed frustrated by
self-referential paradoxes, and an explicit materialism became the orthodoxy within
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an ascendant Marxism, now the defining philosophy of the burgeoning Soviet Union.
In the next chapter, we will explore the further crisis in formal logic brought on by
new paradoxes of self reference within meta-mathematics, and how these yet offer a
positive way forward for materialism, beyond the limitations alleged by pessimistic
scientists and philosophers, and prescribed by dialecticians.
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Chapter 3

The crisis in logic and the
apotheosis of anti-formalism

3.1 Introduction

Hilbert’s programme may be conveniently summarised as seeking to establish whether
or not the formalisation of arithmetic used in Russell and Whitehead’s Principia
Mathematica:

e is consistent, ie it is not possible to prove that both a formula and its negation
are theorems;

e is complete, ie there are no theorems which cannot be proved to be so;

e has a decision procedure, ie a terminating mechanical procedure or algorithm,
to establish whether or not an arbitrary formula is a theorem.

Russell’s paradox had already strongly suggested that mathematics could not be con-
sistent. Subsequently, as we shall next explore, Godel established that mathematics
could not be complete, and Turing that mathematics could not have a decision pro-
cedure for theoremhood.

As we shall see, these results further convinced the dialectical materialists of
the limitations of formal logic, and the rectitude of not studying it. However, Tur-
ing’s work gave key insights into how to construct general purpose computers, and
the formalisms that the meta-mathematicians deployed proved foundational for pro-
gramming languages. The development of practical computers underpinned the mid
to late 1940s Allied atomic bomb programmes. This led to the reversal of Soviet
policy in an effort to catch up, and the dialectical materialist opposition to logic was
conveniently elided.

23
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T (true) 1
F (false) 2
= 3
A (and) 4
V (or) 5
- (not) 6
= (implies) 7
( 8
) 9
a 10
b 11
c 12

Figure 3.1: Codes for symbols

3.2 Encoding formulae

The key to meta-mathematics, where mathematics is used to quite literally talk
about itself, lies in finding a mathematical representation, or encoding, of formulae,
for manipulation by other formulae. In Chapter 1 we saw how the form of a language
may be defined in terms of its symbols and syntax. If we assign numbers to symbols,
we can turn a formula into a composite number, and then decompose it back into its
symbols, using arithmetic.

For example suppose we give symbols the codes shown in Figure 3.1. Consider
the formula for the syllogism Modus Ponems:

(an(a=b)=0b
that is ‘a’, and ‘a’ implies ‘b’, implies ‘b’. Writing down the codes gives:
81048 107 11997 11

Then, we can turn this into a single number by starting with 0, and repeatedly
multiplying by 100 and adding the code for each symbol. Our example gives:

0x100 + 8 = 8

8%100 + 10 = 810

81011 + 4 = 81004

81004100 + 8 = 8100408

8100408%100 + 10 = 810040810

810040810%100 + 7 = 81004081007
81004081007%100 + 11 = 8100408100711
8100408100711%100 + 9 = 810040810071109
810040810071109%100 + 9 = 81004081007110909
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81004081007110907*100 + 7 = 8100408100711090907
8100408100711090907*100 + 11 = 810040810071109090711

We can then get back to the original symbols by repeatedly dividing by 100 and
taking the remainder:

810040810071109090711/100 = 8100408100711090907 remainder 11
8100408100711090907/100 = 81004081007110909 remainder 7
81004081007110909/100 = 810040810071109 remainder 9
810040810071109/100 = 8100408100711 remainder 9
8100408100711/100 = 8100408107 remainder 11
81004081007/100 = 810040810 remainder 7

810040810/100 = 8100408 remainder 10

8100408/100 = 81004 remainder 8

81004/100 = 810 remainder 4

810/100 = 8 remainder 10

8/100 = 0 remainder 8

Given the number for a formula, arithmetic can be used to check if is is well formed.
For example, if we see a ‘(’, we expect there to be a matching ‘)’. To check this, we
look for an 8 followed by a matching 9, surrounding a well formed sequence of other
symbols?, .

Note that this encoding is limited to 99 symbols. Suppose we had a symbol with
number 101. Then repeating it - 101 101 - would give 101*100+101 which is 10201.
Dividing by 100 then gives 102 remainder 1, so the encoding is not unique.

3.3 Godel and completeness

In a seminal 1931 paper, Kurt Godel (1906-1978) used an encoding of number the-
oretic predicate calculus to demonstrate that it was incomplete, that is there are
theorems which cannot be proved[Go6del(1967)]. Kleene[Kleene(1952)] gives a thor-
ough account.

Rather than using a simple multiplication technique, Godel assigned a prime
number to each position in a symbol sequence. He then accumulated the codes for
symbols by multiplying together the prime numbers, with each raised to the power
of the code at its position. For example,

(aA(a=D0)=>b==81048107 11 9 9 7 11
would be encoded as:

28 %310 5 54 % 78w 1110 % 137 % 171 % 199 % 239 % 297 « 3111

that might include other matching ‘(’s and ‘)’s.
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This encoding works for an arbitrary number of symbols. Decoding then involves
a technique called prime factorisation which enables the exponents of all the prime
factors in a number to be found. Of course, this encoding gives unimaginably large
numbers, but it was not Godel’s intention to work directly with them.

Godel wanted to encode proofs, that is sequences of formulae where each is an
axiom or a theorem, or follows from an axiom or theorem by application of a rule of
inference. He showed how to construct functions that would pull these Géodel numbers
apart to check, not just that they were well formed, but that they corresponded to
formula for valid proofs. This works for establishing whether or a sequence of formula
is or is not a proof, but is quite different to checking whether or not a proof exists
for an arbitrary formula.

On the assumption that it was possible to write a function to tell whether or not a
formula was a theorem, Godel constructed a paradox using self reference, reminiscent
of Russell’s paradox. He showed how to make a formula with, say, Godel number N,
that said, in effect:

the formula with Gddel number N is not a theorem.

Now, if this formula is a theorem, then what it asserts is true, so it can’t be a theorem.
And if it isn’t a theorem, then what it asserts is false, so it must be a theorem. That
is, assuming that there could be a function to check whether or not a formula was a
theorem rendered the system inconsistent. And omitting the assumption rendered it
incomplete.

Logicians who accept the LEM are agreed that preferring consistency to complete-
ness is the safest course. For an incomplete system, there will be arbitrary formula
whose status as theorems we cannot guarantee to determine. If they are simply added
to the system as axioms, then it might possible to use them to prove contradictions.
However, for a consistent system, once we prove that a formula is a theorem, we know
that we cannot prove its contrary.

3.4 Turing and termination

Five years later, in a further seminal paper, Alan Turing (1912-1954) showed that
the third requirement of Hilbert’s programme could not be satisfied[Turing(1937a)].
That is, it is not possible to construct a a terminating mechanical procedure for
deciding whether or not a formula is a theorem.

Turing’s approach was very different to that of the mathematical logicians we have
considered above. Rather than using a formal system derived, say, from predicate
calculus applied to set or number theory, Turing considered how people solve problems
by hand. He speculated about someone using a pencil and squared paper, writing
down a problem in the squares, letter by letter, and then working backwards and
forwards, changing squares, and writing in new ones.

Turing generalised this conception to what is now known as a Turing machine
(TM). A TM has a finite linear tape of cells. Each cell may hold a symbol. There
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head
cell —

(la|?|(|al=>|b|)]|)|=>|b

‘ tape
Figure 3.2: Turing machine

is a reading head that can inspect and change cells. The head is positioned over the
‘current’ cell. For example, Figure 3.2 shows a stylised TM with Modus Ponems on
the tape, symbol by symbol.

The tape may be moved to the left or the right, one cell at a time. New empty
cells are added when either end of the tape is reached. Thus, the tape may grow to
be arbitrarily long, but, at any stage, it is always bounded, that is, it is always of
finite length.

A TM executes by repeatedly inspecting and modifying the tape, one cell at a
time. The propensity of the machine, that is how the current symbol determines
what it will do next, in the light of what it has done previously, is called the current
state.

A TM is controlled by a set of instructions with five components, known as quin-
tuplets. Each instruction says:

e state,q: if the machine is in this old state,

e symbol,g: and this old symbol is under the head,

e state,.,: then change to this new state,

e symbol,.,: change the cell under the head to this new symbol,

e direction: and move the tape one cell in this direction, ie left or right, or halt,

The machine is set up with the instructions in a control unit. This repeatedly looks for
an instruction whose oldqte and oldgympo match the current state and symbol under
the head, which is then carried out. If there is no such instruction, the computation
fails.

For example, consider a TM that negates a binary number. It takes a tape of Os
and 1s between * and *, and turns Os to 1s, and 1s to 0s. See Figure 3.3. This says:

1. in state 0 reading a *, change to state 1, write a * and move right;
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stategq  Symbyg  statépew  SYMbpe, dir
0 * 1

e
* O = %
anjoviyeeiiey

1 0 1
1 1 1
1 * 1

Figure 3.3: Binary inversion TM

state  quintuplet
* 0 (0,*,1,%R)

1 (1,1,1,0,R)
% 0 . 1 1 %k 1 (1101111IR)
* 0 1 . 1 O * 1 (11111101R)
1,1,10R
*lol1lo . 0+ 1 (1,1,1,0,R)
1 (1,0,1,1,R)
*/ol1]0]o0 . x
1 (1I*I1I*IH)
* 0 1/0lo 1 .

Figure 3.4: Binary inversion TM sequence

2. in state 1 reading a 0, stay in state 1, write a 1 and move right;
3. in state 1 reading a 1, stay in state 1, write a 0 and move right;
4. in state 1 reading a *, stay in state 1, write a * and halt.

For example, Figure 3.4 shows the stages in inverting 10110 to 01001. The current
cell is coloured blue.

Elaborate TMs may be constructed from the basic operations of searching for,
changing, and copying sequences of symbols.

Turing’s key insight was that a TM tape could hold any symbol sequence, includ-
ing that for a set of TM instructions. Indeed, it is possible to construct a Universal
TM (UTM) that will execute an arbitrary TM, held on its tape, symbol by symbol,
with appropriate data.

Figure 3.5 shows one way to represent an arbitrary TM and its data on a tape
for execution by a UTM?:

e ()1 to Q) are the quintuplets for the TM we wish to simulate, where each
quintuplet is in a standard layout as above;

2Note that the blocks for old state and quintuplets represent more than one cell
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old old
state | symbol

Ql eee QM Tl s TN

Figure 3.5: Universal Turing machine tape

e T to T is the initial tape;
e old state is the current state of the simulated TM;

e old symbol is the symbol under the head of the simulated TM. It has been
replaced in T} to T by some unique symbol.

The UTM proceeds as follows. It searches the quintuplets @); for one that starts with
the old state and old symbol. If it can’t find one, it stops. Otherwise, it copies the
new state over the old state, finds the current symbol market in the tape cells T},
overwrites the marker with the new symbol, moves left or right by one cell depending
on the direction in the quintuplet, remembers the current symbol, overwrites it with
the marker, moves left to the old symbol and overwrites it with the current symbol.
If the simulated TM goes left of the left most tape cell 77, then all the tape cells are
shifted one cell to the right, in effect adding a new leftmost cell.

Asking whether or not an arbitrary TM will ever terminate, Turing constructed
a paradox as follows. Suppose we have the symbols for a ‘test” TM and its data on a
tape. Let’s assume that we can build a ‘halting” TM that will inspect the tape, and
stop in one state if the ‘test’ TM halts on its data, and in another state if the ‘test’
TM doesn’t halt on its data.

It is easy to write a TM that doesn’t halt. It starts on a blank cell, writes a 0
and moves one cell to the right. If there isn’t a cell to the right, a new one is added.
In effect, this TM will ‘loop’ forever, extending the tape to infinity, without ever
reaching it.

We can modify the ‘halting” TM, to halt in one state if the ‘test’” TM doesn’t halt
on its data, and to execute the loop instruction if the ‘test’ TM does halt on its data.

Suppose we apply the modified ‘halting’” TM to itself and some tape. If it doesn’t
halt on itself, then it halts, and if it does halt on itself, then it goes into the loop,
and doesn’t halt. Turing concluded that it wasn’t possible to construct a TM to tell
if an arbitrary TM halts, that is, the TM halting problem is undecidable.

This result falls out of Turing’s more elaborate argument using Cantor diagonal-
isation in considering TMs that generate real numbers. While above we critiqued
the whole notion of diagonalisation, as involving completed infinities, this does not
invalidate the paradox at the heart of the halting problem..
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3.5 The Church-Turing thesis

Several other formalisms for meta-mathematics were explored in the same period that
Godel and Turing were working. Along traditional lines, Stephen Kleene (1909-1994)
developed recursive function theory, which inverted Peano’s induction into a form for
defining functions over number or sets [Kleene(1936a)].

In contrast, Moses Schonfinkel (1888-1942) had developed combinatory logic in
1924[Schonfinkel(1967)].  This was refined by Haskell Curry (1900-1982) in 1929
[Curry(2017)], and led to the highly influential work by Alonzo Church (1903-1995)
on A calculus, from 1932 [Church(1932)].

These systems seem particularly problematic for adherents of dialectical materi-
alism. Schonfinkel’s and Curry’s combinatory logics are built from operators whose
properties are defined by how they interact with other operators, by eliminating or
duplicating them. And Church’s A calculus is one of pure abstraction, with rules
for combining abstractions through substitution. Neither makes any reference to
concrete values.

Nonetheless, a key property of these systems is that they are all capable of rep-
resenting logic and arithmetic, so they can all capture the notions of theorem and
proof at the heart of Hilbert’s programme. This is the root of the Church-Turing
thesis, that all systems for performing calculations on numbers are equivalent, in the
sense that any may be translated into any other. That is, there is nothing that can
be expressed in one system that cannot be expressed in any other system.

Recursive function theory, A calculus, and Turing machines were all demonstrated
to be equivalent soon after they were developed|Kleene(1936b), Turing(1937b)]. Sub-
sequently, they were shown to be equivalent to von Neuman machines, that is gener-
alised digital computers, and, hence, to arbitrary, programming languages. Formali-
sations of analogue computing, and of quantum computing [Deutch(1985)], have also
been shown to satisfy the Church-Turing thesis.

Note that this is a speculative thesis not a provable theory. We do not know
how many different equivalent systems there might be. Nonetheless, it is a falsifiable
thesis, as it may yet be proved that some new system has different properties to
those that are currently known, and so there is no mutual translation. That is, the
Church-Turing thesis is subject to experimental investigation, as part of empirical
normal science. Indeed, we will argue subsequently that it is central to a wider
understanding of reality.

At heart, all these systems enable computation. This is explicit in Turing ma-
chines, where the machine manipulates the data on the tape. For combinators and
A calculus, where there is no obvious separation of instructions and data, rules are
applied to formula until they cannot be simplified any further.

Herein lies the fundamental difference between Turing machines and other for-
malisms. A set of TM instructions is a blueprint for building an actual machine
which, like a digital computer, will run autonomously on its data. In contrast, other
formal systems require a human being, or an interpreting device, to carry out their
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rules. We think that this is a strong argument for the primacy of Turing machines
in elaborating a materialism, and will return to this subsequently.

3.6 British dialectical materialist responses

For the dialectical materialists, Godel’s and Turing’s results were further demonstra-
tions of the limitations of logic without dialectics. Writing in 1938, the Communist
mathematician Alister Watson (1908-1982)% thought that all the paradoxes:

. merely express in one way or another the well-known difficulties which
arise when we attempt to treat an infinite process as completed. [Watson(1938)]
(p450)

Watson is referring to Aristotle’s distinction between potential and actualised infinity.

We agree with Watson that the assumption of actualised infinities make, for example,

Cantor diagonalisation problematic. However, Watson would be wrong to identify

Turing machine tapes as completed infinities. In any case, Turing’s result of the

undecidability of the halting problem may be established without diagonalisation.
Watson’s scepticism about meta-mathematics is clear:

The attempts which have been made in the subject of the Foundations of
Mathematics to justify or condemn mathematical arguments taken in the
abstract, have given rise to a host of confusions, from which it has taken
the most immense labour to escape. (p451)

He does not directly deploy the dialectical materialist critique of formal logic. How-
ever, in a footnote to this passage, he says that he was writing in opposition to
Dedekind’s claim that the foundations of mathematics did not require any mention
of ‘measurable quantities” This is reminiscent of the Marxist objection to variables
that are not derived from known quantities.

In 1938, in The Marzist Philosophy and the Sciences [Haldane(1938)], the evolu-
tionary biologist J. B. S. Haldane (1892-1964) observed:

On the whole we may take it that Marxists are rather sceptical of the
more ambitious logical theories. For example, the system of Russell and
Whitehead, in the Principia Mathematica is doubtless true, or largely
true, if sufficiently sharp classification is possible.

That is, the truth or falsity of this logical system depends on the ability to elaborate
concrete ‘existents’; ‘relations’, and ‘propositions’ arranged in classes, such that fur-
ther classes may be abstracted. However, Haldane doubts the possibility of setting
up such ontologies:

3Watson introduced Turing to Ludwig Wittgenstein, and was alleged to have been a Soviet spy:
https://en.wikipedia.org/wiki/Alister_Watson.
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...it is probable that too great an emphasis has been attached to log-
ical systems which will only work for material that has certain highly
abstract properties, which are rather less frequently and much less com-
pletely exemplified in the real world than logicians would like to think.
[Haldane(1938)]

In 1939, in the Preface to the English translation of Dialectics of Nature, Haldane
wrote, of the mathematicians’ claims to have removed contradictions in mathematics,
noted by Engels sixty years earlier:

Actually they have only pushed the contradictions into the background,
where they remain in the field of mathematical logic. Not only has every
effort to deduce all mathematics from a set of axioms, and rules for apply-
ing them, failed, but Godel has proved that they must. [Haldane(1939)]

This is missing the key point that, while Goédel’s results circumscribe what can be
proved, they tell us nothing about establishing properties of individual formula. In-
deed, automated techniques based on axiomatic systems are proving increasingly
applicable to substantial real world problems, like digital computer design.

Like Watson, Haldane does not use use the language of dialectical materialism
directly. Nonetheless, his implication, as for his comments on Godel’s results, is that
logic is not adequate for concrete reality, for which dialectics is required.

3.7 Soviet logic after Menshevising Idealism

The fortunes of Soviet mathematics, from the 1930s onwards, have been widely doc-
umented, though not always dispassionately, for example in Vucinich[Vucinich(1999)],
Lorentz[Lorentz(2002)], Seneta[Seneta(2004)], and Kutateldze[Kutateladze(2011)]. Math-
ias’s egregiously titled ‘Logic and Terror’ [Mathias(1987)] discusses Soviet logic to
1950. Anellis [Anellis(1994)] criticises Mathias for relying on the ‘polemical and prej-
udiced account’ in Philipov[Philipov(1952)]. Nonetheless, Mathias contains telling,

if poorly referenced, quotes from period publications:

‘Formal logic is always a most trustworthy weapon in the hands of the
predominant exploiting classes. a bastion of religion and obscurantism’
(from a 1934 work on Dialectical and Historical Materialism)

‘the laws of formal logic are opposed to the law of dialectical logic. formal
logic is empty, poor, abstract, for the laws and categories which it sets up
do not correspond to objective reality’. (Concise philosophical Dictionary,
1940) (p7)

including the 1936 Large Soviet Encyclopedia (1936):
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‘formal logic is a metaphysical form of thinking . . .the lowest stage in
the development of human knowledge, replaced by dialectic as the highest
form of thinking’.

‘Formal logic, as we have seen, is not included in dialectic, but is displaced
refuted and overcome by it’.

‘...the anti-Leninist deviations in the All-Union Communist Party (VKP(b)).
Formal logic thinking is a characteristic trait of Menshevism frequently
noted by Lenin who levelled devastating dialectical criticisms at the Men-
shevik formal-logical deductions of syllogisms and sophisms’. (p7)

While the broad study of logic was curtailed, ‘Red experts’ like Kolmogorov and
Yanovskaya were still able to explore and teach logic, and had access to western
research. For example, Yanovskaya started to teach mathematical logic in 1936 at
Moscow State University, and, in 1943, was appointed Director of the Seminar in
Mathematical Logic[Kilakos(2019), p52].

The fortunes of logic in the Soviet Union were restored after World War Two,
though not without continued fierce dispute over its relationship to dialectics, as we
shall discuss below.

3.8 Digital computers

The key development of the 20th century may well prove to have been that of digital
computers. Certainly, early 21st century life would be pretty well unthinkable without
them. The history of computers is again thoroughly documented. Here, we will focus
on salient aspects, albeit very briefly.

The first modern mechanical calculators are commonly attributed to Blaise Pas-
cal (1623-1662), whose mid 17th century ‘Pascaline’ adding machine was based on
meshed cogwheels. For this device, addends were dialed onto wheels, digit by digit.

Gottfried Leibniz (1646-1716) then developed a mechanical multiplier at the end
of the 18th century, based again on cogwheels, augmented with a toothed drum to
change the multiplier. The Leibniz device was the basis of mass use mechanical
calculators, until the development of transistorised machines in the early 1960s.

In the 1820s, Charles Babbage (1791-1871) designed and built a mechanical ‘Dif-
ference Engine’, which could generate tables of functions. This was a substantial
cogwheel based device, and few were subsequently constructed. Babbage also de-
signed, but never completed, a general purpose mechanical ‘Analytic Engine’, which
is recognised as equivalent to a modern stored program computer. The design was
near to the limits of contemporary mechanical engineering, and it is still not clear
whether its construction is feasible.

After Herman Hollerith (1860-1929) developed electro-mechanical tabulating ma-
chines based on punch cards, in the late 19th century, these became standard data
processing equipment for governments and large corporations, until well after the



64CHAPTER 3. THE CRISIS IN LOGIC AND THE APOTHEOSIS OF ANTI-FORMALISM

development of computers. In particular, International Business Machines (IBM)
became an internationally dominant card punch equipment manufacturer, offering
increasingly sophisticated devices. For example, the IBM 801, from 1931 could mul-
tiply two numbers from, and record the answer on, a single punch card.

The Second World War, unprecedented in mass cruelty and immiseration, has-
tened the development of modern computers|Dyson(2012)]. The Harvard Mark 1,
built by IBM as the Automatic Sequence Controlled Calculator (ASCC), was de-
signed by Howard Aitken (1900-1973) in 1937, and first ran in 1944. It was electro-
mechanical, and could store data, but lacked the capability to store programs*. In-
structions were encoded on punched paper tape to control a linear sequence of opera-
tions. Looping programs were accomplished by repeating the tape, and branching by
changing tapes. The Mark 1 was used by John von Neumann (1903-1957) to perform
calculations for the Manhattan Project, developing the first atomic bombs.

The Electronic Numerical Integrator and Computer (ENIAC), amongst the first
all electronic general purpose computers, was completed in 1945. Much faster than
the Harvard Mark 1, it was programmed by plugging components together in appro-
priate configurations. ENIAC was used, amongst other things, in the calculations for
the first hydrogen bombs.

von Neumann had worked on set theory for his 1925 PhD, and had communi-
cated with Godel in the early 1930s about the incompleteness results. Strongly influ-
enced by Turing’s ideas about the Universal TM, where data and instructions share
the same memory, von Neumann included this design, now known as the von Neu-
mann architecture, in the highly influential First Draft of a Report on the EDVAC?
[Von Neumann(1945)]. The report was circulated freely, influencing early digital com-
puter development worldwide. Mid-century, there were numerous firms developing
and selling von Neumann architecture computers, particularly in the USA and the
UK.

Thus, while dialectical materialists, and Western European philosophers alike, saw
the failure of Hilbert’s programme as limiting the reach of mathematics, nonetheless
it had profound and very long lasting influences. Furthermore, the 1930s formalisms
developed by mathematical logicians, especially recursive function theory and A cal-
culus, have long been the basis of the semantics, and the design, of practical pro-
gramming languages.

3.9 Analogue computers

It is important to contrast digital computers, which work with discrete, integer rep-
resentations, with analogue computers, which are intended to work with continuous,
real representations[Cockshott et al.(2012)Cockshott, Mackenzie, and Michaelson|. The
latter depend on inverting the modelling of physical processes by equations. Like dig-

4The separation of program and data memory is still termed the Harvard architecture.
®Electronic Discrete Variable Automatic Computer
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ital computers, analogue computers may be mechanical, based on wheels, pulleys and
sliders, or electronic, based on operational amplifiers. These are set up to reflect an
equation to be solved. As the inputs are continuously varied, the outputs may be
measured.

Analogue computers are far faster than digital computers, and may even be faster
than the systems they simulate. However, they have major drawbacks. To provide
an input to an analogue computer, either a dial must be set, or a digital input of
fixed precision converted to analogue form. Similarly, to to gain information from
an analogue computer, its output must be measured. This is only achievable to the
precision of the measuring device, typically a dial, meter or visual trace. Gaining
a more precise output requires analogue to digital conversion. Further, while ana-
logue computers will solve the general form of some equation, they are restricted to
that equation, and multiple units are required for more complex problems based on
multiple equations.

Major uses of mechanical analogue computers included gunnery control systems
for battleships, from the early 20th century onwards, which had to take take account
in real time of a ship’s, and its target’s, motion. Large general purpose mechanical
‘differential analysers’ were built in the late 1920s to solve differential equations by
integration, to designs by Vanever Bush (1890-1974).

Haldane was aware of the potential of these devices. Discussing Hartree’s work
on substantial industrial problems, including steering an aircraft blind, he wrote:

a stage is reached in the process where this particular machine be-
comes necessary. That, I think, is a development of considerable interest.
It suggests that possibly we are the beginning of a new epoch of mathe-
matics, based on a much more extensive use of practical methods than is
yet considered respectable in most universities. [Haldane(1938), p53]

Since the mid 20th century, analogue computers have been entirely supplanted
by digital computers. We will return to questions of real numbers and measurement
below.

3.10 Cybernetics

Cybernetics, the study of ‘control and communication in the animal and the machine’,
was an area of major activity after WW2, alongside the development of computers.
Norbert Wiener’s (1894-1964) highly influential book [Wiener(1948)] set out the key
principles, drawing on information theory, statistical mechanics, and Pavlovian be-
havioural psychology, to elaborate how machines might learn through feedback, to
optimise activities against observed outcomes.

Like Turing’s, Wiener’s work was based on abstracting from human behaviour,
but at the level of the nervous system rather than higher cognition. During WW2,
investigating how to automate fire control systems for anti-aircraft artillery, he noted
the central requirement to:
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.. usurp a specifically human function - in the first case, the execution of
a complicated pattern on computation, and in the second, the forecasting
of the future. (p6)

Wiener observed the importance of feedback in governing activity that involved con-
tinuously predicting future behaviour, for example in steering a craft, or following
a moving target, and that this was carried out autonomously (pp6-8). He, and his
collaborators, enunciated the:

essential unity of problems centring about communication, control,
and statistical mechanics, whether in the machine or living tissue. (p11).

Wiener also acknowledged the strong influence of mathematical logic on cybernetics.
He observes that, for both formalists and intuitionists:

... the development of a mathematico-logical theory is subject to the same
sort of restrictions as those that limit the performance of a computing
machine. As we shall see later, it is even possible to interpret in this way
the paradoxes of Cantor and of Russell. (p13)

That is, Wiener saw the paradoxes as limiting human reasoning in general, not just
mathematics, because brains are machines. Citing Turing, he wrote:

. the study of logic must reduce to the study of the logical machine,
whether nervous or mechanical, with all its non-removable limitations
and imperfections. (p125)

Nonetheless, Wiener saw information as neither matter nor energy. Hence, we strongly
contest his claim that:

No materialism which does not admit this can survive at the present day.
(p132)

because information must be embodied.

Though Wiener was not a Marxist, he had close connections with Levy, who he
knew from when he had studied with Russell before WW2, and with Haldane and
Bernal. On a visit to Haldane in 1947, he spent time with Turing, then working on
the ACE computer at the National Physical Laboratory, and the Cambridge team
developing the EDSAC computer (p23). Clearly, British Marxists knew of computers
in this period.

Wiener was well aware of the social implications of cybernetics and computing.
He thought that:

The modern industrial revolution is ... bound to devalue the human brain,
at least in its simpler and more routine decisions. (p27)

However, ideological objections to cybernetics proved a major barrier to the devel-
opment of Soviet computers, as Gerovitch|Gerovitch(2002)] recounts. To clarify this,
we need to make an apparent segue sideways, and consider Soviet thinking about
linguistics
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3.11 Linguistics

For much of the 19th century, philology dominated linguistics. This sought to trace
languages back to their origins, by identifying common roots in words from differ-
ent languages. Much of this work was distorted by concerns with establishing the
historical primacy of contemporary national groupings.

Modern linguistics was founded by Ferdinand de Saussure (1857-1913), whose
posthumous Cours de linguistique générale [de Saussure(1959)] was published in
1916. Saussure distinguished between language (langue), and speaking (parole):

separating: (1) what is social from what is individual; and (2) what is
essential from what is accessory and more or less accidental. (pl14)

Saussure further distinguished the use of a relatively unchanging language by con-
temporary speakers from how language changes in time, as users and usages changes:

Everything that relates to the static side of our science is synchronic; ev-
erything that has to do with evolution is diachronic. Similarly, synchrony
and diachrony designate respectively a language-state and an evolution-
ary phase. (p81)

Unlike the philologists, Saussure thought diachrony as of little use for understanding
language:

No society, in fact, knows or has ever known language other than as a
product inherited from preceding generations, and one to be accepted as
such. That is why the question of the origin of speech is not so important
as it is generally assumed to be. The question is not even worth asking;
the only real object of linguistics is the normal, regular life of an existing-
idioim. (p71-2)

Saussure saw linguistics as a component of a wider semiology:

A science that studies the life of signs within society is conceivable; it
would be a part of social psychology and consequently of general psychol-
ogy; I shall call it semiology (from Greek semeion ‘sign’). (pl6)

Sussure was particularly concerned with how signs combine a signifier, that which
points, and the signified, that which is pointed at, ie a concept or idea:

Ambiguity would disappear if the three notions involved here were des-
ignated by three names, each suggesting and opposing the others. I pro-
pose to retain the word sign [signe] to designate the whole and to replace
concept and sound-image respectively by signified [signifé] and signifier
[signifiant]; the last two terms have the advantage of indicating the oppo-
sition that separates them from each other and from the whole of which
they are parts. As regards sign, if I am satisfied with it, this is simply
because I do not know of any word to replace it, the ordinary language
suggesting no other. (p67)
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Saussure prefers the term ‘sign’ to ‘symbol’, as signs are arbitrary, where symbols
are chosen for what they suggest (p68). Note that Saussure was primarily concerned
with relations between signs in systems, not with semantics in itself, seeing changes in
meaning as involving ‘a shift in the relationship between the signified and the signifier’
(p75)

Finally, Saussure hints at the relationship between linguistic activity and compu-
tation, discussed in Chapter 4:

The mechanism of language, which consists of the interplay of successive
terms, resembles the operation of a machine in which the parts have a re-
ciprocating function even though they are arranged in a single dimension.

(p128)

The Soviet linguist Valentin Volosinov (1895-1936) sought to develop a dialectical
approach to language in Marzism and the Philosophy of Language [Volosinov(1986)]
from 1929. Volosinov counterpoised the individualistic subjectivism of the Humboldt
school®, to the abstract objectivism of Saussure (p48). Volosinov rejected Saussure’s
abstraction, identifying language as entirely sociological, that is produced by inter-
acting speakers (p98). Thus, Volosinov saw themes, that is semantics, as central to
understanding (p99ff).

For Volosinov, language was central to disentangling the Marxist problematic of
the relationship between base, ie material conditions, and superstructure, ie social
forms (pp18ff). Ideology is determined by the base, with the word mediating between
base and superstructure.

Volosinov saw language materialised in speech as primary. Themes bear ideology,
and signs have ‘social multiaccentuality’ (p23). Words have evaluative accent deter-
mined by ezpressive intonation (pl03). The intonation, and how it is interpreted,
also reflect the class orientations of speakers and listeners. Thus, ‘Sign becomes an
arena of class struggle’ (p23), where:

The ruling class strives to impart a supraclass, eternal character to the
ideological sign, to extinguish or drive inward the struggle between social
value judgements which occurs in it, to make the sign uniaccentual. (p23)

Volosinov approvingly cites his contemporary Nikolai Marr (1864-1934) in assert-
ing that ‘linguistics is the child of philology’. Both criticised traditional philology
for focusing on utterances as monologues separated from dynamic verbal interactions
(p72), but both thought it possible to derive the origins of languages in the contexts
of material cultures.

However, unlike Volosinov, Marr thought that no language could be classless.
Matejka [Matejka(1986)] attributes Volosiinov’s fall from favour to this difference
(p173).

Marr also rejected formal logic as class based:

6We won’t discuss this further.
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Formal logic, a product of class thinking, together with the class that
created it, is swept away by the dialectical materialist thinking of the
proletariat in which thought gains ascendancy over language. (cited in
Mathias[Mathias(1987), p7])

The preferred Soviet linguistic until 1950, Marr enunciated a now largely discred-
ited Japhetic theory, that Indo-European languages were preceded by related lan-
guages from the Caucasus and Middle East. In a dispassionate 1948 paper [Matthews(1948)],
Matthews refers to Marr’s paleontological method which, latterly, had:

a concentration on semantics rather than the emphasis on phonetics which
characterised his earliest and earlier approach, and the typical neglect of
morphology, presumably because of its newness and perhaps also because
of its exaggerated significance in formalist Indo-European scholarship.
(p188)

3.12 The revival of Soviet logic

The detonation of three atomic bombs by the USA in 1945 radically changed Soviet
priorities in science, and weakened the dominance of ideology in policy, in particular
anti-formalism.

Two Soviet agencies were set up in August 1945 to manage Soviet atomic bomb
development [Gerovitch(2002)] (p131). The first Soviet computer project began in
Kiev in 1946, directed by Sergey Lebedev (1902-1974), and the MESM became op-
erational in 1950. However, after the publication of Wiener’s book|Wiener(1948)], a
campaign against cybernetics was mounted, on the grounds that it was a capitalist
innovation to weaken working class organisation and, ultimately, entirely supplant
workers who would be left destitute [Gerovitch(2002)] (p128). This suggests that the
ideologues had little grasp of Marxist economics, and the central role of living labour
in the production of surplus value under capitalism. In Marx’s scheme, profits derive
from human activity, not machines. And, as Usdin [Usdin(2005)] notes, the Soviet
military were quick to deploy cybernetics and ‘push ideological considerations aside’
(p312).

Nonetheless, computers had to be presented as ‘mathematical machines’ to evade
cybernetic scrutiny [Gerovitch(2002), p131ff]. A clear distinction was made between
the unacceptable use of cybernetics to model human behaviour, and of computers for
calculations and automation. Analogies between computers and human brains were
deemed ‘absurd’ [Gerovitch(2002)] (p142-3). This stance seems entirely retrogressive
for materialism. If humans are more than machines, then their additional qualities
must derive from non-corporeal properties.

Returning to logic, change came quickly in Soviet education. A 1946 CPSU(B)
Central Committee directive [CPSU(B) CC(1952)], cited by Campbell[Campbell(1952)],
noted that it was:
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quite improper that logic and psychology are not taught in secondary
schools. (p343)

and set out plans, with resources, for their introduction. Thus, Mathias [Mathias(1987)]
recounts how a 1918 edition of Chelapanov’s Textbook of Logic was republished in
1946, followed by Strogovich’s Logic, a new textbook by Asmus, and a further edition
of Strogovich (p8).

Lorentz [Lorentz(2002)] observes that, following Lysenko’s alleged achievements
in genetics, there were moves in 1948 to systematically align wider Soviet science with
the notion that science had a class character. However, the plans for mathematics and
physics were halted by Beria, the chief of Atomic Missile Projects, after ‘influential
physicists explained to him that this may damage these projects’ (p217-8).

In 1952, Campbell [Campbell(1952)] noted the problems for Soviet logic education
of squaring ‘bourgoise’ logic with dialectical logic. He summarises a 1950 article by
Osmakov’ [Osmakov(1950)] as arguing that:

Unlike a world outlook, the logic of thinking is a classless phenomenon.
(p281)

Further, in a formulation strongly reminiscent of Aristotle:

The concepts on the basis of which the logic of thinking proceeds reflect
objective reality well or badly according to the ideology or world view of
the thinker (p282)

Osmakov explicitly distinguishes the logic of thinking and the science of logic (p283),
and discusses three false views of their relationship:

(a) That there is but one scientific logic, viz. Formal Logic. (b) That
Dialectical Materialism incorporates the science of logic within itself. (c)
That there are ‘two’ valid sciences of logic dealing with two different
aspects of phenomena; viz. Formal Logic and Dialectical Logic. (p283)

In another Aristotelian formulation, Osmakov concludes of the second that:

All this would be avoided if Soviet logic were recognised as an independent
science which investigates the laws and forms of human thinking with
due attention from the outset to the fundamental phenomenon in their
dialectical development. (p284)

Bazhanov [Bazhanov(2001)] and Kilakos [Kilakos(2019)] recount how Yanovskya
was central to the revival of Soviet formal logic. In 1947, she had translated Grundzige
der theoretische Logik by the formalists Hilbert and Ackermann, and, in 1948, Tarski’s
Introduction to logic and the methodology of deductive sciences [Bazhanov(2001),

"Head of the Philosophy Department in the Directorate for the Teaching of Social Sciences, USSR
Ministry for Higher Education.
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pl132]. In 1947, Yanovskya was arguing that ‘methodological formalism of math-
ematical logic’ should be distinguished from the idealist philosophy underlying it,
because® mathematical logic:

can be considered not only as logic of mathematics but also as math-
ematics of logic, for it is in large part the result of the application of
mathematical methods to the problems of logic [Kilakos(2019), p57]

This argument returns to Boole’s mathematicisation of logic, neatly inverting the
stated objective of meta-mathematics.

Yanovskaya promoted formal logic throughout the rest of her life. Held in high
esteem, she was the Chair of Mathematical Logic at Moscow State University, from
1959 until her death in 1966 [Bazhanov(2001), p132].

As we shall explore below, an enduring achievement of revived Soviet formal
logic was the elaboration of constructivism, which accepted the finitist premises of
intuitionism, while shearing it free of idealism.

3.13 Stalin on linguistics

In 1950, the public reversal of anti-formalism was heralded by Stalin’s repudiation of
Marr. As Lorentz [Lorentz(2002), p217] observes, Stalin paid close attention to de-
velopments in exact science, and, while endorsing Lysenko, had expressed scepticism
about science’s general class character?:

Ha, ha, ha. And what about mathematics? And about Darwinism?
(p217).

Marzism and Problems of Linguistics [Stalin(1950)] was published in Pravda in
1950, followed by four further clarificatory exchanges. In the original article, Stalin
roundly rejects two key tenets of Marr’s linguistics, arguing that language is neither
base nor superstructure, and is not class marked. These criticisms also apply to
Volosinov.

In a subsequent reply to Krasheninnikova, Stalin chided Marr for overemphasising
semantics, while acknowledging its importance for linguistics. From the context,
Stalin appears to again be criticising Marr for attributing different meanings to words
and expressions, depending on a speaker’s class. He suggests that such differences
are very few, and lie in individual words, not in grammar, which is common to all
speakers.

Most significantly, Stalin signaled the end of the attribution of formalism as a
decisive critique:

8Quoting S. A. Yanovskya, ‘Michel Rolle as a critic of the analysis of the infinitely small (in
Russian)’, Trudy Instituta Istorija Estestvoznanija, Volume 1, pp327-46 (p341).

9Quoting V. J. Birstein, ‘The Perversion of Knowledge: The True Story of Soviet Science’,
Westview, 2001, p249-251
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N. Y. Marr considered that grammar is an empty ‘formality’, and that
people who regard the grammatical system as the foundation of language
are formalists. This is altogether foolish.

I think that ‘formalism’ was invented by the authors of the ‘new doctrine’
to facilitate their struggle against their opponents in linguistics.

Mathias[Mathias(1987)] quotes Strogovich as welcoming this judgement:

J.V. Stalin’s works on linguistics provide the key to the solution of all the
questions of logic which have been the subject of lengthy debates. (p12)

Incidentally, Stalin’s articles seem to have caused some disquiet in lay UK Com-
munist circles. The Nobel prize winner Doris Lessing (1919-2013), who was a CPGB
member from 1952 to 1956, reports a writers group discussing the pamphlet, in her
1962 feminist novel: The Golden Notebook [Lessing(1973)]. The five members have
difficulty understanding Stalin’s intent. One hazards that ‘Perhaps the translation is
bad’, and goes on to say:

Look, I'm not equipped to criticise it philosophically, but surely this sen-
tence here is a key sentence, the phrase ‘neither superstructure nor base’-
surely that is either completely out of the Marxist canon, a new thought
completely, or it’s an evasion. Or simply arrogance. (p300)

Other group members adopt a ‘rough-and-ready attitude, a sort of comfortable philis-
tinism’. As one says:

All this theoretical stuff is just over my head. (p300)

Thereafter, Soviet logic flourished, though debate about the relationship between
dialectics and logic continued [Mathias(1987)]. Seventeen years later, in 1967, Kop-
nine [Kopnine(1967)] was still citing Engels'? in defending the Hegelian verities, writ-
ing:

Formal logic and dialectic, as methods of knowing reality, occupy in rela-
tion to each other the same positions as elementary and advanced math-
ematics.(p101)

Kopnine ends his exegesis with the Aristotelian formulation:

Dialectic logic does not deny the value of formal logic. After the appear-
ance of dialectic logic, formal logic loses its prime importance as a theory
of thought. ... The experience of the development of contemporary scien-
tific thought has shown that the two logical systems, dialectic and formal
logic, achieve fruitful results in the acquisition of new knowledge. Science
needs strict rules of deduction and systems of categories in order to pro-
vide a firm basis for the fertility of the imagination and for the creative
activity of thought when it takes in new objects from reality (p102)

103nd Lenin.
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But Soviet scientists, and the wider public, paid far less heed to ideological rec-
titude well before then. The distinguished Soviet Computer Scientist Andrei Ershov
(1931-1988), in a 1976 lecture series to the British Computer Society [Ershov(1980)],
provided a history of Soviet Computing, showing how rapidly it had caught up with
the West.

He mentioned how in 1954 he was advised to miss out a section on programming
from his diploma thesis, and instead submitted material on operator algorithms,
because that was more ‘mathematical’ (p27). However, the period 1956-60 was:

...accompanied by the overcoming of the dogmatically negative approach
to the ideas of cybernetics and of the unity of laws of control and informa-
tion processing in machines and human beings, with the first experiments
in computer applications to simulation of human activity. (pl17).

A 1959 report[Carr IIT et al.(1959)Carr III, Perlis, Robertson, and Scott] by US
Computer Scientists visiting the Soviet Union showed that they were very impressed
by progress in logic and computing. They note that:

There are obviously more and better logicians and mathematicians con-
nected directly or indirectly with computers at Moscow, Kiev, and Leningrad
Universities than at any universities in Western Europe or the United
States. (pl7)

They further note that, outside of MIT, the USA lacked programs in ‘computer
oriented’ logic comparable to that at Moscow State University (pl7), and warned
that the production of:

. qualified computer oriented mathematicians, not just computer pro-
grammers - may, soon surpass that of the United States. (p17)

Indeed:

Soviet use of computers may be expected to surpass in quality and
quantity that of the United States... (p17)

Finally, the visitors observe that:

The continuing interest of the entire Soviet population in Cybernetics
(illustrated by giant sales of Wiener’s book The Human Use of Human
Beings’) is penetrating the society. (pl7)

The bibliography (p18-20) lists an impressive range of recent Soviet publications on
all aspects of computing. Bazhanov [Bazhanov(2001)] notes that in 1956 there were
75,000 copies of Yanovskaya’s book on logic in circulation (p132).
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3.14 Constructivism

The Soviet school of constructive logic was founded by Andrey Markov Jr.[Markov(1954)]
(1903-1979)! [Markov(1954)]. Constructivism had its roots in intuitionism, but with
a materialist orientation, as in Kolmogorov’s approach.

Given the idealism underlying intuitionism, its embrace by Soviet logicians may
seem surprising. However, Markov’s collaborator Ngorny suggests that, before the
‘thaw’, set theory was seen as materialist rather than idealist, despite its Platonic
roots [Nagorny(1994), p469]. Further, Vandoulakis [Vandoulakis(2015), para 46]
notes that Brouwer’s intuitionism was seen as consistent with dialectical materi-
alism, once its logical framework was separated from his philosophy. As Sanin wrote
in 1962[Sanin(1968)]:

...outside of the surface of intuitionistic philosophy one finds in many cases
very valuable concrete observations and profound concrete analysis of the
fundamental problems relating to the processes of forming mathematical
abstractions and logical foundations of mathematics. (p7)

Markov’s student Kushner identified four central characteristics of Markov’s con-
structivism [Kushner(1999), pp268-9]. First of all, the objects under investigation are
finite and generated by finite constructive processes, from a finite alphabet according
to definite rules of algorithm formation. Sanin rightly saw this as key to the success
of constructivism:

The enrichment of mathematics with the precise concept of arithmetic
algorithm served as a starting point for fruitful investigation in a new
direction by many authors. (p6)

Secondly, Kushner notes that, as with intuitionism, both the law of the excluded
middle and double negation are rejected, and proofs of existence must be based on
construction. Third, potential infinities are accepted, but not actualised infinities.
And, finally, computability is associated with algorithms, and the Church-Turing
thesis of the equivalence of all models of computability, demonstrated empirically, is
accepted.

Like Turing, Markov started from mathematics as a material process using pen
and paper. As an example, he considers drawing a row of vertical pen strokes on
the paper forming his book manuscript. Discussing the how this is subsequently
reproduced by printing, he observes that:

The constructive object [ie the original drawing] is a material body con-
sisting of paper and dried ink, and the drawing given above is a copy of
this constructive object, consisting of paper and dried typographic paint.
It, too, is a constructive object, since the preparation of a copy may be
considered a constructive act. [Markov and Nagorny(1988), p1].

UThe son of Andrey Markov (1856-1922), known for foundational work on stochastic processes.
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Markov explicitly acknowledges the limits of material reality:

Carrying out constructive processes, we often come up against obstacles
connected with a lack of time, space and material. One usually suc-
ceeds in somehow by-passing these obstacles. However, our constructive
possibilities really are limited, and there are no grounds for supposing
that the obstacles caused by their restrictedness can always be obviated.
Rather to the contrary, it seems that modern physics and cosmology
testify to the impossibility in principle of surmounting such obstacles.
[Markov and Nagorny(1988), p10]

Nonetheless, in an Aristotelian formulation, the abstraction of potential feasibility:

allows us to consider arbitrarily long constructive processes and arbitrarily
large constructive objects. Their feasibility is potential: they would be
feasible in practice, had we available sufficient space, time and material.
[Markov and Nagorny(1988), p10]

Markov explicitly contrasts this approach with classical mathematics based on set the-
ory, which allows abstractions of actual infinity [Markov and Nagorny(1988), p10] and
for which existence is a consequence of refuting non-existence, where ‘a method for
constructing the desired object may even be unknown’ [Markov and Nagorny(1988),
pl2].

Markov’s notation was based on rules for rewriting symbol sequences, similar to
Chomsky’s subsequent characterisation of classes of formal grammars, which we will
discuss in Chapter 4. The general form of a rule is that a symbol sequence may be
replaced by some other sequence.

For example[Markov and Nagorny(1988), p142], suppose an integer is represented
by a sequence of vertical strokes. Then, the difference between two integers N and
M, written N % M is found by:

7*7_>>k
*

Thus, 4 — 2 evaluates as:

* — e — s ——

that is 2.
A scheme of such rules is called an algorithm, which Markov characterised as:

a) the precision of the prescription, leaving no place to arbitrariness, and
its universal comprehensibility - the definiteness of the algorithm;

b) the possibility of starting out with initial data, which may vary within
given limits - the generality of the algorithm;

c) the orientation of the algorithm towards obtaining some desired re-
sult, which is indeed obtained in the end with proper initial data, the
conclusivenes of the algorithm.[Markov(1954), pl]
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Using this notation, Markov systematically reconstructs a considerable portion of
Peano arithmetic, using induction.

Markov suggests that his approach satisfies what he calls Church’s Thesis, of
the equivalence of models of algorithm. He further argues that Turing machines are
‘extremely convincing’ as:

in the essentials, a Turing machine’s performance adequately simulates
the behaviour of a computing mathematician|Markov and Nagorny(1988),
p109]

going from one state of mind to another.

The notation was intended for practical experimentation with formal systems.
For example, the ‘meta-algorithmic’ programming language Refal [Turchin(1967)] in-
corporated Markov rules within a more conventional framework, as an aid to explor-
ing formal semantics. However, Kushner[Kushner(2006), p562] observes that, while
Markov’s work was known in the west, wider take up was hampered by notational
complexity.

As with intuitionism, accepting constructivist limitations on infinitary reasoning
removed the foundations of much essential classical mathematics. Thus, as with
intuitionism, considerable research was undertaken to refound such mathematics on
a finitary base.

In particular, constructivism accepted integers and rational numbers, but not real
numbers, which are necessarily infinitary. Hence, a vital step was the reformulation
of real numbers as constructive functions. In the constructivist approach, drawing
on work by both Turing and Weyl, a real numbers is defined by an algorithm that
generates rational numbers of increasing precision, determined by another algorithm.
As Sanin put it:

...the actual use of concrete real numbers in the natural sciences and
engineering is essentially based on the possibility of extracting from an
individual representation of a real number an algorithm giving a sequence
of rational approximating values for it. [ganin(1968), pl13]

This recognised explicitly that, in practical applications, rational numbers are used
in manipulating physical reality, because measurement is bounded.

Despite Markov’s materialist approach, he shared the view that the undecidability
results were limitations on mathematics but not human beings:

Therefore the conative, research enterprise in mathematics (as well as any
other branch of learning) will never be transferred to machines, capable
only of assisting man but not replacing him.[Markov(1954), p441]

3.15 Conclusion

We have explored how the deep paradoxes of self-reference challenged Hilbert’s pro-
gramme of reconstructing mathematics through logic. We have also seen how these



3.15. CONCLUSION 77

gave further succour to Soviet materialists seeking to assert the primacy of dialectics
in science. And we have discussed how pragmatic considerations at the end of World
War Two led to the re-invigoration of Soviet logic through its tacit separation from
dialectics.

Nonetheless, despite rapid progress once anti-formalism dogmatism was aban-
doned, the Soviet Union never became a leading centre of computing. We will not
explore this further here.

In the next chapter, we will look at how automata, derived from Turing machines,
can offer a principled and systematic account of language as reality transforming
interaction.
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Chapter 4

Language, automata and meaning

4.1 Language and meaning

There is a longstanding distinction between the meaning of a statement as its value,
compared with what it is about. These may be termed reference and sense, denotation
and connotation, and extension and intension.

Consider the descriptions of a number:

one more than two

The extensional meaning results from evaluating it to a value: three. Another way
of expressing this is that the extensional meaning is all the things that can replace
number in:

the number that is one more than two

and retain the statement’s truth. That is, we treat number as a variable whose sole
valid value is ‘three’.
Now consider the description of a number:

half of six

which also has the extensional meaning of three. These statements’ intensional mean-
ings are quite different. The first involves counting, and the second dividing. We
could! use Peano arithmetic to formalise them, and prove that they are equivalent.
They then have the property of substitutive synonymy. That is, they can be used
interchangeably, in formal expressions about numbers, without changing the meaning
of the expression that uses them.

Now, suppose that Chris can count but can’t do division. Then:

Chris knows that three is one more than two.

1But won’t.
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is true. But we cannot replace one more than two with ‘half of six:
Chris knows that three is half of six.

and retain truth.
Bertrand Russell sought to analyse and reformulate intensional constructs to make
them extensional [Russell(1905)]. In Russell’s approach, we might write:

Chris knows that ‘there is a number that is one more than two’.

to make the context of ‘knows’ clear. If we replace the quoted phrase with an apparent
equivalent:

Chris knows that ‘there is a number that is half of six’.

then we cannot replace there is a number that with three and retain truth.

Rudolf Carnap (1891-1970) was a logical positivist, who sought fact in positivist
science for manipulation by logic. Originally, Carnap considered all statements to
be either extensional or meaningless. In his 1928 The logical structure of the world;
pseudoproblems in philosophy [Carnap(1967)] he enunciated a totalising approach of
denying meaning to any linguistic constructs that could not be grounded in fact.
In particular, he disputed that either realism (i.e. materialism) or idealism was
meaningful:

neither the thesis of realism that the external world is real, nor that of
tdealism that the external world is not real can be considered scientifically
meaningful.? (p334)

That is, Carnap saw knowledge as grounded in verification via empiricism. Nonethe-
less, Carnap termed himself a ‘physicalist” who saw physics as exemplifying how to
establish facts.

Willard Quine (1908-2000), critiqued logical positivism in his 1953 From a Logical
Point of View [Quine(1963)]. In the essay Two Dogmas of Empiricism (pp20-46),
he first disputes that there is a deep distinction between analytic truths, based on
meanings without considering facts, and synthetic truths, based on facts (p20). For
example, we might contrast properties of the number three, which are internal to
formalised arithmetic, with what someone knows about the number three, which is a
reported fact. Secondly, Quine rejects the reductionism that only accepts as mean-
ingful those statements that may be reconstituted as logical statements constructed
from facts (p20).

Quine is left with an explicit pragmatism:

Each man is given a scientific heritage plus a continuing barrage of sensory
stimulation; and the considerations which guide him in warping his scien-
tific heritage to fit his continuing sensory promptings are, where rational,
pragmatic (p46)

2Ttalics in original.



4.2. MODEL THEORY 81

As in our simple examples above, Quine was concerned with substitutivity as a
criterion of synonymy of meaning, asking in what contexts substitution is legitimate,
and pointing out that substitutions necessarily changes the form of statements (p56).
His conclusion is again pragmatic:

What matters rather is likeness in relevant respects ... a problem typical
of empirical science. (p60)

For Quine, given that formal systems are constructed with variables marking
points of abstraction:

To be assumed as an entity is, purely and simply, to be reckoned as the
value of a variable. (p13)

Then:

. a theory is committed to those and only those entities to which the
bound variables of the theory must be capable of referring in order that
the affirmations made in the theory be made true. (pp13-14)

This is a pleasingly generous position. It admits not just of manipulating facts in
logical systems, but of anything a system can legitimately manipulate.

4.2 Model theory

In the 1921 Tractatus Logico-Philosophicus [Wittgenstein(1961)], Wittgenstein sug-
gested that the world should be understood in terms of states of affairs, that is
configurations of things, which he termed objects. He asserts that:

4.1 Propositions represent the existence and non-existence of states of
affairs.

4.11 The totality of true propositions is the whole of natural science (or
the whole corpus of the natural sciences). (p25)

Wittgenstein further identifies the sense of a proposition with:

4.2 ...agreement and disagreement with the possibilities of existence and
non-existence of states of affairs. (p30)

He then proposed the use of truth tables, discussed above in Chapter 1, to explore
these possibilities (p30), having argued that:

4.25 If an elementary proposition is true, then the state of affairs exists:
if an elementary proposition is false, the state of affairs does not exist.
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In his 1947 book Meaning and Necessity: a Study in Semantics and Modal Logic
[Carnap(1947)], Carnap, strongly influenced by Wittgenstein’s states of affairs, sys-
tematically formalised the concept of extensional meaning through the idea of a state
description:

There is one and only one state-description which describes the actual
state of the universe; it is that which contains all true atomic sentences
and the negations of those which are false. Hence it contains only true
sentences; therefore, we call it the true state-description. A sentence of
any form is true if and only if it holds in the true state-description. (p10)

Note that, where Wittgenstein talks about determining the existence of a state of
affairs, which is relative to what is known, Carnap asserts the possibility of describing
‘the actual state of the universe’.

Carnap then systematically elaborated a formal object language for expressing
extensional meanings through substitution of values from state-descriptions. Inten-
sional statements were made in a constrained natural meta-language?, for translation
into the object language for verification against state-descriptions.

By 1961, Carnap no longer thought that:

. all statements about things can be translated into statements about
sense data. [Carnap(1967), pviii]

Further, he was now cautious about how rigorously intensional statements might be
converted to extensional:

Hence I have later proposed a weaker version which claims that every
nonextensional statement can be translated into a logically equivalent
statement of an extensional language. It seems that this thesis holds for
all hitherto known examples of nonextensional statements, but this has
not yet been demonstrated; we can propose it only as a conjecture. (pix)

Nonetheless, the work of Wittgenstein and Carnap formed the basis of model
theory, which now underpins the semantics of programming languages. And the
development of Carnap’s work continued, for example in Marian Przelecki’s Logic of
Empirical Theories[Przelelcki(1969)].

For Przelecki, a model is state of affairs or a state-description, formalised in set
theory. Przelecki restricts models to what he calls physical objects, with predicative
properties. He suggests that this is insufficient as a basis for a science like physics, and
it needs to be extended, though he doesn’t do so, with real numbers, and higher order
logic constructs like relations and functions (p104). Given that science continuously
develops, Przelecki further suggests that the current state of a discipline might be
characterised by taking a ‘cross section’ to determine the changing balance between
determinate analytic and indeterminate synthetic knowledge (p105-6).

3English rather than Hegel’s preferred German.
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4.3 Badiou, model theory and materialism

Alain Badiou’s The Concept of Model, based on lectures given in 1968, sought to
reconcile formal logic with the Marxist materialist tradition. Criticising both Carnap
and Quine, he sees the distinction between empirical ‘fact’ and logical form as com-
mon to both perspectives (p7), and claims that this actually serves to bind together
formal and empirical science: that is, there is a:

dialectical complicity between logical neo-positivism and model theory.
(p19)

The great strength of Badiou’s analysis is that he characterises mathematics as a
unified material practice, linking formal systems of rules to practical calculation:

The philosophical category of effective procedure - of that which is ex-
plicitly calculable by a series of unambiguous scriptural manipulations -
is truly at the centre of every epistemology of mathematics. (p26)

Badiou emphasises that while models are made to explore formal systems:

a model is the mathematically constructable concept of the differentiating
power of a logico-mathematical system.* (p40)

In turn, models are subject to experimental investigation:

It is because it is itself a materialised theory, a mathematical result, that
the formal apparatus can enter into the process of production of math-
ematical knowledge; and in this process, the concept of model does not
designate an outside to be formalised, but a mathematical material to be
tested. (p47)

Badiou further argues that a formal system is quite literally a ‘machine for mathe-
matical production’, and notes that the:

. increasingly evident kinship between the theory of these systems and
the theory of automata, or of calculating machines, strikingly illustrates
the experimental vocation of formalism. (p43)

As discussed below, we see automata themselves as, not just experimental ap-
paratuses, but providing a dynamic, physical basis for semantics, that goes beyond
mathematical constructs, no matter how materialised.

Badiou prioritises set theory and integers for model making, but does not mention
the Church-Turing thesis. This implies that all Turing complete (TC) systems may
serve as formal model for each other: demonstrating that a new system is TC requires
precisely the ability to translate between it and some known TC system. Given that
computers are physical TC systems, they ground formal models in actual reality.

4Ttalics in original/
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4.4 Automata

In chapter 3, we met the Turing machine, and saw how it has a bounded but arbi-
trarily extensible tape. We also saw that, according to the Church-Turing thesis, the
TM is a model for all possible computations.

We will now explore how restricting TMs’ tape properties changes their compu-
tational properties. We will then consider how this can be characterised in terms
of grammars that describe structured data. [Hopcroft and Ullman(1969)] provides a
succinct account.

We might consider a TM tape as a combined input and output, as well as a
memory. The initial tape is the input and the final tape is the output, and the TM
can arbitrarily inspect, modify, and extend the tape. We’ll now consider three broad
restrictions that we might place on TM behaviour, by changing properties of the
tape.

First of all, we might insist that the tape cannot be extended, that is the output
must be the same size as the input. This is called a linear bounded automaton
(LBA), and broadly corresponds to actual computers. Of course computers may be
given streamed input of arbitrary length, but only a finite amount can be held in
memory at any moment. In practice though, we treat computers as if they were
Turing machines, and get grumpy when they run out of memory.

Secondly, we might give a FSA a tape which is extensible in one direction. The
tape behaves like a stack, where items may be added to (pushed) or removed from
(popped) the top, but only the top item can be inspected. This is known as a push
down automaton (PDA). PDAs are not a common form of practical machine, but are
central to software for initial syntax analysis of computer programs.

Third, we might restrict access to a finite tape to only inspecting it from start to
finish, without changing the tape or reversing the direction. Thus the machine can
only chew through the tape, changing from state to state. If it is possible to enter
a new state from more than one old state, then the machine has no memory of its
computation history. This sort of machine is called a finite state automaton (FSA)
or Moore machine.

A FSA which can also emit outputs is called a Mealey machine. This is equivalent
to adding a single cell writable tape to a Moore machine. Mealey machines are very
widely used for controlling processes that go through fixed sequences of actions, for
example, sets of traffic lights, or different washing machine cycles.

4.5 Machines and semantics
We'll now consider a simple, yet rich, example of a FSA. In the UK a pedestrian

crossing is triggered by someone pressing a button. Inside the crossing controller is
a physical Mealey machine® connected to the button and a timer. See Figure 4.1.

®Once electro-mechanical, now digital.
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Figure 4.1: Traffic lights

The machine’s behaviour is summarised in Figure 4.2. In the start state, the light
is green, and displays ‘DON'T WALK’. When the button is pushed, the machine sets
a timer, and changes to the green state. When the timer triggers, the machine sets
the light to amber, sets a timer, and changes to the amber state. When the timer
triggers, the machine sets the light to red and the display to ‘WALK’, sets a timer,
and changes to the red state. When the timer triggers, the machine sets the light to
red /amber, sets a timer, and changes to the red/amber state. And when the timer
triggers, the machine sets the light to green and the display to ‘DON’T WALK’, and
returns to the start state.

This constitutes a language with just one sentence, composed of the word ‘push’,

Old state  Light setting Input  Action New state
start green + DON'T WALK push set timer 1 green
green green + DON'T WALK timer 1 set amber

+ timer 2 amber
amber amber+ DON’T WALK timer 2 set red

+ timer 3 red
red red + WALK timer 3 set red/amber

+ timer 4 red/amber
red/amber red/amber + WALK timer 4 set green start

Figure 4.2: Traffic lights state transitions
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but a very rich extensional meaning: the sequence of states from ‘start’ back to ‘start’
again.

Note that timer is also an input to the machine. So the machine inputs are the
button press followed by the timer sequences. If the button is pressed in any state
except the first, nothing happens, because this is ungrammatical. An interesting
aspect is that the timer sequence is internal to the machine: that is, the machine is
autonomously changing its own states. Thus, the pedestrian ‘speaks’ to the machine
by pressing the button, and the machine then ‘talks’ to itself.

Also, the machine ‘talks’ to the pedestrians and road users through the lights.
So ‘push’ has a very rich, socially constructed intentional meaning, that depend on
the light constructor embodying traffic law which both the pedestrian and road users
understand.

4.6 Language games

We have elided the distinction between checking whether or not a symbol sequence has
a required structure, and wider computing. The connection is that, given a grammar
of some type, there is an algorithm to generate its checking machine. However, it’s
not yet clear how affirming structure relates to the meanings of symbol sequences.

The key lies in what else the machine does as it checks the sequence. Once
we locate meaning in state changes in materialised systems, we can clarify wider
interaction in terms of linguistic exchanges.

Just like Carnap, Wittgenstein retreated from his totalising vision of systemati-
cally elaborating states of affairs. He published little in his lifetime after Tractatus,
and his later work is known through posthumous collections.

In Philosophical Investigations [Wittgenstein(1958)], published in 1953, Wittgen-
stein explores the idea of a language game as a way of exploring how language func-
tions Like other games, language game involve players manipulating things according
to rules. They proceed by players taking it in turn to interact through talking and
doing things, according to rules they share.

For example:

Where is the connection effected between the sense of the expression ‘Let’s
play a game of chess’ and all the rules of the game? - Well, in the list
of rules of the game, in the teaching of it, in the day-to-day practice of

playing. (p80)

Wittgenstein counterposes this to the Augustinian idea of ostensive meanings
based the association of names with things, so children learn language by having
things named as they're pointed at. Rather, Wittgenstein suggests, children learn
language through training, which involves talking, that is interacting (pp2-4).

He introduces a language game of a builder and assistant, where the builder calls
out the name of a component and the assistant provides it (p3). He then considers the
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builder asking the assistant how many slabs there are. Then, the assistant saying ‘five
slabs’ in response is quite different to the builder saying ‘five slabs’ and expecting
the assistant to hand over five slabs (p10). That is, rather than naming things,
even broadly understood, the same linguistic constructs have different meanings in
different contexts.

For Wittgenstein, we take part in a multiplicity of small language games, in diverse
concrete circumstances:

We remain unconscious of the prodigious diversity of all the everyday
language games because the clothing of our language makes everything
alike. (p224)

However, language games are not fixed, but develop in interaction, and may break
down if players don’t act appropriately, or actions have consequences that weren’t
foreseen. This may be resolved because we are immersed in language use:

.. we lay down rules, a technique for a game, and then when we follow the
rules, things do not turn out as we had assumed. That we are therefore
as it were entangled in our own rule. (p50)

4.7 Mesolithic capitalism

We will now explore in some detail a language game based on Marx’s simple repro-
duction schema from Volume 1 of Capital [Marx(1970)].

Consider a world where shellfish grow on the strand, in between the sea and the
land. A person needs to eat one shellfish a day to survive. There is a capitalist who
has title to the shellfish. And there is a worker who will collect shellfish. The medium
of exchange is rocks, which the capitalist also owns. The capitalist will pay one rock
for one shellfish, and charge two rocks for one shellfish. It is entirely baffling how
this state of affairs came about, or why the worker puts up with it, but, hey, this is
a language game®.

There are fours stages to the game. At the start, there are shellfish on the shore
and the capitalist has two rocks. During the employment stage, the worker agrees to

work for the capitalist, with the following dialogue:

capitalist: get me shellfish!
worker: pay me rocks!
capitalist: OK/

worker: OK/

6We call this game ‘Mesolithic capitalism’. The name is ironic. In Mesolithic times, no one
owned title to anything, and shellfish were a poor source of sustenance for hunter-gatherers. There
are vast shell mounds on coasts world wide from the Mesolithic, but none from the Neolithic, when
pastoralism and farming developed. Now, of course, shellfish are luxury food, which those that
gather them can rarely afford.
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The worker goes to the shore and gathers two shellfish. Then, in the exchange stage,
the dialogue is:

capitalist: give me shellfish!
worker: give me rocks!
capitalist: OK!

worker: OK/

The worker gives the capitalist two shellfish and the capitalist gives the worker two
rocks. The worker is now hungry. In the sale stage, the dialogue is:

worker: sell me shellfish!
capitalist: pay me rocks!
worker: OK/

capitalist: OK!/

And, in the consumption stage, the worker gives capitalist two rocks and the capitalist
gives worker one shellfish. The worker and the capitalist each eat one shellfish.

At the end of the cycle, the capitalist has again two rock and the worker nothing.
New shellfish grow, and the cycle repeats.

For this to function, the capitalist and workers must have the same model of the
world in their brains. And that model includes each other, and that they share the
model.

During the game, the world state, and the actors’ internal models and dispositions,
must remain mutually consistent. In particular, the language interpreting/generating
mechanisms in the actors’ brains must behave consistently.

The world is dynamic, so the models in the actors’ brains must be dynamic, to
reflect how it changes. Further, during interaction, as the world changes and the
models in actors’ brains change, the actors’ dispositions change. This is all driven by
what utterances are legitimate in the world’s current state and the actors’ current
dispositions. Automata provide a unitary framework to account for all of this.

To interact, the actors must share the same language capacity, with consistent
abilities to generate and interpret meaningful utterances. A generalised grammar’
for the Mesolithic Capitalism language game is:

thing — shellfish | rocks

imperative — get me | give me | sell me | pay me
utterance — imperative thing | OK

utterances — utterance | utterance utterances

The meanings of utterances are to do with how world is and how it might be. They
involve things, ie shellfish and rocks, and where they might be, ie on the sea shore,
with the worker or the capitalist. Then there are the actors, the worker and capitalist,

"The notation is discussed below.
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state input output action

la Employment get me shellfish!  pay me rocks!

1b OK! OK collects shellfish

2a Exchange give me shellfish!  give me rocks!

2b OK! OK! gives shellfish/gets rocks
3a Sale sell me shellfish!

3b pay me rocks! OK!

3c OK! gives rocks/gets shellfish
4 Consumption consumes shellfish

Figure 4.3: Worker states

state input output action

la Employment get me shellfish!

1b pay me rocks! OK!

lc OK

2a Exchange give me shellfish!

2b give me rocks! OK!

2c OK! gives rocks/gets shellfish
3a Sale sell me shellfish!  pay me rocks!

3b OK! OK! gives shellfish /gets rocks
4 Consumption consumes shellfish

Figure 4.4: Capitalist states

and their actions, ie getting, giving and taking things, and generating/saying and
hearing/interpreting utterances.

We can account for what actors do by reference to the state of world, that is the
dispositions of things and actors. We characterise things by where they are. Actors
have more complex dispositions. What they hear, that is their inputs, and when
they hear it, that is the state they're in, determines what they say, that is their
outputs, and what they do, that is their actions. We can then tabulate their states
in a complete cycle. See Figures 4.3 and 4.4.

We can also describe the world state in terms of how the things change against
the actor utterances. See Figure 4.5.

The worker and capitalist both require consistent knowledge of who has what,
which each can verify empirically. They have also learnt who needs what, and the
rules of interaction.

These tables express the extensional meanings of the utterances for both actors.
We could also attempt to make a vastly more complex model that express the inten-
sional meanings. We might account for natural motivations, for example both actors
need to eat. We might also account for social relations. For example, the capitalist
doesn’t want to work, the worker has to work, and the capitalist needs the worker to
work.
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state shore worker capitalist W speech C speech
1. 2 shellfish 0 rocks 2 rocks pay me get me

0 shellfish 0 shellfish rocks!/OK! shellfish!/OK!
2. 0 shellfish 0 rocks 2 rocks give me give me

2 shellfish 0 shellfish  rocks!/OK! shellfish!/OK!
3. 0 shellfish 2 rocks 0 rocks sell me pay me

0 shellfish 2 shellfish  shellfish!/OK! rocks!/OK!
4. 0 shellfish 0 rocks 2 rocks
1 shellfish 1 shellfish

Figure 4.5: World states

Of course we should be concerned with how the social relations come about,
and how they might change. And we should be concerned about how rules are
maintained through custom, tradition, law and, ultimately, coercion. The core point
here, though, is that social relations are required for, and reproduced in, language
use, rather than being hardwired into language. And we can use automata to make
rich models of very simple language games.

4.8 Grammars

In Chapter 1, we met the idea of a formalised logic, which enabled reasoning about
meaningful, well formed symbol sequences. Noam Chomsky [Chomsky(1959)] ex-
plored different classes of well formed symbol sequences, without direct concern for
their meanings. He identified four types of grammar, that have been shown to corre-
spond to the automata we discussed above.

Let’s consider a sentence made up of words. To check the sentence against a
grammar, the rules of the grammar have to be applied systematically, checking that
the words are in the right sequence.

For example, suppose the words are:

a ate cat mouse saw the
Then, for sentences like:

the mouse saw a cat
the cat ate the mouse

we might have the grammar:

article — a | the

noun — cat | mouse

verb — ate | saw

sentence — article noun verb article noun
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This reads as:
e to find an article, find an ‘a’ or a ‘the’
e to find a noun, find a ‘cat’ or a ‘mouse’
e to find a verb. find an ‘ate’ or a ‘saw’

e to find a sentence, find an article followed by a noun followed by a verb followed
by an article followed by a noun

Formally, the words are called terminal symbols, and the rule names non-terminal
symbols. To generalise this notation we might use:

e a lower case letter for an arbitrary terminal symbol, ie a, b, ¢ ...
e an upper case letter for an arbitrary non-terminal symbol, ie A, B, C ...

e a Greek letter for a sentential form consisting of a mixed sequence of terminal
and non-terminal symbols, ie «, 3, 7...

A Chomsky Type3 grammar has the form:

A —a
A—-DbB

That is, to find an ‘A’, find a terminal symbol ‘a’, or to find an ‘A’ find a terminal
symbol ‘b’followed by a ‘B’. Type 3 checking corresponds to a finite state machine.
The above example, and the Mesolithic Capitalism grammar, are of Type 3, but
finite word options have been grouped to simplify presentation.
A Chomsky Type 2 grammar has the form:

B—g

That is, to find a ‘B’, find a sequence . This is known as a context free grammar.
Type 2 grammar checking corresponds to the actions of a pushdown automaton.
A Chomsky Type 1 grammar has the form:

aBy—=apy

that is, to recognise a ‘B’ within the contextualising sequences « and 7, find a sequence
[ between an « and a . Note that the Type 2 form does not require the nesting
context of a and ~ in finding the 8. A Type 1 grammar is known as context sensitive,
and checking corresponds to the actions of a linear bounded automaton.

A Chomsky Type 0 grammar has the form:

a— [
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that is, to recognise a sequence «, find a sequence . Checking such rules corresponds
to the action of a Turing machine. A Type 0 grammar is very similar to Markov’s
notation.

These types form a hierarchy, where each type can define more than the next,
just as the corresponding machines are ordered by computational power.

A Type 3, finite state grammar, can express addition, but not whether brackets
are balanced, with every opening bracket having a closing bracket. Addition requires
only enough states to capture the possible single digit carrys from each sum, but
bracket matching would require arbitrary states to record arbitrary nesting of opening
brackets.

Less restricted, a Type 2, context free grammar, checkable by a PDA, can express
bracket matching. Opening brackets are pushed onto the stack, to be popped off
when a closing bracket is found. But a Type 2 grammar can’t express counting how
many brackets there are, as it has no memory in which to count.

Even less restricted, a Type 1, context sensitive grammar, checkable by a LBA,
can be used to express that, say, NV ‘a’s are followed by N ‘b’s and N ‘c¢’s. Essentially,
every time an ‘a’ is found, it and a corresponding ‘b’ and ‘c’ are eliminated. But,
unlike a Type 0 grammar, a Type 1 grammar can’t express arbitrary arithmetic, as
only finite numbers can be represented in finite space.

The most powerful grammar, the Type 0, can capture any Turing complete com-
putation. However, like Type 1 grammars, they are not used for practical computing,
because it is really hard to think through problems in terms of bounding contexts,
which may be arbitrarily large and complex. Rather, programming languages are
used. These are like formal systems in their rigour, and natural languages in their
expressiveness.

Using a programming language involves thinking in terms of the abstractions
that it supports, in particular what sorts of things variables may represent. Psycho-
logically, this elides the physical grounding of computations, in physical computers,
manipulating physical instances of symbol encodings. Thus, what can be computed
is determined, ultimately, by the physical nature of reality. This is particularly sig-
nificant for computations that involve arbitrarily small constructs, like real numbers,
or arbitrarily large ones, like databases that may grow open-endedly.

If reality is finite, then eventually we run out of stuff with which to do com-
putations. That is, we may think we’re programming in a Type 0 language with
potentially infinite resources, but if we actually have bounded memory then our
computation is necessarily Type 1. And, even if reality is infinite, it makes no
sense to talk about finite computations that deploy infinite resources in a finite time
[Cockshott et al.(2012)Cockshott, Mackenzie, and Michaelson].
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4.9 Conclusion

Our account of the development of formal logic underpins our materialism. With
Turing, we see mathematics as a mechanical activity grounded in physical machines.
With Badiou, we see model making and logic as complementary experimental activi-
ties. With Wittgenstein, we see meanings created in interactions that change reality.
And, with Markov, we see meaning characterised by algorithmic processes modeled
as automata.

From the Church-Turing thesis, our materialism is reductionist. If computability
is key to understanding reality, and all accounts may be demonstrated to have equiv-
alent explanatory power, then their choice is a matter of pragmatism, not principle.
In particular, we reject the Platonist primacy of pure mathematics, but recognise its
power in abstraction.

Our materialism is fundamentally scientific. We reject the primacy given to di-
alectics in the Hegelian and Marxist traditions, but recognise its power in exposing
and resolving contradictions in interrogating reality.

And our materialism is finitist. With the constructivists, we reject arguments
based on actualised infinities.
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