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Abstract: With the emergence of commodity multicore architectures, exploit-
ing tightly-coupled parallelism has become increasingly important. Hume is a
novel formally-motivated programming language oriented to developing software
where strong assurance of resource use is paramount, in particular embedded ar-
chitecture. Functional programming languages, such as Hume, are, in principle,
well placed to take advantage of this trend, offering the ability to easily iden-
tify threads for parallelism in multicore architectures. Unfortunately, obtaining
real performance benefits has often proved hard to realise in practice. This paper
outlines the design and implementation of Hume for multicore architectures. It
presents preliminary results which suggest that there is strong potential for seam-
less parallel gains in Hume programs. A key aspect of our approach is the use of
a new and completely lock-free communication mechanism. Using this mecha-
nism, we can obtain good parallel performance for suitable Hume programs, of
up to 6.8 on eight cores.

1.1 INTRODUCTION

Hume [18] is a contemporary programming language based on concurrent finite
state automata controlled by transitions expressed in a rich polymorphic func-
tional language. Hume has been designed to encompass different degrees of static
analysis precision for different degrees of expressiveness, in particular for deter-
mining resource bounds, in particular for time and space. Key to the Hume design
is the concept of concurrent boxes, interacting through wires that link them both to
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each other and to the external environment. Boxes offer natural loci for software
design, implementation and analysis.

Hume is based on strong semantic underpinnings and is supported by a ma-
ture tool-chain centred around the Hume Abstract Machine (HAM). This provides
a stable, shared abstraction for both implementation and analysis. The HAM
interpreter (HAMi) directly excecutes HAM code, the Hume compiler (HAMc)
translates HAM code to native code through C, and the resource analysers relate
statically-inferred properties of HAM to precise instrumentation of equivalent na-
tive code on designated hardware platforms.

Current Hume implementations and analyses are oriented to programs exe-
cuted sequentially on a single processor. As part of the UK EPSRC Islay project,
we are exploring the deployment of Hume on heterogeneous hardware platforms
that offer some combination of multicore, SIMD and/or FPGA support. Our ob-
jective is to make optimal use of these parallel processing resources under the
guidance of high-quality cost analysis. In this paper, we present some prelimi-
nary results based on adapting the HAM interpreter to support multicore systems.

1.2 THE POTENTIAL OF HUME FOR MULTICORE ARCHITECTURES

Almost all CPUs that are used in desktop or server systems now contain multiple
cores, and many laptops also have two cores. Although it offers advantages in
terms of scaling and power usage, multicore technology is, at heart, just a con-
temporary realisation of the well-known shared-memory multiprocessor paradigm
that has been popular since the 1980s, with similar properties and problems.

Structurally, each core usually has a fairly small, private level 1 cache and
shares higher levels of cache and the global memory with other cores. True dual-
core CPUs, both realised from the same die, are common (e.g. Intel’s Core 2 Duo).
Four-core (quad-core) and eight-core CPUs are becoming more widely available,
but are still often formed from specially-packaged dual-core chips. They thus
contain a hidden memory hierarchy that may have a significant impact on per-
formance (Intel’s recent Nehalem, or Core i7, architecture is an exception, with
four or eight cores on a single chip, sharing on-chip level 3 cache and memory
controller hardware). Future designs are expected to increase the number of cores
(perhaps scaling back on the capabilities of individual cores), leading ultimately
to many-core designs with hundreds or thousands of cores in a single package.
An example is Intel’s forthcoming Larrabee general-purpose graphics-processing
unit (GPGPU), which represents a cross-over between multicore and conventional
graphics-processing (GPU) designs, and which targets high-performance comput-
ing as well as computer graphics. Each Larrabee chip will possess 32 or more
small, simple, but hyper-threaded 1GHz cores.

Basic support for multicore programming, e.g. for controlling the placement,
execution and memory access rights of processes or threads, is available at a va-
riety of levels. For example, the Intel Thread Library [24] supports multicore
specifically on Intel CPUs; the generic Posix Threads (pthreads) Library [21]
supports multicore for Posix compliant operating systems; and OpenMP [10] of-
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fers high level, language and operating-system independent compiler directives.
Nonetheless, as with general parallel programming, multicore programming re-
mains a black art. A deep understanding of algorithm, platform and support soft-
ware characteristics is required to exploit a multicore system effectively. The key
problem, as with all shared-memory multiprocessing, is maximising memory lo-
cality and minimising the volume of accesses to shared memory.

It is our contention that Hume offers considerable potential for multicore ex-
ploitation because Hume boxes are the right size for current and future multicore
designs. Firstly, the Hume execution model is premised on a high degree of lo-
cality of memory for individual box execution, offering a high degree of potential
parallelism. Secondly, the super step scheduling approach that we use (Section 1.3
guarantees predictable and hence analysable patterns of global memory use: all
global memory changes (corresponding to wire modifications) are resolved as
part of an atomic super step. Finally, boxes are considerably coarser-grained
than lightweight threads in typical implicitly parallel functional languages such
as GpH [22, 17] or Eden [5], and are easily mapped to operating-system threads.
This reduces the number of threads that are produced for a typical Hume program,
meaning that there is a straightforward mapping to the small number of cores in
current multicore designs.

1.3 HUME SUPER-STEP SCHEDULING

At its simplest, a Hume box consists of a set of input wires, a set of output wires
and a set of matches, where each match associates a pattern over the inputs with
an expression over the outputs. As noted, a Hume program then consists of one
or more Hume boxes linked to each other, and to the external environment, by
wires. The wires thus effectively constitute a shared memory channel between
two boxes. Each box may also have additional local memory for inputs, working
store, and buffered outputs.

It is important to note that an individual Hume box effectively constitutes an
autonomous program that runs continuously, repeatedly matching and consuming
inputs to generate new outputs. The Hume semantics specifies a very abstract
model of such execution based on a “super-step” scheduling model, which divides
program execution into a series of scheduling cycles. Each and every box in the
program may be run at most once during each scheduling cycle.

At the start of each super-step scheduling cycle, all boxes are checked to de-
termine whether they are RUNNABLE. A box is RUNNABLE if it has sufficient
inputs to match one of its rules, and it is not currently blocked producing outputs
that have not yet been consumed by some other box (in the latter case, it is in
a BLOCKED OUTPUT state). During the first phase of each scheduling cycle,
every RUNNABLE box satisfies one of its matches, working on local copies of its
input values to generate locally-buffered output values. It thus ends this phase in
the BLOCKED OUTPUT state. Note that the order in which boxes are executed in
a super-step is arbitrary and immaterial, and that boxes are total, meaning that any
RUNNABLE box must, by definition, satisfy one of its matches, and be executed
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during the super-step.
When every box has completed this phase, input wire consumption and out-

put wire instantiation are next resolved globally. First of all, the input values
matched by new BLOCKED OUTPUT boxes are removed from the correspond-
ing wires. Then, for each BLOCKED OUTPUT box, if all its output wires are
empty then they are set to the new buffered output values and the box may be-
come RUNNABLE in the next cycle. A BLOCKED OUTPUT box with one or
more non-empty output wire will, however, remain in the BLOCKED OUTPUT
state.

A useful exception to this tight-stepped scheduling process can be made by
distinguishing a SELF OUTPUT state, where a box generates outputs solely for
its own consumption [16]. So long as a box is SELF OUTPUT, it may execute
repeatedly without the need for super-step wire resolution. Conversely, not distin-
guishing such SELF OUTPUT boxes may result in other boxes being needlessly
scheduled without state change, pending some SELF OUTPUT box consuming
their inputs or generating their required outputs.

1.4 A MULTICORE REALISATION OF HUME

We have chosen to implement a straightforward threading model for Hume that
directly exploits the existing Hume tool chain to map boxes to operating-system
threads. In the longer term, parallelism could be introduced through, for exam-
ple, automatic program analyses, semi-explicit program anotations or multicore-
oriented box skeletons

The Hume compiler produces highly-efficient but opaque C code, where the
code for individual boxes is combined into a single monolithic C program. Since
this would be difficult to modify, we have instead focused on modifying the HAM
interpreter, which is cleanly structured with clearly discernable stages correspond-
ing to the generic Hume execution semantics, and which is reasonably efficient
(about 4-10 times the speed of the standard JVM on similar code). Finally, for our
initial experiments, we decided to deploy the generic OpenMP library to annotate
salient features in the HAMi: OpenMP combines a high degree of abstraction,
high level of portability and excellent compiler support.

Our first step towards a multicore implementation of Hume was to implement
a static scheduler for HAMi based on a classical fork-join model of parallel exe-
cution. Using this approach, at the start of each super-step cycle, the Hume sched-
uler spawns one thread for each box, whether or not it is runnable. Subsequently,
at the end of the cycle, these threads all re-join the main thread, as shown in Fig-
ure 1.1 (above). Each thread is assigned to a core. In GHC’s terminology [?],
these threads are therefore capabilities. Since our static scheduler showed poor
performance in practice, we consequently decided to optimise the Hume sched-
uler so that in any given cycle, it only executed runnable threads, as shown in
Figure 1.1 (below). In more detail, the Hume scheduler is declared to be a par-
allel region using the appropriate OpenMP preprocessor directive. This creates a
team of worker threads, one for each core. Runnable boxes are then assigned to
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FIGURE 1.1. Static (above) and dynamic (below) Hume schedulers for multicore

one of these threads using the OpenMP task construct. Since Hume boxes are
independent computational units and share memory only a point-to-point basis
through explicit wires, they can be assigned private unshared memory areas using
the OpenMP threadprivate directive.

Because all communication between boxes is through shared wires that are
either all written to or all read from at a specific point in the super-step schedul-
ing cycle, it is possible to achieve completely lock-free communication between
boxes. There is no need to synchronise two communicating boxes: since any out-
put written during one scheduling cycle will never be read before the subsequent
cycle, and since the subsequent cycle will not be scheduled before all output is
completed, it follows that a thread can never start to read data before it has been
completely output. This design also reduces memory hotspots: each thread needs
to synchronise only once in each cycle – with the scheduler – no matter how much
communication it performs.

1.5 EXAMPLE

Our testbed example counts Fibonacci(19) 20000 times in ten boxes and then
merges the result data to stderr. The program consists of ten boxes calculating
Fibonacci and a single merge box that collates the results from each of the ten
boxes using a fair merge strategy and directs these results to the stderr channel.
The fsx boxes receive an initial value of 20000 and calculate Fibonacci for some
fixed constant N using the fib function. For our experiment, we have replicated
the fib function to avoid problems of shared-memory access that can happen as
a result of code in the original sequential HAMi implementation.
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merging count Fibonacci

type Int = int 32;

fib0 :: Int -> Int;
fib0 0 = 1;
fib0 1 = 1;
fib0 n =

fib0(n-2) +
fib0(n-1);

fib1 :: Int -> Int;
fib1 0 = 1;
fib1 1 = 1;
fib1 n =

fib1(n-2) +
fib1(n-1);
...
...

fib9 :: Int -> Int;
fib9 0 = 1;
fib9 1 = 1;
fib9 n =

fib9(n-2) +
fib9(n-1);

N = 19;

box fs0
in (n:: Int)
out(n’, r:: Int)
match
0 -> (*,*)

| n -> (n-1, fib0 N);

box fs1
in (n:: Int)
out(n’, r:: Int)
match
0 -> (*,*)

| n -> (n-1, fib1 N);
...
...

box fs8
in (n:: Int)
out(n’, r:: Int)
match

0 -> (*,*)
| n -> (n-1, fib8 N);

box fs9
in (n:: Int)
out(n’, r:: Int)
match
0 -> (*,*)

| n -> (n-1, fib9 N);

box merge
in (x0,x1,x2,x3,x4,x5,x6,
x7,x8,x9:: Int)

out (z :: Int)
fair

(x,*,*,*,*,*,*,*,*,*) -> x
| (*,x,*,*,*,*,*,*,*,*) -> x
| (*,*,x,*,*,*,*,*,*,*) -> x
| (*,*,*,x,*,*,*,*,*,*) -> x
| (*,*,*,*,x,*,*,*,*,*) -> x
| (*,*,*,*,*,x,*,*,*,*) -> x
| (*,*,*,*,*,*,x,*,*,*) -> x
| (*,*,*,*,*,*,*,x,*,*) -> x
| (*,*,*,*,*,*,*,*,x,*) -> x
| (*,*,*,*,*,*,*,*,*,x) -> x;

wire merge(fs0.r, fs1.r, fs2.r,
fs3.r, fs4.r, fs5.r, fs6.r,
fs7.r, fs8.r, fs9.r)(output);
wire fs0(fs0.n’
initially 20000)
(fs0.n,merge.x0);

wire fs1(fs1.n’
initially 20000)
(fs1.n,merge.x1);
...
...

wire fs8(fs8.n’
initially 20000)
(fs8.n,merge.x8);

wire fs9(fs9.n’
initially 20000)
(fs9.n,merge.x9);
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FIGURE 1.2. Per Thread Call Graph

1.6 RESULTS

Our measurements have been performed on an eight-core Dell PowerEdge 2950
machine located at Heriot-Watt University (lxpara3). This machine is constructed
from two quad-core Intel Xeon 5410 processors running at 2.33GHz (as discussed
earlier, each quad-core is itself packaged from two dual-core chips). lxpara3
has a 1333MHz front-side bus, and 33GB of fully-buffered 667MHz DIMMs (of
which the Hume implementation uses only 1-2MB). It runs Ubuntu Linux 4.3
(kernel version 2.6.27-7). Our code has been compiled using the Intel C Compiler
(icc) version 11.0. Figure 1.2 is a visual presentation of the program execution,
which gives a profile for the computation as a whole, and also displays the critical
functions and call sequences. The root node in each chain of nodes represents a
thread, and the remaining nodes show the dynamically-changing call graph. Our
computation uses eight threads. The first thread (Thread 0) runs posix threads
and starts up C libraries. The remaining seven threads run the Hume scheduler
(the main parallel part of the implementation). The colour version of the profile
shows the critical path (the path with the maximum edge time) in red. Here, the
critical path represents the single threaded scheduler for the non-runnable boxes
in the Hume computation.

Figure 1.3 is an activity profile showing all the Hume threads. The thread and
process names, plus event samples, are shown on the left; the right is shows a hor-
izontal bar chart showing each thread’s activity. In our computation, there is only
one active running process (hami, the Hume abstract machine interpreter). How-
ever, we have eight threads within this process. The event samples report the total
count of events for each thread. In hami these events represent the activities that
each box performs during the computation. As discussed earlier, only runnable
boxes are evaluated in parallel while the main thread performs book-keeping for
all other threads. The main thread (thread4) therefore counts more events than
any other thread. The horizontal axis depicts the total number of events monitored
over a period of time. The colour of the bar for each thread reflects the number of
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FIGURE 1.3. per-core Sampling Activity Profile

no of Threads Runtime (Sec) Speedup
1 782 1
2 460 1.7
3 300 2.6
4 205 3.8
5 166 4.7
6 147 5.3
7 130 6.0
8 115 6.8

TABLE 1.1. Parallel performance of merging Fibonacci

boxes that are under evaluation at each point in time within the specific thread.
Table 1.1 shows the performance of the merging Fibonacci function described

above. The first column shows the number of threads that are involved in the com-
putation; the second and third columns show the runtime and speedup. We can
see that we achieve good speedup of up to a factor of 6.8 on eight cores. How-
ever, there is clear tail-off in performance above 5 cores. We have not investigated
this in detail, but it may reflect either the costs of synchronisation of each worker
thread with the main scheduler thread, or simply the costs of I/O to the standard
error channel.

1.7 RELATED WORK

The recent trend towards multicore architectures has sparked a significant amount
of new work that is aimed at exploring novel programming models and runtime
systems for such architectures (e.g. [19, 8, 7, 14, 15, 20, 2, 9, ?]). This work has
exploited a number of different approaches. These include:

• Parallel libraries, such as Pthreads [21] and Phoenix [23], provide the pro-
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grammer with the ability to express parallelism directly. In fact, Phoenix is
an implementation of Google’s MapReduce skeleton for shared-memory sys-
tems. The Phoenix runtime system is implemented on top of the Pthreads
library and automatically manages thread creation, dynamic task scheduling,
and data partitioning.

More advanced libraries, such as Cilk [14] or OpenMP [10], provide higher
level parallelisation primitives, including, for example, support for nested par-
allelism [11]. However, according to Bridges [6], typical library approaches
provide little support to help achieve correct or effective parallelism. For in-
stance, the Cilk inlet directive is similar to its Commutative directive, in
ensuring correct execution of code in a non-deterministic fashion. However,
inlet is meant to serially update state upon return from a spawned function,
while Commutative is meant to facilitate parallelism by removing seriali-
sation. Clearly, it would be easy to use the wrong construct.

• Message-passing approaches, such as our GUM implementation of Haskell
for multicore machines [4], or Erlang [3, 12]. Our approach to programming
multicore systems in Haskell uses algorithmic skeletons to introduce paral-
lelism that is then mapped to multicore threads executing sequential program
components. The Erlang approach is based on creating explicit threads which
are mapped directly to operating system threads. In GUM, as with the Hume
implementation we have described here, all communication and thread syn-
chronisation is implicit, whereas Erlang requires the programmer to explicitly
use message-passing primitives. The key difference between our GUM work
and that described in this paper is that the latter makes direct use of shared
memory mechanisms. Moreover our approach of treating Hume boxes as
units of execution makes it straightforward to derive a parallel solution that
can easily be mapped to multiple cores.

• Explicit memory transactions [8, 20, 1] attempt to reduce locking by exposing
parallel operations as transactions. Some such approaches require an explicit
step to make locations or objects part of a transaction, while other approaches
make the memory operation behaviour implicit. Implicit transactions require
either compiler or hardware support. Both of those techniques have been pro-
posed to help the programmer express parallelism in an easier manner.

While such approaches appear promising on paper, they have so far generally
failed deliver good performance. For example, Harris, Marlow and Peyton
Jones [20] report poor and highly variable parallel performance, using mem-
ory transaction techniques on shared-memory machines. . In contrast, we have
demonstrated a speedup of 6.8 on our eight-core testbed machine.

• Data-parallel approaches where parallelism is exposed by evaluating elements
of bulk data structures in parallel. For example, Data-Parallel Haskell [9] pro-
vides parallel arrays and special parallel operations to handle them. Good
results are reported for typical data-parallel problems (such as sparse matrix
multiplication). A similar approach is taken by Fluet et al. [13] who embed
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nested data-parallel constructs into an explicitly parallel Concurrent ML set-
ting.

While these approaches can deliver good performance for appropriate applica-
tions, they are, however, primarily suited to static, regular, data-driven paral-
lelism rather than the more dynamic, irregular forms that can be programmed
using our Hume box approach.

In contrast to most of the approaches described above, we focus on exploiting par-
allelism in multicore architecture by introducing boxes as the right-size construct
for mapping to cores.

1.8 CONCLUSIONS

We have shown that by treating boxes as loci of parallelism in Hume, we can
gain valuable and consistent speedup in a multicore environment for one suitable
testbed application. Furthermore, this was achieved at very little software engi-
neering effort, with the addition of just four OpenMP directives into the existing
C source code for the sequential HAMi abstract machine interpreter. A key nov-
elty of our approach is the use of completely lock-free communication through a
novel super-step scheduling mechanism. This has contributed to the good perfor-
mance result that we have achieved.

It is important, however, to appreciate that, while this result is encouraging,
it is still preliminary, since it is based on a perfectly-balanced and very simple
example. For arbitrary realistic Hume programs it is entirely possible that we
will achieve poorer results: different boxes will have widely different individual
processing characteristics but the synchronised wire resolution in the super-step
semantics means that overall program performance depends on that of the slowest
box.

Nonetheless, we have now increased our confidence that Hume boxes are good
places to seek performance improvements through parallelism. In future research
we intend to:

• modify the run-time scheme to prioritise RUNNABLE boxes;

• analyse programs to identify and hence prioritise SELF OUTPUT boxes;

• deploy the Hume worst-case execution time analysis to identify groups of
boxes that might be excuted together on individual cores in order to optimise
overall load balance.

In the longer term, we will also explore building thread box skeletons which can
be explicitly called in Hume programs, with the aim of eventually modifying the
native code compiler to generate threaded code for nominated or analysis identi-
fied boxes.
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