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Abstract. The formally motivated Hume language, based on the coordi-
nation of concurrent automata performing functional computations, was
designed to support the development of systems requiring strong assur-
ance that resource bounds are met. mHume is an experimental subset
oriented to exploration of efficient heterogeneous multi-processors im-
plementations. In this paper, the deployment of mHume on the FPGA
MicroBlaze architecture is discussed. Preliminary results suggest very
fast performance and good scalability compared with stock multi-core
processors.
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1 Introduction

While the number of cores on stock CPUs continues to grow steadily, in accor-
dance with Moore’s Law, their internal configurations are strongly constrained
by the underlying CPU architecture. In contrast, contemporary FPGAs them-
selves offer immediate opportunities for very large numbers of processing el-
ements, with highly flexible connectivity and excellent scalability, albeit with
poorer performance than conventional CPUs. Thus, there is considerable in-
terest in synergistic exploitation of concurrency in heterogeneous architectures,
typically comprising multi-core processors with SIMD acceleration augmented
with an FPGA.

In the EPSRC supported Islay project, we are exploring alternative routes
to deploying the functionally-flavoured, concurrent language Hume [7] on such
architectures. Hume is based on autonomous boxes, linked point to point, and
to the environment, by single buffered wires. Thus, we are interested in directly
realising Hume boxes as loci of concurrency.

Hume’s design is oriented to systems where there is need for strong assurance
that bounds on resources such as time and space are met. This is enabled through
Hume’s rigorous formal foundations, reflected in a unified tool chain built around
well-characterised Hume Abstract Machine(HAM), enabling tight articulaltion
of program analysis and implementation.



We have explored the implementation of Hume on both multi-core and FPGA
architectures via the HAM interpreter (hami) [10, 1], which offers consistent
speedup on regular programs. However, FPGA performance is markedly poorer
than on CPUs. We have also explored the direct implementation of Hume on
FPGAs, via C generated from HAM through the standard tool chain, but this
offers poor flexibility for multi-processor exploitation.

Thus, in our current research, we are investigating the direct generation of C
from Hume itself, through a lightweight compiler for the mHume subset, which
generates code that facilitates multi-processor implementations. In this paper, we
present the first results of our experiments, which show both consistent speedup
and very decent performance of multi-box programs on FPGA multi-processors.

2 mHume overview

mHume is a proper subset of Hume, itself based on an automata-like coordina-
tion layer, for describing boxes and wires, and a functional expression layer, for
describing pattern matching and processing within boxes, both sharing a rich
polymorphic type system and definition layer, for describing types, structures
and functions. mHume retains an expression layer restricted to integer arith-
metic but the full core coordination layer, offering considerable potential for
richer expressions in future.

To get some flavour of mHume, consider the following program which gener-
ates squares of successive integers, illustrated in Figure 1.

Box inc generates the integers, and box square generates the squares by
repeated adding and counting, Figure 2.

inc wires output n’ (next integer) to input n, and output r to square’s input
i. On each execution cycle, inc matches the next integer, outputs it to square
via r, and also increments it and sends it back to itself via n’.

square wires outputs s’ (sum), c’ (count) and v’ (current value) back to
the corresponding inputs s, c and v. It also wires input i to inc’s output r, and
its output o to the stream output associated with standard output std out.

Note that for Hume pattern matching, there must be appropriate values on
all inputs for a match to succeed, except for the pattern * which ignores the
corresponding input. Thus, square is composed of three matches:

1. (*,s,0,v) -> (s,*,*,*): ignoring input from inc, if the count is 0 then
output the sum;

2. (*,s,c,v) -> (*,s+v,c-1,v): ignoring input from inc, add the current
value to the sum, decrement the count and retain the current value;

3. (i,*,*,*) -> (*,0,i,i): for the next input from inc, set the sum to 0,
and the count and current value to that input.

The mHume syntax is summarised in Figure 3.
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Fig. 1. Square program.

type integer = int 64;

box inc

in (n::integer)

out (r::integer,n’::integer)

match (n) -> (n,n+1);

box square

in (i::integer,s::integer,

c::integer,v::integer)

out (o’::integer,s’::integer,

c’::integer,v’::integer)

match

(*,s,0,v) -> (s,*,*,*) |

(*,s,c,v) -> (*,s+v,c-1,v) |

(i,*,*,*) -> (*,0,i,i);

stream output to "std_out";

wire inc (inc.n’ initially 0)

(square.i,inc.n);

wire square

(inc.r,square.s’,square.c’,square.v’)

(output,square.s,square.c,square.v);

Fig. 2. Square program Code

3 mHume execution model and compiler

mHume follows closely the Hume two stage execution model. A program executes
repeatedly in cycles during which boxes are alternately in READY (awaiting
input) or BLOCKED OUTPUT (output pending)states. Initially, all boxes are
READY .

On each cycle, at the match stage, only a READY box may attempt to match
inputs. If it succeeds, it generates pending outputs and becomes BLOCKED OUTPUT .
At this stage, no inputs are consumed or outputs asserted. Then, at the super
step stage, only a BLOCKED OUTPUT box may attempt to assert pending
outputs. Provided all the previous outputs have been consumed, it consumes its
inputs, asserts its outputs and becomes READY . Note that this input/output
behaviour is very similar to AlgolW’s “call by value result”.

mHume is compiled to C by a very simple multi-pass, syntax directed pro-
cessor, written in Haskell, and closely aligned to the execution model. We con-
sciously generate a very restricted subset of C (declaration, assignment, condi-
tion, jump), to simplify potential cost analysis in future.

Compilation proceeds as follows:



program → [component;]+

component → box | wire | stream | typedef
box → box id in (links) out (links) match matches
links → link [, links]∗

link → var::type
matches → match [| matches]∗

match → pattern -> exps
pattern → patt [, pattern]∗

patt → int | var | ∗
exps → exp [, exps]∗

exp → int | var | ( exp ) | exp op exp | ∗
op → + | - | * | /
wire → wire id (inwires) (outwires)
inwires → inwire[, inwire]∗

inwire → id[.var[initially int]]
outwires → outwire[, outwire]∗

outwire → id[.var]
stream → stream id { from | to } " path "

typedef → type var = type
type → var | int int

Fig. 3. mHume syntax.

1. for each box id, generate int variables:
(a) idstate for the execution state (0=READY ; 1=BLOCKED OUTPUT );
(b) idPATT for the number of the most recently successful match;
(c) idI/Oi for the ith input/output link value;
(d) idIiSTATE for the ith input link status flag (0=EMPTY ; 1=FULL);

2. set all box states to READY ;
3. generate wire initialisation;
4. generate match stage: for each READY box; for each match:

(a) for each patt:
i. for non-ignore (*) patt, check if corresponding input link FULL;
ii. for constant patt, check input has required value;

(b) if all patts satisfied:
i. set corresponding input status flags to EMPTY ;
ii. remember that this pattern succeeded;
iii. set appropriate output links to exp values, taking var values from

corresponding input links;
iv. set box status to BLOCKED OUTPUT .

5. generate super step stage: for each BLOCKED OUT box, for each match:
(a) if match succeeded, if all inputs links wired to outputs links EMPTY :

i. copy non-ignore (*) output links to input links and set input link
status flags to FULL;

ii. set box status to READY

Note that the N patterns in a match are numbered from 0 to N − 1.
For example for the second match of box square above:



(*,s,c,v) -> (*,s+v,c-1,v) |

the C generated for intialisation, and the match and super step stages, is:

1. int squareSTATE; int squarePATT;

2. int squareI0; int squareI0STATE; ...

3. int squareI3; int squareI3STATE;

4. int squareO0; ... int squareO3;

...
5. squareSTATE = 0;

...
6. squareI0STATE = 0; ... squareI3STATE = 0;

...
7. square1:
8. if(squareI1STATE == 0) goto square2;

9. if(squareI2STATE == 0) goto square2;

10. if(squareI3STATE == 0) goto square2;

11. squareI1STATE = 0; ... squareI3STATE = 0;

12. squarePATT = 1;

13. squareO1 = squareI1+squareI3;

14. squareO2 = squareI2-1;

15. squareO3 = squareI3;

16. goto squareSUCC;

...
17. squareSUCC:
18. squareSTATE = 1;

...
19. if(squareSTATE == 0) goto squareENDSUPER;

...
20. squareSPATT1:
21. if(squarePATT != 1) goto squareSPATT2;

22. if(squareI1STATE != 0) goto squareSPATT2;

23. if(squareI2STATE != 0) goto squareSPATT2;

24. if(squareI3STATE != 0) goto squareSPATT2;

25. squareI1 = squareO1; squareI1STATE = 1;

26. squareI2 = squareO2; squareI2STATE = 1;

27. squareI3 = squareO3; squareI3STATE = 1;

28. squareSTATE = 0;

29. goto squareENDSUPER;

...

Line 1 defines execution and pattern state variables. Lines 2 to 3 define variables
and status flags for the input links. Line 4 defines variables for the output links.
Line 5 sets the initial box execution state to READY . Line 6 sets the input
status flags to EMPTY .

In the execution stage, at line 7, the first match has failed. For the second
match, lines 8 to 10 check that required inputs are FULL. Line 11 sets the input
status flags to EMPTY and line 12 sets the pattern state to 1 to indicate that
the second match succeeded. Lines 13 to 15 set the outputs to the corresponding
expressions.



On completion of the box execution, line 18 sets the box state to BLOCK OUTPUT .
In the superstep stage, line 19 checks that the box state is BLOCKED OUT .

Then, at line 20, the first match had not succeeded. Line 21 checks that the
second match succeeded. Lines 22 to 24 check that inputs corresponding to
outputs are EMPTY . Lines 25 to 27 copy outputs to inputs and set status flags
to FULL. Line 28 sets the box execution status to READY .

While there is some avoidance of redundant jumps, code generation is, over
all, naive. Opportunities for improvement include simplification of self wired
matches, where a box’s outputs are only to its own inputs.

4 MicroBlaze FPGA architecture

FPGAs are versatile configurable electronic devices that can be utilised as ac-
celerators to implement tailored computational logic specific to the application
being executed. Moreover, these components can be reconfigured at any time for
new applications, making it possible to perform a wide range of tasks. Thanks
to the continuing advances in CMOS technology, as with cores following Moore’s
law, FPGAs have now arrived at a stage where they form a viable alternative
to Application-Specific Integrated Circuits (ASICs) for many applications.

Craven and Athanas [4] have identified major performance disadvantages of
FPGAs compared to microprocessors:

– The maximum clock frequency for FPGAs is typically a few hundred MHz,
while non-embedded microprocessors typically run at a few GHz.

– The FPGA’s configurability comes at the cost of a large overhead (compared
to equivalent-functionality ASICs).

– Floating-point arithmetic on FPGAs is very resource-intensive compared to
integer arithmetic (comparable to CPUs without a FPU)

Despite these disadvantages FPGAs are still able to outperform micropro-
cessors because:

– FPGAs are used to design specialised circuits for specific tasks.
– All the logic on the FPGA can be utilised to perform the specific task.
– FPGAs deliver a vast amount of fine-grained parallelism.
– FPGAs offer huge memory bandwidths through configurable logic, on-chip

block RAMs, and local memories.

In particular, contemporary soft-core FPGA architectures enable high degrees
of flexible and scalable parallelism.

The MicroBlaze soft processor core The MicroBlaze is a 32-bit RISC (re-
duced instruction set computer) synthesizable soft processor core developed and
maintained by Xilinx Inc [16]. It is specifically designed for Xilinx FPGAs and
therefore makes efficient use of their resources. The resource utilization of the



MicroBlaze is significantly smaller. Furthermore, the MicroBlaze has a solid doc-
umentation and can easily be extended by user defined IP(Intellectual Property)-
blocks. Xilinx provides a complete development environment (EDK) to configure
the processor and all attached IP-blocks. The EDK includes a complete GNU-
tool chain for the software part.
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Fig. 4. MicroBlaze core structure

Figure 4 depicts the MicroBlaze building blocks which include:
– general purpose registers,
– instruction word with three operands and two addressing modes,
– instructions and data buses that comply with IBM’s OPB (On-chip Periph-

eral Bus) and PLB (Processor Linker Bus) specification, and provide direct
connection to on-chip block RAM through LMB (Local Memory Bus),

– instructions to support FSL (Fast Simplex Link),
– and, hardware multiplier.

The MicroBlaze core implements a Harvard architecture. This means that
it has separate bus interface units for data and instruction access. Each bus
interface unit is split further into a Local Memory Bus (LMB) and IBM’s PLB
and OPB buses. The LMB provides single-cycle access to on-chip dual-port block
RAM. The PLB and OPB interfaces provide connection to both on and off chip
peripherals and memory.

4.1 FSL: Fast Simplex Link

The FSL is a fast interface supported in the MicroBlaze architecture by dedicated
low cycle count read and write operations. FSL is formed by an (asynchronous)
32-bit FIFO of configurable depth. This architecture allows high throughput with
low latency and simple data handling. The FSL is always a dedicated connection
to or from a single component. In the board we use for the experiment in this
paper, the MicroBlaze core provides 16 input and 16 output interfaces to FSL
channels. Finally, the presence of these FSL channels motivates our choice of the
MicroBlaze as a soft core, as it allows us to create a true network of processors.
The resulting multi-core architecture has a very high total bandwidth and is
entirely free of the traditional bus bottleneck.



5 Parallel FPGA design

5.1 Hardware Apparatus

In our experiment we used the Xilinx Univesity Program (XUP) Virtex-II Pro
Board. It provides an advanced hardware platform that consists of a high perfor-
mance Virtex-II Pro FPGA surrounded by a comprehensive collection of periph-
eral components that can be used to create a complex system and to demonstrate
the capability of the Virtex-II Pro Platform FPGA. The Virtex-II Pro contains
two embedded PowerPC 405 cores and a 10/100 Ethernet PHY device. The
board provides up to 2GB of double data rate SDRAM, an RS-232 DB9 serial
port, an Ethernet port, up to 256MB of CompactFlash storage, four LEDs and
four switches, a 100MHz system clock and a 75MHz SATA clock. It also includes
support for JTAG-over-USB FPGA configuration bit-streams.
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Fig. 5. Parallel Architecture Design

5.2 Parallel Design

In our parallel FPGA design we constructed six MicroBalzes which are fully
connected in parallel as show in Figure 5. The communication handler in the
MicroBlazes is connected to the FSL ports (subsection 4.1). To increase distri-
bution between the MicroBlazes we design a full mesh topology. To fulfil our
network topology design each MicroBlaze uses five FSL buses to communicate



with the other MicroBlazes. We, also, configure the depth of each FSL bus FIFO
to one, to realise the Hume super-schedule strategy and at the same time to al-
low each MicroBlaze to clock at different rates. Using FSL bus for communicate
between MicroBlazes provides a master-slave parallel model, i.e, when a MicroB-
laze writes to the FSL bus, it will act as a master on the FSL bus and the receiver
MicroBlaze from the FSL bus will be consider as a slave to the FSL bus. For in-
stance as shown in Figure 5, MicroBlaze 0 (uBlaze0) uses port uBlaze0 to fsl 0
to write to FSL 0 (fsl 0) and FSL 0 uses port fsl 0 to uBlaze1 to write to
MicroBlaze 1 (uBlaze1). In this scenario MicroBlaze 0 is a master and MicroB-
laze 1 is a slave. In our design due to the single depth of the FSL bus, at the
moment when MicroBlaze 0 (master) writes on FSL 0, FSL 0 makes the data
available to MicroBlaze 1 (slave) and it prevents MicroBlaze 0 from writing again
to FSL 0 until MicroBlaze 1 reads the data from FSL 0.

6 mHume on FPGA

6.1 Crafting mHume to Run on the FPGA

Sequential FPGA Design: The generated C code from the mHume compiler
assumes the presence of a POSIX-style operating system that takes care of I/O,
memory allocation and thread/process-level parallelism. However, an operating
system is an unjustifiable overhead in the case of deploying mHume generated C
code on the FPGA: the FPGA will typically be used as an accelerator on a host
system, and the host will take care of I/O; as we will see further, we have no
need for file system access, processes or threads either. As a consequence, it was
essential to rearrange the generated C code to be free of OS-specific functionality.
For instance, relying on the OS timer to coordinate wires had to be adjusted
to use library functions which access the processor cycle count registers instead.
Moreover, all memory allocations for wires and boxes had to be adapted to a
static allocation instead of using malloc-style dynamic assignment. More impor-
tantly, embedded hardware systems like FPGA lack the file system concepts,
which means mHume implementations had to be enhanced to read input files
through dedicated ports on the FPGA board.

Parallel FPGA Design: The sequentially running C code has to be split be-
tween the designed MicroBlazes on the FPGA. Each mHume box will be assigned
to a separate MicroBlaze. All communications between boxes occur through the
FSL channels which achieve completely lock-free communication between boxes.
There is no need to synchronise two communicating boxes: since any output
written during one mHume scheduling cycle will never be read before the sub-
sequent cycle, and since the subsequent cycle will not be scheduled before all
output is completed, it follows that a box/MicroBlaze can never start to read
data before it has completely finished its output.
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6.2 From mHume to FPGA

Figure 6 illustrates the steps of moving the generated C code of mHume to the
FPGA. The figure is revamped from the Xilinx ’s on-line support documenta-
tions [15]. The figure includes software and hardware flow. These flows describe
the Xilinx development tools for MicroBlaze system building process. They in-
clude Microprocessor Hardware Specification (MHS) and Microprocessor Soft-
ware Specification (MSS) files to define hardware and software systems. In our
sequential approach from mHume to FPGA, those files have been generated
automatically using the Xilinx EDK wizard system, with minor changes to sim-
plify the memory connection, Local Access Memory (LAM), with the Multi-Port
Memory Controller (MPMC), to fit with mHume’s wire and box design. These
hardware and software system files provide the core to build the MicroBlaze
system automatically using Xilinx EDK tools.

For the purpose of our parallel design we had to implement manually the
parallel MicroBlazes in the MHS file. Adding an extra MicroBlaze to the design
is a bit more than making a replica of one generated by the Xilinx EDK wizard.
Each MicroBlaze use the Local Memory Bus (LMB) to access the on-chip block
RAM, and it uses data and instruction LMB. The on-chip block RAM has to be
divided between the participant MicroBlaze processors with the consideration
that each MicroBlaze can not allocate more than 8KB for itself. For the Mi-
croBlazes to be able to communicate, FSL buses have to be implemented in the
design as coprocessors. Also each MicroBlaze must be aware of the master FSLs,
which transfers data to the MicroBlaze, and the slave FSLs, which receives data
from the specified MicroBlaze.

Subsequently, the EDK tools integrate the MicroBlaze cores and the appro-
priate peripherals, and create custom-built C libraries and drivers. After this, the



EDK uses the Platform Generator and Library Generator tools, in the hardware
and software flows respectively, to setup the particular hardware and software for
the corresponding design. In our implementation, platform and library generator
tools have to be configured to select our defined STDIN/STDOUT peripherals,
map the added peripherals to the appropriate drivers, specify the correct heap
and stack size, map the stack and heap to correspondent memory, and set the
correct boots and debug options for the mHume.

At this stage, the generated mHume C file for each MicroBlaze use the Library
Generator to build system-specific library C functions that map the mHume gen-
erated C functions with the peripherals functions and configure the C libraries.
For clarification, the Library Generator uses the provided mHume configura-
tion to setup the STDIN/STDOUT for the generated C files using the STDIN
and STDOUT attributes in the MSS file and the INBYTE and OUTBYTE at-
tributes in the Microprocessor Peripheral Definition (MPD) file. Moreover, the
Library Generator writes a xparameters.h header file which must be included in
the header files. The xparameters.h file provides essential information for driver
function calls and the base addresses of the peripherals in the system. Moreover it
includes the communication ID for each FSL bus which is the only identification
MicroBlazes uses for communication over the FSL bus interface.

Then the EDK uses the Platform Generator to build the hardware files, which
include the system netlists and HDL code and BlockRAM netlists initialised
with the program code. These hardware files are then used by the synthesis
toolchain to create the final hardware system (i.e. the MicroBlaze processor and
its peripherals) on the FGPA.

7 Software Apparatus

To examine the implementation of our parallel FPGA design, we structured a
mHume example with six boxes, multi-sq. The first box, gen, similar to gen
above, generates an integer number and passes it to four other boxes. These
boxes, sq1, sq2, sq3 and sq4, all similar to square above, calculate the square of
the integer received from the gen box by using iterative sum and count opera-
tions, and then each box passes its output to the conq box. The conq box sums
all the values it has received and prints the output to the STDOUT. After this,
the program proceeds to the next cycle and the gen box increases the generated
value by one. The multi-sq program repeats this cycle N times according to the
user input. The source code of the program can be obtained from [9].

To run this example in the parallel FPGA design described above, we assign
each box to a different MicroBlaze as shown in Figure 7

8 Evaluation

In this section we report and analyse the performance of the multi-sq example,
comparing the performance of the parallel FPGA with the performance of both
a sequential FPGA design and an Intel PC with a 2.33 GHz CPU. We also



Input
Run-time (s)

Speedup6 MicroBlaze Intel Xeon
100 MHz 2.33GHz

10 0.0000023 0.000005 2.17

100 0.0000203 0.00026 12.80

500 0.0001003 0.006319 63.00

1000 0.0002003 0.025267 126.14

1500 0.0003003 0.053642 178.62

2000 0.0004003 0.091355 228.21

3000 0.0006003 0.199057 331.59

4000 0.0008003 0.35047 437.92

5000 0.0010003 0.545584 545.42

10000 0.0020003 2.170327 1085.00

Table 1. Run-time (s) performance

Input
Clock Cycle

Speedup6 MicroBlaze Intel Xeon
100 MHz 2.33GHz

10 230 11650 50.65

100 2030 605800 298.42

500 10030 14723270 1467.92

1000 20030 58872110 2939.19

1500 30030 124985860 4162.03

2000 40030 212857150 5317.44

3000 60030 463802810 7726.18

4000 80030 816595100 10203.61

5000 100030 1271210720 12708.29

10000 200030 5056861910 25280.51

Table 2. Clock cycle performance

compare the performance of optimised and non-optimised hand written pure C
code for the multi-sq program in the sequential architectures and the parallel
FPGA design.

8.1 Parallel FPGA Performance vs Sequential FPGA and Intel PC

In Tables 1 and 2, the first column shows the user input to the multi-sq program.
The second column reports the run-time using the parallel FPGA design and
utilising six MicroBlazes of 100MHz, in Seconds and Clock Cycle respectively.
The third column, in both Tables 1 and 2, reports the run-time using a Intel
Xeon PC with 2.33 GHz, in Seconds and Clock Cycle respectively. Finally, the
last column, in both tables, indicates the performance improvement, speedup,
between the parallel and sequential run-time.

The performance reported in Tables 1 and 2 shows a clear indication of the
massive improvement in the performance under the parallel FPGA design. The
advancement of the performance is more evident when clock cycles are compared
due to the wide gulf here between the MicroBlaze (100MHz) and the Intel PC
(2.33GHz). This immense enhancement of the performance is ascribed to a couple
of reasons: the obvious one which is related to the parallel architecture and the
ability to evaluate all the six boxes in the program simultaneously at the same
moment.

The second reason is imputed to the realisation of the mHume super step
(Section 3) in our parallel FPGA design. The super step in mHume guarantees
that all boxes are at the same level of evaluation; this means they are required
to wait for the slowest box regardless of whether or not its output is relevant
to any of the other boxes to be in the next stage of evaluation. The super step
restriction produces the quadratic behaviour of the multi-sq example as reported
in Tables 1 and 2.

In the parallel FPGA implementation, the super step and wiring of mHume
is carried out by the FSL buses. To ensure that the parallel FPGA design has



the same guaranteed level of correctness that the super step pledges by restrict-
ing the boxes to the same level of evaluation, FSL buses have been formed by
a single depth of an asynchronous FIFO. For instance in the multi-sq example,
the gen box generates set of data/inputs to sq1, sq2, sq3 and sq4 boxes, and the
data is pushed to the correspond FSL buses. At this stage gen is not restricted
to wait to coordinate with other boxes to read and evaluated the anticipate data
from the buses, as expected from the mHume super step design. On the con-
trary, gen starts its next cycle and produces the next set of data. However, if
the generated data is to be pushed to FSL buses where the boxes corresponding
to the previous set of data had failed to pull it out, the gen box status becomes
BLOCKED OUTPUT until the other boxes pull out the data from the FSL
buses. This will ensure the correctness of the program and avoid any possible
conflicts between boxes with regards to evaluations. Moreover, this strategy en-
hances the performance of the program under the parallel FPGA design as shown
in the linear scale of performance in regard to the size of input.

8.2 Parallel FPGA Design Performance Against Hand Written C

For a sanity check, in this subsection we compare the performance of our parallel
FPGA design and an Intel Xeon PC against a hand written C implementation
of the multi-sq example. In this comparison we use two different hand written
C implementations, a fully optimised one and a completely non optimised code
for the same problem. The C code to be run on the parallel FPGA is compiled
and optimised using Xilinx gcc compiler.

Input
Run-time (s) Speedup

MicroBlaze, 100 MHz Intel Xeon, 2.33GHz based on
Seq Par 6 Optim NO Optim Seq Optim NO Optim

10 0.00002 0.000001 0.000001 0.000003 17.89 0.83 2.50

100 0.00029 0.000009 0.000002 0.000069 31.39 0.22 7.42

500 0.00175 0.000045 0.000008 0.001550 38.67 0.18 34.22

1000 0.00376 0.000090 0.000015 0.006117 41.66 0.16 67.74

1500 0.00589 0.000135 0.000022 0.013691 43.54 0.16 101.19

2000 0.00804 0.000180 0.000029 0.023655 44.61 0.16 131.20

3000 0.01256 0.000270 0.000043 0.04901 46.47 0.16 181.32

4000 0.01712 0.000360 0.000058 0.086294 47.53 0.16 239.51

5000 0.02187 0.000450 0.000072 0.132634 48.58 0.16 294.55

10000 0.04635 0.000900 0.000143 0.518483 51.48 0.16 575.90

Table 3. Run-time performance of running C code of the multi-sq example on embed-
ded processors versus desktop PC

In Table 3, the first column shows the input values for multi-sq. The second
and third columns report the execution time using a single MicroBlaze and a



Input
Clock Cycle Speedup

MicroBlaze, 100 MHz Intel Xeon, 2.33GHz based on
Seq Par 6 Optim NO Optim Seq Optim NO Optim

10 2147 120 2330 6990 17.89 19.42 58.25

100 29193 930 4660 160770 31.39 5.01 172.87

500 175177 4530 18640 3611500 38.67 4.11 797.24

1000 376253 9030 34950 14252610 41.67 3.87 1578.36

1500 589105 13530 51260 31900030 43.54 3.79 2357.73

2000 804405 18030 67570 55116150 44.61 3.75 3056.91

3000 1256109 27030 100190 114193300 46.47 3.70 4224.69

4000 71712709 36030 135140 201065020 47.54 3.75 5580.49

5000 2187709 45030 167760 309037220 48.58 3.73 6862.92

10000 4635317 90030 333190 1208065390 51.49 3.70 13418.48

Table 4. Clock cycle performance of running C code of the multi-sq example on em-
bedded processors versus desktop PC

parallel design of six MicroBlazes respectively. The fourth and fifth columns out-
line the run-time of the optimised and non-optimised C code using Intel Xeon
PC with 2.33 GHz CPU. The last three columns reveal the run-time improve-
ment, speedup, of the C code using the parallel FPGA design of six MicroBlazes
against the single MicroBlaze and the Intel PC running the optimised and non
optimised C implementation. Table 4 discloses the clock cycle for the run-times
presented in Table 3, and reports the performance based on the clock cycle.

The performance results reported in Table 3 show sustained improvement
of the hand written C code under the parallel FPGA design, particularly in
comparison with the single MicroBlaze and the non optimised code performance.
A marginal improvement against the optimised C code is is shown in the seventh
column of the table. However, Table 4 exhibits preferable capabilities for the
parallel design when clock cycle is considered for measurement, even against the
optimised C code. The FPGA board used in this experiment is about 10 years
old: a more recent board will have faster a clock cycle than the current 100MHz
per MicroBlaze and that will result in a smaller run-time and an improvement
in the performance against the Intel PC architecture.

9 Related Work

There have been some attempts to extend functional-based programming lan-
guages to use FPGAs:

– Lava [2, 3] extends Haskell with operations that allow the high-level descrip-
tion of FPGA circuits.

– Intel’s reFLect [6] is strongly typed and similar to ML, but with quotation
and anti-quotation constructs. Its features are intended for applications in
hardware design and verification.



– MetaML [13] is very similar to Intel’s reFLect with more direct focus on
program generation, and control and optimization of evaluation.

– Template Haskell [14] is also focused on program generation, and the control
and optimization of evaluation. To support this it generates code at compile
time. An example of a HDL embedded in Haskell using Template Haskell
can be found in [12].

– The functional derivation approach is used for deriving FPGA circuits from
Haskell specifications [8].

– The Reduceron is an FPGA-based reduction machine targeting Haskell [11]

Our work, as presented in this paper, is novel in adopting a soft processor
approach and in attempting to follow a complete development path from source
language to target FPGA hardware.

10 Conclusion

We have shown that a simple model of, and compilation route for, mHume can
deliver very decent parallel performance on an FPGA, through direct realisation
of box concurrency on MicroBlaze soft cores.

mHume is, of course, an experimental language, with data and computation
constructs restricted to integers. Nonetheless, as mHume includes the key fea-
tures of Hume’s coordination layer, our preliminary results give us confidence
that equally good performance can be achieved for increasingly large Hume sub-
sets. Thus, we next plan to systematically extend mHume with: character, float
and string types; vectors; input/output; and auxilliary definitions of functions
and constructed types.

Our compiler generates sequential C and substantial hand modification is
needed to parallelise it. Thus, a key priority is to fully automate the generation
of C with appropriate concurrency constructs, both for MicroBlaze and wider
multi-core execution. This will then support mHume execution on heterogeneous
systems combining multi-core with FPGA, in the first instance by user nomina-
tion of box placement, and, in the longer term, with automatic placement driven
by cost analysis.

In the longer term we also plan to further optimise the C generated for
mHume, in particular by identifying self-output boxes, and by implementing the
Hierarchical Hume box encapsulation[5].
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