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Abstract. Hume is a novel language in the functional tradition, strongly
oriented to systems requiring strong guarantees that resource bounds are
met. To facilitate resource assurance, Hume enforces a separation of co-
ordination and computation concerns, and deploys an abstract machine
intermediary between implementations and analyses. These core design
decisions also enable a high degree of portability across architectures
and suit Hume well to multi-processor implementations. This papers
considers how Hume may be implemented on FPGAs via concurrent ab-
stract machines. Initial results from experimental implementations are
discussed and the design of a novel FPGA architecture tailored to Hume
coordination is presented.
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1 Introduction

For some little time now, it appears that further advances in single CPU perfor-
mance have been checked, and that increases in processor speed for commodity
platforms are being sought primarily through multiple-cores. Indeed, much is
made of soon deploying tens, and indeed hundreds, of cores in one processor,
with thread allocation and scheduling controlled transparently by compilers an
run-time systems. However, making effective use of multiple cores will still be
bound by well known limitations to shared memory multi-processor systems.
Essentially, except for very specific algorithms processing very specific patterns
of data, shared memory multi-processor performance tails of markedly beyond
around 16 processors. It then becomes more effective to build distributed mem-
ory assemblies of shared memory nodes, with all the attendant complexities of
scheduling and balancing activites, and optimising inter-processor communica-
tion, across as well as within nodes.

Field programmable gate arrays (FPGAs) hold considerable promise for
avoiding the constraints on von Neumann architectures, by offering the prospect
of tailoring low level platforms to higher level algorithms, programs and systems.
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However, programming FPGAs in hardware design languages like VHDL or Ver-
ilog is notoriously difficult, requiring considerable skill in realising program level
constructs directly in hardware level components.

There is much research into using higher order languages for programming
FPGAs, often based around extensions to or libraries for functional languages,
where the combination of polymorphism and function abstraction simplify the
elaboration of high level FPGA configurations and assemblies. While these lan-
guages may greatly ease programming, they still have strong low-level orien-
tations, and rely on increasing sophistication in compiler technology to avoid
sub-optimal use of FPGA resources.

Recently, there has been considerable interest in using FPGA cores for com-
modity CPUs as the basis of direct implementations of extant programs. While
such cores on a general purpose FPGA necessarily offer worse performance than
the equivalent CPU chip, they also offer considerably more flexibility. In partic-
ular, contemporary “soft core” architectures such as Xilinx’s microBlaze make
feasible the assembly and configuration of arbitrary numbers of processors within
a single FPGA, without necessarily encountering the constraints of traditional
shared and distributed memory von Neumann-based systems.

In this paper we explore a number of different routes to implementing Hume
on FPGAs via CPU cores, via the Hume abstract machine (HAM). Our initial
experiments were with direct implementations of the HAM on a single Power
PC core, for whole program execution. We are now exploring the use of the
microBlaze architecture to support the coordination of multiple Hume abstract
machines, each concurrently running one or more Hume boxes. In the following
sections we survey Hume and its execution model, consider routes from software
to FPGA, present our chosen FPGA architecture, and discuss our whole program
and concurrent box implementations of Hume.

2 The Hume language

Hume [8] is a functionally-based domain-specific high-level programming lan-
guage for real-time embedded systems. Hume is designed as a layered language
where the coordination layer is used to construct reactive systems using a finite-
state-automate based notation; while the expression layer is used to structure
computations using a strict purely functional rule-based notation that maps pat-
terns to expressions. The coordination layer expresses reactive Hume programs
as a static system of interconnecting boxes. If each box has bounded space cost
internally, it follows that the system as a whole also has bounded space cost.
Similarly, if each box has bounded time cost, a simple schedulability analysis
can be used to determine reaction times to specific inputs, rates of reaction and
other important real-time properties.

Moreover, Hume is based on strong semantic underpinnings and is supported
by a mature tool-chain centred around the Hume Abstract Machine (HAM).
This provides a stable, shared abstraction for both implementation and analysis.
The HAM interpreter (Hami) directly executes HAM code, the Hume compiler
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(HumeC) translates HAM code to native code through C, and the resource
analysers relate statically-inferred properties of HAM to precise instrumentation
of equivalent native code on designated hardware platforms, Figure 1.

2.1 Hume Super-step Scheduling

Hume schedules its boxes and wires inside a program using the ”super-step”
scheduling system. At its simplest, a Hume box consists of a set of input wires, a
set of output wires and a set of matches, where each match associates a pattern
over the inputs with an expression over the outputs. As noted, a Hume program
then consists of one or more Hume boxes linked to each other, and to the external
environment, by wires. The wires thus effectively constitute a shared memory
channel between two boxes. Each box may also have additional local memory
for inputs, working store, and buffered outputs.

It is important to note that an individual Hume box effectively constitutes
an autonomous program that runs continuously, repeatedly matching and con-
suming inputs to generate new outputs. The Hume semantics specifies a very
abstract model of such execution based on a “super-step” scheduling model,
which divides program execution into a series of scheduling cycles. Each and
every box in the program may be run at most once during each scheduling cycle.

At the start of each super-step scheduling cycle, all boxes are checked to de-
termine whether they are RUNNABLE. A box is RUNNABLE if it has sufficient
inputs to match one of its rules, and it is not currently blocked producing out-
puts that have not yet been consumed by some other box (in the latter case, it is
in a BLOCKED OUTPUT state). During the first phase of each scheduling cy-
cle, every RUNNABLE box satisfies one of its matches, working on local copies
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of its input values to generate locally-buffered output values. It thus ends this
phase in the BLOCKED OUTPUT state. Note that the order in which boxes
are executed in a super-step is arbitrary and immaterial, and that boxes are
total, meaning that any RUNNABLE box must, by definition, satisfy one of its
matches, and be executed during the super-step.

When every box has completed this phase, input wire consumption and out-
put wire instantiation are next resolved globally. First of all, the input values
matched by new BLOCKED OUTPUT boxes are removed from the correspond-
ing wires. Then, for each BLOCKED OUTPUT box, if all its output wires are
empty then they are set to the new buffered output values and the box may be-
come RUNNABLE in the next cycle. A BLOCKED OUTPUT box with one or
more non-empty output wire will, however, remain in the BLOCKED OUTPUT
state.

A useful exception to this tight-stepped scheduling process can be made by
distinguishing a SELF OUTPUT state, where a box generates outputs solely
for its own consumption [6]. So long as a box is SELF OUTPUT, it may ex-
ecute repeatedly without the need for super-step wire resolution. Conversely,
not distinguishing such SELF OUTPUT boxes may result in other boxes being
needlessly scheduled without state change, pending some SELF OUTPUT box
consuming their inputs or generating their required outputs.

3 From Hume to FPGA

Hume is supported by several different but closely related implementation tech-
nologies. First of all, the Hume interpreter written in Haskell is based directly on
the formal semantics. While this was a valuable tool during Hume’s design and
development, it gives poor performance and has been superseded by the Hume
compiler family.

The Hume compilers, which share a front end with the reference interpreter,
begin with the phamc translator from Hume to HAM code. The HAM is a gener-
ally familiar functional language abstract machine, which shares many features
with those for Haskell and Standard ML. The HAM code is the key locus of
Hume resource use analysis, but this is not considered further here.

HAM code may be directly interpreted by the hami and its variants, which
are written in C. Alternatively, HAM maybe translated to C by the humec. The
resulting C code may then be compiled to native code, for example by a general
purpose compiler such as gcc.

From the compiler approach, we have (at least) five different ways to imple-
ment Hume on an FPGA. First of all, we might take the native code from the
final stage of compilation and run it on the FPGA core for some CPU. While this
is an easy route for running Hume sequentially on an FPGA, it brings enormous
complications in further FPGA configuration to coordinate multiple boxes on
multiple cores.

Secondly, we might translate the C output of the humec compiler into an
appropriate high level language for direct execution on the FPGA. We have
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demonstrated this approach for sequential execution of whole Hume programs.
However, adapting it to enable coordinated concurrent box execution would
involve considerable intervention in the humec compiler to localise code for indi-
vidual boxes and make explicit either box-to-box coordination or an independent
superstep component.

Third, we might design a new FPGA architecture tailored specifically for
HAM. This would give optimal performance but at substantial effort, and re-
mains a future goal.

Fourth, we might compile the hami to run sequentially on a single core for
some CPU. And fifth, we might realise the HAM interpreter as a stand alone
FPGA program, again compiling it via some appropriate language to act as an
FPGA core for HAM.

The hami might seem to offer worse FPGA performance than native code
on a CPU core or direct implementation from C. Nonetheless, these routes are
relatively low cost and offer promising bases for parallel box implementation,
as the hami cleanly separates individual box execution from the super step.
Furthermore, retaining HAM and the hami greatly ease the instrumentation and
instantiation of the Hume resource analyses on novel architectures. We explore
both of these routes in more detail below.

4 Embedded Systems and FPGAs

4.1 Embedded System

For a simple description, an embedded system is a device that includes a pro-
grammable computer but is not itself a general purpose computer, with real-
time computing constrains. Embedded systems are hard to define, they comprise
nearly all computing systems other than general-purpose computers.

4.2 FPGAs

The invention of Field Programmable Gate Arrays (FPGAs), has provided a rev-
olutionary alternative to custom logic chips. FPGAs are versatile configurable
electronic devices that can be utilised as accelerators to implement tailored com-
putational logic specific to the application being executed. Moreover, these com-
ponents can be reconfigured at anytime for new applications, making it possible
to perform a wide range of tasks.

The MicroBlaze soft processor core The microBlaze embedded soft core is
a reduced instruction set computer (RISC), optimised for Xilinx FPGA imple-
mentations [2].

Figure 2 depicts the microBlaze building blocks which include:

– general purpose registers,
– instruction word with three operands and two addressing modes,
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– instructions and data buses that comply with IBM’s OPB (On-chip Periph-
eral Bus) and PLB (Processor Linker Bus) specification, and provide direct
connection to on-chip block RAM through LMB (Local Memory Bus),

– instructions to support FSL (Fast Simplex Link),
– and, hardware multiplier.

The microBlaze core implements a Harvard architecture. This means that
it has separate bus interface units for data and instruction access. Each bus
interface unit is split further into a Local Memory Bus (LMB) and IBM’s PLB
and OPB buses. The LMB provides single-cycle access to on-chip dual-port block
RAM. The PLB and OPB interfaces provide connection to both on and off chip
peripherals and memory. The microBlaze core also provides 16 input and 16
output interfaces to FSL (Fast Simplex Link) channels. These are unidirectional,
point-to-point non-arbitrated dedicated communication channels.

4.3 FPGAs vs Microprocessors

In the digital world, there are three type of electronic chips: microprocessor,
memory, and logic. Memory chips are used to store information. Microproces-
sors and logic devices, (e.g. FPGAs), are used to manipulate, or interface with
the information contained in memory. From a computer architecture prospec-
tive, FPGAs are ideally suited to exploit parallel execution. However, that does
not imply that FPGAs are better than microprocessor nor that microprocessors
substitute FPGAs.

As described in the report by Mitrionics [3], FPGAs have a couple of major
performance disadvantages compared to microprocessor:

– The maximum clock frequency for FPGAs is a few hundred MHz, while
microprocessors run at a few GHz.

– The FPGA’s configurability comes at the cost of a large overhead.

Despite these disadvantages FPGAs are still able to outperform micropro-
cessors because:

– FPGAs are used to design specialised circuits for specific tasks.
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– All the logic on the FPGA can be utilised to perform the specific task.
– FPGAs deliver a vast amount of fine-grained parallelism.
– FPGAs offer huge memory bandwidths through configurable logic, on-chip

block RAMs, and local memories.

5 Hume approaches to FPGA

5.1 Crafting Hume to Run on FPGA

The Hume compiler and Hume interpreter implementations implicity assume
the presence of a POSIX-style operating system that takes care of I/O, memory
allocation and thread/process-level parallelism. However, an operating system
is an unjustifiable overhead in the case of deploying Hume on the FPGA: the
FPGa will typically be used as an accelerator on a host system, and the host will
take care of I/O; as we will see further, we have no need for file system access,
processes or threads either. As a consequence, it was essential to rearrange the
Hume implementation of the compiler and the interpreter to be free of OS-
specific functionality. For instance, the Hume interpreter relies on the OS timer to
coordinate wires, this had to be adjusted to use use library functions which access
the processor cycle count registers instead. Moreover, all memory allocations for
wires and boxes had to be adapted to a static allocation instead of using malloc
dynamic assignment. More importantly, embedded hardware systems like FPGA
lack the file system concepts, which means Hume implementations had to be
enhanced to read input files through dedicated ports on the FPGA board.

All these adjustments to the Hume implementations have been applied care-
fully to keep the syntax unaltered. By this Hume will continue to provide correct
time and space analysis.

5.2 From Hume to FPGA

Figures 3 and 4 illustrate the steps of Hume compiler (HumeC ) and Hume In-
terpreter (Hami) to FPGA. The figures are revamped from the Xilinx ’s on-line
support documentations [15]. Both figures include the same software and hard-
ware flows. These flows describe the Xilinx development tools for microBlaze
and powerPC system building process. They include Microprocessor Hardware
Specification (MHS) and Microprocessor Software Specification (MSS) files to
define hardware and software systems. In our sequential approach from Hume
to FPGA, those files has been automatically generated using the Xilinx EDK
wizard system with minor changes to simplify the memory connection, Local
Access Memory (LAM), with the memory controller, Multiple Port Memory
Connection (MPMC), to fit with the Hume’s wires and boxes design. These
hardware and software system files provide the core to build, the microBlaze
and powerPC system automatically using Xilinx EDK tools. Subsequently, the
EDK tools integrate the powerPC and microBlaze cores and the appropriate pe-
ripherals, and create custom-built C libraries and drivers. After this, the EDH
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uses platform generator and library generator tools, in the hardware and soft-
ware flows respectively, to setup the particular hardware and software for the
corresponding design. In our implementation, platform and library generator
tools have to be configured to select our defined STDIN/STDOUT peripherals,
map the added peripherals to the appropriate drivers, specify the correct heap
and stack size, map the stack and heap to correspondent memory, and set the
correct boots and debug options for Hume. At this stage, the Hami implemen-
tation for FPGA uses the Library Generator to build system-specific library C
functions that map the interpreter C functions with the peripherals functions
and configure the C libraries, Figure 3. For clarification, the Library Generator
uses the provided Hume configuration to setup the STDIN/STDOUT for the
Hami using the STDIN and STDOUT attributes in the MSS file and the IN-
BYTE and OUTBYTE attributes in the Microprocessor Peripheral Definition
(MPD) file. Moreover, the Library Generator writes a xparameters.h header file
which must be included in the Hami header file. The xparameters.h file pro-
vides essential information for driver function calls and the base addresses of the
peripherals in the system. Then the Hami source code is compiled to a microB-
laze or powerPC binary. The EDK uses the Platform Generator to build the
hardware files, which include the system netlists and HDL code and BlockRAM
netlists initialised with the program code. These hardware files are then used by
the synthesis toolchain to create the final hardware system (i.e. the microBlaze
processor and its peripherals) on the FGPA.

The HumeC flow to the FPGA, Figure 4, imitates the Hami setup as de-
scribed earlier on. However, the HumeC flow produces compiled code for a spe-
cific program implementation which gets download onto the FPGA. In contrast
to the Hami flow which downloads the Hume interpreter to the FPGA and reads
the specific program, converted to the ham intermediate representation, using
the specified port in the peripherals.

6 Hume programs on FPGA

6.1 Hardware Apparatus

In our experiment we used a Xilinx XUP Virtex-II Pro Board. It provides an
advanced hardware platform that consists of a high performance Virtex-II Pro
FPGA surrounded by a comprehensive collection of peripheral components that
can be used to create a complex system and to demonstrate the capability of
the Virtex-II Pro Platform FPGA. The Virtex-II Pro contains two embedded
PowerPC 405 cores and a 10/100 Ethernet PHY device. The board provides up
to 2GB of double data rate SDRAM, an RS-232 DB9 serial port, an Ethernet
port, up to 256MB of CompactFlash storage, four LEDs and four switches, a
100MHz system clock and a 75MHz SATA clock. It also includes support for
FPGA configuration bit-streams.
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6.2 Software Apparatus

To examine our Hume implementations on the FPGA, we considered two exam-
ples, matrix multiplication and simple edge detection.

Matrix Multiplication The matrix multiplication investigated in our exper-
iment considers the usual pure functional matrix multiplication based on a list
representation of matrices. The program consists of one Hume box and multiplies
two matrices of 3*3 size.

Edge Detection In this example we considered a simple edge detection algo-
rithm which takes a 240*240 image and runs a standard convolution method.
This is done by using a Gaussian mask (a 5*5 matrix) and sliding it over ev-
ery viable pixel in the image. An edge is a sharp difference in the intensity of
a pixel and its surrounding elements and the Gaussian mask helps to enhance
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these intensities. The program incorporates six Hume boxes to perform the edge
detection evaluation.

7 Evaluation

As we expected, the sequential performance of both examples using HumeC
and Hami on a single microBlaze and powerPC at 100MHz is worse than the
performance on an Intel PC with 2.5GHz CPU. This is not a surprise, as we
discussed in Section 4.3, but simply follow from the difference in clock frequency.
However, on the FPGA we are not limited to a single sequential processor but we
can deploy Hume on a large number of cores running in parallel. Furthermore,
we can actually tailor the processing core to the Hume language, i.e. create a
concrete version of the HAM, and even to the particular program running on
each box. Furthermore, because of the flexibility in connecting the cores, we do
not face a shared-memory or shared-bus bottleneck. For these reasons we believe
that the parallel FPGA is the right way of our Hume Embedded language to
follow.

There are two main characteristics of FPGAs that leads us to consider FP-
GAs over traditional microprocessors, principally for embedded systems:
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– real-time operation [13], which requires predictable performance from the
architecture. This does not mean that the architecture has to be trivial,
such as eliminating caches. It does mean that the architectural elements
have to behave predictably enough so that the compiler and programmer
can plan how to achieve the required computation rates in critical parts of
the system. As we explained in Section 5.2, the FPGA programming tools
provide the apparatus to obtain the feasible design for Hume implementation
in embedded system. Essentially, the Hume programming language has been
designed to enable highly accurate analyses of software component resource
use [10, 11].

– low-power and energy operation [16], the most concerned aspects of this to
parallel programming are that the architecture’s energy and power consump-
tion characteristics must be as predictable as possible. However, in particular
in embedded systems, low-power operation is essential to prolong battery life,
and due to their low clock speeds, power consumption of FPGAs is an order
of magnitude lower than for microprocessors.

8 Future Work

Based on our evaluation discussed on the previous section, we designed a parallel
realisation of Hume in the FPGA, Figure 5.

In this design, Hume boxes will be evaluated in parallel since each box will
be assigned to a separate microBlaze. FPGA provides communication channels
FSL [1], Section 4.2. The FSL channel are dedicated unidirectional point-to-point
data streaming interface. All communications between boxes will be through the
FSL channels which, we believe, will achieve completely lock-free communication
between boxes. There is no need to synchronise two communicating boxes: since
any output written during one Hume scheduling cycle will never be read before
the subsequent cycle, and since the subsequent cycle will not be scheduled before
all output is completed, it follows that a box/microBlaze can never start to read
data before it has completely finished its output.

9 Related Work

There have been some attempts to extends functional-based programming lan-
guages to use FPGAs,

– Lava [4, 5], it extends Haskell with operations that allow the high-level de-
scription of FPGA circuits.

– Intel’s reFLect [7]: it is strongly typed and similar to ML, but has quota-
tion and anti-quotation constructs. Its features intended for applications in
hardware design and verification.

– MetaML [12], it is very similar to Intel’s reFLect with more direct aim on
program generation and control and optimization of evaluation.
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– Template Haskell [14], it aims at program generation and the control and
optimization of evaluation. To support this it generates code at compile time
which allows the programmer to implement such features as polytypic pro-
grams, macro-like expansion, user directed optimization (such as inlining),
and the generation of supporting data structures and functions from existing
data structures and functions.

– The functional derivation approach, for deriving FPGA circuits from Haskell
specifications [9].

Our work, as presented in this paper, is novel in adopting a soft processor
approach and in attempting to follow a complete development path from source
language to target FPGA hardware.

10 Conclusion

In this paper, we have presented our motivation for deploying programs written
in Hume, a functional language aimed at systems requiring strong guarantees on
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resource bounds, onto FPGAs. We have discussed our preliminary experiments
and findings and outlined the route we are currently exploring to exploit the
FPGA’s potential for parallelism, i.e. by creating a network of soft processors
which will run Hume programs in a truly concurrent fashion.
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