
Code or (not Code) – Separating Formal and Natural
Language in CS Education

Quintin Cutts
School of Computing Science

University of Glasgow
Glasgow, Scotland
+44 141 330 5619

Quintin.Cutts@glasgow.ac.uk
Peter Donaldson

Dept. of Computing Science
Crieff High School

Crieff, Scotland
+44 1764 657600

PWDonaldson@pkc.gov.uk

Richard Connor
Computer & Information Sciences

University of Strathclyde
Glasgow, Scotland
+44 141 548 3424

Richard.Connor@strath.ac.uk
Greg Michaelson

Dept. of Mathematical & Computer Sciences
Heriot-Watt University
Edinburgh, Scotland
+44 131 451 3422

G.Michaelson@hw.ac.uk
ABSTRACT
This paper argues that the “institutionalised understanding” of
pseudo-code as a blend of formal and natural languages makes it
an unsuitable choice for national assessment where the intention is
to test program comprehension skills. It permits question-setters
to inadvertently introduce a level of ambiguity and consequent
confusion. This is not in keeping with either good assessment
practice or an argument developed in the paper that CS education
should be clearly fostering the skills needed for understanding
formal, as distinct from natural, languages. The argument is
backed up by an analysis of 49 questions drawn from the national
school CS examinations of a single country, spanning a period of
six years and two phases – the first in which no formal pseudo-
code was defined, the second in which a formal reference
language, referred to as a “formally-defined pseudo-code", was
provided for teachers and exam setters. The analysis
demonstrates that in both phases, incorrect, confusing or
ambiguous code was presented in questions. The paper concludes
by recommending that the term reference language should be
used in place of pseudo-code, and an appropriate formally-defined
language specified, in national exam settings where a common
language of assessment is required,. This change of terms
emphasises the characteristics required of a language to be used
for assessment of program comprehension. The reference
language used in the study is outlined. It was designed by the
authors for human readability and also to make absolutely explicit
the demarcation between formal and informal language, in such a
way that automated checking can be carried out on programs
written in the language. Formal specifications and a checker for
the language are available.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education---computer science education

General Terms
Human Factors, Languages.

Keywords
assessment, comprehension, language, program, pseudo-code,
reference

1. INTRODUCTION
The importance of program comprehension (PC) has been raised
in many studies as a key developmental step towards learning how
to program. Such work has typically concentrated on two key
aspects:

· Connecting localised elements of the code through to the
concepts and mechanisms that underpin the programming
language, e.g. [16].

· Appreciating higher-level idiomatic use of the low-level
language constructs, maybe spanning multiple lines, and
variously called plans, chunks, patterns, e.g. [6,7,13,18].

This paper argues that a third aspect should also be considered:

· Recognising that the processes used to understand texts
written in formal and natural languages are significantly
different.

This third aspect is proposed because programming languages are
in the category of formal languages whose syntax contains very
limited redundancy and whose sentences each have one single
meaning in accordance with the programming language definition.
This is in stark contrast to natural languages with their high levels
of redundancy and sentences that can often be ambiguous. The
comprehension skills for the two kinds of language are therefore
necessarily different, as will be explored in the paper.

This difference in formal and natural languages and the
consequent differences in comprehension styles should be made
clear in our educational programmes, along with specific guidance
on how to approach the understanding of formal languages.
Although noted as the third aspect above, it is really the first one,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honoured. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.

WiPSCE '14, November 05 - 07 2014, Berlin, Germany
Copyright 2014 ACM 978-1-4503-3250-7/14/11…$15.00
http://dx.doi.org/10.1145/2670757.2670780

as it underpins the ability to address the others. One might think
that a mathematical background would be a good foundation for
the right kind of reading skills, given mathematics’ use of formal
language and exposure to it from an early age. However, this
comment from an undergraduate university student, studying on a
computational thinking skills course and reported in [5], indicates
that this is not always the case:

I feel that learning the language of computing definitely helps you
understand dense reading a lot more efficiently. I personally have
noticed that my in-depth understanding of Computer Science
wording has helped me understand my mathematical theorems
and proofs more regularly than before

The course that elicited this student response pays explicit
attention to code comprehension, requiring students to practice the
skill repeatedly in every class session.

The emerging emphasis on PC skills in CS education suggests that
appropriate assessment of these skills is required. In particular,
the expansion of CS education into the school sector (K-12)
requires the discipline to consider how national examinations will
manage this aspect of assessment.

One emerging route for such assessment, in contexts where
examining authorities choose not to mandate a single
programming language for instruction and assessment, is to use a
formalised pseudo-code, e.g. [1,14]. Pseudo-code is typically
considered to be a blend of formal and natural languages, used for
human understanding of algorithms rather than machine
understanding, and so it is easy to understand this choice. In
different contexts, pseudo-code can be more or less formal. For
example, in text-book descriptions of algorithms, the pseudo-code
is mostly formal, with the particular dialect being defined at the
start and then used consistently throughout the book; when used in
its other major role, as a notation for developing programs, it is
often much less formal, varying widely between different
programmers.

This paper argues that the “institutionalised understanding” of
pseudo-code as a blend of formal and natural languages may make
it an unsuitable choice for national assessment where the intention
is to test program comprehension skills. It permits question-
setters to inadvertently introduce a level of ambiguity and
consequent confusion. This is not in keeping with either good
assessment practice or the argument developed here that CS
education should be clearly fostering the skills needed for
understanding formal, as distinct from natural, languages.

The argument is backed up by an analysis of 49 questions drawn
from the national school CS examinations of a single country,
spanning a period of six years and two phases – the first in which
no formal pseudo-code was defined, the second in which a
formally-defined reference language, referred to as a "formal
pseudo-code" was provided for teachers and exam setters. The
analysis demonstrates that in both phases, incorrect, confusing or
ambiguous code was included in questions.

Note that the issue is not whether a student will be able to
understand the code written by the question setters. It is that the
setters did not understand the requirements placed upon them
when using a formally-specified reference language, continuing to
use unspecified natural language constructs, completely at odds
with a test of PC skills.

The paper concludes by suggesting that the term reference
language should be used in place of pseudo-code in national exam

settings where a common language of assessment is required,
along with necessary training. The reference language used in the
study was developed by the authors, addressing both human
readability and making absolutely explicit the demarcation
between formal and informal language, in such a way that
automated checking can be carried out on programs written in the
language. Formal specifications and a checker for the language
are available.

The contribution of the paper is therefore as follows:

· A theoretical argument that CS educators should focus on the
fundamental differences between formal and natural
languages at an early stage in the fostering of program
comprehension skills (in Sections 3 and 4).

· An empirical study of the use of pseudo-code in a national CS
exam system, suggesting that it is an unsuitable format for
assessing program comprehension (Sections 5 and 6).

· The outline features of a reference language for use in
assessing program comprehension, which has a full
implementation, to foster discussion in this area (Section 7).

2. RELATED WORK AND BACKGROUND
Shulte et al.’s survey article [13] on PC considers a number of PC
models, setting an analysis of each against Schulte’s Block Model
[12], itself an educational model of PC. The Block Model
considers understanding at four levels of detail within a program,
from individual language elements, through blocks of code
consisting of adjacent statements and then multiple related blocks,
up to the whole program. For each of these levels of detail,
understanding is further categorized into two structural elements,
according to its appearance in a program text and how it operates
during execution, and a functional element - how it contributes to
the overall goals of the program in respect of solving a particular
problem.

The survey considers how prior research on PC has influenced CS
education. Borstler et al. [3] are cited as follows: “There is a large
body of knowledge on program comprehension… but this is
rarely applied in an educational setting.” The survey suggests that
this may be because the “focus of much of the prior PC research
has been on the work of professional programmers rather than
students”, and also because of the strong focus on construction of
programs, not comprehension, in most introductory programming
classes.

Furthermore, in drawing out goals for education, the survey notes
“most PC models emphasize the importance of understanding
based on the program code (i.e. reading). Perhaps it should be
explicitly emphasized in education as well”, by including reading
and comprehension strategies in courses. Beyond the sole
example of reading in the sequence of the execution (and not
linearly through the program text), drawn from Fix et al. [6], little
advice is given of what such reading strategies might look like. In
highlighting areas for further research, they note “specifically, it
seems a neglected topic to teach suitable program reading
strategies.”

Sorva [16] highlights the importance of developing an
understanding of the notional machine that is embodied in the
programming language definition. Indeed, the structural element
of the Block Model, involving the operation of programming
language elements, directly relates to this idea of a notional
machine.

Soloway and Ehrlich’s study of expert and novice ability to
understand code [18] draws on the idea of a text “schema”, from
text processing research in AI and psychology. They write that
schemas are “generic knowledge structures that guide the
comprehender’s interpretations, inferences, expectations, and
attention when passages are comprehended.” The study
determined that the use of good rules of discourse, that is,
programming idioms or schemas widely accepted across the
discipline, underpinned experts’ increased ability to understand
programs compared to novices. When programs were written
using unusual programming idioms, experts’ and novices’
comprehension abilities were the same. The use of regular idioms
was a core feature of Soloway’s approach to learning to program
[19]. Although Soloway does not consider teaching of code
comprehension directly, it seems likely that programs used for
code comprehension activities should employ the good rules of
discourse he identifies.

Fix et al. [6] highlight five key attributes of program
comprehension, conducting studies comparing experts’ and
novices’ performance on these. The most relevant here is
“grounding in the program text”, referring to a programmer’s
ability to map from aspects of their mental representation of the
program to where those aspects exist in the program text. Experts
were significantly better than novices on two of the three
measures used in the “grounding in the program text” attribute.
The authors consider the importance of particular reading
strategies for novices, noting that “a different reading or study
strategy may obscure some information selected by experts and at
the same time may highlight the information less useful to support
programming tasks.”

Lopez et al [8] argue for the need to attend to PC as an essential
developmental step towards being able to write programs.
Lister’s later work [7] on relating Neo-Piagetian theory to the
development of programming skills explores the developmental
steps for students who have mastered code tracing and therefore
have some level of facility with the Structural level of the Block
Model.
Soloway et al. [17] identify the challenge of novices' transferring
the meaning of words in natural languages across to the same
words used as tokens in formal languages, when in fact the
meanings are different. While this is not directly addressed in this
paper, being explicit about natural and formal languages in
educational programmes should help.

This short survey identifies the key importance of understanding
the operational model defined by the program itself and of the
manner in which the components of that model link across to the
problem domain; it highlights the need for using regular idioms in
programs to aid comprehension; it suggests that the development
of reading and comprehension strategies are currently poorly
served in education programmes; and it notes that how students
interpret formal languages influences their programming ability.

3. FORMAL VS. NATURAL LANGUAGE
IN PROGRAMMING
This section and the next argue that the fundamental difference
between formal and natural languages should be made clear in CS
education at an early stage. First, these differences are outlined.

Formal languages are fully defined. That is, all valid sentences in
a formal language can be derived from a set of axioms, or atoms,
and the application of a set of rules over these axioms. Any valid
sentence has precisely one meaning according to this definition of
axioms and rules. The meaning referred to here has no connection

to any external context – there is only the language definition
(and, following Sorva, the notional machine that it defines) and
the particular use of symbols within any given program.

This understanding of the meaning of a program relates directly to
the structural aspect of the Block Model, involving the
appearance of program elements in programs and their operation
or execution at the level of Sorva’s notional machine concept.

By comparison, the use of natural languages involves making
assumptions that the meaning of language entities is understood
on the basis of a good awareness of external context. That is, the
meaning of a sentence is clear not purely on the basis of the
symbols contained within the sentence, but only when the
surrounding context is also considered. For example, the natural
language instruction Go over there can only be fully understood if
there is some way of resolving the ambiguity of what there means.
If this is a spoken instruction between two people, then the
speaker’s nod or a pointed finger is the necessary external
information required by the receiver to properly carry out the task.

This paper is primarily concerned with the mental processes
involved in understanding language. On the basis of the
differences between formal and natural languages outlined above,
the exercise of understanding sentences in each kind of language
requires two quite different mental processes:
· For a formal language, a single and complete meaning is

contained entirely within the text, and the understanding
process consists of determining that meaning from a close
analysis of the text alone.

· For a natural language, an analysis of the text is only part of
the task, as this may produce multiple possible meanings. A
particular meaning can only be derived by making use of
available contextual information for disambiguation.

Furthermore, natural languages contain significant redundancy,
enabling meaning to be determined even when particular elements
of a sentence are missed, for example when speaking or reading
fast or over a noisy channel. Reading involves immediately
throwing away the redundant words and concentrating on those
words that deliver the sentence’s meaning. Listening to someone
speaking, in a lecture for example, can be frustrating because so
much of what they say is actually redundant.
By comparison, formal languages tend to contain very little
redundancy, and therefore almost every symbol in a sentence
contributes directly to the meaning of that sentence. Fast reading
can easily lead to important information being missed out,
resulting in an incorrect understanding being derived.

The Block Model of program comprehension defines both a
structural and functional understanding of a program. As already
noted, the construction and interpretation of a program code from
the formal language standpoint relates to the Block Model’s
structural understanding. However, programs are designed to
solve problems defined in a domain external to that of the formal
language, and the understanding of programs against this external
domain is the Block Model’s functional understanding. Siebel’s
experience of running a code-reading group underlines this [15].
The challenge of this duality is that natural language is overlaid
onto the formal programming language in order to facilitate this
functional understanding. In particular, identifiers and program
commentary making use of natural language provide a link from
the self-contained programming language domain out to the
problem domain. This overlaying of natural language onto the

formal language may lead novices to adopt an inappropriate
strategy for understanding programs.

4. EMPHASISING THE USE OF FORMAL
LANGUAGES IN CS EDUCATION
The general lack of focus on teaching program comprehension
reported in the literature (“a neglected topic”[13]), should be a
concern for CS educators, yet it is perhaps understandable given
that nearly all the findings in this area come from observations of
experienced programmers by experienced programmers. Maybe
we are simply missing some key underpinnings to program
comprehension because they are so automatic to us.

By analogy, the evaluation of an introduction to computational
thinking course reported in [5] notes that one of the major
developmental steps reported by complete novices in the class
was to understand that programs are deterministic and hence that
computers do exactly what you tell them to do. This is such a
fundamental understanding for a computational thinker that as
educators, we may never have considered we needed to teach such
a concept explicitly, assuming that all would already know this.
Similarly, consider once again that programs written in a formally
defined programming language have a single meaning derived
from the axioms and rules of the language definition and the
particular symbols and constructs used in the program,
independent of any external context. This understanding may be a
universally held and therefore unexamined tenet among
experienced programmers.

Indeed, the lack of these two key understandings, which are
coincidentally closely related, can be seen as contributors to the
“superbug” identified by Pea through analysis of novices’ bugs,
that is, the assumption that the programming language system or
machine has some kind of intelligence or external wisdom that
will interpret the words of a program in the way the programmer
intended. [10]
In the light of the analysis here of how texts in different language
types are understood, we can postulate that a student with the
superbug misconception sees a program as a text in natural
language, the language style with which they are most familiar,
and ascribes to the machine the same facility that they personally
possess to understand texts in natural language. That is, the
ability to call on contextual information, in this case, the intention
in the student’s head.

Another reason why we as educators have perhaps not attended to
this issue before is that the students we see are primarily self-
selected and a majority at least have these core understandings in
place. The nature of formal languages is often not introduced
until later courses, e.g. a theory of computation course. However,
we are moving towards an era where computational thinking skills
are being recommended for all, and we need now to ensure that
all-comers can succeed, irrespective of their particular background
that may or may not have given them the appropriate core
understanding. We need some theory of languages early on.

Given that the superbug represents the lack of the kind of
conceptual understanding inherent in a threshold concept [9] or
crucial to maintaining learning edge momentum [11], it is
essential that it is addressed as early as possible in a programming
course, and that learning designs maintain an emphasis on the
Block Model’s structural aspect of program comprehension as
well as the functional aspect.

5. ASSESSING PC SKILLS
If the teaching of PC skills is increasing in importance, then the
assessment of those skills should be considered also. This paper
has so far argued for the value in distinguishing formal and
natural languages at the earliest stage in an effort to ensure that a
misunderstanding of the nature of program text does not hamper
progress. Therefore assessment of PC skills, in alignment with
this emphasis on distinguishing formal and natural language,
should be included from the earliest stages too.

PC assessment involves presenting code to students and asking
them to answer questions about the code. The key issue for the
remainder of this paper is which, or what kind of, language should
be used to present the code. There are three recurring approaches,
the first of which is as follows:
· In a localised context, where the teacher is also the assessor,

the programming language of instruction can also be the
language of assessment. This is the general context for all
university CS education. This approach can also be used for
national qualifications if the awarding body trusts local
teachers to both set and mark assessments internally and are
content for any programming language to be used. This is the
approach taken in the recently introduced New Zealand school
curriculum [2].

The second two approaches to national assessments stem from the
exam board’s setting a single exam to be taken across the nation,
as follows:

· The exam board specifies a single programming language for
assessment, and so all schools using the board’s examinations
are likely to adopt that language for instruction too. The US
Advanced Placement Computer Science course adopts this
approach, using Java as the specified language [4].

· The exam board specifies a pseudo-code that will be used in
lieu of any one programming language, thus freeing up
schools to use whatever language of instruction they choose.
This is an attractive proposition when it is known that the
preferences for and confidence with particular programming
languages vary widely across the teacher population. This
approach is taken by exam boards in England and Scotland
[1,14].

With the current trend in the western world towards fostering a
level of computer science education for all in the school sector,
understanding the consequences of these different approaches is
important. In the first two approaches, programming languages in
the class of formal languages are used for assessment of PC skills,
and so represent a valid choice for assessment in the context of
this paper.

The third approach makes use of a semi-formal language, in that
the pseudo-code has a more or less clear definition. Furthermore,
this semi-formal language is associated by name (pseudo-code)
with a language type that is typically viewed as informal and
understood by context, and that makes use of both formal and
natural language elements.

Of interest in this paper, then, is the following question: does the
code used in PC exam questions prepared using more or less well-
defined pseudo-code represent a valid context for assessing
program comprehension skills, given the paper’s emphasis on
clearly demarcating formal and natural language? This is an
evaluation of those creating examination questions: are question
setters presenting code in a manner that ensures formal language

comprehension skills are being assessed? Breaking this down into
two questions:

1. Are the core computational constructs presented
consistently?

2. If natural language descriptions are used, are they clearly
demarcated from the use of the formal programming
language constructs?

If these questions can be answered positively, then question
setters are using the language in a manner appropriate to
supporting a valid assessment. If the questions cannot be
answered positively, then question setters are basing their use of
language on traditional natural language characteristics rather than
from the context of a formal language.

Crucially, note that it is entirely immaterial whether a student can
or cannot understand the code presented. This paper is about
teaching and examining formal language comprehension skills. If
natural language elements are mixed freely with the formally-
defined language, then, even if the student answers correctly, a
different set of skills have been assessed.

The next section presents an analysis of 49 exam questions drawn
from the CS qualifications of a national exam board spanning a
six-year period, in order to shed light on how question-setters use
pseudo-code in exam questions.

6. EVALUATING THE USE OF PSEUDO-
CODE IN ASSESSMENT
6.1 Study Context
Scotland has been running nationwide high school courses in
computer science for around 30 years. The examinations
authority experienced early difficulties with mandating a single
language for all schools to use, because in the 1980s a wide range
of machines was used in schools with the consequent difficulty of
ensuring that all schools had access to the single prescribed
language. Hence the examinations authority have chosen, then
and now, not to mandate a single language for use in written
examinations marked externally to the school where they were
taken. Should a candidate be asked to write a program in a
written examination, they are permitted to use any language with
which they are familiar, and individual schools can use the
programming language of their choice for both instruction and
internally-assessed coursework components.

As with most programming courses, those in Scotland have
largely focussed on the creation of programs, rather than whether
a student can understand and analyse programming language
code. In national exams, pseudo-code has appeared over this
period, both to describe algorithms that should then be translated
into a language of the candidate's choice and also to describe an
algorithm that the candidate is required to analyse and explain.

In 2013, a new qualification sequence was launched in Scotland
with a major learning outcome to explain code. Students are
required to explain how programs work, including "reading and
explaining code" and "describing the purpose of a range of
programming constructs and how they work". Given this learning
outcome, the examination authority adopted a formally defined
language for use in code explanation questions, developed
collaboratively between it and the authors of this paper. In truth,
this language is a reference language with a full definition, but the
examinations authority dubbed it, crucially, a formally-defined
pseudo-code, to maintain consistency with past practice. The old
and the new qualifications enable an evaluation of code written

for exams, both with and without access to a formalised
definition.

Evaluating questions from the old qualification scheme, where
there was no formal pseudo-code specification, enables a
determination as to whether a traditional view of pseudo-code as a
blend of formal and natural language was prevalent among the
question authors. If the traditional view is apparent in the old
qualifications’ questions, then the evaluation of the new scheme’s
questions will determine whether the “institutional memory” of
the traditional informal view of pseudo-code has carried over into
the new questions despite the introduction of a formally-defined
language for use in assessing program comprehension.

6.2 Examination Papers Under Study
Papers from this examination authority over these two periods
were evaluated to answer the two research questions. Referred to
here as the old and new phases, exam papers exist for both 16 and
17 year old age groups. Exam papers are also accessible for the
old phase of the 18 year old age group, but not yet in the new
phase. The numbers of relevant questions available in each paper
are given in Table 1, with a total sample size of 49 questions.

Table 1. Question distribution across papers analysed
Year Old Phase New Phase

 16 17 18 16 17
2009 3 1 2 - -
2010 1 2 2 - -
2011 2 1 2 - -
2012 1 1 2 - -
2013 2 1 2 - -
2014 - - 6,8,3,3 4

One paper for each year and age group is available for analysis in
the old phase. The new phase papers consist of one Specimen
Question Paper for each age group, prepared by the examination
authorities so that teachers have an expectation of what will
appear in the exams to be sat by their students. At the time of
writing, students have not yet taken examinations for the new
phase. The new phase qualification for 16 year olds has had 3
further practice papers independently published but endorsed by
the qualifications authority, and these have been included in the
study, since they provide further evidence of the way pseudo-code
is used by exam question setters. Hence the four question counts
in the 2014, New Phase, age 16 cell in the table.

6.3 Evaluation Protocol
In order to address the first question that was set at the end of
Section 5, the old and new phase questions, constructed without
and with recourse to a formal definition respectively, were
examined to determine the number of different ways that the same
core construct was represented in pseudo-code. The core
constructs searched for are as follows:

· Fixed repetition
· Conditional repetition
· Iteration over a data collection
· Selection with a single branch
· Selection with two branches
· Selection with multiple branches
· Assignment
· Input
· Output
· Getting the length of a list or array
· Array index

As an example,
<x> = <y>

and
set <x> to <y>

are two representations of assignment found in different
questions.

Counts of different representations for each core construct were
recorded separately for each of the old and new phases.

The old phase questions were also examined to determine the
number of times that formal and natural language descriptions
were merged in such a way that the demarcation between them
was not clear, and also when knowledge had to be inferred from
the question context or guessed in order to understand the pseudo-
code at the Block Model’s Structural level.

For example, consider the following question and pseudo-code
fragments taken from a paper:

Each contestant in a game show must compete in five events. A
program has been created to calculate the total … for each
contestant:

loop 5 times
 get event points
 add points to total
end loop

The reader is required to guess that event points and points are in
fact the same variable. Furthermore, “add X to Y” is a non-
standard idiom, not used in any other paper.

The new phase questions, making use of the formally-defined
reference language, were assessed to determine how often the
question setters had reverted to using traditional pseudo-code
techniques, where descriptive ‘code’ is used rather than adhering
to the language definition properly, or where they had tried to
exercise formality but had simply written incorrect code with
respect to the definition. An example of the former is

start beeping noise

on a line of its own. While this is a functional description of what
is required at this point in the program, it does not follow the
language definition, it is simply an English sentence.

A simple example of the latter type of error is seen in assignment,
when the following is used:

SET x = 3

instead of the syntax defined for the language, which is:
SET x TO 3

6.4 Results
The count of different representations of core programming
constructs in the 25 questions contained in the 15 papers from the
old phase is shown in Figure 1. For example, the first bar on the
chart shows that three different ways of expressing a fixed
repetition construct were found. Some examples of the differing
representations used are as follows. For array indexing,

X[y] and x(y)

were seen – differing on the style of bracket used.

In some cases the differences were simply based on the case used
for keywords, for example another version of assignment is

SET <x> TO <y>

while at other times it was more extreme – with this version of
assignment incorporating an increment also

add <x> to <y>

Examples of the five different versions for output are
write <x>, <y>, …
print <x>
Display two blank lines
Display <x> and <y>
Display <text literal but no quotes>

Figure 1: Count of representations of core constructs in old

phase questions
When considering the new phase questions, there was a much
lower variation in the number of representations used, as would be
expected with a defined language as part of the qualification
specification. Note however that only five papers were
considered, and across the 24 questions considered, six variations
were discovered across five categories: input, output, string
concatenation, assignment and subprogram calling. For example,
the specified form for string concatenation is

<str1> & <str2>

but this was seen several times as
[<str1>, <str2>, <str3>, …]

Two forms of sending to an output device were noted:
SEND <x> TO DISPLAY and DISPLAY <x>

and three forms of assignment
SET <x> TO <y> SET <x> = <y Let <x> = <y>

The subprogram calling mechanism, for example used here to turn
a boiler on

setBoilerTo(“on”)

was replaced with a re-purposed version of the output construct:
SEND on TO boiler

In reviewing the 25 old phase questions, 15 of the questions
contained pseudo-code where formal and natural language
descriptions were merged. For example, a question about an
office block with multiple floors and rooms contained the
following code:

For each of 38 floors
 For each of 25 rooms
 Display “Floor Number:” and floor_no
 Display “Room Number:” and room_no
 Next room
 Display two blank lines

Next floor

The loop headers and the Display statements merge formal
elements (For, Display) with natural language elements (“each of
38 floors”, “and floor_no” and “two blank lines”). “floor_no” is
admittedly in a formal format, using the underscore, but it is not
clear where it has come from and must be inferred from context.

Considering the code contained in the 24 questions in the new
phase papers, 18 of them did not meet the formal specification.
While many of these were simple syntax errors, examples of
natural language use occurred in four different categories, as
follows.
The first category is the re-appropriation of the SEND … TO …
output construct, as noted earlier, for a kind of natural language
API call. This occurred in questions with external devices of
various kinds. Examples are:

SEND Open TO lock
SEND Sound TO speakers
SEND off TO boiler

None of the entities used within these statements were defined in
the question preamble, leaving the candidate to infer the meaning
from context.

The second category again involved external devices, this time
acting as input devices. The issue is the reuse of a single device
name when differing devices are clearly intended. For example,
in one question, a car braking system has sensors that determine
the current speed and the distance to the car in front, although as
this is not explicitly stated in the question it can only be inferred
from the following code:

RECEIVE speed_of_car FROM (real) SENSOR
RECEIVE distance_to_car FROM (real) SENSOR

Note that the same device, SENSOR, has been used to retrieve
both values. In a question that is asking about errors, and where
this is not the error intended to be found by the question setter
(determined from the model answer), this lack of precision will
cause confusion.

The third category concerns the use of natural language embedded
in the midst of well-formed statements. Examples are:

proceed to user screen
SEND apply brakes TO car brakes
SEND appropriate message TO DISPLAY

The first is pure natural language, the second another example of
the re-appropriation of the output statement, only using natural
language to describe what is to be sent and to where.

Finally, in a question about a central heating controller, a variable
and appropriate values for an on/off switch for the controller were
adopted but not defined anywhere:

REPEAT
 <controller code removed for this example>
UNTIL switch = off

6.5 Discussion
The main purpose of this small study is to determine whether
practices adopted over many years using informal pseudo-code in
teaching and assessment settings carry across to settings where a
formally defined language is to be used for assessing PC skills.
Given the paper’s emphasis on highlighting the difference
between how texts in formal and natural languages are
comprehended, it will be an educational own-goal if formally-
defined languages are introduced to assessment contexts but then
still used in a manner that blurs the distinction between formal
and natural language elements.

It appears from the results that core concepts were represented in
a range of ways before a defined language was introduced, with 9
of the 11 core constructs used in the questions having between 2
and 5 alternatives. This is to be expected given the general
understanding of pseudo-code as an informal language. Of more
concern is that variation was uncovered in five categories of
language construct, even now a formal specification should be
used.

This suggests that question setters are still happy to develop their
own pseudo-code formats or mould them from example texts or
prior experience. Overall, then, in answer to question 1 in Section
5, core constructs are not being presented consistently , whether a
formally-defined language, or informal pseudo-code is specified
for use.

60% of the questions written using informal pseudo-code blended
the use of formal and natural language in ways that were not
deemed to be clearly demarcated. Again, this is the accepted
mode of use for pseudo-code, particularly when used as a group-
planning tool, where any ambiguity can be resolved in discussion.
This resolution is quite impossible in a national exam context.
Hence, the second question of Section 5, as to whether code is
presented unambiguously, with clear demarcation between formal
and natural languages, is also answered negatively.

The readers of this paper will most likely be experienced
programmers and may not perceive that the reported issues with
language use in exam settings are of any great concern. We will
be able to infer exactly what is meant from the vast majority of
these questions. But we are not the target audience, and the use of
inference should not lie at the heart of program comprehension.
The argument in this paper is that educators should, at all times,
reinforce the formal nature of programming languages, and the
consequent comprehension strategies that this entails. This is
further supported by Soloway’s findings on the importance of
idiomatic uses to aid PC.

Do these findings suggest that using a defined pseudo-code /
reference language in national exams should be discouraged? The
reasons for adopting the approach, given earlier, still hold – that
the preferences for particular programming languages among
teachers militate against enforcing a single language. The root
issue seems more likely to be the use of the term pseudo-code
with all its historical baggage of informality. Strongly
representing it to exam setters as a reference language would
signpost a break from the past, and the reference language used
for examination purposes in this study is outlined in the next
section. Tew’s work on concept inventories for introductory
programming concepts [20] showed that students had little
difficulty transferring their knowledge of programming from the
language of instruction to the formal reference language used in
the inventory, allaying any fears of transferability. Furthermore,
making the research on PC widely available to schools, and
stressing the educational value of distinguishing formal from
natural languages, is an imperative.

7. A REFERENCE LANGUAGE WITH
EXPLICIT CODE AND (NOT CODE)
The defined pseudo-code used in the new phase of the Scottish
qualifications was designed principally by Michaelson and Cutts
and is available at [14]. The language was defined primarily to
address the paradox of examining candidates in program
comprehension in the absence of a single specified language of
instruction. It was termed pseudo-code for reasons of continuity
with the practices of the old phase, but the findings here show that

it should be termed a reference language, which in reality it is.
Indeed, the Scottish qualifications authority has now termed it a
reference language as a result of this research.

The details of its syntax and semantics are not important, in that
they are designed only to reflect syntactic conventions in pseudo-
code developed over the years by question setters, avoiding a loss
of continuity. Crucially, however, it does have a well-defined
syntax and semantics, defined in sufficient detail to allow
reference implementations to exist.

There is one major departure from a simple programming
language: the language has an explicit elision construct and thus,
in general, is not an executable language. This takes the form of
any text within angle brackets; it is not a comment, however, and
must be used in place of well-defined syntactic constructs, either a
command or expression. Its purpose is to provide explicit
demarcation between the rigorous programming language context,
and the non-rigorous natural language context, thus allowing these
styles to be explicitly mixed without confusing the reader, or
undermining a developing understanding of rigour in
programming.

The following example (from one of the specimen papers) shows
why such a paradigm is useful. The purpose of the question is to
test the candidate's ability to use a Boolean variable: the candidate
is asked to change the type of the variable check to Boolean and
adjust the rest of the code accordingly. The pseudo-code used is:

SET check TO 0
SET counter TO 1
RECEIVE registration FROM KEYBOARD
REPEAT
 IF cars[counter] = registration THEN
 SET check TO 1
 END IF
 SET counter TO counter + 1
UNTIL check = 1 OR counter = 101

This is a perfectly reasonable use of pseudo-code: the intended
meaning of this fragment is clear to any competent programmer.
However the code contains much that is not fully defined (eg the
type of registration), requires the candidate to understand implicit
semantics that are not necessary for the question (eg that the array
cars is 100 items in size), and uses conventions that apply to this
question alone, potentially confusing candidates who study many
questions and try to derive a meaning for the whole language (eg
that arrays are addressed from 1, whereas other questions assume
array addressing from 0.) All of these issues are potentially
harmful to the learner who may be struggling with the essential
concepts of program comprehension, and also distract from the
purpose of the question.

The example code can be re-written as follows, without changing
the intent of the question, but dropping the undesirable effects:

SET check TO 0
SET reg TO <the registration number to be checked>
REPEAT
 <get the next car from the data store>
 IF <next car has registration number reg> THEN
 SET check TO 1
 END IF
UNTIL check = 1 OR <all cars have been checked>

The different impact is very clear; the simple use of explicit
elision in place of both commands and expressions shows very
clearly the demarcation of that part of the code that is fully
rigorous, and that part which is not and can therefore harmlessly
be expressed in natural language.

An early implementation of this language, developed by Connor,
is available1. Code containing elisions can currently only be
checked for context-free syntactic correctness, although allowing
more sophisticated checking and execution for certain classes of
elision is an interesting issue, currently being investigated further.
However, here lies a further example of the value of a fully
defined reference language: as noted, the majority of the new
phase pseudo-code contained unintentional errors in both syntax
and semantics, avoidable were a reference implementation used.

8. CONCLUSION
In the context of the generally understood importance of program
comprehension, we have elaborated on one of the most essential
differences between natural and artificial languages, in terms of
the context in which they must be understood. Understanding this
difference is a key task in the teaching of programming, instilling
the understanding that programming languages supply precisely
defined unambiguous meaning derived from their internal
structures only, rather than through the use of intelligence and
knowledge of context required to interpret natural languages.

This distinction is crucial in educational regimes where
examination of program comprehension cannot be based upon a
single language. In this case, the common solution is to adopt a
more or less defined pseudo-code for use in examination
questions.

Analysis of such examples however demonstrates that the lack of
rigor implied by the use of pseudo-code, even when the pseudo-
code language is fully-defined, leads to a harmful mixing of the
informal and formal languages which we strive to distinguish in
our teaching. This will lead not only to poorly defined
examination questions, but endangers the whole essence of
teaching and assessing program comprehension.

Finally, we suggest the replacement of the use of a pseudo-code
language by a well-defined reference model for use in
examination. We show how the use of an explicit demarcation
construction within such a language can still allow partial
definitions to be valuably used in examples, but without
compromising the essential principles of rigorous comprehension.

9. ACKNOWLEDGEMENTS
We thank David Bethune and Derek Middleton of the Scottish
Qualifications Authority for recognising the importance of this
area of study and for their significant contribution to it. We thank
the many Scottish school teachers whose reports on using the
reference language have extended our understanding of the area.

10. REFERENCES
[1] AQA exam board. http://aqa.org.uk. Last accessed. 6-10-2014.

[2] T. Bell, P. Andreae, and L. Lambert. Computer Science in New
Zealand High Schools. Conferences in Research and Practice in
Information Technology, 103, January 2010.

[3] J. Borstler, M. Hall, M. Nordstrom, J. Paterson, K. Sanders, C.
Schulte, and L. Thomas. An evaluation of object oriented example
programs in introductory programming textbooks. SIGCSE Bulletin,
41(4), January 2010.

[4] College Board. http://www.college.board. Last accessed 13-7-2014.

[5] Q. Cutts, S. Esper, and B. Simon. Computing as the 4th "R": a
general education approach to computing education. In ICER’11
Conference Proceedings, August 2014.

1 http://bit.ly/haggis4sqa

[6] V. Fix, S. Wiedenbeck, and J. Scholtz. Mental representations of
programs by novices and experts. In INTERCHI ’93 Conference
Proceeding, April 1993.

[7] R. Lister. Concrete and other Neo-Piagetian forms of reasoning in
the novice programmer. Conferences in Research and Practice in
Information Technology 114, 2011.

[8] M. Lopez, J. Whalley, P. Robbins, and R. Lister. Relationships
between reading, tracing and writing skills in introductory
programming. In ICER’08 Conference Proceedings, September
2008.

[9] J. Meyer and R. Land. Threshold concepts and troublesome
knowledge – linkages to ways of thinking and practising. In
Improving student learning – ten years on, C. Rust (ed). Oxford
Centre for Staff and Learning Development, Oxford, 2003.

[10] R. Pea. Language-independent conceptual “bugs” in novice
programming. J. Educ Comput. Res. 2(1), 1986.

[11] A. Robins. Learning edge momentum: A new account of outcomes
in CS1. Comp. Sci. Ed., 20(1), 2010.

[12] C. Schulte. Block model – an educational model of program
comprehension as a tool for a scholarly approach to teaching. In
ICER’08 Conference Proceedings, September 2008.

[13] C. Schulte, T. Busjahn, T. Clear, J. Paterson, and A Takerkhani. An
introduction to program comprehension for computer science
educators. ITICSE'10 Working Group Report, June 2010.

[14] Scottish Qualifications Authority exam board. http://sqa.org.uk.
Last accessed. 6-10-2014.

[15] P. Siebel. Code is not literature. http://gigamonkeys.com/code-
reading. Last accessed 6-10-2014.

[16] J. Sorva. Notional machines and introductory programming
education. ACM Trans. Comput. Educ. 13(2), June 2013.

[17] E. Soloway, J. Bonar. and K. Ehrlich. Cognitive Strategies and
Looping Constructs: an Empirical Study. CACM 26(11), November
1983.

[18] E. Soloway and K. Ehrlich. Empirical studies of programming
knowledge. IEEE Trans. Soft. Eng. 10(5), September 1984.

[19] E. Soloway. Learning to program = learning to construct
mechanisms and explanations. CACM 29(9), September 1986.

[20] A. Tew. Assessing fundamental introductory computing concept
knowledge in a language independent manner. Doctoral Thesis.
Georgia Institute of Technology, December 2010.

