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[26] argues that the diagonal argument of the number theorist
Cantor can be used to elucidate issues that arose in the social-
ist calculation debate of the 1930s. In particular he contends
that the diagonal argument buttresses the claims of the Austrian
economists regarding the impossibility of rational planning. We
challenge Murphy’s argument, both at the number theoretic level
and from the standpoint of economic realism.
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1 INTRODUCTION

Since the 1920s there has been an ongoing debate on the feasibility of “so-
cialist economic calculation”, which is generally taken to mean calculation of
costs and benefits in the absence of markets, on the capitalist pattern, for con-
sumer goods, labour and means of production. This debate was most active
in the 1930s. Proponents of socialism such as [11] and [22] argued that ra-
tional economic calculation was feasible under socialism while, on the other
side, economists of the Austrian school such as [36] and [15, 16] argued that
socialist calculation was impossible, either a priori or on the basis of com-
putational intractability. The debate was renewed in the 1980s with a notable
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contribution from [27], who argued that the calculations required for socialist
plan formation would take millions of years even with the best computers.
Against this [7] and [9, 8] have argued that improved algorithmic techniques
make the calculations tractable. More recently, [4] and [S] have drawn on the
critique of Al made by [28] to defend Hayek’s original arguments. [26] ar-
gues that the problem of economic planning is actually hypercomputational,
and thus impossible in principle. Similar arguments have been made by [23].

2 IS PLANNING TRACTABLE?
Murphy summarises his argument as follows:

[I]f the socialist planners really are to mimic the market outcome,
they would need to publish a list containing, not merely a huge
number of prices, and not merely an infinite number of prices,
but rather a list containing an uncountably infinite number of
prices. But as we have seen above, it is literally impossible, even
in principle, for socialist planners to publish such a list. That
is, even if we granted them a sheet of paper infinitely long and
gave them an infinite amount of time, they still could not, even in
theory, write down the entire set of “accounting prices” at which
their managers would be required to exchange factors of produc-
tion. Therefore the purported mathematical solution to Mises’s
challenge is truly impossible to implement, in every sense of the
word.

Why do we need an infinite list of accounting prices? Because, Murphy
says, “all conceivable goods and services that might be offered, must have
corresponding prices included in the planners official lists” (emphasis added).
This, he contends, includes goods which have not yet been produced—such
as weekend trips to Mars—but which may become possible with some future
technology. The set of goods whose accounting prices are required, he says,
includes every possible book that might be written in the future. On this
basis he claims that [17] grossly underestimated how many equations would
actually be required to implement the mathematical solution to the planning
problem.

Since computation over infinite domains is impossible in principle, he con-
cludes that the preparation of a socialist plan is not merely intractable, but
entirely out of the question.



Arguments about computability in economics are tricky. They may re-
veal more about the axiomatic foundations of economic theories than they do
about the operation of real world economies. [1], for example, supposedly
established the existence of equilibrium for competitive economies. We will
term such an equilibrium ‘classical mechanical’ following [25], who showed
that the conceptual apparatus used to define it is equivalent to that used in
energy minimisation problems in classical mechanics. As [35] showed, the
Arrow—Debreu proof rested on theorems that are valid only in non-constructive
mathematics.

Arrow’s use of non-constructive mathematics is critical because only con-
structive mathematics has an algorithmic implementation and is guaranteed
to be effectively computable. But even if

1. a ‘classical mechanical’ economic equilibrium can be proven to exist,
and

2. it can be shown that there is an effective procedure by which this can
be determined (that is, the equilibrium is in principle computable)

there is still the question of computation tractability; that is, of determining
the complexity order governing the computation process that arrives at the
solution.

An equilibrium might exist, yet all algorithms to search for it might be NP-
hard. [10] have shown that subject to Leontief utility functions (according to
which each consumer demands inputs in fixed proportions) the problem of
finding a market equilibrium with maximum social welfare is NP hard. This
result might at first seem to support the contention of the Austrian school of
economics, that the problem of rational economic planning is computation-
ally intractable. The notion of NP-hardness had not been invented in Hayek’s
day, but he would seem to have been retrospectively vindicated.

Such results would seem to be particularly telling against neoclassical so-
cialist economists (Lange, Dickinson) whose arguments were based around
the ease with which a planning system could achieve neoclassical welfare
maximising equilibrium.

While [10] might be taken to show that the neoclassical problem of eco-
nomic equilibrium was intractable for economic planners, even with large
scale computers, this conclusion does not necessarily follow. NP complete
problems are not always intractable in practice. [14] show that NP problems
have phase transition regions, within which they are hard to solve, as well as
other less constrained regions, where solutions are easy to find. It might be



the case that, in practice, the problem of finding a social welfare-maximising
equilibrium falls into a non-critical region of the constraint space. An anal-
ogous situation exists with linear programming proposed as a technique of
rational economic planning by [18]. The simplex algorithm for linear pro-
gramming is in worst cases exponential but for most practical cases it is only
polynomial, [32].

If, on the other hand, we assume that real economies fall into the phase
transition region of the problem space, then neither central planners nor a
collection of millions of individuals interacting via the market could solve the
social welfare maximisation problem. In neoclassical economics the number
of constraints on the equilibrium will be proportional, among other things, to
the number of economic actors, n. The computational resource constituted by
the actors will be proportional to n but, in the phase change region, the cost
of the computation will grow as e™. Computational resources grow linearly,
because they are proportional to the number of people available to make de-
cisions, while computational costs grow exponentially. This implies that a
market economy could never have sufficient computational resources to find
its equilibrium.

Clearly, we cannot conclude from this that market economies are impos-
sible: we have plentiful empirical evidence that they exist. It would seem to
follow that the problem of finding the neoclassical equilibrium is a mirage:
no planning system could discover it, but nor could the market. The “problem
of neoclassical equilibrium” misrepresents what capitalist economies actually
do, and by the same token sets an impossible goal for socialist planning.

If we dispense with the notion of ‘classical mechanical’ equilibrium, in
relation to the economy, and replace it with the concept of statistical mechan-
ical equilibrium ([13]), we arrive at a problem that is much more tractable.
The simulations of [37, 38] and [12] show that a market economy can rapidly
converge on this sort of equilibrium.

It should be noted that the notion of a statistical mechanical equilibrium,
while quite alien to neoclassical economics, has something in common with
the presumptions of the Austrian school, who tend emphasize the chaotic,
non-equilibrium nature of capitalist economies. According to Hayek, under
the price system individual producers merely have to watch the movement of
a “few pointers” in order to orient themselves in the chaos of the market.

How can a single vector of prices act as a regulator for a complex matrix
of inter-sectoral flows in a market economy? We can identify two possible
reasons.



First, [30][1776] argued that human labour was the universal resource by
means of which all other goods were purchased from nature. The universality
of human labour means that it is possible to associate with each commodity a
single scalar number—price—which indirectly and on average represents the
amount of labour that was used to make that commodity. Let us define the
“value” (or labour-value) of a commodity as the amount of labour required
for its production. Deviations of relative prices from relative values can then
allow labour to move from where it is less socially necessary to where it
is more necessary. But this is only possible because all economic activity
comes down, in the end, to human activity. If that were not the case, a single
indicator would not be sufficient to regulate the consumption of inputs that
were fundamentally of different dimensions. It is only because the dimension
of all inputs is ultimately labour (direct or indirect) that scalar prices can
effectively regulate activity.

A second answer lies in the computational tractability of systems of linear
equations. [33] showed that the determination of the labour values of goods
is equivalent to solving a set of linear equations. Solutions to such equations
can be tractably approached by iterative techniques.

Firms add up wage costs and costs of other commodity inputs, add a mark-
up, and set their prices accordingly. This distributed algorithm, which is
nowadays carried out by a combination of people and company computers, is
structurally similar to the solution of linear equations by an iterative method.
This models one phase of the iterative solution of Sraffa’s equations. Empiri-
cal evidence indicates that the price vector upon which the process converges
lies somewhere near the vector of labour values see [29, 24].

The exact attractor is not relevant at this point; what is relevant is that
the iterative functional system has a stable attractor. It has such an attractor
because the process of economic production can be well approximated by a
piecewise contractive linear transform on price or value space. If production
processes were strongly nonlinear, such that the output of (say) corn were a
polynomial along the lines of

Cout = aCiy, +bCE +dC3 + eL + fL* + gL® + hI + kI*

(with C representing corn, L labour and [ iron), then the iterative functional
system would be highly unstable, and the evolution of the entire price system
would be completely chaotic and unpredictable. Prices would then be useless
as a guide to economic activity. For the instability of such systems see [3] or

[2].



Neither of the two factors above are specific to a market economy. Labour
is the key universal resource in any society (prior to full robotisation). By
the full version of the Church—Turing thesis, if a problem can be solved by
a distributed collection of human computers, then it can be solved by a Uni-
versal Computer. If it is tractable for humans interacting via a market it is
also algorithmically tractable when calculated by the computers of a socialist
planning agency. The very factors which make the price system relatively
stable and useful are the factors which make socialist economic calculation
tractable. We contend that economic planning does not have to solve the
impossible problem of neoclassical equilibrium, but merely has to apply the
classical “law of value” more efficiently.

3 MUST PLANNING CONSIDER AN INFINITE NUMBER OF PRICES?

Against this background, consider Murphy’s thesis that the problem domain
of economic calculation is not merely NP hard, but actually transfinite. If the
problem domain is infinite, it is not at all clear how a market economy is sup-
posed to provide an effective solution. No finite computational resource—
whether it be state planners with computers or capitalist supermarkets and
wholesalers with their computers and databases—can scan an infinite search
space.* Either the market economy must also be deficient, by Murphy’s cri-
teria, or his criteria are misplaced. Murphy is demanding that an economic
system today take into account information which can only exist in the fu-
ture, information about products that will one day be invented in the future.
He is demanding the impossible: the backward transmission of information
through time.

If he is, alternatively, demanding computation over all possible futures, it
is hard to see how he thinks a market economy is able to solve the problem.
No system, whether capitalistic or socialistic, planned or unplanned, could
do this. Economic systems can only allocate resources between products that
have already been thought of or invented.

This seems blatantly obvious, so why might Murphy be claiming other-
wise? His idea seems to be that only on condition that all possible prices are
considered, could a Lange/Dickinson-type system (patterned after the neo-
classical fiction of the Walrasian auctioneer) be a “perfect substitute” for the
market mechanism, with regard to the issue of innovation (the production of
new products or use of new production processes).

* We here disregard the highly contentious recent claims of [19] for the reasons given in
[34, 31].



There is a small kernel of sense in this, though it is expressed perversely. A
persistent theme in Austrian economics is that the neoclassical representation
of the market system, with its stress on static allocative efficiency, is mislead-
ing and in a sense sells short the virtues of capitalism. The principal virtue
of capitalism, according to the Austrians, is not that it produces an optimally
efficient, perfectly competitive, equilibrium with prices everywhere equal to
marginal cost (as in the standard economics textbooks), but that it spawns
an effective process of discovery and innovation—the notion encapsulated by
the word “entrepreneurship”.

If an economic system were to entrust its process of product- and process-
innovation purely and simply to a mechanism in which managers make deci-
sions on what to produce, and how to produce it, based on accounting prices
handled out by a planning authority, then in a sense Murphy is right: the ac-
counting prices would have to include the prices of all the things they might
produce as well as things they’re currently producing.

Our response is twofold. First, historically, the Lange/Dickinson scheme
was not supposed to be a solution to the problem of innovation: that was
not the problem [36] originally posed in the opening salvo of the socialist
calculation debate. Second, the market does not handle innovation purely via
passive responses to price signals, and by the same token a socialist economy
will not handle innovation via passive responses to computed prices (or, for
that matter, labour values) of currently non-existent goods.

In any system, what is needed is some mechanism for exploring options
“in the neighbourhood of” the current input—output matrix that are rendered
feasible by scientific advances (or, in some cases, just by leaps of the imagi-
nation). This inevitably involves experimentation, trial and error, and so on.
This task is beyond the scope of the Lange/Dickinson mechanism, just as it is
beyond the scope of the textbook process of market equilibration (migration
of capital from low-profit fields to high-profit fields). Creating an effective
mechanism for this job is non-trivial. [8] discuss this, suggesting that one
would need some kind of agreed annual innovation budget, and that it might
be a good idea to have more than one agency in the business of disbursing re-
sources for innovation experiments. The parlaying of scientific advances into
new products that people want, or new processes that are more efficient than
the old ones, is not an issue that invites a simple “capitalism vs socialism”
split. Capitalist economies have differed quite widely in their effectiveness
in this regard (for example, Britain versus the USA), and socialist economies
might be expected to differ too.



4 IS THERE AN UNCOUNTABLY INFINITE NUMBER OF PRICES?

Murphy claims to use Cantor’s diagonal argument to demonstrate that there
is an uncountable infinity of prices. In fact, he does no such thing. Rather,
he explains diagonalisation and then asserts that it is applicable to the alleged
infinity of prices without actually applying it. Nonetheless, let us, for the sake
of argument, assume that there is an infinite number of prices and explore its
cardinality.

Cantor’s argument may be summarised briefly as follows. We may enu-
merate (i.e. list or write down) all the integers starting from one by repeatedly
adding one:

1 2 3

We may also enumerate all the rational numbers—that is, numbers made from
ratios of integers—by systematically listing all possible successive ratios of
integers:

1/1 1/2 2/1 2/2 1/3 2/3 3/3 3/2 3/1

Note that many rationals recur. For example, 1 = 1/1 = 2/2 = 3/3 and so
on. Note also that the cardinality of the rationals, that is the “type of infinity”
that characterises how many there are, is the same as that of the integers,
because we can put the rationals into one to one correspondence with the
integers:

1 < 1/1
2 < 112
3 « 2/
4 «— 212
5 < 1/3

In other words, there are as many integers as rationals. We say that the ratio-
nals are countable.

It is important to note that every integer and rational has a finite repre-
sentation, even though some rationals have infinite decimal expansions. For
example, if we try to evaluate 1/3, we get 0.33333. .. (decimal) with 3 re-
peating forever. Nonetheless, 1/3 is a perfectly good finite representation of
that value.

Cantor introduced diagonalisation to show that the number of real numbers—
that is, numbers consisting of an integer followed by an arbitrary number of
decimal places—has a higher cardinality than the integers and rationals. In



other words, there are more reals than integers or rationals. Following [20],
we consider all the real numbers between 0 and 1, where each is represented
uniquely by a decimal fraction that doesn’t terminate. If a number has a last
decimal digit of O we replace this with an infinite number of 9s. Now, sup-
pose there is an enumeration of reals x1, 2, 3, . . . between 0 and 1. Suppose
x; has decimal digits z;1, x;2, x;3 and so on. Then we can write down the
sequence of decimal fractions as:

11 12 13 ...
T921 22 23 ...

31 32 33 ...

and so on.

We now construct a new decimal fraction " such that 2 differs from 11,
xh differs from x99, a4 differs from z33, and so on, so that in general x
differs from ;' . Thus, 2’ is different from all of the reals that we have listed
between 0 and 1. We conclude that the cardinality of the reals is higher than
that of the integers and rationals; in other words, the reals are not a countable
set.

It is now straightforward to demonstrate that this argument does not apply
to prices.

First of all, we are not interested in prices per se but in prices of commodi-
ties, and the number of different commodities is necessarily countable. We
note that, as in [33], every commodity is produced from a discrete and finite
amount of other commodities, and base commodities (typically raw materi-
als) are composed of finite numbers of atoms. Thus, we could represent every
commodity by some archetype and give it a unique integer identifier based on,
say, a Godel number composed from the number of atoms of each element it
contains. As there is only a finite number of elements we can again enumerate
all possible finite combinations and hence all possible commodities.

Of course, if the number of commodities is countable then so is the number
of corresponding prices. Nonetheless, let us further explore the enumerability
of prices. Unit prices are only representable to a finite number of places, as
monetary systems are based on integer quantities of their smallest denomina-
tions: pence or cents, say. We might argue that we wish to deal in arbitrary
fractions of prices, for example in selling different proportions of a pound of

T Note that we may not replace a 9 with a 0



haggis or a litre of whisky. Noting the physical limitations on measurement
which ensure that we can only distinguish discrete quantities of things at the
microscopic level (see [6]), every fractional price is a ratio of integers and so
must be rational and therefore countable.

5 COMPUTING WITH “INFINITE” DATA

As discussed above, Murphy claims that economic planning must take all
possible future commodities into account. While we have already disputed
this, let us explore its implications further.

A classic input—output system ([33]) requires the solution of a system of
equations of the form:

Aapa + Bapb + -+ Kapk = Apa
Appy + Bopy + -+ + Kypr, = Bpy
Appr + Bipe + -+ + Kigpr = Kpy

where X is the quantity produced annually of commodity x, X, is the quan-
tity of y used to produce X and p,, is the unknown unit value of commodity
x. Given known X's and X s, we wish to solve the system for the p,s.

Granting, for the sake of argument, that there is an infinite number of com-
modities, we have already shown that it is countable. However, at any given
moment in time only a finite number of actual comodities may be in pro-
duction, even if there is a countable infinity of potential, but not currently
produced, commodities.

Let us assume that at any given point in time there are finite N actual
commodities in production. Their production can only involve a finite number
of other actual commodities. Thus, we can set the quantity produced, quantity
required and price of all the potential commodities to zero.

Clearly, while a finite number of commodities is used in production, there
is an infinite number of potential commodities. Thus, most elements of the
matrices and vectors for the X's, X s and p, s are zeros. Even if we ignore the
potential commodities, most actual commodites require only a small subset
of all actual commodities as inputs, and so the I/O matrix has mostly zero
elements. Structures whose elements are primarily zeros are said to be sparse.

There are numerous long-established techniques for representing and ma-
nipulating sparse structures: for a classic account see [21]. Typically, rather
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than allocating all potentially necessary space as arrays (which is plainly im-
possible for an infinite number of elements) only the non-zero elements are
represented, as composite structures of explicit indices and values.

For example, for an input—output matrix of N commodities, if N is finite
and most elements are non-zero, then we might define the C-like array:

int commodities [N, N];

so the number of commodity ¥ needed to produce commodity X would be
commodities[X,Y]. If the elements are primarily zeros, then instead we
could represent non-zero elements with the structure:

struct commodity {int i; int 3j; int wvalue};

where i is the index corresponding to X, j is the index corresponding to
Y, and value holds the former commodities [X, Y], We then construct
a linked structure to chain together all the non-zero elements represented in
this form. When we need commodities [X, Y] for a calculation, rather
than directly accessing the array, we search the linked structure for an entry
whose i index is X and whose j index is Y. If we find one then we return the
corresponding value. If we can’t find one then the element must be zero.
When a new commodity is first produced, we add new entries to the end of
the chain. If a commodity goes out of production then we remove all entries
that refer to it.

While this increases the cost of finding a matrix element from constant
time to linear time, it enables us to represent and process an apparently infinite
number of elements in finite space and time. And for finite [V, this technique
saves space compared with the original array representation if no more than
25% of the elements are non-zero.

6 A SHORT EXPERIMENT

If we assume that the socialist economy retains some form of market for con-
sumer goods, as proposed by Lange to provide information on final require-
ments, then the process of deriving a balanced plan is tractable.

Let us take a very simple example, an economy with four types of goods
which we will call bread, corn, coal and iron. In order to mine coal, both
iron and coal are used as inputs. To make bread we need corn for the flour
and coal to bake it. To grow the corn, iron tools and seed corn are required.
The making of iron itself demands coal and more iron implements. We can
describe this as a set of four processes:

11



TABLE 1
Convergence of gross production on that required for the final net product

iron coal corn bread labour
0 20000 0 1000 0 Net output

2000 24500 1500 1000 61000 1st estimate gross usage
2580 29400 1650 1000 129500

3102 31540 1665 1000 157300

3342 33012 1666 1000 174310

.. .. .. . .. hidden steps

3708 34895 1667 1000 196510

3708 34895 1667 1000 196515

3708 34896 1667 1000 196517 20th estimate gross usage
1 ton iron 0.05 toniron  + 2 ton coal + 20 days labour

1 ton corn 0.1toncorn  +0.02 toniron + 10 days labour

-

ltoncoal <« 0.2toncoal +0.1toniron + 3 days labour
—

lItonbread <« 1.5toncorn +0.5toncoal + 1 days labour

Assume, following [22], that the planning authorities have a current es-
timate of consumer demand for final outputs. The planners start with the
required net output. This is shown on the first line of Table 1. We assume that
20000 tons of coal and 1000 tons of bread are the consumer goods required.

The planners estimate how much iron, corn, coal, and labour would be
directly consumed in producing the final output: namely, 2000 tons of iron,
1500 tons of corn and 4500 additional tons of coal.

They add the intermediate inputs to the net output to get a first estimate of
the gross usage of goods. Since this estimate involves producing more iron,
coal and corn than they had at first allowed for, they repeat the calculation to
get a second estimate of the gross usage of goods.

The answers differ each time round, but the differences between successive
answers get smaller and smaller. Eventually, (assuming integer quantities are
used) after 20 attempts in this example, the planners get a consistent result: if
the population is to consume 20000 tons of coal and 1000 tons of bread, then
the gross outputs must be 3708 tons of iron, 34896 tons of coal and 1667 tons
of corn.

Is it feasible to scale this up to the number of goods produced in a real
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economy? While the calculations would have been impossibly tedious to do
by hand in the 1930s, they are readily automated. Table 1 was produced by
running a computer algorithm. If detailed planning is to be feasible, we need
to know:

1. How many types of goods an economy produces.
2. How many types of inputs are used to produce each output.

3. How fast a computer program running the algorithm would be for the
scale of data provided in (1) and (2).

Table 2 illustrates the effect of running the planning algorithm on a cheap
personal computer of 2004 vintage. We determined the calculation time for
economies whose number of industries ranged from one thousand to one mil-
lion.

Two different assumptions were made regarding the functional relation-
ship between the mean number of inputs used to make a good and the com-
plexity of the economy. Clearly, the number of direct inputs used to manufac-
ture any given product is only a tiny fraction of the total number of goods pro-
duced. It is plausible that as industrial complexity develops, the mean number
of inputs used to produce each product will also grow, but more slowly. In the
first part of Table 2 we assume that the mean number of inputs (M) grows as
the square root of the number of final outputs (V). In the second part of the
table we assume that the growth of M follows a logarithmic law.

It can be seen that calculation times are modest even for very big economies.
The daunting “million-equation” foe of the 1930s yields gracefully to the
modest home computer of the early 21st century! The limiting factor in the
experiments is computer memory. The largest model tested required 1.5 Gi-
gabytes of memory; larger models would have required a 64-bit computer.

The experiment went up to 1 million products. The number of products
in the Soviet economy was, according to an estimate cited in [27], around 10
million. Nove believed this number was so huge as to rule out any possibility
of constructing a balanced disaggregated plan. This may well have been true
with the computer technology available in the 1970s, but the situation is now
quite different.

7 CONCLUSION

We have
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TABLE 2
Timings for applying the planning algorithm to model economies of different sizes.
Timings were performed on a 3 Ghz Intel Zeon running Linux, with 2 GB of memory.

Industries Mean Inputs CPU Time Memory

N M seconds bytes
Law M = VN

1,000 30 0.1 150KB
10,000 100 3.8 SMB
40,000 200 33.8 64MB
160,000 400 77.1  512MB
320,000 600 166.0 1.5G

Law M =~ log N
1,000 30 0.1 150KB
10,000 40 1.6 2.4MB
100,000 50 5.8 40MB
1,000,000 60 68.2  480MB

e questioned Murphy’s requirement that planning requires pre-knowledge
of all possible prices,

e argued that the domain of prices to which planning is applied is in prin-
ciple finite rather than infinite and that thus Cantor’s arguments are
inapplicable, or at worst prices are countable, and Cantor’s arguments
are applicable but irrelevant because there is no concievable require-
ment that this domain be closed under diagonalisation,

e argued that planning over finite prices is tractable,

e shown that diagonalisation is not applicable to prices or commodities,
and

e discussed how infinite structures of predominantly zero values may be
given finite representations.

In conclusion we have shown that Murphy’s arguments are ill founded.
The computational feasibility of economic planning at a detailed level is an
issue that must be investigated in its own right, and cannot be settled by appeal
to Cantor. We have presented specific arguments that suggest that detailed
planning is indeed feasible.

14



ACKNOWLEDGEMENTS

We would like to thank the annonymous referee for their valuable comments.

REFERENCES

(1]

(2]
3

—

[4

=

[5

—

[6

—

(71

[8

—_—

[9

[t

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]
[21]

K.J. Arrow and G. Debreu. (1954). Existence of an Equilibrium for a Competitive
Economy. Econometrica, 22(3):265-290.

G. L. Baker and J. P. Gollub. (1990). Chaotic Dynamics. Cambridge University Press.

Karl Heinz Becker and Michael Dorfler. (1989). Dynamical Systems and Fractals. Cam-
bridge University Press.

S. Boehm. (2002). The ramifications of John Searle’s social philosophy in economics.
Journal of Economic Methodology, 9.

Peter J. Boettke and John Robert Subrick. (2001). From the philosophy of mind to the
philosophy of the market. CAHIERS D’EPISTEMOLOGIE, 2001-03(276):3-18.

P. Cockshott and G. Michaelson. (2007). Are there new models of computation: A reply
to Wegner and Eberbach. Computer Journal. to appear.

W. P. Cockshott. (1990). Application of artificial intelligence techniques to economic
planning. Future Computing Systems, 2:429-443.

Allin Cottrell and Paul Cockshott. (1992). Towards a New Socialism, volume Nottingham.
Bertrand Russell Press.

Allin Cottrell and Paul Cockshott. (January 1993). Calculation complexity and planning :
the socialist calculation debate once again. Review of Political Economy, 5(1):73-112.

X. Deng and L.S. Huang. (2006). On the complexity of market equilibria with maximum
social welfare. Information Processing Letters, 97(1):4-11.

HD Dickinson. (1933). Price Formation in a Socialist Community. The Economic Journal,
43(170):237-250.

A. Dragulescu and V. M. Yakovenko. (2000). Statistical mechanics of money. The
European Physical Journal B, 17:723-729.

Emmanuel Farjoun and Moshe Machover. (1983). Laws of Chaos, a Probabilistic Ap-
proach to Political Economy. Verso, London.

I. Gent and T. Walsh. (1999). Beyond NP: the QSAT phase transition. Proc. AAAI,
99:648-653.

F. A. Hayek. (1935). Prices and Production. Routledge, London.

F. A. Hayek. (1945). The use of knowledge in society. American Economic Review, pages
519-530.

F. A. Hayek. (1955). The Counter-Revolution of Science. The Free Press, New York.

LV Kantorovich. (1960). Mathematical Methods of Organizing and Planning Production.
Management Science, 6(4):366—422.

Tien D Kieu. (2003). Quantum algorithm for Hilbert’s tenth problem. International
Journal of Theoretical Physics, 42:1461 — 1478.

S. Kleene. (1952). Introduction to Metamathematics. North-Holland.
D. Knuth. (1968). Funadmental Algorithms. Addison-Wesley.

15



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Oscar Lange. (1938). On the Economic Theory of Socialism. University of Minnesota
Press.

W. Marciszewski. (2002). Hypercomputational vs. Computational Complexity A Chal-
lenge for Methodology of the Social Sciences. Free Market and Computational Complex-
ity. Essays in Commemoration of Friedrich Hayek (1899-1992). Series: Studies in Logic,
Grammar and Rhetoric, 5:18.

G. Michaelson, W. P. Cockshott, and A. F. Cottrell. (1995). Testing marx: some new
results from uk data. Capital and Class, pages 103—129.

P. Mirowski. (1989). More Heat Than Light: Economics as Social Physics, physics as
Nature’s Economics. Cambridge University Press.

J.P. Murphy. (2006). Cantor’s Diagonal Argument: an Extension to the Socialist Calcula-
tion Debate. Quarterly Journal of Austrian Economics, 9(2):3..11.

Alex Nove. (1983). The Economics of Feasible Socialism. George Allen and Unwin,
London.

J. Searle. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3.
A. M. Shaikh. (1998). The empirical strength of the labour theory of value. In

R. Bellofiore, editor, Marxian Economics: A Reappraisal, volume 2, pages 225-251.
Macmillan.

Adam Smith. (1974). The Wealth of Nations.

Warren D. Smith. (2006). Three counterexamples refuting Kieu’s plan for “quantum adi-
abatic hypercomputation” and some uncomputable quantum mechanical tasks. J.Applied
Mathematics and Computation, 187(1):184-193.

Daniel A. Spielman and Shang-Hua Teng. (2004). Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385—463.

Piero Sraffa. (1960). Production of commodities by means of commodities. Cambridge
University Press, Cambridge.

Boris Tsirelson. (2001). The quantum algorithm of kieu does not solve the hilbert’s tenth
problem. Technical Report quant-ph/0111009, arXiv.

Kumaraswamy Velupillai. (2003). Essays on Computable Economics, Methodology and
the Philosophy of Science. Technical report, Universita’ Degli Studi di Trento - Diparti-
mento Di Economia.

L. von Mises. (1935). Economic calculation in the socialist commonwealth. In F A
Hayek, editor, Collectivist Economic Planning. Routledge and Kegan Paul, London.

I. Wright. (2003). Simulating the law of value. Submitted for publication, preprint at
http://www. unifr. ch/econophysics/articoli/fichier/WrightLawOfValue. pdf.

I. Wright. (2005). The social architecture of capitalism. Physica A: Statistical Mechanics
and its Applications, 346(3-4):589-620.

16



