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Abstract. In the sixty-five years since Turing introduced his eponymous
machines, many popular misconceptions about their properties have be-
come current. In this paper, we explore the notions that Turing machines
have infinite tapes and that their expressive power is limited by by an
inability to interact with the wider environment during computations.

1 Introduction

As time passes since the death of a great scientist, they become better
known. More people have heard of them, and more people have heard of
their work. But it does not follow that more people actually know their
work or still read it. Newton like Darwin and Freud is still famous, but
how many still read Newton in the original?
As time passes their work becomes known at second or third hand, and
in the process is changed. Things are omitted, and things which, whilst
they were the result of the great author’s work, were other’s ideas, are
attributed to them.
For instance one of us who was brought up on Dawkins and Gould,
with their accounts of the opposition between Darwinian and Lamarkian
evolution, was surprised to discover in Darwin’s Descent of Man[4] that
he was a firm believer in the inheritance of acquired characteristics. A
later, post Mendel, orthodoxy has been projected back onto Darwin. One
encountered not the original Darwin, but a stylised version, modified by
more recent concerns.
Turing, who is so much more recent than Darwin and whose publications
were much less extensive, is already showing signs of being transformed
in a similar way. Far more computer scientists have read accounts of the
Turing Machine in textbooks than have read his original description, and
as a result a number of misconceptions have taken hold. In this paper, we
explore two misconceptions about properties of Turing machine tapes,
that is that they are infinite and that they may not be subject to external
change during computations.



2 Finite and infinite tapes

There is a widespread notion that Turing machines have infinite tapes.
However, in Turing’s original paper[18] there is no mention of the tape
having to be infinite; instead Turing says: "The machine is supplied with
a “tape”, (the analogue of paper) running through it, and divided into
sections (called “squares”) each capable of bearing a “symbol”. At any
moment there is just one square, say the r-th, bearing the symbol S(r)
which is “in the machine”". The length of the tape is not specified.
The tape is not specified as infinite, and, since he is concerned with
finite computation, it is clear that any terminating programme will have
only modified a finite portion of the tape, so what he was assuming was
effectively a finite but unbounded tape. An infinite tape would also have
required an infinite amount of energy to accelerate and decelerate it on
each step and would thus have been incompatible with requirement that
computable numbers be "calculable by finite means".
It is possible that this notion of an infinite Turing machine tape arose
from the independent elaboration of Emil Post’s eponymous machine[16]
at around the same time. Post also uses the analogy of a “problem solver
or worker” manipulating “spaces or boxes” but “the symbol space is to
consist of a two way infinite sequence.
Perhaps more significantly, in 1947 Turing said in a lecture that, some
years earlier, he had been investigating the problem of machines with
“an infinite memory contained on an infinite tape”[20]. It is not clear
whether he was misrecollecting what he published in [18] or referring to
unpublished investigations. to be infinite but had at least to be ’very
extensive’. It is probably from this lecture by Turing himself, that the
idea that the original Turing Machine required an infinite memory arose.
In practice this difference between infinite and finite but unbounded
memories is not important. We know that in reality all our digital com-
puters are finite machines, but such is the vastness of the finite, that even
a tiny embedded microprocessor like the PIC with a paltry 68 bytes of
RAM has so many potential states that it would take about 2450 times
the age of the universe to run through them all. What is important
for a general purpose digital computer is that its memory be ’exten-
sive’ and that this memory is modifiable during programme execution.
The size of the memory is important, bur only insofar as size constrains
the datasets that can be practically processed. The organisation of the
memory, whether it has random or sequential access, is also of practical
importance, since random access stores are faster than sequential access
ones. But neither the size nor the organisation affect the type of problem
that the computer can address.

Machines such as the ACE may be regarded as practical ver-
sions of this same type of machine. There is at least a very close
analogy. Digital computing machines all have a central mecha-
nism or control and some very extensive form of memory. The
memory does not have to be infinite, but it certainly needs to
be very large.[20]

Subsequently, there is a curious divergence in accounts of Turing machine
tapes in books on computability theory. In a collection of twenty two such



books held by one author, eleven refer directly or obliquely to the tape
as infinite - see Figure 3. These include the classic texts by Davis[5],
“two-way infinite sequence”(p3), Hopcroft and Ullman[10], “infinity of
cells”(1969), Manna[13],“The tape...is infinite to the right”(p228), and
Harel[9], “an infinite tape”(p21). Finally, Minsky[14] offers a compromise:

“The tape is regarded as infinite in both directions. But...one can
think of the tape as really finite at any particular time.”(p118)

3 Interaction and Computation

The infinite tape seems to have been the first stylisation of the Turing’s
universal computer. A more recent stylisation is the idea that according
to Turing, universal computers are not allowed to perform input out-
put. Wegner proposes that Turing Machines correspond to the batch
mainframes running procedural languages, and that workstations run-
ning object oriented languages correspond to an entirely new class of
machines which he calls interaction machines.

Turing machines transform strings of input symbols on a tape
into output strings by sequences of state transitions. Each step
reads a symbol from the tape, performs a state transition, writes
a symbol on the tape, and moves the reading head. Turing ma-
chines cannot, however, accept external input while they com-
pute; they shut out the external world and are therefore unable
to model the passage of external time.[22]

We will consider the two issues of input output and the passage of time
separately. If one looks at Turing’s 1937 paper the tape is both the input
output device and the read write store.
The lack of any dedicated input output hardware in the 1937 proposal
could clearly have been circumvented by appropriate programming. One
could arrange that say every 3rd square on the tape was to be reserved
for input data, and allow the programmer to write input data onto these
3rd squares as the computation proceeds. These 3rd squares would then
constitute an input channel multiplexed onto the tape.
Allow the input channel to contain blanks, Xs, 0s or 1s,. Once a 0 or 1
has been read from the input channel the machine overwrites it with an
X. The machine can poll for input by inspecting the next character in
the input channel, if it is blank, move back a certain number of positions
to eject the tape and allow the programmer to optionally write a 0 or 1
on the square and then repeat. Obviously we would have to arrange the
machine to run slow enough that there was time to write on the tape,
but this does not affect the essence of the argument.
We have to ask if the lack of dedicated input output was a significant
feature of Turing’s ideas. We would argue that the key computational
innovation he was concerned with in [18] was the Universal Computer,
the computer that could emulate any other computer, and thus perform
any computation. Special purpose computing machines were well known
prior to Turing[17,8,6,11,7]. What was new, or at least a recovery of
Babbage[12], in [18] was the idea of the Universal Computer. It is the
implementation of this universality that has led to the subsequent success



of the computer industry, since it allows a single design of machine to be
applied to an arbitrary number of tasks.

It can be shown that a single special machine of that type can be
made to do the work of all. lt could in fact be made to work as a
model of any other machine. The special machine may be called
the universal machine, it works in the following quite simple
manner. When we have decided what machine we wish to imitate
we punch a description of it on the tape of the universal machine.
This description explains what the machine would do in every
configuration in which it might find itself. The universal machine
has only to keep looking at this description in order to find out
what it should do at each stage. Thus the complexity of the
machine to be imitated is concentrated in the tape and does not
appear in the universal machine proper in any way.
If we take the properties of the universal machine in combination
with the fact that machine processes and rule of thumb processes
are synonymous we may say that the universal machine is one
which, when supplied with the appropriate instructions, can be
made to do any rule of thumb process. This feature is paralleled
in digital computing machines such as the ACE. They are in fact
practical versions of the universal machine. [20]

To establish the minimum hardware requirement for a Universal Com-
puter, a dedicated input output mechanism was irrelevant, but as soon
as Turing starts to actually build the Universal Computer he includes
dedicated input output in the design: "It may be divided for the sake
of argument into the following parts Memory, Control, Arithmetic part,
Input and output" [20]. From the earliest practical design of the Univer-
sal Computer, Turing saw the need for input and output. Back in 1947
he chose Hollerith cards for this task, but he saw this as a temporary
restriction: "It would be quite possible to arrange to control a distant
computer by means of a telephone line. Special input and output ma-
chinery would be developed for use at these out stations, and would cost
a few hundred pounds at most."[20] He also proposed the use of digitisers
to input analogue data : "As time goes on the calculator itself will take
over the functions both of masters and of servants. The servants will
be replaced by mechanical and electrical limbs and sense organs. One
might for instance provide curve followers to enable data to be taken
direct from curves instead of having girls read off values and punch them
on cards."[20] By masters he means what are now called programmers,
and by servants he means what used to be called operators. He correctly
foresaw that as the machines developed ’electrical sense organs’ the need
for operators would diminish.
From this very early stage, prior to the first computer being built, Tur-
ing’s idea of the computer was as something that was interacting with its
environment. He discusses the possibility of it playing chess or modifying
its own ’tables’, what we would now call its programme. Wegner’s idea
of an interaction machine is not new, the Turing Machine design of 1947
was already an interaction machine.
Wegner further claims that Turing machines, and algorithmic computers
in general, are not aware of the passage of time. In a contemporary



machine if you want to find out the time you have to make a special
system call to examine a hardware clock. The algorithm in a high-level
language knows nothing of the passage of time. Although most computers
are provided with an auxiliary clock circuit to count the passage of time,
this is just a matter of economy, not necessity. Suppose one has a simple
RISC that takes a fixed number of cycles for every instruction then, at the
machine code level, it becomes easy to use software emulate the existence
of a hardware clock. One simply arranges the programme so that every
alternate instruction increments a register used as the real time clock.
Inspecting the register then gives one a measure of the passage of time.
The fact that programmes in a high level language do not directly see
time, does not mean that it can not be seen at the machine code level.
While identifying object oriented programming languages with a new
super-Turing class of computing, might seem tempting, the fact that
universal computers can be programmed to interpret object oriented lan-
guages shows that it must be a mistake. Object oriented programming
is actually closer to the model of a more primitive class of computer -
the finite state automaton.
The finite state automaton is the interaction machine par-excellence. On
each cycle it reads an input and generates an output in response, possibly
changing its state in the process ( Minsky [14], page 13). Hardware im-
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Fig. 1. Finite state automaton suitable for simple interaction and sequencing can be
built out of a register and a read only memory(ROM) chip. In the picture the register
latches a new address for the ROM each clock cycle. The ROM outputs a next state
and a set of wires which send output actions to the environment. Thus each cycle it
jumps to a new state. The behaviour of the machine is then defined by the table loaded
into the ROM. One or more sense inputs can also be provided which provide additional
address inputs. The presence of the sense inputs allows the next state transitions to be
on the sense input.

plementations of this abstraction, Fig. 1 gain their interactiveness from



a very simple construction and this makes them suitable for high speed
operations like microcode sequencing in a general purpose processor.
It is arguable that any general purpose computer will need such an in-
teraction machine or finite state automaton as part of the control unit.
When a conventional CPU interprets conditional branch instructions it
relies, at a lower level, on the ability of its micro sequencer to invoke
different actions on the data-path dependent on outputs from that path.
This was true even of the earliest know design for a general purpose
computer, the Analytical Engine of Charles Babbage. As Bromley shows
[1] this had what amounts to mechanical microcode, with a mechanical
microcode sequencer, Fig 2.
Rather than being the invention of fundamentally new model of compu-
tation object oriented programming, is a software embodiment of finite
automata, the ur-interaction machines. The parametrised methods of a
class correspond to the set of basic input symbols that are accepted by
the automaton. The fields of the class to the state of the automaton.
Finite state automata are well known to be less general than von Neu-
mann and Turing computers([14] page 26). Object oriented languages
are typically more powerful than finite state machines since they allow
recursion and the allocation of new heap storage locations during method
allocation. These additional powers are easy to provide since we typically
compile object oriented languages to general purpose CPUs. The bene-
fit of object oriented languages is that, by modelling their main control
structure on the paradigm of the finite state machine, they give software
engineers easy access to the sort of interaction that hardware engineers
have long been familiar with in finite state automata components.

4 Misrepresenting Turing

Wegner’s paper makes a number of assertions which at best are inaccu-
rate, both historically and technically.
For example, he states that:

“...Turing showed in the 1930’s that algorithms in any program-
ming language have the same transformation power as Turing
machines[6]”(p82)

but there were no programming languages in the 1930’s and the citation
“[6]” is to Turing’s 1950 paper on artificial intelligence.
Wegner next states:

“We call the class of functions computable by algorithms and
Turing machines the “computable functions.” This precise char-
acterisation of what can be computed established the respectabil-
ity of computer science as a discipline. However, the inability to
compute more than the computable functions by adding new
primitives proved so frustrating that this limitation of Turing
machines was also called the “Turing tarpit.” Interactive com-
puting lets us escape from the gooey confines of the Turing
tarpit.”(p82/83)

Once again, computer science did not exist as a discipline until the last
years of Turing’s life.



More important, it is a contradiction in terms to want to compute more
than is computable. Wegner, fails to distinguish “computable”, corre-
sponding to decidable decision problems where the characterising ma-
chine is guaranteed to terminate, from “semi-decidable” decision prob-
lems where, although the characterising machine is not guaranteed to
terminate, nonetheless equivalent heuristics can still provide useful re-
sults, for example in unbounded search.
The “Turing tarpit” is from Alan Perlis[15]:

“54. Beware of the Turing tarpit in which everything is possible
but nothing of interest is easy.”(p10)

This is a jocular characterisation of the limits of very simple computable
systems, of which Turing machines are an excellent example, rather than
of Turing computable systems in general.
Wegner, later says that:

“Turing was born in 1912 and matured at about the time Gödel
delivered his coup de grace to formalist mathematics. But the
effects of Gödel’s incompleteness result were slow to manifest
themselves among such logicians as Church, Curry, and Tur-
ing who shaped the foundations of computer science. ... Before
Gödel, the conventional wisdom of computer scientists assumed
that proving correctness was possible (in principle) and sim-
ply needed greater effort and better theorem provers. However,
incompleteness implies that proving correctness of interactive
models is not merely difficult but impossible. This impossibility
result parallels the impossibility of realising Russell and Hilbert’s
programs of reducing mathematics to logic. The goals of research
on formal methods must be modified to acknowledge this impos-
sibility.”(p88)

It is a misrepresentation to say that Gödel’s results were “slow to to
manifest themselves among such logicians as Church, Curry, and Turing”.
Church and Turing, at the heart of international exploration of Hilbert’s
programme, were acutely aware of Gödel’s work. Thus, Church cites
Gödel in[2] and Turing[18] notes:

...“what I shall prove is quite different from the well known re-
sults of Gödel.”

Furthermore, there were no “computer scientist” before, or indeed for
many years after, Gödel’s 1930 result, and the only “theorem provers”
were human, much like the then common understanding of “computer”..
Wegner’s claims for the liberating power of interaction machines are by
assertion rather than argument:

“Abstraction is a key tool in simplifying systems by focusing
on subsets of relevant attributes and ignoring irrelevant ones.
Incompleteness is the key distinguishing mechanism between ra-
tionalist, algorithmic abstraction and empiricist, interactive ab-
straction. The comfortable completeness and predictability of al-
gorithms is inherently inadequate in modelling interactive com-
puting tasks and physical systems. The sacrifice of completeness
is frightening to theorists who work with formal models like Tur-
ing machines, just as it was for Plato and Descartes.” (p88)



Here, Wegner seems gratuitously patronising of theorists, but maybe that
is his privilege. Turing clearly embraced Gödel’s results. In[19] he fur-
ther developed Gödel’s “well known theorem”by associating increasingly
complete systems of logic with constructive ordinals to explore whether
classes of unsolvable problems for lower ordinal systems might be solv-
able in higher ordinal systems. Turing concludes that only an oracle, that
is a device that somehow knows the right answer, would enable the full
mechanisation of “some intellectually satisfying system of logical infer-
ence with some ordinal logic”. There is no suggestion that some alleged
inability to interact with a machine during a computation is the source
of this fundamental limitation.
Wegner seems at odds with his own characterisation of computations
and computers. In his 1971 book[21], he introduces the notion of an in-
stantaneous description of a computation step, which he attributes to
Turing. First of all, he discusses a simple machine with just a processing
unit and a memory. He next presents a more sophisticated model of a
digital computer, which includes input and output as uni-directional lin-
ear streams. Here, he explicitly adds the input and output records to the
instantaneous description. This is equivalent to denoting some portion
of a Turing machine as input and output areas, where the input plainly
cannot be known in advance of the computation. It is wholly legitimate
for people to change their minds: it is also customary to explain why the
change has been made.

5 Conclusion

As foundational ideas mature and become widespread, so opportunities
for memeish misconceptions increase. Some are probably harmless, like
the alleged infinite length of Turing machine tapes: the equivalence of
Turing machines with finite but unbounded tapes and Post machines
with infinite tapes is long established.
Other misconceptions have wider implications. Thus, Wegner’s claims
that interaction transcends alleged limitations on Turing machines[23]
form the basis of what we argue[3] are fruitless attempts to construct
systems and machines which are not subject to classic decidability re-
sults.
If we return to Turing’s original papers we are not struck by their lim-
itations. Instead we see remarkable foresight as to the potential of the
Universal Computer.There are, of course, limits in Turing: the funda-
mental limits to computability which he established. We are as bound
by them as we are by the laws of thermodynamics.
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