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ABSTRACT

This paper decomposes the algorithmic parameters that
affect the accuracy and parallel run times of mean shift seg-
mentation. Following Comaniciu and Meer [1], rather than
perform calculations in the feature space of the image, the
joint spatial-range domain is represented by the image space,
with feature space information associated with each point.

We report parallel speedup and segmentation accuracy us-
ing a standardised segmentation dataset and the Probabilistic
Rand index (PRI) accuracy measure. Changes to the algorith-
mic parameters are analysed and a sweet spot between PRI
and run time is found. Using a range window radius of 20,
spatial window radius of 10 and threshold of 50, the PRI is
improved by 0.17, an increase of 34% which is comparable to
state of the art. Mean shift clustering run time is reduced by
97% with parallelism, a speedup of 32 on a 64-core CPU.

Index Terms— Image segmentation, mean shift, algo-
rithm analysis, parallel processing.

1. INTRODUCTION

The mean shift clustering algorithm is widely used in the
computer vision domain but runs too slowly for certain appli-
cations [2]. Algorithm parameter tuning and parallel process-
ing can alleviate this trade off by speeding up execution times,
without comprising algorithmic robustness. Mean shift is pro-
posed by Fukunaga and Hostetler [3] as a method to cluster
data. It has applications in image processing: edge-preserving
image filtering and segmentation (Comaniciu et al [1]), text
detection in images (Kim et al [4]), real-time face tracking
(G Bradski [5]) and real-time object tracking (Allen et al [6],
Ramesh and Meer [7]).

A mean shift algorithmic optimisation in [2] uses a Hes-
sian matrix to reduce the number of iterations to conver-
gence. An implementation optimisation in [8] uses a binary
tree structure to store neighbouring points in a feature space
for efficient search. An implementation in [9] computes the
peaks of point samples in parallel, and remaining points are
assigned to their nearest peaks. Our algorithm is based on an
approach in [1], by performing mean shift on the spatial-range
domain where feature space information is associated with
each point. The clustering phase is parallelised to reduce run
time costs when the complexity of segmentation increases.

Input Clustered Merged Segmented

(a) Input image Feature Space (FS) (b) FS after clustering

(c) FS after clustering and merging(d) FS after segmentation

Fig. 1: Image and corresponding Feature Space (FS) at each
stage of mean shift segmentation.

2. MEAN SHIFT SEGMENTATION

The approach is to tune mean shift algorithmic parameters
and to use parallelism in the joint spatial-range domain to
achieve high Probabilistic Rand Index (PRI) and visual seg-
mentation accuracy, and high run time performance. We
compute segmentation by performing clustering (Figure 1b),
merging (Figure 1c) and then thresholding (Figure 1d).

2.1. Algorithmic Components

Clustering Each pixel in an image can be represented by
three values in a colour-space. A common colour-space is
RGB, where each pixel has a vector position according to
its red, green and blue values. This feature space can be a
probability density function of colour. Dense regions of this



space correspond to the local maxima of the probability den-
sity function. The cluster associated with each can be found.

The multivariate kernel density estimator f̂h,k(x) gives
an estimate for the density within a window h around a point
x. The modes of the density estimator are found at the points
with zero gradient 5f̂h,k(x) = 0. The mean-shift vector
mh,k′(x) is the normalised gradient of the density estima-
tor. It points in the direction of maximum increase in density
within the window and can therefore be used to define a path
towards the local maximum of the density estimate.

The joint spatial-range representation encodes 3D RGB
values, known as the range, and also 2D XY values, corre-
sponding to position in the image. Each cluster represents a
connected object of a certain colour in the image, rather than
separate segments of the same colour around the image [1].
The joint spatial-range mean shift vector is:
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where xr,s is the 5D position in the joint-space, xr is the

3D component of xr,s corresponding to the range, with range
window radius hr and xs is the 2D component corresponding
to the position in the image, with spatial window radius hs.

We use the Epanechnikov kernel, k(x) with the property:
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(2)

The clustering algorithm works as follows. For each point
in the feature space:

1. define the window of radius h around this point and
calculate the mean shift vector from it;

2. if the mean shift vector is non-zero, move to the point
that the vector indicates and go back to step 1;

3. if the mean-shift vector is zero at this new point, it is
the peak of the original point.

All points with the same peak are merged in the output.

Cluster Merging and Thresholding After mean shift clus-
tering, clusters of “peaks” have formed around the feature
space of the image. In order to segment an image, each of
these clusters should be considered as a single entity. To
achieve this, all peaks within range and spatial window radius
of each other are merged into one peak. If a region contains
less than a threshold number of pixels, it is to be merged with
the closest region of above-threshold size.

2.2. Algorithmic Complexity

The mean shift clustering algorithm operates on the feature
space of an image, so the run time for calculation of the mean

shift vector is proportional to the range window radius cubed.
When clustering the image in the the joint spatial-range do-
main, the image space can be used for calculations, with range
information attached to each point. The complexity is reduced
to the spatial window radius squared.

We identify three parameters as having an effect on the
run time of the algorithm as well as the accuracy of the out-
put; 1) Range window size, which is the radius of the spheri-
cal window in the three feature space dimensions of the joint
space when computing the mean shift vector. The wider the
radius, the greater the volume of points considered for cal-
culation of the vector and the fewer clusters identified in the
output of the clustering algorithm. 2) Spatial window size,
which is the radius of the circular window in the two image
space dimensions of the joint space. The wider the radius,
the greater the circular area of points considered. 3) Thresh-
old, which is the minimum number of pixels required to make
up a single region. These affect the mean shift segmentation
computational cost, and hence affect run time. Parallel pro-
cessing of the mean shift kernel also affects run time, but will
not affect segmentation accuracy.

3. EVALUATION

3.1. Measuring Algorithmic Accuracy

The PRI [10] is used to measure accuracy. It provides a
method to compare algorithm output with hand segmented
(ground truth) images. It accommodates refinement in regions
that humans find ambiguous and penalises them elsewhere,
by considering several ground-truth images for each image.

This index takes a value between 0 and 1, where 0 means
the segmentation bares no resemblance to the ground truth
segmentations and 1 means all segmentations are identical.
The PRI measure is proposed in [10], which remarks that a
PRI of 0.577 or less represents poor segmentation. A state of
the art segmentation method [11] achieves a PRI value of 0.7.

3.2. Implementation

Our C++ implementation is available in an open access
dataset [12]. Mean shift clustering is parallelised using
OpenMP [13] on a 64-core AMD Opteron 1.4GHz CPU. The
reported run times are the mean of five executions for each
configuration of the mean shift segmentation parameters.

Run time and PRI are measured for spatial and range
window radii of 5 to 25, thresholds from 10 to 50 and threads
from 1 to 64. The 124084 image from the Berkeley Seg-
mentation Dataset and Benchmark [14] is measured in Sec-
tion 3.3. Four other 481x321 pixel natural images from this
dataset have been processed with our implementation and
both the accuracy and run time results are very similar so
they are omitted for brevity. For each configuration of param-
eters, the PRI of the output image was calculated using the
Matlab toolbox from [11].
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(a) RT v Range Window Radius
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(b) RT v Spatial Window Radius
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(d) Speedup v Number of Threads
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(e) PRI v Range Window Radius
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(f) PRI v Spatial Window Radius

● ● ● ● ●●●●●

10 20 30 40 50

0.
60

0.
62

0.
64

0.
66

0.
68

Threshold

P
ro

ba
bi

lis
tic

 R
an

d 
In

de
x

● ● ● ● ●●●●●

● Full Segmentation

(g) PRI v Threshold

● ● ● ● ●

0 10 20 30 40 50 60

0.
60

0.
62

0.
64

0.
66

0.
68

Number of Threads

P
ro

ba
bi

lis
tic

 R
an

d 
In

de
x

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

Full Segmentation
Clustering and Merging  
Clustering  

(h) PRI v Number of Threads

Fig. 2: Run Time (RT) in seconds and Probabilistic Rand Index (PRI) Results for each parameter.

3.3. Results

Range Window Size Figures 2a and 2e show run time and
PRI versus range window size. The spatial window radius is
10 and the threshold is 50. As the range window radius in-
creases, the PRI does not vary greatly; however the run time
decreases, particularly between window radius 5 and 10. Us-
ing thresholding with small range window radius significantly
increases run time. Clustering and merging with a small range
window limits the impact of clustering, producing outputs
with many small segments. Thresholding eliminates these,
but with so few above-threshold segments to merge with, it
merges large areas of the image into a single segment. A large
range window increases computational costs of the clustering
phase. A small range window increases the complexity of
thresholding. A range window radius of 20 is desirable, as
the PRI decreases significantly for larger radius, and the run
time does not decrease by increasing the radius past 20.

Spatial Window Size Figures 2b and 2f show run time and
PRI versus spatial window size. The range window radius is
20 and the threshold is 50. Increasing the spatial window size
from 5 to 10 increases the PRI from 0.59 to 0.68. For spatial
window sizes above 10, the PRI increases marginally. Run
time increases with the square of the spatial window radius.
This is expected as each calculation of the mean shift vector
is proportional to the spatial window squared. Thus it is desir-
able to select a spatial window radius of 10, as the PRI does
not increase substantially by increasing the radius above 10,
but the run time increases dramatically.

Thresholding Figures 2c and 2g show the run time and PRI
versus threshold. Here the spatial window radius is 10 and
range window radius is 20. Increasing the threshold value
does not have a noticeable effect on the PRI, but moderately
decreases run time. As can be seen in Figures 4e and 4f, in-
creasing the threshold decreases the number of small super-
fluous segments. A threshold of 50 increases performance
without affecting the PRI, while improving the visual result.

Parallelism Figures 2d and 2h show speedup and PRI ver-
sus number of threads. Speedup is T1/Tn where T1 is se-
quential runtime with one thread and Tn is runtime with n
threads. Here the spatial window radius is 10, range window
radius is 20 and the threshold is 50. Increasing the number of
threads decreases the run time while the PRI accuracy is con-
stant. The nature of cluster merging and thresholding make
them prone to race conditions resulting in non-deterministic
segmentation results, so have been implemented sequentially.

Figures 3a, 3b and 3c show the speedup for different con-
figurations of the window radii. Speedup for full segmen-
tation is significantly lower than for clustering and merging.
When both window radii are small, as in 3a, thresholding
dominates the run time, as seen in Figure 2a, and there is very
little segmentation speedup. When both windows are rela-
tively large, speedup is similar for clustering, clustering and
merging and full segmentation, since the parallel clustering
phase is the biggest contributor to the run time. However, the
sequential run time for large windows, presented in 3d, is an
order of magnitude larger than for small or medium windows.
The benefit of parallelism for small and medium window radii
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(a) Speedup v Threads 1
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(b) Speedup v Threads 2
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(c) Speedup v Threads 3
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Fig. 3: Speedup versus number of threads for each of 3
configurations of the window radii. (a) presents results for
wr = 5, ws = 5, (b) for wr = 10, ws = 20 and (c) for
wr = 25, ws = 25. Threshold is 50 for all full segmenta-
tion results. (d) presents full segmentation absolute run time
versus number of threads for each configuration.

is reduced, but the absolute time for large windows is much
greater. For 16 threads or more, the window radii sweet spot
identified as wr = 20, ws = 10 outperforms the other cases
significantly. The three lines appear to have deceptively flat
lined. The sweet spot has run time 3.2s, 2.8s and 2.7s for 32,
48 and 64 threads respectively. Segmentation with window
radii wr = 25, ws = 25 has run time 15.3s, 12.0s and 10.5s
respectively and segmentation with wr = 5, ws = 5 has run
time 11.9s, 12.0s and 12.0s respectively.

The thresholding step is optional [15] and only helpful for
certain applications, e.g. background subtraction. Consider-
ing the significant increase in run time, as illustrated in Fig-
ures 2a and 2b, and significant decrease in the accuracy shown
in Figure 2e for large range window and Figure 2f for small
spatial window, the added run time costs due to thresholding
are only worthwhile in application specific contexts.

Visual Results Figure 4 displays the segmentation results
for the highest and lowest values measured for each parame-
ter. An outline of the identified segments overlays the origi-
nal image. 4a and 4c show that for small window radii, the
thresholding phase overcompensates due to the large num-
ber of small segments present after clustering and merging.
Figures 4e and 4f show that thresholding has a subtle effect

(a) Range window radius 5.
59 segments.

(b) Range window radius 25.
35 segments.

(c) Spatial window radius 5.
14 segments.

(d) Spatial window radius 25.
46 segments.

(e) Threshold 10.
117 segments.

(f) Threshold 50.
44 segments.

Fig. 4: Resulting images using different parameters. Unless
stated otherwise, ws = 20, wr = 20 and threshold is 50.

despite its significant run time; the main segments are not al-
tered but small superfluous segments are removed.

4. CONCLUSION

This paper analyses the mean shift segmentation algorithm
when performed on the image space of a colour image, rather
than the feature space. Effects of varying the range and spatial
window radii and the threshold on the run time and algorith-
mic accuracy were measured and a sweet spot between the
two was identified. Implementing the algorithm in this way
reduces its complexity and allows wider feature space win-
dows to be used without a polynomial increase in run time.
The PRI increased by 0.17, an increase of 34%, using the
sweet spot identified as a range window radius of 20, spatial
window radius of 10 and threshold of 50. This is compa-
rable to state of the art in [11] for the Berkeley segmenta-
tion dataset. Parallelism of mean shift segmentation without
thresholding decreased run time by 97%, a speedup of 32.
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