
Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.e lsev ier .com/ locate /c l

Cost-driven autonomous mobility

Xiao Yan Deng∗, Greg Michaelson, Phil Trinder

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK

A R T I C L E I N F O A B S T R A C T

Article history:
Received 10 November 2008
Accepted 26 January 2009

Keywords:
Autonomous systems
Load balancing
Cost models
Jocaml

Autonomous mobile programs (AMPs) offer a novel decentralised load management technol-
ogy where periodic use is made of cost models to decide where to execute in a network. In this
paper we demonstrate how sequential programs can be automatically converted into AMPs.
The AMPs are generated by an automatic continuation cost analyser that replaces iterations
with costed autonomous mobility skeletons (CAMS) that encapsulate autonomous mobility.
The CAMS costmodel uses an entirely novel continuation cost semantics to predict both the cost
of the current iteration and the continuation cost of the remainder of the program. We show
that CAMS convey significant performance advantages, e.g. reducing execution time by up to
53%; that the continuation cost models are consistent with the existing AMP cost models; and
that the overheads of collecting and utilising the continuation costs are relatively small. We
discuss example AMPs generated by the analyser and demonstrate that they have very similar
performance to hand-costed CAMS programs.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The explosive growth in wired and wireless networks enables the construction of substantial distributed systems based on
shared interconnected clusters. However, the effective use of such systems raises pressing problems for the optimal utilisation of
resources in the presence of dynamically changing and unpredictable demand. The simplest approach is to statically allocate new
jobs to available resources, either blindly based on snapshots of local cluster loads, or through various strategies for balancing user
predicted demand against available resource. However, such approaches can quickly become suboptimal, especially if demand is
predicted inaccurately, leading to over or under resource allocation, or to resources being freed or retained unpredictably.

An alternative is to try to dynamically manage resource consumption by moving live jobs across processors or clusters at
run time to maintain balance. Load management and analysis of patterns of resource use may be either centralised at a single
location or, in larger networks, decentralised across a number of locations. Such load monitoring can incur significant local and
global housekeeping overheads. More problematic, dynamic loadmanagement is reactive and is driven by the need to continually
recover from imbalance.

We are exploring a novel approach to decentralised loadmanagement, where decisions about when andwhere to execute are
devolved to individual programs. That is, we develop autonomous mobile programs (AMPs) [1] where, instead of some external
system managing load, the program itself decides whether its resource needs would be better served by movement to another
location. Furthermore, rather than simplistic movement-based solely on identifying the most lightly loaded location, our AMPs
are aware of their future resource needs and hence can make informed decisions about whether those needs are best served
locally or by movement elsewhere. We have shown that collections of AMPs, while not aware of each other individually, will
nonetheless move to maintain optimal balance collectively [1].

∗ Corresponding author. Tel.: +441314514162.
E-mail addresses: xyd3@macs.hw.ac.uk (X.Y. Deng), greg@macs.hw.ac.uk (G. Michaelson), trinder@macs.hw.ac.uk (P. Trinder).

1477-8424/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cl.2009.01.003

http://www.sciencedirect.com/science/journal/cl
http://www.elsevier.com/locate/cl
mailto:xyd3@macs.hw.ac.uk
mailto:greg@macs.hw.ac.uk
mailto:trinder@macs.hw.ac.uk

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 35

Thenovelty in our approach lies in eachprogrambearing its own costmodelwhich is parameterised on the remaining execution
time and data sizes. However, constructing AMP costmodels by hand is a skilled task, sowehave been exploring commonpatterns
of mobility we term autonomous mobility skeletons (AMSs) [2] with standard cost models. Anticipating that the most effective
locus ofmobility control lies in top-level iterations, our AMSs generalise standard iterative forms. For example auto_iter evaluates
the cost model to assess the benefits of moving periodically during a Java iteration. Likewise auto_map periodically considers
moving while applying a function to each element of a sequence.

While AMSs greatly simplify the construction of AMPs, nonetheless they still require considerable proficiency in cost model
construction. Hence, we have been investigating the automatic generation of cost models from programs using AMS as loci [3]. Our
results suggest that even simple automatically generated cost models can be highly effective in enabling mobile programs to
adapt sanely to dynamically changing environments.

1.1. Novelty

The paper situates the work (Section 2) and outlines earlier work (Section 3) before making the following four research
contributions.

• We present a new continuation cost semantics for a core mobile functional programming language J that predicts the cost
of computing the remainder of a program at arbitrary program points. We believe our cost semantics is the first to cost
continuations rather than entire programs. The continuation cost equations are generated statically but are designed to be
parameterised dynamically to more accurately predict the time to evaluate the remainder of the program (Section 4).

• The continuation costs are incorporated into a cost model for high-level abstractions of autonomously mobile iterations
over collections, called costed autonomous mobility skeletons (CAMS), and a Jocaml implementation of a CAMS is exhibited
(Section 5).

• We evaluate the continuation cost semantics and CAMS using six pairs of programs to show, inter alia, the following. The
continuation cost models are consistent with the existing AMP cost models. The overheads of collecting and utilising the
continuation costs are relatively small. Most significantly, utilising the predicted continuation costs can convey significant
performance advantages compared with both static and AMS programs (Section 6).

• We show that sequential programs can be automatically converted into AMPs that move to better exploit computational
resources on a network. We do so by exhibiting an automatic continuation cost analyser that implements the continuation cost
semantics to supply cost equations to a translator that replaces iterating higher-order functions with the corresponding CAMS.
We show example AMPs generated by the analyser and demonstrate that they have very similar performance to hand-costed
CAMS programs (Section 7).

The continuation cost analyser and CAMS were outlined in [3]. Here we present the underlying indexing, cost semantics,
and continuation cost semantics. We likewise present the CAMS cost model and implementation for the first time, evaluate
CAMS performance against more AMPs and make a deeper performance analysis. Finally we elaborate the architecture of the
continuation cost analyser, and demonstrate it against further, and more substantial, examples.

2. Related work

The idea of relocating a process during execution has existed for some time, and is termed migration, rescheduling or strong
mobility by different communities. Strong mobility is discussed in Section 2.1. Much work was done on load management using
task migration in distributed operating systems in the 1970s [4], and some well known examples are Mach [5] and MOSIX [6].
Sophisticated distributed memory implementations of parallel programming languages support task migration, for example the
Charm parallel C + + [7]. However, where parallel languages are typically designed for homogeneous dedicated architectures,
AMPs operate on heterogeneous shared architectures. Moreover, both distributed operating systems and parallel programming
languages differ from AMPs as the tasks are passive, and the scheduling is typically centralised.

Grid workflow reschedulers are more closely related to AMPs, and are currently the focus of considerable research effort.
An excellent taxonomy of Grid workflow management systems can be found in [8]. Like AMPs Grid workflow reschedulers
operate on heterogeneous shared networks, and many make decentralised scheduling decisions, use performance prediction to
inform scheduling decisions, and reschedule after periodic reassessment of system status. However, our AMP approach is novel
in automating the performance prediction process as a one-off, compile-time program analysis, and in devolving the reschedul-
ing decisions to individual programs. Effective load management is only derived as an emergent behaviour from collections
of AMPs.

Although loop schedulingmechanisms [9], many algorithmic skeletons [10], and AMSs all operate on iterations, they do so for
very different purposes. Both algorithmic skeletons and loop scheduling mechanisms parallelise their own iterations. In contrast,
AMS do not parallelise iterations but rather use them to predict work and to determine whether to move.

The remainder of this section surveys related work in the three core AMP technologies: mobile computations, autonomous
systems and cost analysis.

36 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

2.1. Mobility and mobile languages

Mobile computations can move between locations in a network and potentially enable better use of shared computational
resources [11].Mobile programming languages like Jocaml [12] or JavaVoyager [13] give programmers control over the placement
of code or active computations across the network. Basically amobile program can transport its state and code to another location
in a network, where it resumes execution [14].

Fuggetta et al. distinguish two forms of mobility supported bymobile languages [15].Weakmobility is the ability tomove only
code from one location to another. Strong mobility is the ability to move both code and its current execution state [2]. Jocaml is a
strict functional programming language with strong mobility, and while JavaGo also supports strong mobility, Voyager supports
only weak mobility. While strong mobility is required for arbitrary AMPs, they may be constructed in a language with weak
mobility if the locus of movement is a function without external states beyond parameter values. Thus, AMPs [1] and AMSs [2]
have been developed in Jocaml, Java Voyager, and JavaGo. However, the cost semantics we define, automate and evaluate in
Sections 4–7 is for substantial subset of Jocaml only.

AMPs are relatively unusual mobile programs. AMPs relocate to obtain computational resource and hence collections of AMPs
manage load. In contrast most strongly mobile programs relocate to obtain other resources, e.g. access to a specific repository.
Moreover, where movement control is explicit in most strongly mobile programs, the purpose of our cost analysis and of AMS
and CAMS is to make the movement as implicit as possible.

2.2. Agents and autonomous systems

Agent technology is a high-level, implementation independent approach to developing software as collections of distinct but
interacting entities which cooperate to achieve some common goal. With the continuing decline in price and increase in speed of
both processors and networks, it has become feasible to apply agent technology to problems involving cooperation in distributed
environments, in particular, where agents may change location, typically to manipulate resources in varying locations.

An agent is “an encapsulated computer system that is situated in someenvironment, and that is capable of flexible, autonomous
action in that environment in order to meet its design objectives” [16,17]. An agent with mobility is called a mobile agent [18],
and AMPs are mobile agents.

Autonomous systems are also called autonomic computing systems, and a definition has been given by IBM: “autonomic
computing system canmanage themselves given high-level objectives fromadministrators” [19,20] andmaintenance. Autonomic
systemswillmaintain andadjust their operation in the faceof changing components,workloads, demands, andexternal conditions
and in the face of hardware or software failures. Four aspects of self-management are self-configuration, self-optimisation, self-
healing, and self-protection. Different autonomic systems may have some or all these four aspects. AMPs are primarily self-
optimisation systems. They are aware of their processing resource needs and sensitive to the environment in which they execute,
and are able to dynamically relocate themselves to minimise processing time in the presence of varying external loads on shared
locations.

Most distributed environments are shared bymultiple users. In particular, distributed agent-based systemsmust also contend
with external competition for resources, not least for the locations they share. The agents community has focused on autonomous
problem solving, which can act flexibly in uncertain and dynamic environments. Mobile languages provide efficient tools tomake
the agent movemore flexibly in the large scale network, which make it possible to build self-management systems (autonomous
systems) for resource sharing using agent technology. So many autonomous systems are based on mobile agents [16].

AMPs have strong connections with both agents and autonomous systems, but they also have important differences. Firstly,
unlike previous mobile agents approaches, AMPs have cost models and are autonomous, making decision themselves when
and where to move according to the cost model. Furthermore, unlike traditional autonomous systems [19,21,22], which use
schedulers to decide whether to move, AMPs themselves can make the decision when and where to move according to the cost
model [1].

2.3. Cost analysis

Cost models estimate the resource consumption of a program, typically its execution time or memory consumption [23].
Although the cost of an arbitrary program cannot be accurately modelled, as this would imply solving the halting problem,
useful predictions can be obtained for many programs. Costs may be modelled statically prior to execution, or dynamically during
execution. Our work focuses primarily on generating static models of computation, communication, and coordination costs: the
latter being the cost of determining where best to execute in a network. Here, statically generated models are dynamically
instantiated to predict and adapt program behaviour.

Predicting resource consumption is an important problem and a range of static computation cost models have been con-
structed. Early work includes that of Cohen and Zuckerman, who consider cost analysis of Algol-60 programs [24]; Wegbreit,
whose pioneering work on cost analysis of Lisp programs addressed the treatment of recursion [25]; and Ramshaw [26] and
Wegbreit [27], who discuss the formal verification of cost specifications. Many of the cost analyses use non-standard semantics,
e.g. Rosendahl [28] uses abstract interpretation for cost analysis, and Wadler [29] uses projection analysis.

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 37

Recent approaches use type inference tomodel time and space costs. In their influential paper, Hughes andPareto [30] combine
a sized type system with region-based memory management to semi-automate the prediction of space costs in Embeded ML.
Hammond et al. [31] have extended the approach to develop a sized time system for a model higher-order functional language.
In complementary work, Hofmann and Jost [32,33] have been exploring amortised cost models for heap use, which Hermann
et al. [34] have extended to stack, heap and time analysis. Finally, Brady and Hammond [35] have been using dependent types to
support static cost analysis.

Costmodels that incorporate communication costs arewell developed for parallel programming languages. For examplemany
parallel languages use algorithmic skeletons which encapsulate the expression of parallelism, communication, synchronisation
and embedding, and often have an associated cost model. Thus, Skillicorn and Cai have developed a cost calculus for the Bird
Meertens Formalism (BMF) [36], and Rangaswami has developed the HOPP skeleton-based parallel programming language with
an associated cost model [37].

We have developed a generic cost model for AMPS that incorporates not only computation and communication cost, but also
coordination costs. We believe this is one of the first cost models for a mobile language. This generic model is instantiated for
specific instances, e.g. for matrix multiplication [1,2]. The continuation cost semantics we present in Section 4 uses an approach
similar to [38], but calculates costs using a non-standard semantics rather than type inference.

The cost semantics is extremely novel in being the first semantics to cost continuations. Additional novelty is provided by
costing coordination alongside the classical computation and communication costs.

3. Previous work

3.1. Autonomous mobile programs

To manage load on large and dynamic networks we have developed what we term AMPs, which are aware of their
processing resource needs and sensitive to the environment in which they execute [1]. Unlike autonomous mobile agents
that move to change their function or computation, an AMP always performs the same computation, but move to change
coordination, i.e. to improve performance. AMPs are able to dynamically relocate themselves to minimise execution time
in the presence of varying external loads on a network of shared locations. The advantages of an AMP architecture are as
follows.

• Mobility is truly autonomous as the AMPs themselves use local and external load information to determine when and where
to move rather than relying on a central scheduler.

• AMPs combine analytic cost models with empirical observation of their own behaviours to determine their current progress.
The generic AMP cost model is reprised in Section 5.1.

• The cost of movement can be kept to a very small proportion of overall execution time, under the assumption that location
performance does not change radically immediately after a move, see discussion of Eq. (20) in Section 5.1.

A limitation of the cost model is that the parameterisation assumes that the computation is regular in the sense that the
computational cost of each iteration is similar to those of the preceding iterations. This is formalised and discussed further in
Section 5.

3.2. Single AMP performance

AMPsmay dramatically reduce execution time. Fig. 1 compares the execution times of static andmobile matrix multiplication
programs. Our test environment is based on three locations with CPU speed 534, 933 and 1894MHz. The loads on these three
computers are almost zero. We launch both static and mobile programs on the first location. The execution time of the static and
mobile programs is very similar up to matrix sizes of 500 × 500 as both programs execute on the original location. For matrix
sizes above 500 × 500 the cost of moving is outweighed by the speed of the fastest location and the mobile program moves,
successfully reducing execution time for all larger matrices.

Fig. 2 shows the movement of the AMP matrix multiplication during successive execution time periods with CPU speeds
normalised by the local loads. We launch the AMP in time period 0 on Loc1. In time period 1 it moves to the fastest processor
currently available Loc3. When Loc3 becomes more heavily loaded in period 2 the AMP moves to the new fastest processor Loc5.
In time period 3, Loc4 becomes less loaded and hence fastest location, so the AMP moves to it. Similarly for the other moves.

We draw the following conclusions from Fig. 2:

• The program may move repeatedly to adapt to changing loads and always finds the fastest location in a single step.
• Move (1) shows that if there is a faster location then the AMP moves to it.
• Move (2) shows that AMPs can respond to changes in current location.
• Move (3) shows that AMPs can respond to changes in other locations.
• Move (4) shows that even if the speed differential is small, the AMP moves.

38 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200

Ti
m

e
(S

ec
)

Size (n)

"mobile"
"static"

Fig. 1. AMP and static matrix multiplication execution time.

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8

R
E

LA
TI

V
E

 C
P

U
 (M

ZH
)

TIME PERIOD

(1)

(2) (3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Fig. 2. Single AMP matrix multiplication movement.

3.3. Collections of AMPs

A collection of AMPs is balanced if every AMP has similar relative CPU speed, i.e. CPU speed divided by load, available to it.
Experiments on both homogeneous and heterogeneous networks show that collections of AMPs quickly obtain and maintain
balanced loads on the locations of a network [1,2].

For illustration Fig. 3 shows the movement of 25 AMPs on a network of 15 locations with CPU speeds 3193MHz (Loc1–Loc5),
2168MHz (Loc6–Loc10), and 1793MHz (Loc11–Loc15). All the AMPs are launched on Loc1, and after somemovements the AMPs
achieve a balance (denoted B in the figure) in time period “k” with one AMP on each of the slower machines (Loc11–Loc15), two
AMPs on each of the faster machines (Loc2–Loc10), excepting that one of the faster machines has 3 AMPs and the launch location
(Loc1) is a communication bottleneck and has just 1 AMP. Thereafter the AMPs remain statically balanced until an AMP on the

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 39

Loc1
Loc2
Loc3
Loc4
Loc5
Loc6
Loc7
Loc8
Loc9

Loc10
Loc11
Loc12
Loc13
Loc14
Loc15

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
TI

O
N

S

TIME PERIOD

25 1

3

2

2

2

2

2

2

2

2

1

1

1

1

1
B

..... 1

3

2

2-1

2

2

2

2

2

2

1

1

1

1

1
R

..... 1

3

2

2

2

2

2

2

2

1

1

1

1

1

1
B

..... 1

3

2

2

2

2

2

2

2

1

1

1-1

1

1

1
R

..... 1

3

2

2

2

1

1

2

2

2

1

1

1

1

1
B

.....

B :Balancing
R:Removing AMP(s)

Fig. 3. Twenty-five AMPs on a heterogeneous network (15 locations).

fast Loc4 terminates at period “k + x”, inducing a rebalancing period (denoted R in the figure) until period “l”. The AMPs remain
statically balanced until an AMP on the slow Loc12 terminates at period “l + y”, inducing a rebalancing period until period “m”.

3.4. Autonomous mobility skeletons

A disadvantage of directly programming AMPs is that the cost model, mobility decision function, and network interrogation
are all explicit in the program.We have defined and evaluated AMSs that encapsulate autonomousmobility for common patterns
of computation over collections [2]. AMSs are polymorphic higher-order functions, such as that make mobility decisions by
combining generic and task specific cost models. We have built AMSs for the classic higher-order functions map and fold and
for the object-oriented Iterator interface [39] decisions.

The automapAMS, performs the same computation as themap high order function, butmay cause the program tomigrate to a
faster location. The standard Jocaml map, map f [a1;...;an] applies function f to each list element a1,...,an, building the
list [f a1;...; f an]. automap, automap cur f [a1;...;an] computes the same value but takes another argument cur,
recording current location information, e.g. CPU speed and load. The standard left fold, fold f a [b1; ...; bn], computes
f (... (f (f a b1) b2) ...) bn. autofold f a [b1;...;bn] computes the same value but may migrate to a faster
location. The automap and autofold AMSs have also been constructed in both Jocaml and Java Voyager.

In the object-oriented as opposed to the functional paradigm, the Java Iterator specifies a generic mechanism to enumerate
the elements of a collection. The AutoIterator AMS class implements the Iteratormethods (hasNext, next and remove),
and extends it with autonext, which has the same functionality as next but can make autonomous mobility.

4. Continuation cost calculus

AMSs only consider the costs of a single collection iteration. This is adequate only if a single collection iteration dominates
the computational cost of the program. To deploy autonomous mobility effectively more generally, it is necessary to know the
cost of the remainder of the program in addition to the cost of the current iteration. The cost of the remainder of the program is
precisely the cost of the program continuation in denotational semantics [40] and we term it the continuation cost.

To the best of our knowledge the continuation cost model presented here is the first such model ever described. To calculate
the continuation cost at an arbitrary program point, the cost of every expressionmust first be calculated. To illustrate the concept
we use a small language, e ::= n|e + e, where n is integer. Cost judgements have the form E�ce$c indicating that the cost e is c
in cost environment E. Given this cost function, the continuation cost judgements have the form E�ae�e′£c indicating that the
continuation cost after e in e′ is c in cost environment E. For example in 2 + 3, the continuation cost of 2 can be calculated as
(E�c3$c3E�c + $c+)/(E�a2�(2+3)£c3 + c+), where c3 is the cost of 3, c+ is the cost of “+”, and the continuation cost of 2 is c3 + c+.

A key issue with continuation costs is to distinguish the intended expression if it occurs more than once in a program. For
example, in expression 10+10, there are two 10s and their continuation costs are different. To solve this problem the program is
indexed, i.e. every expression in a program is assigned a unique number, its index. After indexing, the expression 10+10 becomes
<3,<1,10>+<2,10>>, and the two 10s can be distinguished as<1,10> and<2,10>.

40 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 4. Semantic functions.

Fig. 5. Syntax ofJ′ .

Continuation costs are calculated in the following three stage process

• Index the program (Appendix A).
• Calculate the cost of all expressions in the program (Section 4.2).
• Calculate the continuation cost of a specified program point (Section 4.3).

For reference Fig. 4 lists the semantic functions used in the calculus, and defined in the following sections. In these semantic
functions, cost is integer and the environment env incorporates costs, i.e. env : (v ∗ cost)∗.

Calculating the cost of expression uses standard static cost semantics techniques as discussed in Section 2.3. However,
calculating the continuation costs is entirely novel asmost costmodels cost entire terms. Both the cost semantics and continuation
cost semantics have been implemented as components of an automatic continuation cost analyser, as described in Section 7.1.

4.1. Syntax of languageJ′

Continuation cost semantics have been defined forJ, a substantial subset of the Jocaml mobile programming language.J is
a core functional language including specific higher-order functions like map and fold, and is readily able to describe non-trivial
programs like matrix multiplication and ray tracing. The syntax and cost calculus for J is presented in [41]. As a vehicle for
explaining the principles of the semantics in this paper, this section introduces a simpler language J′, a subset of J. A subset
of a strict functional language is chosen because it is significantly easier to define cost analyses for them than for their lazy
counterparts.

Fig. 5 shows the abstract syntax of J′. To simplify the presentation it is assumed that all identifiers (v) are unique. J′ is a
core lambda calculus with two unusual expression, the index expression anduser cost pragmas. The index expression is required
as every subexpression in the program is indexed with a unique integer n. As costing arbitrary recursive functions is undecidable,
user cost pragmas are introduced, and their application is elaborated in Section 4.2, with examples in Section 7.4.

4.2. Cost semantics

Fig. 6 defines the cost semantics forJ′, E�ce$n The �c function takes a cost environment (E) and an expression (e), and returns
the predicted cost (n) in that environment. This cost semantics is standard, and is similar to [38] and others.

The cost environment records the cost of accessing variables, and in a language likeJ′ that omits data structures, e.g. tuples,
this is always 0. The cost environments are included in the cost semantics in Figs. 6 and 8 to illustrate how they are used in richer
languages likeJ that have structured data. The cost semantics reflects the strict, or applicative, semantics of Jocaml, e.g. the cost
of evaluating function arguments is reflected in Eqs. (4) and (7).

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 41

Fig. 6. Cost semantics forJ′ .

Fig. 7.J′ cost example.

Eq. (1) calculates the cost of an constant as 0.
Eq. (2) shows that the cost of the value of a variable v has been stored in the environment as c, so the total cost of v is calculated

as c plus an access cost of 1.
Eq. (3) calculates the cost of a lambda abstraction as the cost of the body in an environment where the parameter has

zero cost.
Eq. (4) calculates the cost of a function application as the cost of the function body c1 plus the cost of the argument c2. Eq. (5)

is very similar.
Eq. (6) enables the user to specify a cost and is intended to be used for arbitrary recursive functions.
Eq. (7) calculates the cost of a map as the sum of the cost of computing the list c2 and the product of the cost of the function

body c1 and the length of the list. Note that this equation assumes that the cost of applying the mapped function to every list
elements is uniform.

Eq. (8) calculates the cost of index expression as the cost of the expression.
Fig. 7 shows the costing of (map(fun x → x+10) [20]) in a cost environment E that is initially empty. During the evaluation

the environment is extended with x bound to zero, i.e. E′ = {x, 0} ⊕ E. Indexing this expression produces<8, (map<4, (fun x →
<3, (<1,x>+<2,10>)>)><7,<5,20> :: <6, []>>)>, as depicted in Fig. 29. However, for clarity in the example costing
we elide the indices. The predicted cost of 3 is the sum of the cost of evaluating the list (1) and the product of the cost of the
function body (2) and the length of the list (1). The automated cost analyser presented in Section 7 produces the following
unsimplified cost term for this expression: (1 + ((1 + 0) + 0)) ∗ (length[20]) + (1 + (0 + 0)).

4.3. Continuation cost semantics

This section introduces the continuation cost semantics of J′, and we believe the first ever continuation cost semantics for
any language. Continuation costs could be calculated by translating the direct program into continuation passing style (CPS) [42],
and then costing the continuations now explicit in the program. We prefer the direct programming style and hence to pass the
continuation costs rather than the continuations. An additional advantage is that the integer cost parameters are rather simpler
than continuations to pass and manipulate.

To define continuation costs wemust be able to determine both the syntactic equality (e ≡ e′) of expressions and to determine
when one expression syntactically contains another (e ∈ e′). These definitions are standard and are discussed in Appendix B.

42 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 8. Continuation cost semantics forJ′ .

Fig. 9.J′ continuation cost example.

Fig. 8 defines the continuation cost semantics for J′, E�ae�e′£n. The �a function takes a cost environment (E) and two
expressions (e and e′) and returns the predicted continuation cost of the first expression in the second: that is, the work that
remains to be done in e′ after evaluating e. Like the cost semantics, the continuation costs reflect the strict semantics of Jocaml.

Eq. (9) specifies that the continuation cost of an expression in itself is 0.
Eq. (10a) specifies that the continuation cost of an expression contained in a lambda abstraction the continuation cost in the

body. Conversely Eq. (10b) specifies that is expressions not contained in the abstraction have continuation cost 0.
Eqs. (11a), (11b), and (11c) specify the continuation cost of an expression in a function application. Eq. (11c) specifies that

expressions not contained in the application have continuation cost 0. Eq. (11b) specifies that expressions contained in the
argument have the continuation cost of the argument. Eq. (11a) specifies that expressions contained in the function body have
continuation cost comprising the cost of the argument plus the continuation cost of the expression in the function body. Note
that as every expressions has a unique index, only one of Eq. (11a) or (11b) will ever apply.

Equation sets (20) and (22) are similar to equation set (19).
Eq. (13) specifies that the continuation cost of an expression in a user cost expression is 0.
Eq. (15) specifies that the continuation cost of an expression e in an indexed expression e1 is the continuation cost of e in e1.
Fig. 9 illustrates continuation costing by determining the continuation cost of 15 in 8 :: 15 :: (map(fun x − >x+ 10) [20]).

The continuation cost of 1 + 0 + 3 comprises three parts: a unit cost for the second cons (::) operation, a zero cost for the 15,

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 43

and a 3 unit cost for the map expression, as determined in Fig. 7. This latter cost is a cost and not a continuation cost. Note also
that the cost of performing the first cons operation (8::) is not included as it is incurred before the 15 in the term.

5. Costed autonomous mobility skeletons

To produce skeletons capable of modelling not only the cost of the current iteration, but also the cost of the remainder of
the program, the continuation cost equations from the previous section must be incorporated into the skeleton cost model. The
new skeletons are termed CAMS and are parameterised with both costs and continuation costs. As we shall see, the CAMS cost
model is a specialisation of the generic AMP cost model. This section concludes by outlining the implementation of the camap
and cafold CAMS in Jocaml.

5.1. AMP generic cost model

Acostmodel is usedby anAMP to inform thedecisionwhether tomove to anew location. The costmodel is generated statically,
and is parameterised dynamically to determinemovement behaviour. The generic AMP costmodel in Fig. 10 is described in detail
in [1].

Eq. (16) states that the total execution time of an AMP is the sum of the computation, communication and coordination times.
All times are measured in seconds.

Eq. (17) gives the condition under which the program will move, i.e. if the time to complete in the current location Th is more
than the time to complete in the best available remote location Tn plus the time to send the computation to the new location
Tcomm.

Eq. (18) states that total communication costs is the product of the number of moves and the communication cost of each
move.

Eq. (19) states that total coordination cost is the product of the number of locations, the number of movement checks and the
time for a single movement check.

Eq. (20) limits the coordination cost of AMPs by selecting some overhead value O, say 5% and seeking to guarantee that the
AMP execution time will never exceed than 100 + O% a static version of the program. This guarantee is only valid providing that
the loads on the locations, primarily current and target locations, do not change dramatically immediately after themove. Amore
complete discussion of this issue can be found in [1].

Substituting Eq. (19) in (20) gives Eq. (21)which specifies howmany coordination actionswill occur during the AMP execution.
Eqs. (22), (23) and (24) relate time, work and CPU speed. Implicit in these equations is the assumption that the computation

is regular in the sense that the work left to be done Wl can be predicted from the work already completed Wa. While this is true
for many programs including the example programs in this paper, many other programs do not possess this property. A more
complete discussion of this issue can be found in [1], including ideas for adapting the model for less regular computations.

Eq. (25) states that the total work completed is the sum of the work done Wd at each location.
Eq. (26) states that the work done at the current location is work doneWa less the work done at the point the AMP arrived at

the locationWa′ .
Eq. (27) states that the remaining work is the total work minus work done.

5.2. CAMS cost model

The cost model for CAMS in Fig. 11 instantiates the generic AMP cost model and is parameterised on the continuation cost of
the skeletons. That is CAMS determine whether to move or not by predicting not only the cost of the current iteration, but also
the cost of the remainder of the program. In this cost model:

Eq. (28) states that the total work is the cost of the current iteration plus the continuation cost. The cost of the current iteration
is, as for AMS, the product of the cost of evaluating a single element cf and the size of the collection. For map and fold, size is
the length of the list. The abstract costs produced by the continuation cost semantics are converted into cycles by a mapping
function: (|.|). The calibration of this mapping is covered next.

Eq. (29) reflects the CAMS designwhere the speed of the current location is calculated just once by computing a single element
of the collection, and hence thework done at the current location is simply (|cf |). Comparing the elapsed time for this computation
(|cf |) with the predicted abstract time cf , calibrates the mapping between the two on this location.

Substituting Eq. (29) in (22) derives Eq. (30) that predicts the elapsed time at the current location.
The speed of the current location can be derived from Eq. (30) as Sh = (|cf |)/Te, and substituting in Eq. (23) derives Eq. (31) that

predicts the time to complete the program at the current location as a function of Te.
The work remaining can be derived from the first equality in Eq. (31) asWl = ThSh, and substituting in Eq. (24) derives Eq. (32)

that predicts the time to complete the program at the best available alternative location as the product of the time to complete
here and the ratio of the current and best available location speeds.

As an instantiation of the generic AMP cost model, the CAMS cost model inherits its limitations. That is the model is
valid only for regular computations, and only guarantees minimal overheads if location loads remain stable, as discussed for
Eqs. (20) and (22).

44 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 10. Generic cost model for AMPs.

Fig. 11. Cost model for CAMS.

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 45

Fig. 12. Implementation of camap in Jocaml.

5.3. Implementing CAMS

Fig. 12 shows a Jocaml implementation of a camap costed autonomous mobility skeleton. f is the function to be mapped over
the list l. costf is the cost for one application of f and continuationCost is the continuation cost.

camap is the top level CAMSwhich in turn calls the auxiliary cmap’ after calculating the overall work, and timing f applied to
the first element ofl as a basemeasure. Themovement check is encoded in check_move function that applies the costmodel from
Fig. 10, and specifically Eq. (17). The checkInfo function accumulates the dynamic information required by the cost model, and
recalculates when the AMP should consider moving again. Both functions are the same as used in AMSs, and the implementation
of cafold is similar [41].

6. Evaluating CAMS

To demonstrate the utility of the continuation costs we compare the performance of CAMS with AMSs. More specifically we
compare the performance of six pairs of programswhere one program is constructed with an AMS and the other with a CAMS. All
of the results reported in this section are for programs using either automap or camap. Measurements using the cafold CAMS
are reported in [3,41]. The evaluation is broadly classified into single-iteration, sequences of iterations, and behaviour under
varying loads.

The predicted costs required to parameterise the CAMS programs are calculated by hand using the cost calculus for J.
Section 7 will introduce an automatic continuation cost analyser that can automatically translate iterations into CAMS.

6.1. Single iteration examples

To show the consistency of the cost and continuation cost semantics we consider programs dominated by a single iteration. In
these programs the continuation cost approximates zero and hence does not usefully contribute to movement decisions. In this
case we hypothesise that CAMS programs will reproduce the movement of the corresponding AMS program. That is both AMPs
should exhibit the same movement behaviours at the same points during execution and hence have similar execution times.

Moreover, there is the risk that the runtime cost of maintaining and utilising continuation costs in CAMS could have a
deleterious effect on AMP performance. This effect will be most pronounced for programs dominated by a single iteration,
i.e. where the continuation cost so carefully managed provides no benefit. If, however, the cost of maintaining and utilising
continuation costs is small we further hypothesise that a CAMS encoding of single-iteration AMP should have very similar
performance to an AMS encoding.

46 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900

Ti
m

e
(S

ec
)

Size (n*n)

using camap
using automap

"static"

Fig. 13. CAMS and AMS single iteration (matrix multiplication) execution time.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Ti
m

e
(S

ec
)

Size (n*n)

usingcamap
usingautomap

"static"

Fig. 14. CAMS and AMS single iteration (ray tracing) execution time.

Two single iteration AMPs have been tested both using the map higher-order function: matrix multiplication and ray tracing.
Ray tracing is a well-known graphics algorithm that models the path taken by light rays as they interact with optical surfaces.
Different sizematrices aremultiplied, and scenes traced, to compare the coordination behaviour of the AMS and CAMS programs.
The test environment has three locationswith CPU speeds 534MHz(ncc1710), 933MHz(jove) and 1894MHz(lxtrinder). The loads
on these three locations are almost zero, and both the CAMS and AMS programs are launched on the first location.

Figs. 13 and 14 show that both hypotheses are substantiated. That is the cost and continuation cost models are consistent
as the CAMS and AMS programs exhibit very similar movement behaviours. Moreover the overheads of collecting and utilising
the continuation costs are relatively small as the CAMS and AMS programs have very similar performance. For example both the
CAMS and AMS matrix multiplications compute that it is beneficial to move when the matrix size reaches 330 ∗ 330, and hence
the execution time curves in Fig. 13 have very similar shapes. Moreover the execution time of the programs at all data sizes are

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 47

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

Ti
m

e
(S

ec
)

Size (n*n)

using camap
usinga utomap

"static"

Fig. 15. CAMS and AMS multiple iteration (invertible matrix) execution time.

very similar and we conclude that the overheads of collecting and utilising the continuation costs are relatively small. Fig. 14
shows that the ray tracing CAMS and AMS programs repeat the pattern, as do the graphs in the following sections.

6.2. Sequences of iterations

A CAMS encoding should deliver better performance than an AMS encoding for AMPs comprising sequences of iterations
because the cost model used in the earlier iterations includes the predicted costs of the remainder of the program, i.e. the
subsequent iterations. This section investigates the performance of twopairs of AMS andCAMS encodings of programs comprising
sequences of iterations, specifically sequential compositions ofmaps. The AMPs embody a test to see if twomatrices are invertible
and a sequence of five matrix multiplications. The test environment is the same as in Section 6.1. The results for a further two
pairs of programs, including ray tracing a sequence of scenes, are reported in [41].

The invertible matrix program takes two matrices m1 and m2 and checks if they are invertible by multiplying them in both
orders and checking that the result is the identity matrix in each case. The essence of the program is as follows.

let m12= mmult m1 m2;;
let isId12= checkEqual m12 idMat;;
let m21= mmult m2 m1;;
let isId21= checkEqual m21 idMat;;
Fig. 15 compares the performance of an CAMSencoding of invertiblematrix usingcamap, and anAMSencoding usingautomap.

The camap AMP computes that it is beneficial to move when thematrix size reaches 230∗230, but the automap AMP only moves
when the matrix size reaches 330 ∗ 330. The camap AMP moves sooner because its cost model incorporates the continuation
cost, i.e. the cost of the second matrix multiplication. For matrices between 230 ∗ 230 and 330 ∗ 330 the CAMS program has a
significant performance advantage, up to a maximum of 33%.

For any multi-iteration program, a CAMS encoding will gain a performance advantage over the corresponding AMS program
by moving at a smaller data size. For illustration, Figs. 16 and 17 show that the CAMS encoding of a double raytracer and of a
fivefold matrix multiplicationmove at smaller data size than the corresponding AMS encodings. The analysis of other CAMS/AMS
program pairs in [41] further supports this claim.

Figs. 15–17 alsoshow that in some cases the CAMS programs are marginally slower, i.e. no more than 11% slower, than the
corresponding AMS programs due to some additionalmovement checks and some rather subtle quantum effects on the frequency
of movement checks, as explained below. In all cases the CAMS programs remain faster than the static programs.

• The AMS program may move at an earlier element (not size) than the CAMS program if the matrix is large enough for both
programs to move, e.g. at size 330 ∗ 330. This arises as follows, the first automap cost model is parameterised only with the
current 330 element iteration, and hence determines to considermoving just once at element 165th. In contrast the first camap
cost model is parameterised with both the current 330 element iteration and the continuation cost of the second iteration,

48 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
)

Size (n*n)

using camap
using automap

"static"

Fig. 16. CAMS and AMS multiple iteration (double ray tracing) execution time.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

Ti
m

e
(S

ec
)

Size (n*n)

using camap
usin gautomap

"static"

Fig. 17. CAMS and AMS multiple iteration (five matrix multiplication) execution time.

again 330 elements, and hence determines to consider moving twice i.e. at element 220= (330+330)/3. As the CAMS program
moves to the faster location later than the AMS program it is a little slower.

• A CAMS programmay performmoremovement checks than the corresponding AMS program. For example, after the 330∗330
invertiblematrixAMSprogrammoves to a faster location, the firstautomap costmodel is parameterisedwithonly165elements
and may not consider moving again. However, the first camap in the CAMS program is parameterised with 110 + 330 = 440
elements, and so may consider moving again. The overhead of the additional movement checks will not exceed the overhead
specified in Eq. (20) of the cost model under reasonable assumptions.

Fig. 17 compares the performance of CAMS, AMS and static versions of a program performing a sequence of five matrix
multiplications. The results are similar to those for the invertible matrix, but the composition of more computations gives CAMS

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 49

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

Ti
m

e
(S

ec
)

Size (n*n)

using camap
usin gautomap

"static"

Fig. 18. CAMS and AMS on dynamic networks (invertible matrix) execution time.

both a greater performance advantage over AMS, i.e. up to a maximum of 53%, for a larger set of problem sizes: i.e. between
matrix sizes of 170 ∗ 170 and 330 ∗ 330. The CAMS program computes that it is beneficial to move when the matrix size reaches
170∗170 based on the predicted cost of all fivematrixmultiplications.When thematrix size reaches 330∗330 the CAMS program
is marginally slower, i.e. no more 15% slower, than the AMS program due to some additional movement checks and movement
check quantisation, as for the invertible matrix program.

6.3. Performance of CAMS in dynamic networks

In the previous section we saw that a CAMS program with multiple iterations may more frequently determine whether to
move (i.e. do more movement checks) than the corresponding AMS program. The additional movement checks may make the
CAMS programmarginally slower than the static or AMS versions, as illustrated for matrices larger than 330 ∗ 330 in Fig. 15, and
similarly in Figs. 16 and 17.

The additionalmovement checks enable a CAMS program to react better to changes in its environment than the corresponding
AMS program. Fig. 18 compares the execution times of CAMS and AMS invertible matrix programs on a network where a very
fast machine becomes available only late in the computation. The experiment is described in detail in [41], but the essence is
as follows. The AMS program performs only a single movement check and moves to a fast location early in the computation. In
contrast the CAMS program performs two movement checks, moving first to the fast location, and then to the very fast location.
In consequence the CAMS program outperforms the AMS program formatrices larger than 500∗500. Fig. 19 shows similar results
for five matrix multiplication AMPs in the same scenario.

6.4. Evaluation summary

The conclusions drawn from the evaluation of CAMS in Sections 6.1–6.3 are:

• The cost and continuation cost models are consistent as, for programs dominated by a single iteration and hence where the
continuation cost is not useful, CAMS programs reproduce the movement of the corresponding AMS program (Section 6.1).

• The overheads of collecting and utilising the continuation costs are relatively small as CAMS and AMS programs have very
similar performance (Section 6.1).

• For programs dominated by sequences of iterations a CAMS encoding models the cost of all iterations and hence may move
when an AMS program does not, thereby gaining a performance advantage. The more iterations in the program the greater the
potential for gains (Section 6.2).

• When both the CAMS and AMS programs move, the CAMS programs may be marginally slower, e.g. at most 11% in invertible
matrix and 15% in five matrix multiplications, than the corresponding AMS program due to some additional movement checks
and quanta effects on the frequency of movement checks.

50 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

0

50

100

150

200

250

0 100 200 300 400 500

Ti
m

e
(S

ec
)

Size (n*n)

using camap
usin gautomap

"static"

Fig. 19. CAMS and AMS on dynamic networks (five matrix multiplication) execution time.

• The additional movement checks enable CAMS programs to react to network changes more sensitively than the corresponding
AMS programs (Section 6.3).

7. Automatic continuation cost analyser

Requiring the programmer to insert CAMSand their costmodels into a programplaces a burdenon them. Thismight be avoided
by automatically converting a sequential program into an AMP that will move to exploit computational resources on a network.
In theory the automation should be straightforward: the continuation cost semantics can be implemented as a static analysis and
the cost equations generated can be used by a translator that replaces iterating higher-order functions with the corresponding
CAMS, e.g. a map f l is replaced by camap f l costf continuationCost. The technique of replacing higher-order functions
with algorithmic skeletons is common in parallelising compilers, e.g. [43].

So much for the theory; in reality the challenge is to produce an effective automatic analysis. That is, automated analyses
typically produce unsimplified cost terms containing redundant arithmetic or other functions that incur runtime overheads. The
key issue is whether the AMPs with automatically generated CAMS have acceptable performance compared with hand-costed
CAMS.

The cost calculus has been implemented as an automatic continuation cost analyser that generates cost equations parameterised
on program variables in context. The analyser generates both the cost of expressions, and the continuation cost of iterations. The
analyser takes aJ program as input and outputsJ AMPs with CAMSs.1

7.1. Continuation cost analyser structure

Fig. 20 shows the structure of the continuation cost analyser which has the following four primary components.

1. The Parser takes aJ and outputs the abstract syntax tree (AST).
2. The Indexer is an implementation of the index semantics in Appendix A and adds a unique index to each AST node to produce

an indexed abstract syntax tree (IAST).
3. The Coster takes the IAST and adds the continuation cost to every node. The coster has two parts: the first calculates the cost

of each expression using the cost semantics from Section 4.2; the second calculates the continuation cost of each expression
using the continuation cost semantics from Section 4.3 which incorporates the costs previously generated.

4. The Generator converts aJ program into an AMP by replacing specific higher-order functions with the corresponding CAMS,
e.g. map is replaced by camap, parameterised with the continuation costs previously calculated.

1 As discussed in Section 4.1,J is a subset of the Jocaml mobile programming language, and a superset of theJ′ language illustrated in Section 4.

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 51

Indexed Abstract Syntax Tree

Indexed Abstract Syntax Tree

Abstract Syntax Tree

Coster (get costafter)

Indexer

Generator

output

Input
output

output
Input

Input

Input
output

+HOFsJ

+Costafter

J+CAMSs

Cost
Calculus

Parser

Fig. 20. Structure of automatic continuation cost analyser.

7.2. Implementing the cost calculus

The implementations of the index, cost, and continuation cost functions are as direct translations from their definitions
in Figs. 28, 6 and 7, respectively. The semantic functions use syntactic equality (=) and syntactic containment contains functions
directly translated from their definitions in Appendix B.

The index has type int − >expression − > (expression ∗ int), and takes the current index i and the expression to be
indexed e and returns the indexed expression and the next index, as outlined below.

let rec index i e =
match e with

(VAR s) −> (INDEX (i,VAR s),i+ 1)|
(INT i1) −> (INDEX (i,INT i1),i+ 1)|
.......

The cost function has type env − >expression − >int and computes the cost of expression e in cost environment env,
as outlined below.

let rec cost env e=
match e with

(VAR i) −> (*cost env*) (lookup env i) |
(INT _) −> INT 0 |
(OP(_,e1,e2)) −> OP(LADD,INT 1,OP(LADD,cost env e1,cost env e2)) |
.......

The continuationCost has type env − >expression − >expression − >int and computes the continuation cost of
expression e1 in expression e2 in cost environment env, as outlined below.

let rec continuationCost env e1 e2=
if e1= e2
then INT 0
else continuationCost’ env e1 e2

and continuationCost’ env e e′=
match e’ with

(VAR i) −> INT 0 |
(INT i) −> INT 0 |
(OP(_,e1,e2)) −>

if contains e e1
then OP(LADD,continuationCost env e e1,OP(LADD,cost env e2,INT 1))
else

if contains e e2
then OP(LADD,continuationCost env e e2,INT 1)
else INT 0 |

.......

7.3. Generating AMSs

The generator replaces specific higher-order functions with the corresponding CAMS parameterised with the continua-
tion costs previously calculated. For example, if the original program is map f l, the object program after the generator is

52 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 21. Recursive matrix multiplication.

camap f l costf continuationCost, where costf is the cost of f applied to the first element of l calculated using the
cost semantics, and continuationCost is the cost after the map expression in the program, calculated using continuation cost
semantics.

As a simple example, let us consider generating CAMS corresponding to expression e, (map(fun x − > x + 1)[1;2]);
(map(fun y − > y − 1)[3;4]). Expression e has two sub-expressions e1, (map(fun x − > x + 1)[1;2]), and e2, (map(fun y
−> y− 1)[3;4]). From Section 4, the following four costs are used in the generation.

(1) The cost of the first mapped function (fun x − > x + 1); which reduces to (fun x − > (1 + ((1+ 0) + 0)))(hd[1;2]) after
applying Eqs. (4), (3), and (2), and simplifies to 2.

(2) The continuation cost of e1 in e; which reduces to the continuation cost of e1 in e1, which is 0 (Eq. (9)), plus the cost of e2,
plus 1 (Eq. (12a)). The cost of e2 is ((fun y −> (1+ ((1+ 0)+ 0)))(hd[3;4])) ∗ (length[3;4])+ ((0+ 1)+ 1) (Eq. (7)), which
simplifies to 6. Hence the total continuation cost of e1 in e is 7.

(3) The cost of the second mapped function (fun y −> y− 1), which reduces and simplifies as above to 2.
(4) The continuation cost of e2 ine, which reduces and simplifies as above to 1.

The generator produces the following CAMS AMP.

(camap(fun x −> (x+ 1))[1;2]
(((fun x −> (1+ ((1+ 0) + 0)))(hd[1;2]))) (∗ cost of (fun x −>x+ 1)∗)
(((0+ (((fun y −> (1+ ((1+ 0) + 0)))(hd[3;4])) ∗ (length[3;4]))) + (1+ (0+ 1))) + 1)

(∗ cont. cost of 1st map ∗)
);
(camap(fun y −> (y− 1))[3;4]
(((fun y −> (1+ ((1+ 0) + 0)))(hd[3;4]))) (∗ cost of (fun y −>y− 1)∗)
(1) (* cont. cost of 2nd map *)
)

The AMP can be simplified to:

(camap(fun x −> (x+ 1))[1;2](2)(7));
(camap(fun y −> (y− 1))[3;4](2)(1))

The generated CAMS AMP is very similar to what might have been written after a manual analysis.

7.4. Automatic analysis example: matrix multiplication

The automatic continuation cost analyser is further illustrated by analysing aJmatrix multiplication program to generate a
CAMS AMP.

Given matrices A[R,N] and B[N,C], we wish to formmatrix C[N,N] such that C[i, j]= sumA[i, k] ∗ B[k, j] : 1<= k<=N. We are
working with a pure functional language without mutable arrays and so we reformulate the problem to represent matrices as
lists of lists. Fig. 21 shows a simple recursive matrix multiplication in SML.

The second matrix is transposed to form a list of list of columns. rowsmult uses tt rowmult to construct successive rows of
the final matrix. rowmult then uses dotprod to form each element of a final matrix row from the dot product of one row of the
first matrix and one transposed column of the second matrix.

In order to enable our automatic cost analysis, we next reformulate the program to expose occurrences of map in rowmult
and rowsmult as shown in Fig. 22.

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 53

Fig. 22. Matrix multiplication with higher order functions.

Fig. 23. Annotated matrix multiplication for automatic cost analysis.

Finally, we rewrite the program in a form suitable for input to our analyser as shown in Fig. 23. Firstly, we now use the
J Jocaml subset rather than the somewhat more elegant SML above. Secondly, as we cannot automatically cost arbitrary
recursive functions we attach hand generated cost functions to the dist, transpose, dotprod and rowmult functions on lines
6, 9, 15 and 18, respectively. Moreover the pragmas on lines 23 and 24 specify that the cost of constructing the matrices are
ignored.

We provide an imputed cost for rowmult despite the map. We do so because our experimental system cannot yet adequately
account for continuation costs in nested higher order functions.

The analyser takes the code in Fig. 23 as input and outputs the code in Fig. 24. Ignoring the reformatting the key change is
on lines 18 and 19 where the top level map has been converted to the camap parameterised with the matrix multiplication cost
(4*(length tm2))*(length tm2) and a continuation cost of 0.

7.5. Performance comparison of automatic and hand analyses

Compared with hand-written cost predictions, the costs generated by the automatic continuation cost analyser
(e.g. Fig. 24) contain some additional cost calculations. However, performance comparisons between automatic and hand-
costed CAMS programs show that the additional cost calculations do not significantly effect performance. The performance
of four pairs of AMPs have been compared: double matrix multiplication, invertible matrix, and double ray tracing. Fig. 25 is
a typical graph showing almost identical execution times for automatic and for hand-costed CAMS AMPs at all data sizes, in
this case for double matrix multiplication. Figs. 26 and 27 show similar patterns for invertible matrix and a double ray tracing
programs.

54 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 24. Example cost analyser output: matrix multiplication AMP.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

Ti
m

e
(S

ec
)

Size (n*n)

"automatic"
"by Hand"

"static"

Fig. 25. Comparing automatic and hand-costed execution times (double matrix multiplication).

8. Conclusion and future work

8.1. Summary

Acentral issue in the burgeoning area of distributed systems is howdynamic collections of programs locate and share resources
efficiently. Rather than relying on external load management we have, in earlier work, developed autonomous mobile programs
(AMPs) that periodically use a cost model to decide where to execute in a network [1]. The key contribution of this paper is to
show how sequential programs can be converted into AMPs in a substantially automatic process that applies a novel continuation
cost semantics.

The AMP costmodel is generated statically, and is parameterised dynamically to determinemovement behaviour. A limitation
of the cost model is that the parameterisation assumes that the computation is regular in the sense that the computational cost
of the following iterations is similar to those of the preceding iterations. AMPs may dramatically reduce execution time, while
guaranteeing to never make it worse by more than a small specified overhead under realistic assumptions. Collections of AMPs
perform decentralised load balancing on both homogeneous and heterogeneous networks. Directly programming AMPs makes
the cost model, mobility decision function, and network interrogation explicit in the program. To provide a more transparent

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 55

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
(S

ec
)

Size (n*n)

"automatic"
"byHand"

"static"

Fig. 26. Comparing automatic and hand-costed execution times (invertible matrix).

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50
Size (n*n)

"automatic"
"byHand"

"static"

Ti
m

e
(s

ec
)

Fig. 27. Comparing automatic and hand-costed execution times (double ray tracing).

interface,wehave defined and evaluated autonomousmobility skeletons (AMS) that encapsulate autonomousmobility for common
collection iterations [2] (Section 3).

AMSs only consider the costs of a single collection iteration. This is adequate only if a single collection iteration dominates
the computational cost of the program. To deploy autonomous mobility more generally it is necessary to know, in addition to the
cost of the current iteration, the cost of the remainder of the program, or continuation cost [3].

Wehave developed a novel cost semantics that predicts the continuation costs at arbitrary points in aJ′ program, i.e. for a core
subset of the Jocaml mobile programming language including iterating higher-order functions like map. The continuation cost
semantics requires that the program is first indexed to distinguish common subexpressions, and that the cost of all expressions
have been calculated. The continuation cost equations are generated statically but are designed to be parameterised dynamically
to more accurately predict execution time (Section 4).

56 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

To produce skeletons capable of making autonomous movement decisions not only the cost of the current iteration, but also
the cost of the remainder of the program, the continuation costs are incorporated into a cost model for CAMS. The CAMS cost
model is a specialisation of the generic AMP cost model, and the implementation of two CAMS (camap and cafold) in Jocaml
is also outlined. The CAMS cost model inherits the AMP cost model restriction to regular computations, and to only guarantee
minimal overheads if location loads remain stable (Section 5).

To demonstrate the utility of the continuation costs we compare the performance of CAMS with both AMS and static versions
of six programs. The evaluation shows the following. The cost and continuation cost models are consistent for single-iteration
programs. The overheads of collecting and utilising the continuation costs are relatively small as CAMS and AMS programs have
very similar performance. For programs dominated by sequences of iterations a CAMS program has a performance advantage
as the continuation cost model encourages it to move when an AMS does not, and the more iterations in the program the
greater the potential for performance gains, e.g. up to a maximum of 53% for five matrix multiplications. When both the CAMS
and AMS programs move, the CAMS programs may be marginally slower, e.g. at most 15% for five matrix multiplications, than
the corresponding AMS program due to some additional movement checks and quanta effects on the frequency of movement
checks. However, the additional movement checks enable CAMS programs to react to network changes more sensitively than the
corresponding AMS programs (Section 6).

Wehave shownhowsequential programs canbe automatically converted intoAMPs thatmove to better exploit computational
resources on a network. We do so by describing an automatic continuation cost analyser that implements the continuation cost
semantics to generate cost equations parameterised on program variables in context. The analyser generates both the cost of
expressions, and thecontinuation cost of iterations, i.e. specific higher-order functions. The analyser translates aJ program into a
JAMPwith CAMSs.We showexample AMPs generated by the analyser and demonstrate that they have very similar performance
to hand-costed CAMS programs (Section 7).

8.2. Discussion

The significance of our work is to demonstrate that, in principle, many programs can be automatically converted to become
autonomously mobile, and hence gain substantial performance advantages on networks. The enabling technology is a prediction
of the costs and continuation costs of expressions, and specifically the costs of iterations over collections.

It is perhaps surprising that such simple cost models are so effective, even though they are relatively crudely parameterised
on environmental changes. However, we are not trying to make accurate worst case execution time (WCET) predictions, where
very precise model coefficients accounting for low level time and space characteristics of the underlying hardware are needed.
Rather, we wish to know how long the rest of a program will take to execute relative to how long some of it has taken to
execute already. Here, a simple model that accounts for the proportionate times taken by program components suffices, under
simplifying assumptions about the relative independence of such comparisons from particular implementations. Furthermore
movement decisions are based on ratios of predicted costs, for example Eq. (32) predicts a completion time as the ratio between
the predicted speeds of two locations, and hence inaccuracies are uniform and smoothed.

Our models differ from others in several important respects. First of all, while we might seek to simplify our automatically
generated models, we do not seek to solve them. This is because our models are for run-time rather than compile time use.
Environments change dynamically and so models must be able to capture such change. Thus, our models are open form, that is
they have free variables which are bound in the context of use to appropriate program variables.

There are substantial limitations of the current work. It is well known that the costs of arbitrary recursive functions cannot
be predicted, indeed to do so would solve the halting problem. In our current work we rely on the programmer to provide cost
estimates using pragmas for arbitrary recursive functions. We also cannot yet account for continuation costs in nested higher
order functions. However, there is further good evidence from the algorithmic skeleton community that even simple nested
higher order function cost models are very effective, e.g. [36], and we could incorporate more elaborate models e.g. [37] or
solving recurrence relations as in [28].

Another limitation is that the AMS and CAMS cost models assume that the iterations are regular in the sense that the time to
compute one element is a good predictor of the time to compute the remaining elements. There are many computations where
this is not the case, e.g. Mandlebrot sets. Potentially the cost models could be adapted to cope better with irregularity, e.g. using
the computation of several elements as a basis for prediction. Finally the performance of AMPs including direct, AMS and CAMS
encodings, have only been demonstrated on relatively small LANs. We hypothesise that they would function well on WANs, and
have a design for scalable WAN deployment [41], but have yet to validate it.

8.3. Further work

The current work could be developed in a number of ways.

8.3.1. Resource driven mobility
The cost and continuation cost models presented here model execution time, and AMPs effectively forage in a network for

computational resource.We speculate that similar costmodels could be developed for other network resources, e.g. bandwidth or
repository capacity. Indeed there are well-developed models of foraging behaviours in biology and we propose to investigate the

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 57

application of a generic cost-based ethology to autonomous mobile multi-agent systems. Potentially evolved biological foraging
strategies enable the better engineering of scalable self-organising resource-location systems in large-scale dynamic networks.

8.3.2. Costed autonomously mobile java programs
Our current continuation cost semantics and CAMS are defined for a subset of Jocaml. Java is more mainstream and widely

used than Jocaml, and has several mobile variants, e.g. [13,44]. We would like to build a continuation cost semantics for a
substantial Java subset. The immediate challenge would be to integrate continuation costs into our AutoIter autonomously
mobile iterator interface. In the longer term we would also require to analyse patterns and object-oriented constructs in the
presence of inheritance.

Appendix A. Indexing semantic functions

Fig. 28 defines the indexing semantic function: n �i : e ⇒ (e′,n′). Index takes an expression (e) and an integer representing
the current index (n) and returns a tuple comprising an indexed expression (e′) and an updated index value (n′).

Eqs. (33) and (34) show that indexing a constant or a variable increments the index by one.
Eq. (35) shows that the body of a lambda abstraction is indexed before indexing the abstraction. Eq. (38) is very similar.
Eq. (36) shows that in function applications the functions are indexed first, then the argument, and finally the application.

Eqs. (37) and (39) are very similar.
Finally, indexing is idempotent so indexing an indexed expression leaves it unchanged: Eq. (40).
Fig. 29 shows an example of indexing the expression (map(fun x → x+ 10) [20]). In the figure tree A is the original AST, and

tree B is the IAST representing the indexed expression<8, (map<4, (fun x → <3, (<1,x>+<2,10>)>)><7,<5,20> ::
<6, []>>)>.

Fig. 28. Index semantics forJ′ .

index

A: (AST) B: (IAST)

<3,+>+

<8, +>map

<4,fun x−> >

<5,20> <6,[]>

fun x−>

20 []

<1,x>x 10 <2,10>

<7,::>::

Fig. 29.J′ indexing example.

58 X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59

Fig. 30.J′ syntactic containment.

Fig. 31.J′ contains example.

Appendix B. Auxiliary semantic functions

This appendix presents the relatively standard syntactic containment function, used in the continuation cost semantics in
Section 4.3. The continuation cost semantics also uses a standard syntactic, or structural, equalitywithout alpha conversionwhich
is defined in [41] but not reproduced here.

Fig. 30 shows the definition of syntactic containment, ∈ takes two expressions and returns true if the second expression
contains the first expression.

Eq. (41) specifies that if two expressions are syntactically equal then the first contains the other.
Eq. (42) specifies that an expression is contained in a lambda abstraction if it is contained in the body.
Eqs. (43a) and (43b) specify that an expression is contained in a functional application if it is contained in either the function

or the argument.
The remaining equations follow thepatternof theprevious equations. As anexample Fig. 31 shows thedeductions todetermine

whether expression from Fig. 9, i.e. 8 :: 15 :: (map(fun x −> x+ 10) [20]), contains the expression 15.

References

[1] Deng XY, Trinder P, Michaelson G. Autonomous mobile programs. In: IAT '06: Proceedings of the IEEE/WIC/ACM international conference on intelligent
agent technology (IAT 2006 main conference proceedings) (IAT'06). Washington, DC, USA, Hong Kong: IEEE Computer Society; 2006. p. 177–86
〈http://dx.doi.org/10.1109/IAT.2006.42〉.

[2] Deng XY, Michaelson G, Trinder P. Autonomous mobility skeletons. Journal of Parallel Computing 2006;32(7–8):463–78 (Algorithmic Skeletons.
〈http://dx.doi.org/10.1016/j.parco.2006.04.002〉).

[3] Deng XY, Trinder P, Michaelson G. Automatically costed autonomous mobility. In: IAT '07: proceedings of the IEEE/WIC/ACM international conference on
intelligent agent technology (IAT 2007 main conference proceedings). Washington, DC, USA, Silicon Valley: IEEE Computer Society; 2007. p. 95–101.

[4] Milojici �c D, Douglis F, Weeler R. Mobility: processes, computers, and agents. Reading, MA, USA: Addison-Wesley; 1999.
[5] Baron R, Rashid R, Siegel E, Tevanian A, Young M. Mach-1: an operating environment for large-scale multiprocessor applications. IEEE Software 1985;2(4):

65–7.
[6] Barak A, La'adan O. The MOSIX multicomputer operating system for high-performance cluster computing. Future Generation Computer Systems

1998;13(4–5):361–72.
[7] Kale LV, Krishnan S. Charm++: a portable concurrent object oriented system based on c. In: Proceedings of the conference on object oriented programming

systems, languages and applications. New York: ACM Press; 1993. p. 91–108.

http://dx.doi.org/10.1109/IAT.2006.42
http://dx.doi.org/10.1016/j.parco.2006.04.002

X.Y. Deng et al. / Computer Languages, Systems & Structures 36 (2010) 34 -- 59 59

[8] Yu J, Buyya R. A taxonomy of workflow management systems for grid computing. Journal of Grid Computing 2005;3:171–200.
[9] Herrera J, Huedo E, Montero R, Llorente I. Loosely-coupled loop scheduling in computational grids. In: 20th international parallel and distributed processing

symposium, 2006. 6pp, doi:10.1109/IPDPS.2006.1639657.
[10] Cole M. Algorithmic skeletons: structured management of parallel computation. Cambridge: MIT Press; 1989.
[11] Kirli Z. Mobile computation with functions. PhD Thesis, University of Edinburgh, Laboratory for Foundations of Computer Science, Division of Informatics;

2001.
[12] Institut National de Recherche en Informatique et en Automatique, The JoCaml language beta release: Documentation and user's manual; January 2001.
[13] Recursion Software, Inc, 2591 North Dallas Parkway, Suite 200, Frisco, TX 75034, Voyager User Guide 〈http://www.recursionsw.com/Voyager/

Voyager_User_Guide.pdf〉, May 2005.
[14] Lange DB, Oshima M. Seven good reasons for mobile agents. Communications of the ACM 1999;42(3):88–9 〈http://doi.acm.org/10.1145/295685.298136〉.
[15] Fuggetta A, Picco GP, Vigna G. Understanding code mobility. IEEE Transactions on Software Engineering 1998;24(5):342–61 〈citeseer.ist.psu.edu/

fuggetta98understanding.html〉.
[16] WooldridgeM. Agent-based software engineering. IEE Proceedings Software Engineering 1997;144(1):26–37 〈citeseer.ist.psu.edu/wooldridge94agentbased.

html〉.
[17] Tosic PT, Agha GA. Towards a hierarchical taxonomy of autonomous agents. In: IEEE SMC'2004: international conference on systems, man and cybernetics.

Hague, The Netherlands: IEEE Xplore; 2004. p. 3421–6.
[18] Milojicic D, Douglis F, Wheeler R. Mobility: processes, computers, and agents. New York, NY, USA: ACM Press, Addison-Wesley Publishing Co.; 1999.
[19] Kephart JO, Chess DM. The vision of autonomic computing. Computer 2003;36(1):41–50 〈http://dx.doi.org/10.1109/MC.2003.1160055〉.
[20] Murch R. Autonomic computing. 1st ed., IBM Press; 2004.
[21] Abawajy J. Autonomic job scheduling policy for grid computing. In: Lecture notes in computer science, vol. 3516, international conference on computational

science—ICCS 2005, part 3. Germany: Springer; 2005. p. 213–20.
[22] Travis Desell CV, El Maghraoui K. Load balancing of autonomous actors over dynamic networks, 2004. p. 90268.1.
[23] Reistad B, Gifford DK. Static dependent costs for estimating execution time. In: LFP '94: proceedings of the 1994 ACM conference on LISP and functional

programming. New York, NY, USA, Orlando, Florida, USA: ACM Press; 1994. p. 65–78 〈http://doi.acm.org/10.1145/182409.182439〉.
[24] Cohen J, Zuckerman C. Two languages for estimating program efficiency. Communications of the ACM 1974;17(6):301–8 〈http://doi.acm.org/10.1145/

355616.361015〉.
[25] Wegbreit B. Mechanical program analysis. Communications of the ACM 1975;18(9):528–39 〈http://doi.acm.org/10.1145/361002.361016〉.
[26] Ramshaw LH. Formalizing the analysis of algorithms. PhD Thesis, Department of Computer Science, Stanford University; 1979.
[27] Wegbreit B. Verifying program performance. Journal of the ACM 1976;23(4):691–9 〈http://doi.acm.org/10.1145/321978.321987〉.
[28] Rosendahl M. Automatic complexity analysis. In: FPCA '89: proceedings of the fourth international conference on functional programming languages and

computer architecture. New York, NY, USA, Imperial College, London, UK: ACM Press; 1989. p. 144–56 〈http://doi.acm.org/10.1145/99370.99381〉.
[29] Wadler P. Strictness analysis aids time analysis. In: POPL '88: proceedings of the 15th ACM SIGPLAN-SIGACT symposium on principles of programming

languages. New York, USA, San Diego, California, United States: ACM Press; 1988. p. 119–32 〈http://doi.acm.org/10.1145/73560.73571〉.
[30] Hughes J, Pareto L. Recursion anddynamic data-structures in bounded space: towards embeddedMLprogramming. In: International conference on functional

programming. 1999. p. 70–81.
[31] Portillo AJR, Hammond K, Loidl H-W, Vasconcelos PB. Cost analysis using automatic size and time inference. In: Pena R, Arts T, editors. Implementation

of functional languages, 14th international workshop, IFL 2002, Madrid, Spain, September 16–18, 2002. Lecture notes in computer science, 2670. Berlin:
Springer; 2002. p. 232–48 [Revised selected papers].

[32] Hofmann M, Jost S. Static prediction of heap space usage for first-order functional programs. Proceedings of the 30th ACM symposium on principles of
programming languages, vol. 38. New York: ACM Press; 2003. p. 185–97.

[33] Hofmann M, Jost S. Type-based amortised heap-space analysis. In: ESOP 2006. Lecture notes in computer science, vol. 3924. Berlin: Springer; 2006.
p. 22–37.

[34] Herrmann CA, Bonenfant A, Hammond K, Jost S, Loidl H-W, Pointon R. Automatic amortised worst-case execution time analysis. In: Rochange C, editor.
7th international workshop on worst-case execution time (WCET) analysis, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI).
Germany: Schloss Dagstuhl; 2007.

[35] Brady E, Hammond K. A dependently typed framework for static analysis of program execution costs. In: Butterfield A, Grelck C, Huch F, editors.
Implementation and application of functional languages, 17th international workshop, IFL 2005, Dublin, Ireland, September 19–21, 2005. Lecture notes in
computer science, vol. 4015. Springer; 2006. p. 74–90 [Revised Selected Papers].

[36] Skillicorn DB. Parallelism and the Bird–Meertens Formalism. Queen's University, Kingston, Ontario: Department of Computing and Information Science;
1992 URL 〈citeseer.ist.psu.edu/skillicorn92parallelism.html〉.

[37] Rangaswami R. A cost analysis for a higher-order parallel programming model. PhD thesis, Department of Computer Science, Edinburgh University; 1996
URL 〈citeseer.ist.psu.edu/rangaswami96cost.html〉.

[38] Loidl H-W. Granularity in large-scale parallel functional programming, PhD thesis, University of Glasgow, Department of Computing Science; April 1998.
[39] Sahni S. Data structures, algorithms, and applications in java. University of Florida: Mc-Graw Hill; 2000.
[40] Strachey C, Wadsworth CP. Continuations: a mathematical semantics for handling full jumps. Technical Report, Oxford University Computing Laboratory

(reprinted in Higher Order and Symbolic Computation, January 1974; 13(1/2):135–52).
[41] Deng XY. Cost-driven autonomous mobility. PhD thesis, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK; June 2007.
[42] Friedman DP, Wand M, Haynes CT. Essentials of programming languages. Cambridge: MIT Press; 1992.
[43] Michaelson G, Scaife N, Bristow P, King P. Nested algorithmic skeletons from higher order functions. Parallel Algorithms and Applications: Special Issue on

High Level Models and Languages for Parallel Processing 2001;16:181–206.
[44] Sekiguchi T. JavaGo 〈http://homepage.mac.com/t.sekiguchi/javago/index.html〉 (May 2006).

http://dx.doi.org/10.1109/IPDPS.2006.1639657
http://www.recursionsw.com/Voyager/Voyager_User_Guide.pdf
http://recursionsw.com/Voyager/Voyager_User_Guide.pdf
http://doi.acm.org/10.1145/295685.298136
http://citeseer.ist.psu.edu/fuggetta98understanding.html
http://citeseer.ist.psu.edu/fuggetta98understanding.html
http://citeseer.ist.psu.edu/wooldridge94agentbased.html
http://citeseer.ist.psu.edu/wooldridge94agentbased.html
http://dx.doi.org/10.1109/MC.2003.1160055
http://doi.acm.org/10.1145/182409.182439
http://doi.acm.org/10.1145/355616.361015
http://doi.acm.org/10.1145/355616.361015
http://doi.acm.org/10.1145/361002.361016
http://doi.acm.org/10.1145/321978.321987
http://doi.acm.org/10.1145/99370.99381
http://doi.acm.org/10.1145/73560.73571
http://citeseer.ist.psu.edu/skillicorn92parallelism.html
http://citeseer.ist.psu.edu/rangaswami96cost.html
http://homepage.mac.com/t.sekiguchi/javago/index.html

	Cost-driven autonomous mobility
	Introduction
	Novelty

	Related work
	Mobility and mobile languages
	Agents and autonomous systems
	Cost analysis

	Previous work
	Autonomous mobile programs
	Single AMP performance
	Collections of AMPs
	Autonomous mobility skeletons

	Continuation cost calculus
	Syntax of language JJJJ
	Cost semantics
	Continuation cost semantics

	Costed autonomous mobility skeletons
	AMP generic cost model
	CAMS cost model
	Implementing CAMS

	Evaluating CAMS
	Single iteration examples
	Sequences of iterations
	Performance of CAMS in dynamic networks
	Evaluation summary

	Automatic continuation cost analyser
	Continuation cost analyser structure
	Implementing the cost calculus
	Generating AMSs
	Automatic analysis example: matrix multiplication
	Performance comparison of automatic and hand analyses

	Conclusion and future work
	Summary
	Discussion
	Further work
	Resource driven mobility
	Costed autonomously mobile java programs

	Appendix A. Indexing semantic functions
	Appendix B. Auxiliary semantic functions
	References

