
Autonomous Mobility Skeletons

Xiao Yan Deng ∗ Greg Michaelson Phil Trinder

School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, EH14 4AS,Scotland

Abstract

To manage load on large and dynamic networks we have developed Autonomous
Mobile Programs (AMPs) that periodically use a cost model to decide where to
execute. A disadvantage of directly programming AMPs is that the cost model, mo-
bility decision function, and network interrogation are all explicit in the program.
This paper proposes autonomous mobility skeletons (AMS) that encapsulate self-
aware mobile coordination for common patterns of computation over collections.
Autonomous mobility skeletons are akin to algorithmic skeletons in being polymor-
phic higher order functions, but where algorithmic skeletons abstract over parallel
coordination, autonomous mobility skeletons abstract over autonomous mobile co-
ordination. We present the automap, autofold and autoiter autonomous mobility
skeletons, together with performance measurements of Jocaml, Java Voyager, and
JavaGo implementations on small networks. autoiter is an unusual skeleton, ab-
stracting over the Iterator interface commonly used with Java collections.

Key words: skeletons, mobile computation, autonomous mobile programs, Jocaml,
Java Voyager, JavaGo
1991 MSC: 68w15, 68w40

1 Introduction

Classical distributed load balancing mechanisms are centralised and control
a fixed set of locations. Such mechanisms are not appropriate for dynamic
or very large scale networks. We have developed Autonomous Mobile Pro-
grams (AMPs)[4,3] that periodically make a decision about where to execute

∗ Corresponding author.
Email addresses: xyd3@macs.hw.ac.uk (Xiao Yan Deng), greg@macs.hw.ac.uk

(Greg Michaelson), trinder@macs.hw.ac.uk (Phil Trinder).

Preprint submitted to Elsevier Science 8 August 2006

for i = 0 to n-1 do (*first level*)

checkmove();

for j = 0 to n-1 do (*second level*)

for k = 0 to n-1 do (*third level*)

m3.(i).(j) <- m3.(i).(j)+m1.(i).(k)*m2.(k).(j);

done done; done ;;

Fig. 1. Direct Autonomous Mobile Matrix Multiplication

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2) (3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Fig. 2. Auto-mobile matrix movement

in a network. The decisions are informed by cost models that measure current
performance, the relative speeds of alternative network locations, and commu-
nication costs. Unlike autonomous mobile agents that move to change their
function or computation, an AMP always performs the same computation, but
move to change coordination, i.e. to improve performance.

For example an autonomously mobile matrix multiplication program can be
constructed by inserting a checkmove function into the outer for loop, as
shown in Figure 1. The checkmove function interrogates the network to dis-
cover available locations, their processor speed and load. This information is
used to parameterise cost models to determine whether to move. The program
moves if the predicted time to complete at the current location (Th) exceeds
the time to move to the best available location (Tcomm) and complete there
(Tn), i.e.

Th > Tcomm + Tn (1)

Figure 2 shows how an auto-mobile matrix multiplication moves between lo-
cations as their relative speeds, i.e. (CPU speed * (100-load)%), change. The
AMP starts at the relatively slow location, Loc1, and immediately moves to
the fastest available location, Loc3. When the relative speed of Loc3 drops, it
moves again to the new fastest available location, Loc5, and so on.

2

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7

Fig. 3. AMP Load Management, 7 AMPs on 4 Locations

Figure 3 shows the load balancing induced by a collection of 7 matrix multipli-
cation AMPs (1000*1000) on an homogeneous network where all four locations
have the same speed and no other load. All the AMPs are started on Location
1 in time period 0. In time periods 1 and 2, the processes move to optimise
load balance with little change thereafter. Locations 2, 3, and 4 are equally
loaded, but as an artefact of the Java Voyager implementation, Location 1, as
the initiating location is more heavily loaded. A comprehensive set of results
and analysis are available in [4].

A disadvantage of directly programming AMPs is that the cost model, mobility
decision function, and network interrogation are all explicit in the program.
This paper explores autonomous mobility skeletons (AMS) that encapsulate
mobility control for common patterns of computation over collections. Auto-
mobile skeletons are polymorphic higher order functions, such as automap or
autofold that make mobility decisions by combining generic and task specific
cost models.

This paper presents auto-mobile skeletons for the classic higher order func-
tions map and fold and for the object-oriented Iterator interface[9]. After
describing the skeleton context in section 2.2, autonomous mobility skeletons
for the functional mobile language Jocaml are introduced in section 3. In sec-
tion 4, we discuss the realisation of automap and autofold in Voyager [11], a
mobile version of Java. In section 5, we compare the Jocaml and Java Voyager
execution times. We define and sketch the implementation of AutoIterator
in JavaGo[10] in section 6. Finally, Section 7 summarises our results and con-
siders future research.

3

2 Background

2.1 Mobile Computation

Network technology is pervasive and more and more software is executed on
multiple locations (or machines). In a mobile language, a programmer controls
the placement of code or computations in an open network, e.g. a program
can migrate between locations. A typical mobile program is a data mining
application that visits a series of repositories to extract interesting information
from each.

This software mobility is in contrast to hardware mobility where programs
move on portable devices like PDAs. A number of mobile programming lan-
guages have been developed, including Telescript [12], Jocaml [5] and a number
of Java variants, e.g. Java Voyager [11] and JavaGo [10].

Fuggetta et. al. distinguish two forms of mobility supported by mobile lan-
guages [6]: weak mobility is the ability to move only code from one machine
to another. Strong mobility is the ability to move both code and its current
execution state.

2.2 Algorithmic and Mobile Skeletons

Abstract skeletons are higher order constructs that abstract over common pat-
terns of coordination and must be parameterised with specific computations.
Concrete skeletons are executable, and the user must link computation-specific
code into the appropriate skeleton. Figure 4 shows the relationship amongst
different species of skeletons. The notion of algorithmic skeletons was charac-
terised by Cole[2] to capture common patterns of parallel coordination in a
closed or static set of locations. Mobility skeletons[1] are high-level abstrac-
tions capturing common patterns of mobile coordination in an open network
i.e. a dynamic set of locations. With mobility skeletons, the mobile coordi-
nation is explicitly specified by the programmer, and the program makes no
autonomous decisions about where to execute. In contrast, auto-mobile skele-

tons are self-aware. Using auto-mobile skeletons the programs can make the
decision about when and where to move. So auto-mobile skeletons encapsu-
late autonomous coordination for common computations over collections, like
map, fold or iteration.

In Figure 4 we distinguish between the abstract conception of skeletons and
their concrete realisations. As we shall see, auto-mobile skeletons may have
different realisations in languages with different mobile constructs. Specifically

4

Skeletons

mmap mfold mzipper map dnc

platform dependent Skeletons

Jocaml Voyager JavaGo

Algorithmic Skeletons Mobility Skeletons Auto−Skeletons

Concrete
Skeletons

Abstract
Skeletons

automap autofold

Fig. 4. Skeleton Taxonomy

the realisation in a language with weak mobility will differ from that in a
language with strong mobility.

The motivation for auto-mobile skeletons is to minimise processing time by
seeking the most favourable resources, without any requirement to visit specific
processors. Thus different concrete realisations of a skeleton may carry out
the same computation in a shortest time period with given resources, but the
patterns of coordination may be very different. We will explore this further
below.

3 Jocaml Autonomous Mobility Skeletons

3.1 Jocaml automap

The automap auto-mobile skeleton, performs the same computation as the
map high order function, but may cause the program to migrate to a faster
location. The standard Jocaml map, map f [a1; ...; an] applies function
f to each list element a1, ..., an, building the list [f a1; ...; f an].
automap, automap cur f [a1;...;an] computes the same value but takes
another argument cur, recording current location information, e.g. CPU speed
and load.

For example, Figure 5 shows how the matrix multiplication may be refor-
mulated using automap. At first sight, this looks like a conventional program
using map. However, as we shall see next, automap also includes calls to generic
and problem specific cost functions to determine whether or not the program
should move.

5

let rec dotprod mat1 mat2 =

match (mat1,mat2) with

((h1::t1),(h2::t2)) -> h1*h2+dotprod t1 t2

| (_,_) -> 0;;

let inner row col = (dotprod row) col;;

let rowmult row cols = List.map (dotprod row) cols;;

let outer cols x = rowmult x cols;;

let rowsmult rows cols = automap current (outer cols) rows;;

let mmultMat m1 m2 = rowsmult m1 (transpose m2);;

Fig. 5. Jocaml automap Matrix Multiplication

let getGran work f h =

let (fh,fhtime) = timedapply f h

in let t_static = fhtime * (float (work))

let t_coord = tcoord (numofhost)

let ov = 0.05 (* 5% coordination overhead *)

in let times = (ov * t_static)/t_coord

in let gran = if times > 0

then (work/times)

else work

in (fh,fhtime,gran)

Fig. 6. getGran: Calculating CheckMove Granularity

3.2 automap Design and Implementation

Potentially automap could investigate moving after processing every element
of the list, but this induces enormous coordination overheads. Such overheads
are limited by specifying that the total coordination overhead of the program
(TCoord) must be less than some small percentage (O, say 5%) of the execution
time of the static, i.e. immobile program, (Tstatic):

TCoord < OTstatic (2)

automap(Figure 8) investigates moving after processing gran elements. Under
the assumption that the automap is the dominating computation for the pro-
gram, gran is calculated from the time to compute a single element of the map
result, the length of the list, and the overhead percentage O by the getGran

function in Figure 6. In this function, work is the length of the list (list l in
Figure 8) of tasks, h represents the first task of the list, and f is the same f

as in automap in Figure 6. So the type of getGran is:

int->(a->b)->a->(b*float*int)

6

let check_move cur work workleft fhtime=

let t_comm = tc work

let t_h = fhtime * (float (workleft))

in map (check_relspeed cur) hostlist

let host_next = check_next cur hostlist

in let t_n = cur.relspeed / host_next.relspeed * t_h

in

if (t_h > (t_n + t_comm))

then (

go host_next

host_next

)

else cur

Fig. 7. check move: Deciding to Move

A generic AMP cost model is used to inform the automap decision about
moving to a new location [3]. The cost model determines how much time has
elapsed(Te), and the relative speed (CPU speed * (100-load)%) in order to
predict the time to complete in the current location Th. The network is inter-
rogated to discover the relative speeds of available locations and the time to
complete at the fastest remote location Tn is calculated. The program moves if
the predicted time to complete at the current location exceeds the time to move
to the best available location (Tcomm) and complete there, i.e. Th > Tcomm+Tn.
We have instantiated the generic auto-mobile cost model for automap and val-
idated the cost model[3].

The movement check is encoded in the check move function in Figure 7. Note
that the sixth to last line encodes equation 1.

The definition of automap is given in Figure 8. It first calls getGran to calculate
an initial granularity and before calling automap’. automap’ applies standard
map to gran elements before calling getInfo to evaluate the benefits of a move
and to recalculate a gran.

The coordination behaviour of the Jocaml automap is depicted in Figure 9.
As Jocaml supports strong mobility, the program moves along with its execu-
tion state. In the figure, we started a Jocaml program with automap, which
applies f to list l in location 1 (1). automap will automatically decide whether
and where the program moves automatically. So the whole program moves to
location 2 with its data and context (2). In location 2, the automap consumes
the input list (3), and produces a result list (4).

7

let automap cur f l =

let work = List.length l

in let (fh,fhtime,gran) = getGran work f (hd l)

in fh::automap’ cur work (work-1) gran fhtime f t

let rec automap’ cur work workleft gran fhtime f l =

let xs = List.map f (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (cur’,gran’, fhtime’,fh’) =

getInfo cur work workleft gran fhtime f h

in xs@(fh’::automap’ cur’ work (workleft-gran) gran’ fhtime’ f t)

let getInfo cur work workleft gran fhtime f h=

let cur’ = check_move cur work workleft fhtime

let (fh’,fhtime’,gran’) = getGran work f h

in (cur’, gran’, fhtime’,fh’)

Fig. 8. Jocaml automap

Process M

Location 1 Location 2

Location 1 Location 2

........

result

Process M

Location 1 Location 2

........

result

Location 1 Location 2

MoveTo

Data

......

result

Process M

Data

........

result

Process M

produce
result

automap f l;
automap f l;

automap f l; automap f l;

Data

get
data

Data

 1: Initial state 2: Before Move

 3: After Move 4: Final State

Fig. 9. Coordination Behaviour of Jocaml automap

3.3 Jocaml automap Performance

Figure 10 shows the execution times of the matrix multiplication program
implemented using automap. Using automap, our test environment is based
on three locations with CPU speeds 534MHZ, 933MHZ and 1894MHZ. The
loads on these three computers are almost zero. We started both the static

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Fig. 10. Jocaml Matrix Multiplication Execution Times

and the mobile programs on the slowest CPU. Figure 10 shows the result
for matrix multiplication, from which we can see the bigger the size of the
matrix the faster the mobile version is compared with the static version. If the
matrix is smaller than a certain size (here 330), the mobile version stays on
the current location, because it will take more than O% (overhead) of the time
for completing at the current location if the program does coordination and
move. So at this size, the program does not check information and move at all,
and the mobile program takes almost the same time as the static program. If
the size of matrix is bigger than 330 then the mobile program moves to the
fastest location, and then stays there, so the mobile program takes much less
time than the static program.

3.4 Jocaml autofold

The standard fold in Jocaml, fold f a [b1; ...; bn], computes f (... (f

(f a b1) b2) ...) bn. autofold is autofold cur f a [b1;...;bn] com-
putes the same value but may migrate to a faster location. The definition of
autofold is given in Figure 11

Autofold has been used to construct a coin counting program that uses a
genetic algorithm to find a minimal and maximal set of coins that sum to a
target figure[7]. Figure 12 shows the execution times of static and autofold-
based versions of the coin counting program. As before, once the program has
a sufficiently large execution time, it benefits from moving to a faster location.
In this figure, there are three clear irregularities in the mobile version plot.
That is because as the size of the program increases, gran (see Figure 6) may
be decrease. So at some points, even if the size of the programs is increased, it
may move early to the faster location than the smaller program, so the bigger

9

let autofold cur f accu l =

let work = List.length l

in let (fh,fhtime,gran) = getGran work (f accu) h

in autofoldl’ cur work (work-1) gran fhtime f fh t

let rec autofold’ cur work workleft gran fhtime f accu l =

let xs = fold f accu (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (cur’,gran’, fhtime’,fh’) =

getInfo cur work workleft gran fhtime (f xs) h

in autofoldl’ cur work (workleft-gran) gran’ fhtime’ f fh’ t

Fig. 11. Jocaml autofold Definition

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

T
im

e

Size

"mobile"
"static"

Fig. 12. Jocaml Coin Counting Execution Times

program finishing faster than the smaller program. For example, the program
with size 50 matrix does not move, but the one with size 60 matrix moves.
Similarly, the gran of size 100 is 51, but the gran of size 110 is 37, so the size
110 program move to faster location earlier than size 100 program. So we can
see an irregularities at point 110 in the plot. These irregularities also arise in
Figure 10, Figure 16, and Figure 17, but they are too small to be noticed.

4 Java Autonomous Mobility Skeletons

It is appealing to implement Java autonomous mobility skeletons as Java is a
very widely used language and there are numerous mobile Java variants. Voy-
ager[11,8] is a popular Java with weak mobility, providing a set of basic and
advanced services and features for distributed application development. Voy-
ager ORB includes distributed naming service and mobile agent technology.
We have developed the two Jocaml auto-mobile skeletons in Voyager, automap

10

public Object[] automap (Superclass obj, Object[] l){

Object[] resultl = new Object[l.length];

long timestart = 0;

long timeend = 0;

long fhtime = 0;

int work = l.length;

int gran = work;

int checkPos = 0;

ISuperclass proxy = (ISuperclass) Proxy.of(obj);

IMobility mobility = Mobility.of(proxy); //bulid mobility

for(int i=0;i<work;i++){ // map

timestart = System.currentTimeMillis();

resultl[i] = proxy.mapf (l[i]);

timeend = System.currentTimeMillis();

if((i-checkPos) == 0){

fhtime = timeend-timestart;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (work,(work-i-1),fhtime,mobility);

}

}

return resultl;

}

Fig. 13. Java Voyager automap

and autofold.

4.1 Java Voyager automap

The Voyager automap performs the same computation as, and similar coor-
dination to, the Jocaml automap. Figure 13 gives the definition of automap
in Voyager, where the Java check move and getGran auxiliary functions have
the same functionality as in section 3.2. As Java 1.4 has no parametric poly-
morphism, the Voyager automap operates on a list of Object and returns a
list of Object.

As Voyager supports only weak mobility, when the program moves it com-
municates only the code, and not the execution state. Figure 14 shows the
coordination behaviour of the Voyager automap. Here, we started a Voyager
program with automap, which applies f in Object A to list l in location 1.

11

Object A MoveTo

Process M

f

Location 1 Location 2

......

Process M

Location 1 Location 2

Data

........

result

Process M

Location 1 Location 2

Object A

f

result

........

........

result

result

Process M

Object A

f

Location 1 Location 2

Data

Data
Data

reference

fetch

f

Object A

return

1: Prepare to Move 2: Build Reference

 3: Return Result 4: Final State

Fig. 14. Coordination Behaviour of Java Voyager automap

The program sends the code of Object A to location 2 (1). The system built a
reference from location 2 to the data in location 1 (2). In location 2, function
f fetches data from location 1, produces a result and returns it to location 1
(3). After the program has finished, the code of Object A stays in location 2
and waits for another migration but the data in location 1 will never move
(4).

4.2 Voyager automap Performance

An autonomously mobile matrix multiplication is readily written in Voyager
Java using automap, as in Figure 15. The new class Auto has an object auton,
which includes automap. Class RowMult has a function mapf, which is the
function the map will apply to the collection. When we do auton.automap

(rowM, mat1), automap will apply rowM.mapf on array mat1, and at the same
time automap makes the decision of when and where to move.

Figure 16 shows the execution times of static and automap-based versions of
Voyager matrix multiplications, using the apparatus from section 3.3.

12

public static void main (String[] args){

int[][] mat1 = makeMatrix(size);

int[][] mat2 = makeMatrix(size);

int[][] matT = transpose(mat2);

RowMult rowM = new RowMult(matT);

Auto auton = new Auto();

int[][] res = auton.automap (rowM, mat1);

}

Fig. 15. Java Voyager Autonomously Mobile Matrix Multiplication

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Fig. 16. Java Voyager Matrix Multiplication Execution Times

4.3 Java Voyager autofold

An autofold is also readily constructed in Voyager Java. Figure 17 shows
the execution times of static and autofold-based versions of a Java Voyager
coin counting program. These results are again similar to those for the Jocaml
autonomous mobility skeletons.

4.4 Multiple AMSs Behaviour

We have measured the behaviour of multiple AMS programs on a heteroge-
neous network of ten locations. The CPU speeds are 3139MHz (Loc1-Loc5),
2167MHZ (Loc6), 1793MHz (Loc7-Loc10). For illustration, the movement of
20 AMSs between the 10 locations is shown in Figure 18. In Figure 18 “B”
is the balanced statue, where every AMS has the similar relative CPU speed,
which is (CPUspeed) ∗ loads%/(NumberofAMS). In this status, the AMSs
will stay in the current locations and not move any more until the balance is
broken. In Figure 18 we started 20 AMSs on Loc1 in time period “0”, when

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

T
im

e(
S

ec
)

Size

"mobile"
"static"

Fig. 17. Java Voyager Coin Counting Execution Times

Loc1

Loc2

Loc3

Loc4

Loc5

Loc6

Loc7

Loc8

Loc9

Loc10

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
T

IO
N

S

TIME PERIOD

B:Balancing status
R:Removing AMP(s)

20
.....

0

3

3

3

3

2

1

1

2

2

B

.....
0

3

3

3

3

2-1

1

1

2

2

R

.....
1

3

3

3

3

2

1

1

1

1

B

.....
1

3

3

3

3

2-1

1

1

1

1

R

.....
1

3

3

2

3

2

1

1

1

1

B

.....

Fig. 18. 20 AMSs on Heterogeneous Network (10 Locations)

Loc1 was very busy, and the 20 AMSs were looking for other locations which
were less busy than Loc1. After some movements of each AMSs, we got a
balanced statue in time period “k”. The AMSs keep the balanced statue and
do not move any more until time period “k+x”, when one of the AMSs is
finished on Loc6 and the balance is broken. So the other 19 AMSs move again
and reach a new balance in time period “l”.

Figure 19 shows the relative CPU speed available to 20 AMSs. In the figure,
most AMSs have relative CPU speed from 200MHz to 400MHz (18 out of 20
AMPs). There is one AMS on Loc1 with CPU speed 650-700MHz. Similar
results were got when there are 19 and 18 AMSs.

14

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 500 550 600 650 700

N
um

be
r

of
 A

M
P

CPU speed AMP had

Fig. 19. Relative CPU Speed for AMPs

Jocaml Voyager Jocaml/Voyager

size time time/size3 size time time/size3 Average

300 20.1 7.4e−7 300 1.27 4.7e−8 -

400 47.9 7.5e−7 400 3.00 4.6e−8 -

500 93.9 7.5e−7 500 6.03 4.8e−8 -

600 166.1 7.7e−7 600 10.2 4.7e−8 -

700 266.2 7.7e−7 700 16.0 4.7e−8 -

800 401.3 7.8e−7 800 23.8 4.6e−8 -

900 573.6 7.9e−7 900 33.4 4.6e−8 -

1000 796.5 7.9e−7 1000 46.2 4.6e−8 -

Average 7.7e−7 Average 4.7e−8 16.4

Table 1
Jocaml and Java Voyager Matrix Multiplication Runtimes Comparison

5 Jocaml and Java Voyager Comparison

From Figure 10 and Figure 16, we can see there is a huge difference in the
runtimes obtained with Jocaml and with Java Voyager. Table 1 compares the
runtimes of static versions of Jocaml and Java Voyager matrix multiplication
programs. The time complexity of our matrix multiplication is O(n3), so in
the table’s third and sixth columns we use “time/size3” as a measure of the
time taken for a single matrix element multiplication. From this table, Jo-
caml matrix multiplications take on average 16.4 times longer time than Java
Voyager.

Similar differences also can be seen in Figure 12 and Figure 17. For the coin
counting program on average Jocaml is 272 times slower than Java Voyager
and Table 2 summarises the results.

15

Jocaml Voyager Jocaml/Voyager

size time time/size size time time/size Average

30 14.8 0.49 3000 5.9 0.0019 -

40 19.7 0.49 4000 7.6 0.0019 -

50 24.6 0.49 5000 9.3 0.0019 -

60 29.5 0.49 6000 11.0 0.0018 -

70 34.3 0.49 7000 12.6 0.0018 -

80 39.3 0.49 8000 14.3 0.0018 -

90 44.3 0.49 9000 16.0 0.0018 -

100 49.4 0.49 10000 18.0 0.0018 -

Average 0.49 Average 0.0018 272

Table 2
Jocaml and Java Voyager Coin Counting Runtimes Comparison

private int checkPos = 0;

private long timestart = 0;

private long timeend = 0;

private double fhtime = 0;

private int gran = work;

public migratory Object autoNext() {

if (nextIndex < work){

if(nextIndex == 0){

timestart = System.currentTimeMillis();

timeend = timestart;

}

else

if((nextIndex-checkPos) == 0){

timestart = timeend;

timeend = System.currentTimeMillis();

fhtime = timeend-timestart;

check_move (size,(work-nextIndex-1),fhtime);

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

}

return list.get(nextIndex++);

}

else

throw new NoSuchElementException("No next element");

}

Fig. 20. JavaGo autoNext Method in AutoIterator Class

6 An Autonomous Mobile Iterator

An iterator is a class that implements the Java Iterator interface, which
specifies a generic mechanism to enumerate the elements of a collection. The
methods in the Iterator interface are hasNext, next and remove[9]. The

16

public class AutoIterator implements Iterator,Resalable{

public AutoIterator(ArrayList theList){

list = theList;

nextIndex = 0;

work = list.size();

}

public boolean hasNext(){

return nextIndex < work;

}

public Object next() {

if (nextIndex < work)

return list.get(nextIndex++);

else

throw new NoSuchElementException("No next element");

}

public migratory Object autoNext() { ... }

}

Fig. 21. JavaGo AutoIterator

AutoIterator class implements all three methods, and extends it with autonext,
which has the same functionality as next but can make autonomous mobility
decisions.

AutoIterator requires strong mobility and hence Voyager, with only weak
mobility, cannot be used. JavaGo [10] supports strong mobility and Figure 20
shows an autoNext implementation again using analogous check move and
getGran functions. The whole program of AutoIterator is given in Fig-
ure 21.The AutoIterator is very similar to automap and autofold. It counts
the time of computation on the first element of the list, and calculates gran.
Then it makes the decision autonomously of whether to move or not and where
to move after every gran elements.

Figure 22 shows how AutoIterator can be used to implement matrix mul-
tiplication. Each element of the list is a MatrixMul object and includes two
matrices and a function Multiplication, which multiplies the two matri-
ces. AutoIterator enumerates each object using autoNext and performs the
multiplication.

Figure 23 shows the execution times of static and AutoIterator-based versions
of a JavaGo matrix multiplication program. Once again, the skeleton version
is faster.

17

public static void main(String args[]){

undock {

String port=null;

int listlength = Integer.parseInt(args[0]);

ArrayList al = new ArrayList();

for (int i=0;i<listlength;i++){

MatrixMul ii = new MatrixMul();

al.add(i,ii);

}

long timestart = System.currentTimeMillis();

AutoIterator ai = new AutoIterator(al);

while (ai.hasNext()){

MatrixMul iu = (MatrixMul)ai.autoNext();

int[][] mat = iu.Multiplication();

}

}

}

Fig. 22. JavaGo Autonomously Mobile Matrix Multiplication

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
im

e(
S

ec
)

List Length(n)

"mobile"
"static"

Fig. 23. AutoIterator Matrix Multiplication Execution Times

7 Conclusion

We have proposed auto-mobile skeletons that encapsulate common patterns of
self-aware mobile coordination aiming to minimise execution time in networks
with dynamically changing loads. In analogy with other skeleton species, they
hide low level mobile coordination details from users and provide higher level
loci for designing load-aware mobile systems.

We have demonstrated abstract auto-mobile skeletons with concrete realisa-
tions for the common higher-order functions map and fold. The realisations

18

are provided both in the functional language context shared with other skele-
ton species, using Jocaml, and in an object-oriented context using mobile
Javas. We have also demonstrated a novel autoiter skeleton for the widely
used object-oriented iterator interface. Our experiments suggest that, for
our set of test programs, auto-mobile skeletons can offer considerable savings
in execution times, which scale well as overall execution times increase.

Auto-mobile skeleton cost models are dynamic and substantially implicit. Dur-
ing the traversal of a collection, the skeleton implementation periodically mea-
sures the time to compute a single collection element, and uses the value to
parameterise an implicit cost for the remainder of the traversal.

Auto-mobile skeletons currently have a number of limitations because the
skeletons dynamically parameterise the cost model with measurements of per-
formance on the preceding collection segment. If the program is reasonably
regular, i.e. computing each segment of the collection represents a similar
amount of work, then the cost model will be valid, and hence the movement
decisions reasonable. However, as the computations become increasingly irreg-
ular, the cost model will be less valid, and hence the movement decisions may
not optimise performance.

Currently the cost models of auto-mobile skeletons do not incorporate the
costs of computations following the processing of the current collection. This
restricts auto-mobility skeletons to programs that expose useful loci of mo-
bility at the top-levels that dominate the computation. In essence we lack
appropriate techniques to compose and nest auto-mobile skeletons, as we are
unable to compose and nest their cost models.

There are two main areas for future work. Firstly, we wish to generalise auto-
mobile skeletons to irregular problems with cost models and strategies to adapt
to their behaviour. Secondly, we wish to be able to nest and compose auto-
mobile skeletons.

To solve both problems, we are exploring a calculus to manipulate, and ulti-
mately automatically extract, continuation cost models that can provide costs
for the rest of a computation at arbitrary points during its execution. The
advantage of a continuation cost model is that it is not necessary to provide a
closed form solution as environmental information for a computation is always
available implicitly at run-time. Thus, branches are not necessarily a source
of loss of accuracy as concrete data values are available at the point where the
cost is calculated. The disadvantage is that a naive cost model may have the
same complexity as the computation it models, which, for programs with rel-
atively high coordination and low processing degrees, could add considerably
to the overall execution time.

We are experimenting with a simple cost analyser for a small core language,

19

where cost functions are generated in SML rather than in the source language.
We plan to investigate the use of meta-programming techniques to integrate
cost functions into the source language at appropriate checking points.

References

[1] A. R. D. Bois, P. Trinder, and H. Loidl. Towards Mobility Skeletons. Parallel

Processing Letters, 15(3):273–288, 2005.

[2] M. Cole. Algorithmic skeletons: structured management of parallel computation.
MIT Press, 1989.

[3] X. Y. Deng, G. Michaelson, and P. Trinder. Towards High Level Autonomous
Mobility. In H.-W. Loidl, editor, Draft proceedings of Trends in Functional

Programming, Munic, Germany, November 2004.

[4] X. Y. Deng, P. Trinder, and G. Michaelson. Autonomous Mobile Programs.
Technical report, School of Mathematical and Computer Sciences:Heriot-Watt
University, December 2005.

[5] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jocaml: a Language
for Concurrent Distributed and Mobile Programming. In Proceedings of the

Fourth Summer School on Advanced Functional Programming, pages 19–24, St
Anne’s College, Oxford, August 2002. Springer-Verlag.

[6] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Transactions on Software Engineering, 24(5):342–361, 1998.

[7] J.Hawkins and A.Abdallah. A Generic Functional Genetic Algorithm. In
P.Trinder and G.Michaelson, editors, Draft proceedings of the First Scottish

Functional Programming Workshop, pages 151–168, Heriot-Watt University,
Edinburgh, 1999.

[8] Resursion Software. Voyager ORB Developer’s Guide, May 2005. http://
www.recursionsw.com/Voyager/Voyager User Guide.pdf.

[9] S. Sahni. Data Structures, Algorithms, and Applications in Java. Mc Graw
Hill, University of Florida, 2000.

[10] T. Sekiguchi. JavaGo Home Page, Accessed October 2005. http://
homepage.mac.com/t.sekiguchi/javago/index.html.

[11] T. Wheeler. Voyager Architecture Best Practices. Recursion Software,
March 2005. http://www.recursionsw.com/Voyager/2005-03-31-Voyager
Architecture Best Practices.pdf.

[12] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents, pages
437–472, Menlo Park, CA, 1997. AAAI/MIT Press.

20

