
Are there Domain Specific Languages?

Greg Michaelson
School of Mathematical and Computer Sciences

Heriot-Watt University
Riccarton, Scotland

G.Michaelson@hw.ac.uk

ABSTRACT
Turing complete languages can express unbounded compu-
tations over unbounded structures, either directly or by a
suitable encoding. In contrast, Domain Specific Languages
(DSLs) are intended to simplify the expression of computa-
tions over structures in restricted contexts. However, such
simplification often proves irksome, especially for construct-
ing more elaborate programs where the domain, though cen-
tral, is one of many considerations. Thus, it is often tempt-
ing to extend a DSL with more general abstractions, typi-
cally to encompass common programming tropes, typically
from favourite languages. The question then arises: once a
DSL becomes Turing complete, then in what sense is it still
domain specific?

Keywords
Domain Specific Languages; expressiveness

1. INTRODUCTION
Domain Specific Languages (DSLs) are notations oriented

to specific problem domain with specialised types and con-
trol structures.

Constructing DSLs is motivated naturally by program-
ming practice. It can become tiresome writing lots of small
programs for the same problem area; typically, one ends up
using the same set type and control abstractions, configured
by standard programming tropes. Thus, it is not uncommon
to construct command based framework, with scripts to in-
voke and configure individual program components. Here,
the allowable structure and behaviour of scripts constitutes
a first DSL.

It is tempting to add ad-hoc extensions to a command
style DSL, for example to parameterise commands with flags
or argument, but this can quickly become an unwieldy as-
semblage of special cases. Instead, it may be more fruitful to
systematically elaborate some consistent DSL notation, ori-
ented to the problem area, with built in constructs capturing
specialised abstractions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RWDSL ’16, March 12 2016, Barcelona, Spain
c© 2016 ACM. ISBN 978-1-4503-4051-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2889420.2892271

However, the more we use such a restricted DSL, the more
we tend to want familiar general purpose programming lan-
guage abstractions as well. Thus, we may be seek to add,
say, arithmetic and logic, sequences, selections, iteration,
sub programs and data structures. Thus, as the DSL grows,
it tends to become less and less domain specific, and also
more and more like some favourite language.

Historically, high level languages were developed as ab-
stractions from machine codes. However, their designers
were often motivated in their choice of abstractions by the
need to solve problems in some specific application domain.

This is strongly reflected in Sammet’s pioneering survey
of programming languages from 1969[6]. Here, Sammet dis-
tinguishes problem oriented languages, that is “any language
which is easier for writing solutions to a particular problem
than assembler”, from application-oriented languages, which
“have facilities and/or notations which are useful primarily
for a single application area”. To illustrates this, Sammet
contrasts APT for controlling machine tools and COGO for
civil engineering, with the less application-oriented FOR-
TRAN for numerical mathematics and COBOL for for busi-
ness data processing. Thus, she notes that“the term [application-
oriented] is somewhat relative” and “The wider the applica-
tion area, the more general the language must be.”

More recently, the taxonomy in Baron’s 1986 populari-
sation[1] includes function, distinguishing, amongst others,
the languages:

• ALGOL - general numerical analysis in scientific com-
puting (p106);

• BASIC - general purpose though especially popular in
lower education; (p144)

• C - systems programming (p156);

• COBOL - business (p170);

• FORTRAN - science and engineering (p203);

• LISP - artificial intelligence (p223);

Despite these languages originating in the desire to solve
domain specific problems, in fact they are all general purpose
languages. Formally, they are all Turing complete (TC).

A language is TC if it can be shown to be equivalent in
expressive power to some formal model of computability,
originally Turing machines or λ calculus[5]. Thus, a TC
language is not, on the face of it, domain specific, in the
sense of being restricted to some domain.

2. WHAT IS DOMAIN SPECIFICITY?
To explore domain specificity further, let’s consider the

very simple Light Bulb language (LBL) to control a single
bulb. The switch can be in the ON or OFF states. The
command SWITCH changes the ON state to OFF and vice
versa:

program -> switch
switch -> SWITCH | ε
m1 [SWITCH] ON = OFF
m1 [SWITCH] OFF = ON
m1 [ε] ON = ON
m1 [ε] OFF = OFF

Let us now consider the Linear Light Bulb Language (LLBL)
which can control a row of light bulbs:

program -> row | row program
row -> switch | switch row
si ∈ row
bi ∈ {ON,OFF}
m2 [s1,...,sn] {b1,...,bN} =

{m1 s1 b1,...,m1 sN bN}

Finally, let us consider the Grid Light Bulbs Language (GLBL)
which can control a grid of light bulbs:

program -> grid
grid -> row | row grid
ri ∈ row
bri ∈ b∗
m3 [r1,...,rN] {br11,...,brN} =

{m2 r1 br1,...,m2 r1 brN}

Now is GLBL a language of turning on and off grids of light
bulbs, or negating black and white images, or manipulating
anything representable as an array of booleans? That is,
how domain specific is GLBL? Indeed, how domain specific
is any language which can represent operations on values in
multiple domains.

2.1 Embedded DSLs
A common approach is to implementing a DSL is to embed

it in some extant host language. We will illustrate this by
considering the SUCC language, for constructing integers by
incrementation from zero:

e -> z | s e
m z = 0
m s e = 1+m e

We will implement SUCC by embedding it in Haskell.
A first stage is to add a library called through an API

to the host language, so arbitrary host language constructs
may be used to configure API calls:

ssucc n = n+1;

... ssucc(ssucc (ssucc 0)))...

This does not constitute a distinct DSL.
A second stage is to add abstract syntax and then inter-

pret abstract syntax trees (ASTs) through calls to interpreter
components from arbitrary host language constructs:

data Succ = Z | S Succ

eval Z = 0

eval (S s) = ssucc (eval s)

... eval (S(S(S Z)))...

A third stage is to design a concrete syntax :

program -> Z | S program

and build a compiler from concrete syntax to ASTs. The
interpreter is then called with parsed strings:

data Lex = LZ | LS

llex [] = []

llex (’ ’:t) = llex t

llex (’Z’:t) = LZ:llex t

llex (’S’:t) = LS:llex t

parse [LZ] = (Z,[])

parse (LS:t) =

let (e,r) = parse t

in (S e,r)

parse l = error (showLs l)

comp s =

let (e,r) = parse(llex s)

in e

... eval (comp "S S S Z")...

A fourth stage is to extend the host language syntax, with
a pre-processor to generate API calls.

Finally, the host language semantics may be extended: a
true extension.

If the parser/interpreter for the DSL are exposed only as
stand alone language processors, DSL programs can only be
constructed using the domain specific syntax. Then we have
implemented the DSL in the host language.

3. EXPRESSIVENESS
It is often alleged that DSLs have greater expressiveness

than general purpose languages, that is they can express:

• the same things as other languages, but more suc-
cinctly, or

• things other languages cannot express.

Thus, for DSLs, expressiveness is a comparative quality.
Felleisen’s account of expressiveness[3] depends on the no-

tion of extending a language. Suppose language X has con-
structors which are not in language Y. Then, language X
is a conservative extension of language Y if instances of X
can be translated into instances of Y without changing the
semantics of Y. Felleisen terms this weak expressibility.

For example, Glasgow Parallel Haskell (GpH)[4] extends
Haskell with the seq and par operators, indicating a desire
for sequential or parallel activity respectively. This is a con-
servative extension as simple elimination of the operators
preserves the meanings of Haskell programs.

In contrast, if constructors in X cannot be eliminated in
translation to Y then X has semantic properties Y lacks,
and X is said to extend Y. For example, Scheme[7] extends
λ calculus with the set! assignment operator to enable

stateful programming. set! cannot be expressed in pure λ
calculus.

All TC languages capture a common notion of algorithm,
that is effectively calculable in Church’s terminology or com-
putable in Turings. Thus, in Fellesien’s terms, TC languages
with different semantics are mutually extending, so all TC
languages have the same expressiveness.

Designers of DSLs may think they have enabled something
that other languages cannot do so well. But every new TC
language is equivalent to some old TC language plus some
syntax and a library. So is every programming language
really an embedded DSL with a TC host?

Felleisen suggests that comparisons between languages might
be made in a common language universe. We might then
establish that some TC languages can express some algo-
rithms more succinctly than other TC languages. But ques-
tions then arise as to how to choose a language universe and
whether or not language universes have language biases.

4. HOST LANGUAGE AND EDSL
Now, suppose that, rather than following the discipline

of only programming in the EDSL (other than calling the
interpreter and compiler, and, say I/O), EDSL programs
may include arbitrary use of host language constructs, for
example:

makeS 0 = "Z"

makeS n = "S"++(makeS (n-1))

...eval (comp(makeS (123*456))...

Now, it is not clear for practical purposes where the host
language stops and the EDSL stops.

Furthermore, the EDSL now constitutes a conservative
extension of the host language, with the same properties as
the host language. In particular, if the host language is TC
then so is the extended host language.

5. LANGUAGE AND PROGRAM
A programming language is formally defined by the as-

sociation of semantics with syntactic constructs. Typically,
the semantics may be characterised as a mapping from some
initial state to some final state guided by the structure of a
program instance:

semantics: program * state -> state

Now, a program may be characterised as a mapping from
some intial state and an input, to some final state and an
output:

program: input * state -> output * state

If we treat the output as part of the final state:

program : input * state -> state

That is, the program changes initial state to final state de-
pending on input structure.

We could define the input structure with a syntax and
then view the program as the semantics of its inputs.

So, does every program define a DSL?

6. CONCLUSIONS: DSLS ARE ABOUT PRAG-
MATICS

Felleisen asks:

“...what advantages there are to programming in
the more expressive language when equivalent
programs in the simpler language already exist.”

He observes that:

“...programs in less expressive languages exhibit
repeated occurrences of programming patterns
and this pattern oriented style is detrimental to
the programming process.”

and elaborates his Conciseness conjecture that:

“Programs in more expressive languages that use
the additional facilities in a sensible manner con-
tain fewer programming patterns than equivalent
programs in less expressive languages.”

That is, more expressive languages result in more succinct
programs[2].

We may conclude that DSL abstractions and constructs
are chosen pragmatically, to make it easier to express partic-
ular things. Thus, what may be complex in an arbitrary TC
language may become simpler in a DSL. Nonetheless, while
the domain may frame the choice of DSL abstractions and
constructs, those from one domain may well be appropriate
for other domains.

7. REFERENCES
[1] N. S. Baron. Computer Languages: a guide for the

perplexed. Penguin, 1986.

[2] J. Davidson. An Information Theoretic Approach to the
Expressiveness of Programming Languages. PhD thesis,
University of Glasgow, 2016.

[3] M. Felleisen. On the Expressive Power of Programming
Languages. Science of Computer Programming, pages
134–151, 1990.

[4] Kevin Hammond. Glasgow Parallel Haskell (GpH). In
David Padua, editor, Encyclopedia of Parallel
Computing, pages 768–779. Springer US, Boston, MA,
2011.

[5] L. MacKenzie P. Cockshott and G. Michaelson.
Computation and its Limits. OUP, 2012.

[6] J. Sammet. Programming Languages: Historyand
Fundamentasl. Prentice-Hall, 1969.

[7] Gerald Jay Sussman and Guy L Steele Jr. Scheme: An
interpreter for extended lambda calculus. In MEMO
349, MIT AI LAB, 1975.

8. ACKNOWLEDGMENTS
This work was supported by EPSRC EP/K009931/1 ‘Pro-

grammable Embedded Platforms for Remote and Compute
Intensive Image Process’.

