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Abstract: Language definition techniques may be applied to 
the specification of a wide range of problems. Language 
implementation techniques may then be used to construct 
interpreter prototypes. The use of an interpreter-interpreter 
language for the implementation of interpreter prototypes 
circumvents some of the disadvantages of contemporary 
programming languages and software tools. 

Keywords: prototyping, programming languages, interpreters. 

A prototype 1 forms a bridge between a specifica- 
tion and an implementation. It enables a static 
specification to be animated to illuminate its 

dynamic implications. It also helps clarify how abstract 
constructs might be finally realized in the implementa- 
tion without making any concrete commitments to 
implementation details. 

A prototype should reflect the functionality of the 
specification but this may be compromized by differ- 
ences between the specification and prototyping 
formalisms. Prototyping may require the construction 
of explicit representations for some or all of the 
specification constructs and it may be difficult to 
maintain the functional correspondence between them. 
In particular, in developing the prototype, changes may 
be made which are not reflected fully in specification 
changes through carelessness or lack of time. Thus, 
prototyping may cease to be specification directed and 
the prototype may drift from the specification. The 
continuity from specification to implementation 
through prototyping may be lost and if a solution is 
finally implemented then the specification and the 
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prototype may constitute incompatible implementation 
standards. 

It is also easy to underestimate the effort involved in 
prototyping, particularly if very different specification 
and prototyping formalisms are used. Once a prototype 
works it may be tempting to adopt it as an intermediate 
or production implementation without further develop- 
ment. Thus, inappropriate or inefficient prototype 
representations for specification constructs, which were 
chosen to ease prototyping or for experimentation, 
become ossified. 

The problems may be circumvented if appropriate 
tools are available to simplify the construction of 
prototypes from specifications. If the tool corresponds 
closely to the specification formalism then prototyping 
is simplified because specification constructs have 
direct prototype representations. 

This paper presents an approach to specification 
based on language definition formalisms. The use of 
the Not a Very Exciting Language (NAVEL) interpreter- 
interpreter language to implement interpreter pro- 
totypes for language definition style specifications is 
then discussed. 

Interpreters and interpretation 

Interpreters are usually associated with language 
implementation but may be applied to a wide range of 
problems. If language definition techniques are used 
for problem specification then an interpreter may be 
used for solution implementation. 

A language is defined formally 2 by specifying the 
symbols, the smallest meaningful linguistic units, the 
syntax, the well-formed symbol sequences, and the 
semantics which are what the well-formed symbol 
sequences mean. Symbols are specified as lists of 
literals or as finite state rules over literals. Syntax is 
specified through context-free grammar rules over 
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symbols. The semantics associate a function with each 
syntax construct. It is often useful to distinguish 
concrete syntax, the syntax of representation, from 
abstract syntax, the syntax of structure, which is used to 
associate syntax and semantics with structurally irrele- 
vant details discarded from the concrete syntax. In the 
examples here, abstract syntax will not be used as the 
concrete syntax is simple. 

A language definition may be used to implement a 
language processor for programs, specific symbol 
sequences, through three conceptual stages: 

• lexical analysis - recognizing symbols from a 
concrete representation of a program, often charac- 
ter sequences, 

• syntax analysis - recognizing well-formed symbol 
sequences and constructing a structural represent- 
ation, 

• interpretation - carrying out semantic actions 
corresponding to the structural representation. 

Compilation is a special case of interpretation where 
the semantic actions generate a symbol sequence in 
another  language corresponding to the structural 
representation. A language definition may be used to 
compile into the semantic action language by treating 
each action as a text generation macro rather than an 
executable function. 

General  purpose approaches based on formal lan- 
guage definition techniques include the VDM specifica- 
tion language 3. The use of a language definition 
formalism directly as a programming language 4 has also 
been proposed. 

A n  e x a m p l e  o f  def in ing  data  as  a l anguage  

Consider finding the sum of a list of numbers. Here,  the 
data might consist of a sequence of numbers separated 
by commas. The basic symbols are numbers and 
commas. Numbers are made up of digits. Thus, the 
lexicon might be specified in the first instance by simply 
listing the characters that will be used: 

0 1 2 3 4 5 6 7 8 9 ,  

A number symbol consists of a sequence of one or more 
digits and might be specified as: 

d i g i t = O ]  1 1 2 1 3 1 4 1 5 1 6 L 7 1 8 1 9  
number = digit I number digit 

Numbers and digits have been defined by rules. On the 
left is the rule name in italics. On the right is a sequence 
of options separated by 'l's. Each option is a basic 
character, or the name of a rule which has a basic 
character option or a basic character followed by a rule 
name. This form of rule is known as a 'regular 
expression'. 

A sequence of characters is checked for lexical 
validity and to identify symbols by trying to match rule 
options. Successful matches are replaced with the 
corresponding rules name. For example, to check the 
validity of a character sequence which is supposed to be 
a number: 

987 = > 
digit 87 = > 
number 87 = > 
number digit 7 = > 

number 7 = > 

number digit = > 

number 

The lexicon is used as the basis of the concrete syntax 
which describes well-formed symbol sequences. For 
example, a number sequence consists of a single 
number or a number followed by a comma followed by 
more numbers which are in turn a sequence: 

sequence = number I number ,  sequence 

Here  again a rule has been used to define the structure 
of a sequence. For concrete syntax, a more powerful 
form of rule is used where options may consist of 
arbitrary sequences of rule names and symbols. These 
are known as 'context free' rules. The concrete syntax 
rules are used to check that lexically valid symbol 
sequences are well-formed and to identify their 
structures. For example, assuming that the texical 
check has validated: 

4 2 , 3 1 , 2 0  

a s :  

number ,  number ,  number 

then the concrete syntax rules might be applied as: 

number ,  number ,  number => 

n u m b e r ,  number ,  sequence = > 

n u m b e r ,  sequence = > 

sequence 

The meaning of well-formed symbol sequences is 
defined using a pure functional notation. This lacks any 
concept of time ordering in evaluation and gives 
specifications substantial implementation independ- 
ence. 

At simplest, function definitions have a left-hand 
side which names the function and formal parameters,  
and a right-hand side consisting of an expression which 
is to be evaluated. For example, the squaring function 
is: 

square x = x * x 

and the sum of squares function is: 

sum_squares x y -- square x + square y 
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A function may have a number  of  cases cor responding  
to different formal  pa ramete r  values. For  example,  the 
' power '  funct ion is: 

power x 0 = 1 
power x n = x * power x (n - 1) 

Here  there are cases for a zero exponent  and a 
non-zero  exponent .  These cases are equivalent  to the 
use of  an explicit condit ional  expression: 

power x n = if n = 0 then 1 else x * power x (n - 1) 

For  example:  

power 2 3 = > 
2"  power22 = >  
2 * 2 * p o w e r 2 l = >  
2"  2"  2" power20  = >  
2 " 2 " 2 " 1  = >  
8 

Note  that  the functions are not  typed explicitly. While 
this simplifies presenta t ion and implementa t ion  it also 
decreases  security and rigour. 

This style of  definition is ex tended to allow pat tern  
matching on syntactic constructs and the selection of  
subconstructs .  Syntactic construct  formal  parameters  
are bracke ted  with [ and ]. Subconstructs  may  then be 
refer red  to in the funct ion expression. W h e n  the 
funct ion is applied to a symbol sequence,  if the symbol 
cor responds  to the construct  then the references to 
subconstructs  will select the appropr ia te  subsequences.  

In general ,  the structure of  the semantic  functions 
cor responds  to the structure of  the syntax rules. For  a 
rule consisting of  a number  of  options,  the funct ion will 
have a number  of  cases with one  for each opt ion.  For  a 
recursive rule, the semantic  function will be recursive. 
Funct ions  may be required for  individual meaningful  
symbols.  If  a symbol  is defined by a lexical rule then its 
lexical s tructure may be relevant.  

Here ,  for example,  the values of  individual numbers  
will be needed  to process a c o m m a  separa ted  number  
sequence.  First of  all, the values of  individual digits are 
specified as a sequence of  cases: 

value [0] = 0 
value [11 = 1 
elc 
value [9] = 9 

So far, the definit ion has one case for each digit. W h e n  
the funct ion is applied to an actual pa ramete r  consisting 
of  a single digit symbol ,  each case is tried in turn until 
there  is a match and then the cor responding  value is 
re turned.  A sequence of  digits is defined recursively as 
a number  fol lowed by a digit. Thus,  its value is found  by 

mult iplying the value of  the number  by 10 and adding in 
the value of  the digit. 

value [number digit] = 10 * value [number] + value [digit] 

Here ,  if a symbol  sequence matches  the construct :  
number  digit then the subsequencies  cor responding  to 
the number  and digit are selected for fur ther  evalua- 
tion. For  example,  the value of: 

987 
is: 
value [987] = > 
10 * value [98] + value [7] = > 
10 * (10 * value [9] + value [8]) + 7 = >  
10" (10" 9 + 8) + 7 = >  
10 * 98 + 7 = >  
987 

Now,  for a whole sequence,  if there is only one number  
in the sequence then the total is that  number ' s  value: 

sum [number] = value [number] 

Otherwise,  the value of  the first number  is added  to the 
sum of the rest of  the sequence:  

sum [number, sequence] = value [number] + 
sum [sequence] 

For  example,  the meaning  of: 

9,8,7 

is: 

sum [9,8,7] = > 
value [9] + sum [8,7] = >  
9 + value [8] + sum [7] = > 
9 + 8 + value [7] = > 
9 + 8 + 7 = >  
24 

P r o g r a m  a n d  d a t a  

It is usual to distinguish an active p rogram f rom the 
passive data it processes. Thus,  a sequence of  data 
items has no inherent  meaning  and any sequence may 
have different interpretat ions within the same program.  
For  example,  the c o m m a  separa ted  number  sequence 
above might  not only mean:  

find the sum 

but also: 

count the non-zero numbers 

with a different semantic  function: 

count [number] = if value [number] < >  0 then 1 else 0 
count [number, sequence] = if value [number] < >  0 then 1 
+ count [sequence] else count [sequetice] 
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For example, to count the non-zero numbers in: 

3 , 0 , 6 , 9  

involves: 

count [3,0,6,9] =>  
1 + count [0,6,9] = > 
1 + count [6,9] =>  
1 + 1 + count [9] = > 
1 + 1 + 1 = >  
3 

This ability to give multiple meanings to the same 
syntactic constructs suggests that the data itself contains 
no indication as to its meaning. An alternative view is 
that a data sequence processed in different ways 
corresponds to several different languages within a 
program. For example, in the comma separated 
number  sequence, the comma is an 'add' or a 'test and 
count '  operator  in different languages which, by 
coincidence, have the same syntax. To illustrate this 
further,  consider a fast-food takeaway which offers a 
variety of deep-fried food. A manual system might be 
based on a menu consisting of a list of food items and 
prices, for example: 

fish 85, 
spare rib 50, 
frankfurter 55, 
pizza 42, 
burger 48, 
kebab 45, 
french fries 30 

and a cash register which totals prices entered on 
numeric keys to produce a bill. When a customer 
orders food, for example, T w o  p i z za s ,  one  burger  and  

three f r e n c h  fr ies  please,  the operatives use the menu 
(or their memories of it) to key prices corresponding to 
food items into the cash register to find the total bill. 
An automated cash register might hold the menu in its 
memory.  The operatives would then push keys 
corresponding to food items and the register would 
total the corresponding prices to print out the final 
amount.  A food item might be preceded by a number 
for multiple purchases of the same item. The sequence 
of food item and numeric keys corresponding to a 
purchase is a simple language with statements like: 

2 pizza burger 3 french fries total 

The lexicon consists of symbols for cash register keys: 

fish spare rib frankfurter pizza burger kebab french fries 
etc total 

along with the digits and rules for numbers. 
For the concrete syntax, a purchase is a sequence of 

names, each of which may be preceded by a number, 
ending with the symbol total: 

purchase = total lname purchase lnumber  name purchase 

name = 

fish I spare rib I frankfurter I pizza I burger I kebab I french 
fries l etc 

For example: 

pizza 2 french fries total 

after lexical validation as: 

pizza number french fries total 

is checked as: 

pizza number french fries total = > 
pizza number french fries purchase = > 

pizza number name purchase = > 

pizza purchase = > 

name purchase = > 

purchase 

The meaning of a purchase is its total cost. If there are 
no items then the final cost is 0: 
mpurchase [total] menu = 0. For a purchase starting 
with a named item, the item's price is found from the 
menu and added to the rest of the purchase: 

mpurchase [name purchase] menu = lookup [name] menu 
+ repurchase [purchase] menu 

If the named item is preceded by a number then its 
price is multiplied by the value of the number: 

mpurchase [number name purchase] menu = 
value [number] * lookup [name] menu + 
mpurchase [purchase] menu 

The look up function ' lookup' will be discussed below. 
For  example, the cost of pizza 2 french fries total is: 

mpurchase [pizza 2 french fries total] menu = > 

lookup [pizza] menu + mpurchase [2 french fries total] = > 
42 + value [2] * lookup [french fries] menu + 

mpurchase [total] menu = > 

42 + 2 * 30 + mpurchase [total] menu => 

4 2 + 2 * 3 0 + 0 = >  

102 

with a menu m e n u  corresponding to the example 
above. Here  it appears that the sequence of purchases 
is the program with the menu as data. The menu does 
not change and the way it is processed depends on the 
structure and hence the semantics of the purchases. 
However ,  this approach can also be used to specify the 
menu look up function. A menu is another language 
consisting of a sequence of comma separated item 
name and price pairs. The lexicon is the food name 
symbols, comma: , digits and number rules as above. 
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For the concrete syntax, a menu is either a single 
name/price pair or a comma separated sequence of 
pairs: 

menu = name number ] name number, menu 

The meaning of a menu involves finding prices 
corresponding to food items. If the menu is a single pair 
then for a given name, if it matches that in the pair the 
price is the corresponding value: 

lookup [name] [name number] = value [number] 

Otherwise, the name is not in the menu so the price is 
0: 

lookup [name] [namel number 1] = 0 

If the menu is a sequence of pairs for a given name, if it 
matches that for the first pair then the price is the 
corresponding value: 

lookup [name] [name number, menu] = value [number] 

Otherwise, the rest of the menu is searched: 

lookup [name] [namel number I , menu] = lookup 
[name] [menu] 

For example, given the menu: 

fish 85, spare rib 50, frankfurter 55 

the cost of a frankfurter  is: 

lookup [frankfurter] [fish 85, spare rib 50, frankfurter 55] 
=> 

lookup [frankfurter] [spare rib 50, frankfurter 55] = > 
lookup [frankfurter] [frankfurter 55] = > 
value [55] = > 
55 

Now the data/program distinction is lost. How a name 
is processed depends on the structure and hence the 
semantics of the menu. For the interpreter ' lookup',  
the menu is the program and the food name is the data. 
This distinction is irrelevant; both program and data 
can be specified using langauge definition techniques. 
What is important is the interplay of interpreted symbol 
sequences in the specification as a whole. 

Implement ing  interpreters  from language  
def ini t ions  

Most implementations are written in programming 
languages. A standard structured imperative language 
like c 5 has little direct correspondence with the 
specification formalism so implementation requires the 
explicit construction of lexical, syntactic and semantic 
processors through translation and explication of the 
formal specification. The extended imperative lan- 

guage ICON 6 provides structured pattern recognition 
which simplifies the construction of the lexical and 
syntactic stages but which still does not correspond 
closely to the specification formalism. The language 
a C E  7 had a control structure which was similar to 
simplified ICON pattern matching with semantic 
actions nested within structure recognition. BCL was 
used to implement a variety of systems 8 but is no longer 
extant. Proposals have also been made to extend 
imperative languages like ALGOL609 and ALGOL6810 
with parsing and symbol sequence structure representa- 
tion. 

Functional languages like S T A N D A R D  ME II and 
M I R A N D A  12 correspond closely to semantic formalisms. 
They may be used as the basis of language definition 
oriented prototypes but have no direct equivalents to 
the syntactic formalism. The logic programming 
l a n g u a g e  PROLOG 13 provides context-free grammar 
rules as syntactic sugaring for underlying pattern 
recognition. PROLOG has been used to prototype VDM 
specifications 14. 

Software tools designed for language implementation 
may also be used to construct interpreters from 
specifications. The most common are compiler con- 
struction tools like YACC 15 which combine a lexical or 
syntactic notation with actions in a standard imperative 
language. These again require translation from the 
specification semantics unless a semantic action lan- 
guage closer to the formal semantic notation is used 16. 
Systems like SIS 17 and PSG 18 are based directly on 
formal language definitions. They are large and 
relatively slow. The strict adherence to formality 
maintains rigour but may decrease flexibility as a 
number of independent stages in different notations are 
required. 

The OBJ 19 algebraic specification technique uses a 
functional notation for equations in specifications. 
These correspond to the semantic formalism in 
language definitions. OBJ specifications may be 
executed as prototypes on OBJ implementations but 
there is no direct equivalent to the syntactic formalism 
in language definitions. 

Prototypes  with NAVEL interpreters  

NAVEL 20 is a weekly-typed applicative order functional 
language with integrated grammar rules. It was 
developed as an experimental interpreter-interpreter 
language to investigate syntax/semantics linkage in 
language implementations. NAVEL is implemented in c 
within an interactive environment which provides 
elementary imperative I/O and access to the hostess 
system files and editor (currently Unix). 

NAVEL is less rigorous than formal semantic-based 
systems but it is also simpler as there are no distinct 
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notations for the lexical, syntactic and semantic stages 
of a definition. For example, symbols are not listed 
separately but are implicit in the grammar rules for the 
concrete syntax. Concrete syntax and semantics are 
associated directly through concrete parse trees without 
abstract syntax. 

Consider once more the fast food take away. The 
concrete syntax for purchases may be written as NAVEL 
grammar rules: 

ok 
def name = ("fish" ] "spare rib" [ "frankfurter" [ "pizza" [ 

"burger" [ "kebab" t "french fries" }; 
ok 
def purchase = { "total" ] name purchase I number name 

purchase }; 

These rules are used to parse strings to construct list 
representations of parse trees. The rule for 'name' 
contains a sequence of optional symbols represented as 
strings. If 'name'  is applied like a function to a string 
argument starting with one of these options the 
argument will be split at the match point and a list with 
the option in the head and the rest of the argument in 
the tail is returned: 

ok 
name "kebab 2 french fries"; 
("kebab":):" 2 french fries" 

The rule for 'purchase' has options which use 'name' 
and the predefined 'number '  rule which matches digit 
sequences. When 'purchase' is successfully applied to a 
string then the substrings matched by the named rules 
within an option are tagged with the rule's names: 

ok 
purchase "pizza total"; 
([name "pizza":]:" total":):( ) 

The rule for 'purchase' also uses itself to recognize item 
sequences: 

ok 
purchase "fish 2 frankfurter 3 french fries total"; 
([name "fish":]: 
[purchase [number "2"]: 

[name "frankfurter":]: 
[purchase [number "3"]: 

[name" french fries":]: 
[purchase "total":]:]:]:):() 

Subtrees are extracted from parse trees using the 
selector ~ and the rule name tags. For example: 

ok 
def p = hd (purchase "fish 2 frankfurter 3 french fries 

total"); 

sets 'p' to the tree from the previous example. The first 
'name'  is selected by: 

ok 
pAname 
"fish": 

The rest of the purchase is selected by: 

ok 
pApurchase; 
[purchase [number "2"]: 

[name "frankfurter":]: 
[purchase [number "3"]: 

[name "french fries":]: 
[purchase "total":]:]:]: 

The second 'name' is selected by: 

ok 
pApurchaseAname; 
"frankfurter": 

and so on. The semantic functions match the parse tree 
list representations to identify rules which might have 
built the trees: 

ok 
def mpurchase purchase menu = 

rule purchase of 
{"total"} - >  0, 
{name purchase} - >  (lookup purchaseAname menu) + 

(mpurchase purchase~purchase 
menu)' 

{number name purchase) ->  (value purchaseAnumher) * 
(lookup purchase~name 
menu) + 
(mpurchase 
purchase~purchase menu), 

0; 

There is no semantic rule for a number corresponding 
directly to the function 'value' in section three because 
the system rule 'number '  is used to match numbers and 
produce digit strings. Instead, an analogous function is 
used to convert a digit string into its value: 

ok 
def value numb = 

let convert v n = 
if n= '" '  
then v 
else convert 10*v+(hd n) - '0 '  (tl n) 

in convert 0 numb; 

The value of each digit is found by substracting the 
code for '0' from its code. For example: 

value "987" = > 
convert 0 "987" = > 
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convert 10"0 + ' 9 ' - ' 0 '  "87" = > 
convert 9 "87" = >  
convert 10"9+ '8 ' - '0 '  "7" = >  
convert 98 "7" = >  
convert 10"98+ '7 ' - ' 0  ..... = >  
convert 987 .... = > 
987 

The  menu  is implemented  in the same way as a 
purchase:  

ok 
def menu = {name number ","  menu ]name number}; 
ok 
def lookup name menu = 

rule menu of 
{name number ","  menu} - >  if name=menu-name 

then value menu-number  
else lookup name 
menu-menu 

{name number} - >  if name=menu-name 
then value menu-number  
else 0, 

0; 

These  funct ions are sown together  to build an 
interpreter .  This parses the menu  and the purchase 
before  evaluat ing the purchase:  

ok 
def REGISTER MENU PURCHASE = 

let mtree:rest = menu MENU 
in 

if mtree = ()]rest  < >  0 
then "mistake in menu": rest 
else 

let ptree:rest = purchase PURCHASE 
in 

if ptree = 0 I rest < >  0 
then "mistake in purchase":rest 
else mpurchase ptree mtree; 

A cash register with a specific menu  is built by partial 
application:  

ok 
def MENU = "fish 85, 

spare rib 50, 
frankfurter 55, 
pizza 42, 
burger 48, 
kebab 45, 
french fries 30"; 

ok 
def T A K E A W A Y  = REGISTER MENU; 

This may  now be used to total purchases:  

ok 
T A K E A W A Y  "fish 2 french fries total"; 
145 
ok 
T A K E A W A Y  "3 kebab 3 french-frys total"; 
"mistake in purchase":"3 kebab 3 french-frys total" 

Interactive prototype 

The model  above processes a whole purchase as a 
comple te  symbol sequence.  A more  realistic model  
would  p rompt  for and input the individual subpur-  
chases one by one,  checking each and printing out  the 
cor responding  subtotal.  The NAVEL program may  be 
modif ied to use imperat ive I /O for interactive pro- 
to type testing. 

First of  all, each item must  be input and checked:  

ok 
def get_item prompt = 

let p = write prompt 
in 

let itree:rest = {name I number name I "total"} readln 
in 

ifitree = 0 ]rest < >  0 
then get_item prompt 
else itree; 

Here  the p rompt  is output  by the system function 
'wri te ' ,  a subpurchase  is input as a one line string by the 
system function ' readln '  and parsed to check that it is 
valid. If  it is not  then another  purchase is reques ted  
recursively. Otherwise the tree is re turned.  Next ,  the 
running total must  be output  and reset or  the 
subpurchase  value must  be found f rom the menu ,  
output  and included in the running total: 

ok 
def process_item prompt total menu = 

let itree = get_item prompt 
in 

rule itree of 
{"total"} - >  let t = writeln total 

in process_item prompt 0 menu, 
{name} - >  let sub_t = writeln (lookup itree-name 

menu) 
in process_item prompt total+sub_t menu, 

{number name} - >  let sub_t = 
writeln ((value itree-number)* 

(lookup itree-name menu)) 
in process_item prompt total+sub_t 
menu, 

0; 
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Here, the system function 'writeln' is used to send its 
argument's value to the screen and to return that value 
for possible subsequent use. Finally, the whole menu 
must be checked before input commences: 

ok 
def REGISTER MENU = 

let mtree:rest = menu MENU 
in 

ifmtree = ()lrest <> 0 
then "mistake in menu":rest 
else process_item">" 0 mtree; 

For example: 

ok 
REGISTER MENU; 
> 2 french fries 
60 
> 3 fish 
255 
> total 
315 

This interactive prototype simplifies testing but is less 
close to the initial specification. Language-style defini- 
tions with pure functional notations are not well-suited 
to specifying interactive systems as they lack any 
concept of time. The effective use of imperative I/O in 
a functional framework depends on knowledge of the 
system's function evaluation strategy. Thus, the evalua- 
tion independence of the original functional specifica- 
tion is lost. 

Conclusions 

NAVEL is less rigorous than the language definition 
formalism and translation is required from the formal- 
ism to NAVEL. An implementation of the specification 
language would avoid these drawbacks. This would 
require an interface which was able to manipulate and 
interpret different typefaces to avoid the complications 
and inflexibility inherent in the representation of 
different notations in a unitary typeface. However, 
NAVEL'S integration of syntax rules in a functional 
framework eases the construction of interpreter-based 
prototypes from language definition style specifica- 
tions. 
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