
systems

Interpreter prototypes from
language definition style

specifications
by GREG MICHAELSON

Abstract: Language definition techniques may be applied to
the specification of a wide range of problems. Language
implementation techniques may then be used to construct
interpreter prototypes. The use of an interpreter-interpreter
language for the implementation of interpreter prototypes
circumvents some of the disadvantages of contemporary
programming languages and software tools.

Keywords: prototyping, programming languages, interpreters.

A prototype 1 forms a bridge between a specifica-
tion and an implementation. It enables a static
specification to be animated to illuminate its

dynamic implications. It also helps clarify how abstract
constructs might be finally realized in the implementa-
tion without making any concrete commitments to
implementation details.

A prototype should reflect the functionality of the
specification but this may be compromized by differ-
ences between the specification and prototyping
formalisms. Prototyping may require the construction
of explicit representations for some or all of the
specification constructs and it may be difficult to
maintain the functional correspondence between them.
In particular, in developing the prototype, changes may
be made which are not reflected fully in specification
changes through carelessness or lack of time. Thus,
prototyping may cease to be specification directed and
the prototype may drift from the specification. The
continuity from specification to implementation
through prototyping may be lost and if a solution is
finally implemented then the specification and the

Department of Computer Science, Heriot-Watt University, 79
Grassmarket, Edinburgh EH1 2H J, UK

prototype may constitute incompatible implementation
standards.

It is also easy to underestimate the effort involved in
prototyping, particularly if very different specification
and prototyping formalisms are used. Once a prototype
works it may be tempting to adopt it as an intermediate
or production implementation without further develop-
ment. Thus, inappropriate or inefficient prototype
representations for specification constructs, which were
chosen to ease prototyping or for experimentation,
become ossified.

The problems may be circumvented if appropriate
tools are available to simplify the construction of
prototypes from specifications. If the tool corresponds
closely to the specification formalism then prototyping
is simplified because specification constructs have
direct prototype representations.

This paper presents an approach to specification
based on language definition formalisms. The use of
the Not a Very Exciting Language (NAVEL) interpreter-
interpreter language to implement interpreter pro-
totypes for language definition style specifications is
then discussed.

Interpreters and interpretation

Interpreters are usually associated with language
implementation but may be applied to a wide range of
problems. If language definition techniques are used
for problem specification then an interpreter may be
used for solution implementation.

A language is defined formally 2 by specifying the
symbols, the smallest meaningful linguistic units, the
syntax, the well-formed symbol sequences, and the
semantics which are what the well-formed symbol
sequences mean. Symbols are specified as lists of
literals or as finite state rules over literals. Syntax is
specified through context-free grammar rules over

vol 30 no 1 january/february 1 9 8 8 0950-5849/88/010023-0953.00 © 1988 Butterworth & Co (Publishers) Ltd. 23

symbols. The semantics associate a function with each
syntax construct. It is often useful to distinguish
concrete syntax, the syntax of representation, from
abstract syntax, the syntax of structure, which is used to
associate syntax and semantics with structurally irrele-
vant details discarded from the concrete syntax. In the
examples here, abstract syntax will not be used as the
concrete syntax is simple.

A language definition may be used to implement a
language processor for programs, specific symbol
sequences, through three conceptual stages:

• lexical analysis - recognizing symbols from a
concrete representation of a program, often charac-
ter sequences,

• syntax analysis - recognizing well-formed symbol
sequences and constructing a structural represent-
ation,

• interpretation - carrying out semantic actions
corresponding to the structural representation.

Compilation is a special case of interpretation where
the semantic actions generate a symbol sequence in
another language corresponding to the structural
representation. A language definition may be used to
compile into the semantic action language by treating
each action as a text generation macro rather than an
executable function.

General purpose approaches based on formal lan-
guage definition techniques include the VDM specifica-
tion language 3. The use of a language definition
formalism directly as a programming language 4 has also
been proposed.

A n e x a m p l e o f def in ing data as a l anguage

Consider finding the sum of a list of numbers. Here, the
data might consist of a sequence of numbers separated
by commas. The basic symbols are numbers and
commas. Numbers are made up of digits. Thus, the
lexicon might be specified in the first instance by simply
listing the characters that will be used:

0 1 2 3 4 5 6 7 8 9 ,

A number symbol consists of a sequence of one or more
digits and might be specified as:

d i g i t = O] 1 1 2 1 3 1 4 1 5 1 6 L 7 1 8 1 9
number = digit I number digit

Numbers and digits have been defined by rules. On the
left is the rule name in italics. On the right is a sequence
of options separated by 'l's. Each option is a basic
character, or the name of a rule which has a basic
character option or a basic character followed by a rule
name. This form of rule is known as a 'regular
expression'.

A sequence of characters is checked for lexical
validity and to identify symbols by trying to match rule
options. Successful matches are replaced with the
corresponding rules name. For example, to check the
validity of a character sequence which is supposed to be
a number:

987 = >
digit 87 = >
number 87 = >
number digit 7 = >

number 7 = >

number digit = >

number

The lexicon is used as the basis of the concrete syntax
which describes well-formed symbol sequences. For
example, a number sequence consists of a single
number or a number followed by a comma followed by
more numbers which are in turn a sequence:

sequence = number I number , sequence

Here again a rule has been used to define the structure
of a sequence. For concrete syntax, a more powerful
form of rule is used where options may consist of
arbitrary sequences of rule names and symbols. These
are known as 'context free' rules. The concrete syntax
rules are used to check that lexically valid symbol
sequences are well-formed and to identify their
structures. For example, assuming that the texical
check has validated:

4 2 , 3 1 , 2 0

a s :

number , number , number

then the concrete syntax rules might be applied as:

number , number , number =>

n u m b e r , number , sequence = >

n u m b e r , sequence = >

sequence

The meaning of well-formed symbol sequences is
defined using a pure functional notation. This lacks any
concept of time ordering in evaluation and gives
specifications substantial implementation independ-
ence.

At simplest, function definitions have a left-hand
side which names the function and formal parameters,
and a right-hand side consisting of an expression which
is to be evaluated. For example, the squaring function
is:

square x = x * x

and the sum of squares function is:

sum_squares x y -- square x + square y

24 information and software technology

A function may have a number of cases cor responding
to different formal pa ramete r values. For example, the
' power ' funct ion is:

power x 0 = 1
power x n = x * power x (n - 1)

Here there are cases for a zero exponent and a
non-zero exponent . These cases are equivalent to the
use of an explicit condit ional expression:

power x n = if n = 0 then 1 else x * power x (n - 1)

For example:

power 2 3 = >
2" power22 = >
2 * 2 * p o w e r 2 l = >
2" 2" 2" power20 = >
2 " 2 " 2 " 1 = >
8

Note that the functions are not typed explicitly. While
this simplifies presenta t ion and implementa t ion it also
decreases security and rigour.

This style of definition is ex tended to allow pat tern
matching on syntactic constructs and the selection of
subconstructs . Syntactic construct formal parameters
are bracke ted with [and]. Subconstructs may then be
refer red to in the funct ion expression. W h e n the
funct ion is applied to a symbol sequence, if the symbol
cor responds to the construct then the references to
subconstructs will select the appropr ia te subsequences.

In general , the structure of the semantic functions
cor responds to the structure of the syntax rules. For a
rule consisting of a number of options, the funct ion will
have a number of cases with one for each opt ion. For a
recursive rule, the semantic function will be recursive.
Funct ions may be required for individual meaningful
symbols. If a symbol is defined by a lexical rule then its
lexical s tructure may be relevant.

Here , for example, the values of individual numbers
will be needed to process a c o m m a separa ted number
sequence. First of all, the values of individual digits are
specified as a sequence of cases:

value [0] = 0
value [11 = 1
elc
value [9] = 9

So far, the definit ion has one case for each digit. W h e n
the funct ion is applied to an actual pa ramete r consisting
of a single digit symbol , each case is tried in turn until
there is a match and then the cor responding value is
re turned. A sequence of digits is defined recursively as
a number fol lowed by a digit. Thus, its value is found by

mult iplying the value of the number by 10 and adding in
the value of the digit.

value [number digit] = 10 * value [number] + value [digit]

Here , if a symbol sequence matches the construct :
number digit then the subsequencies cor responding to
the number and digit are selected for fur ther evalua-
tion. For example, the value of:

987
is:
value [987] = >
10 * value [98] + value [7] = >
10 * (10 * value [9] + value [8]) + 7 = >
10" (10" 9 + 8) + 7 = >
10 * 98 + 7 = >
987

Now, for a whole sequence, if there is only one number
in the sequence then the total is that number ' s value:

sum [number] = value [number]

Otherwise, the value of the first number is added to the
sum of the rest of the sequence:

sum [number, sequence] = value [number] +
sum [sequence]

For example, the meaning of:

9,8,7

is:

sum [9,8,7] = >
value [9] + sum [8,7] = >
9 + value [8] + sum [7] = >
9 + 8 + value [7] = >
9 + 8 + 7 = >
24

P r o g r a m a n d d a t a

It is usual to distinguish an active p rogram f rom the
passive data it processes. Thus, a sequence of data
items has no inherent meaning and any sequence may
have different interpretat ions within the same program.
For example, the c o m m a separa ted number sequence
above might not only mean:

find the sum

but also:

count the non-zero numbers

with a different semantic function:

count [number] = if value [number] < > 0 then 1 else 0
count [number, sequence] = if value [number] < > 0 then 1
+ count [sequence] else count [sequetice]

vol 30 no 1 january/february 1988 25

For example, to count the non-zero numbers in:

3 , 0 , 6 , 9

involves:

count [3,0,6,9] =>
1 + count [0,6,9] = >
1 + count [6,9] =>
1 + 1 + count [9] = >
1 + 1 + 1 = >
3

This ability to give multiple meanings to the same
syntactic constructs suggests that the data itself contains
no indication as to its meaning. An alternative view is
that a data sequence processed in different ways
corresponds to several different languages within a
program. For example, in the comma separated
number sequence, the comma is an 'add' or a 'test and
count ' operator in different languages which, by
coincidence, have the same syntax. To illustrate this
further, consider a fast-food takeaway which offers a
variety of deep-fried food. A manual system might be
based on a menu consisting of a list of food items and
prices, for example:

fish 85,
spare rib 50,
frankfurter 55,
pizza 42,
burger 48,
kebab 45,
french fries 30

and a cash register which totals prices entered on
numeric keys to produce a bill. When a customer
orders food, for example, T w o p i z za s , one burger and

three f r e n c h fr ies please, the operatives use the menu
(or their memories of it) to key prices corresponding to
food items into the cash register to find the total bill.
An automated cash register might hold the menu in its
memory. The operatives would then push keys
corresponding to food items and the register would
total the corresponding prices to print out the final
amount. A food item might be preceded by a number
for multiple purchases of the same item. The sequence
of food item and numeric keys corresponding to a
purchase is a simple language with statements like:

2 pizza burger 3 french fries total

The lexicon consists of symbols for cash register keys:

fish spare rib frankfurter pizza burger kebab french fries
etc total

along with the digits and rules for numbers.
For the concrete syntax, a purchase is a sequence of

names, each of which may be preceded by a number,
ending with the symbol total:

purchase = total lname purchase lnumber name purchase

name =

fish I spare rib I frankfurter I pizza I burger I kebab I french
fries l etc

For example:

pizza 2 french fries total

after lexical validation as:

pizza number french fries total

is checked as:

pizza number french fries total = >
pizza number french fries purchase = >

pizza number name purchase = >

pizza purchase = >

name purchase = >

purchase

The meaning of a purchase is its total cost. If there are
no items then the final cost is 0:
mpurchase [total] menu = 0. For a purchase starting
with a named item, the item's price is found from the
menu and added to the rest of the purchase:

mpurchase [name purchase] menu = lookup [name] menu
+ repurchase [purchase] menu

If the named item is preceded by a number then its
price is multiplied by the value of the number:

mpurchase [number name purchase] menu =
value [number] * lookup [name] menu +
mpurchase [purchase] menu

The look up function ' lookup' will be discussed below.
For example, the cost of pizza 2 french fries total is:

mpurchase [pizza 2 french fries total] menu = >

lookup [pizza] menu + mpurchase [2 french fries total] = >
42 + value [2] * lookup [french fries] menu +

mpurchase [total] menu = >

42 + 2 * 30 + mpurchase [total] menu =>

4 2 + 2 * 3 0 + 0 = >

102

with a menu m e n u corresponding to the example
above. Here it appears that the sequence of purchases
is the program with the menu as data. The menu does
not change and the way it is processed depends on the
structure and hence the semantics of the purchases.
However , this approach can also be used to specify the
menu look up function. A menu is another language
consisting of a sequence of comma separated item
name and price pairs. The lexicon is the food name
symbols, comma: , digits and number rules as above.

26 information and software technology

systems

For the concrete syntax, a menu is either a single
name/price pair or a comma separated sequence of
pairs:

menu = name number] name number, menu

The meaning of a menu involves finding prices
corresponding to food items. If the menu is a single pair
then for a given name, if it matches that in the pair the
price is the corresponding value:

lookup [name] [name number] = value [number]

Otherwise, the name is not in the menu so the price is
0:

lookup [name] [namel number 1] = 0

If the menu is a sequence of pairs for a given name, if it
matches that for the first pair then the price is the
corresponding value:

lookup [name] [name number, menu] = value [number]

Otherwise, the rest of the menu is searched:

lookup [name] [namel number I , menu] = lookup
[name] [menu]

For example, given the menu:

fish 85, spare rib 50, frankfurter 55

the cost of a frankfurter is:

lookup [frankfurter] [fish 85, spare rib 50, frankfurter 55]
=>

lookup [frankfurter] [spare rib 50, frankfurter 55] = >
lookup [frankfurter] [frankfurter 55] = >
value [55] = >
55

Now the data/program distinction is lost. How a name
is processed depends on the structure and hence the
semantics of the menu. For the interpreter ' lookup',
the menu is the program and the food name is the data.
This distinction is irrelevant; both program and data
can be specified using langauge definition techniques.
What is important is the interplay of interpreted symbol
sequences in the specification as a whole.

Implement ing interpreters from language
def ini t ions

Most implementations are written in programming
languages. A standard structured imperative language
like c 5 has little direct correspondence with the
specification formalism so implementation requires the
explicit construction of lexical, syntactic and semantic
processors through translation and explication of the
formal specification. The extended imperative lan-

guage ICON 6 provides structured pattern recognition
which simplifies the construction of the lexical and
syntactic stages but which still does not correspond
closely to the specification formalism. The language
a C E 7 had a control structure which was similar to
simplified ICON pattern matching with semantic
actions nested within structure recognition. BCL was
used to implement a variety of systems 8 but is no longer
extant. Proposals have also been made to extend
imperative languages like ALGOL609 and ALGOL6810
with parsing and symbol sequence structure representa-
tion.

Functional languages like S T A N D A R D ME II and
M I R A N D A 12 correspond closely to semantic formalisms.
They may be used as the basis of language definition
oriented prototypes but have no direct equivalents to
the syntactic formalism. The logic programming
l a n g u a g e PROLOG 13 provides context-free grammar
rules as syntactic sugaring for underlying pattern
recognition. PROLOG has been used to prototype VDM
specifications 14.

Software tools designed for language implementation
may also be used to construct interpreters from
specifications. The most common are compiler con-
struction tools like YACC 15 which combine a lexical or
syntactic notation with actions in a standard imperative
language. These again require translation from the
specification semantics unless a semantic action lan-
guage closer to the formal semantic notation is used 16.
Systems like SIS 17 and PSG 18 are based directly on
formal language definitions. They are large and
relatively slow. The strict adherence to formality
maintains rigour but may decrease flexibility as a
number of independent stages in different notations are
required.

The OBJ 19 algebraic specification technique uses a
functional notation for equations in specifications.
These correspond to the semantic formalism in
language definitions. OBJ specifications may be
executed as prototypes on OBJ implementations but
there is no direct equivalent to the syntactic formalism
in language definitions.

Prototypes with NAVEL interpreters

NAVEL 20 is a weekly-typed applicative order functional
language with integrated grammar rules. It was
developed as an experimental interpreter-interpreter
language to investigate syntax/semantics linkage in
language implementations. NAVEL is implemented in c
within an interactive environment which provides
elementary imperative I/O and access to the hostess
system files and editor (currently Unix).

NAVEL is less rigorous than formal semantic-based
systems but it is also simpler as there are no distinct

vol 3(1 no 1 january/february 1988 27

notations for the lexical, syntactic and semantic stages
of a definition. For example, symbols are not listed
separately but are implicit in the grammar rules for the
concrete syntax. Concrete syntax and semantics are
associated directly through concrete parse trees without
abstract syntax.

Consider once more the fast food take away. The
concrete syntax for purchases may be written as NAVEL
grammar rules:

ok
def name = ("fish"] "spare rib" ["frankfurter" ["pizza" [

"burger" ["kebab" t "french fries" };
ok
def purchase = { "total"] name purchase I number name

purchase };

These rules are used to parse strings to construct list
representations of parse trees. The rule for 'name'
contains a sequence of optional symbols represented as
strings. If 'name' is applied like a function to a string
argument starting with one of these options the
argument will be split at the match point and a list with
the option in the head and the rest of the argument in
the tail is returned:

ok
name "kebab 2 french fries";
("kebab":):" 2 french fries"

The rule for 'purchase' has options which use 'name'
and the predefined 'number ' rule which matches digit
sequences. When 'purchase' is successfully applied to a
string then the substrings matched by the named rules
within an option are tagged with the rule's names:

ok
purchase "pizza total";
([name "pizza":]:" total":):()

The rule for 'purchase' also uses itself to recognize item
sequences:

ok
purchase "fish 2 frankfurter 3 french fries total";
([name "fish":]:
[purchase [number "2"]:

[name "frankfurter":]:
[purchase [number "3"]:

[name" french fries":]:
[purchase "total":]:]:]:):()

Subtrees are extracted from parse trees using the
selector ~ and the rule name tags. For example:

ok
def p = hd (purchase "fish 2 frankfurter 3 french fries

total");

sets 'p' to the tree from the previous example. The first
'name' is selected by:

ok
pAname
"fish":

The rest of the purchase is selected by:

ok
pApurchase;
[purchase [number "2"]:

[name "frankfurter":]:
[purchase [number "3"]:

[name "french fries":]:
[purchase "total":]:]:]:

The second 'name' is selected by:

ok
pApurchaseAname;
"frankfurter":

and so on. The semantic functions match the parse tree
list representations to identify rules which might have
built the trees:

ok
def mpurchase purchase menu =

rule purchase of
{"total"} - > 0,
{name purchase} - > (lookup purchaseAname menu) +

(mpurchase purchase~purchase
menu)'

{number name purchase) -> (value purchaseAnumher) *
(lookup purchase~name
menu) +
(mpurchase
purchase~purchase menu),

0;

There is no semantic rule for a number corresponding
directly to the function 'value' in section three because
the system rule 'number ' is used to match numbers and
produce digit strings. Instead, an analogous function is
used to convert a digit string into its value:

ok
def value numb =

let convert v n =
if n= '" '
then v
else convert 10*v+(hd n) - '0 ' (tl n)

in convert 0 numb;

The value of each digit is found by substracting the
code for '0' from its code. For example:

value "987" = >
convert 0 "987" = >

28 information and software technology

systems

convert 10"0 + ' 9 ' - ' 0 ' "87" = >
convert 9 "87" = >
convert 10"9+ '8 ' - '0 ' "7" = >
convert 98 "7" = >
convert 10"98+ '7 ' - ' 0 = >
convert 987 = >
987

The menu is implemented in the same way as a
purchase:

ok
def menu = {name number "," menu]name number};
ok
def lookup name menu =

rule menu of
{name number "," menu} - > if name=menu-name

then value menu-number
else lookup name
menu-menu

{name number} - > if name=menu-name
then value menu-number
else 0,

0;

These funct ions are sown together to build an
interpreter . This parses the menu and the purchase
before evaluat ing the purchase:

ok
def REGISTER MENU PURCHASE =

let mtree:rest = menu MENU
in

if mtree = ()]rest < > 0
then "mistake in menu": rest
else

let ptree:rest = purchase PURCHASE
in

if ptree = 0 I rest < > 0
then "mistake in purchase":rest
else mpurchase ptree mtree;

A cash register with a specific menu is built by partial
application:

ok
def MENU = "fish 85,

spare rib 50,
frankfurter 55,
pizza 42,
burger 48,
kebab 45,
french fries 30";

ok
def T A K E A W A Y = REGISTER MENU;

This may now be used to total purchases:

ok
T A K E A W A Y "fish 2 french fries total";
145
ok
T A K E A W A Y "3 kebab 3 french-frys total";
"mistake in purchase":"3 kebab 3 french-frys total"

Interactive prototype

The model above processes a whole purchase as a
comple te symbol sequence. A more realistic model
would p rompt for and input the individual subpur-
chases one by one, checking each and printing out the
cor responding subtotal. The NAVEL program may be
modif ied to use imperat ive I /O for interactive pro-
to type testing.

First of all, each item must be input and checked:

ok
def get_item prompt =

let p = write prompt
in

let itree:rest = {name I number name I "total"} readln
in

ifitree = 0]rest < > 0
then get_item prompt
else itree;

Here the p rompt is output by the system function
'wri te ' , a subpurchase is input as a one line string by the
system function ' readln ' and parsed to check that it is
valid. If it is not then another purchase is reques ted
recursively. Otherwise the tree is re turned. Next , the
running total must be output and reset or the
subpurchase value must be found f rom the menu ,
output and included in the running total:

ok
def process_item prompt total menu =

let itree = get_item prompt
in

rule itree of
{"total"} - > let t = writeln total

in process_item prompt 0 menu,
{name} - > let sub_t = writeln (lookup itree-name

menu)
in process_item prompt total+sub_t menu,

{number name} - > let sub_t =
writeln ((value itree-number)*

(lookup itree-name menu))
in process_item prompt total+sub_t
menu,

0;

vol 30 no 1 january/february 1988 29

Here, the system function 'writeln' is used to send its
argument's value to the screen and to return that value
for possible subsequent use. Finally, the whole menu
must be checked before input commences:

ok
def REGISTER MENU =

let mtree:rest = menu MENU
in

ifmtree = ()lrest <> 0
then "mistake in menu":rest
else process_item">" 0 mtree;

For example:

ok
REGISTER MENU;
> 2 french fries
60
> 3 fish
255
> total
315

This interactive prototype simplifies testing but is less
close to the initial specification. Language-style defini-
tions with pure functional notations are not well-suited
to specifying interactive systems as they lack any
concept of time. The effective use of imperative I/O in
a functional framework depends on knowledge of the
system's function evaluation strategy. Thus, the evalua-
tion independence of the original functional specifica-
tion is lost.

Conclusions

NAVEL is less rigorous than the language definition
formalism and translation is required from the formal-
ism to NAVEL. An implementation of the specification
language would avoid these drawbacks. This would
require an interface which was able to manipulate and
interpret different typefaces to avoid the complications
and inflexibility inherent in the representation of
different notations in a unitary typeface. However,
NAVEL'S integration of syntax rules in a functional
framework eases the construction of interpreter-based
prototypes from language definition style specifica-
tions.

Acknowledgements

This work was started in the Department of Computing
Science, University of Glasgow, UK and continues in
the Department of Computer Science, Heriot-Watt
University, UK. The author wishes to thank Paul

Chisholm for applying the red pen to previous drafts of
this paper.

References

1 Ince, D C and Hekmatpour, S 'Software prototyping
- progress and prospects' Inf. & Software Technol.
Vol 29 No 1 (January/February 1987) pp 8-14

2 Schmidt, D A Denotational Semantics: a Methodolo-
gy for Language Development Allyn & Bacon, Inc,
USA (1986)

3 Jones, C B Systematic Software Development Using
VDM Prentice-Hall (1986)

4 Sehmidt, D A 'Denotational semantics as a prog-
ramming language' CSR-100-82, Dept of Computer
Science, University of Edinburgh, UK (January
1982)

5 Kernighan, B W and Ritchie, D M The c
Programming Language Prentice-Hall (1978)

6 Griswold, R E and Griswold, M T The tCON
Programming Language Prentice-Hall (1983)

7 Hendry, D F and Mohan, B 'BCL1 Manual' ICSP
110, Institute of Computer Science, University of
London, UK (June 1969)

8 Housden, R J W The definition and implementation
of LSIX in BCL' Compter J. Vol 12 No 1 (February
1969) pp 15-23

9 Maurer, H and Stucky, W 'Ein Vorschlag fuer die
Verwendung syntaxorientierter Methoden in
hoeheren Programmiersprachen' Angewandte In-
formatik Vol 5 (1976) pp 189-195

10 Linnemann, V 'Context-free grammars and deriva-
tion trees as programming tools' CSRG-117,
Computer Systems Research Group, University of
Toronto, Canada (September 1980)

11 Harper, R, MacQueen, D and Milner, R 'STANDARD
ML' ECS-LFCS-86-2, Laboratory for Foundations
of Computer Science, Department of Computer
Science, University of Edinburgh, UK (March
1986)

12 Turner, D 'MIRANDA: a non-strict functional lan-
guage with polymorphic types' Functional Program-
ming Languages and Computer Architecture (Lec-
ture Notes in Computer Science) Vol 201 Springer-
Verlag, New York, USA (1985)

13 Cloeksin, W F and Mellish, C S Programming in
PROLOG Springer-Verlag (1981)

14 Cottam, I discussed in 'Workshop on software tools
for formal methods' FACS FACTS Vol 8 No 2
(February 1986)

15 Johnson, S 'YACC: Yet Another Compiler Compil-
er' No 32, Computing Science Technical Report,
Bell Laboratories, Murray Hill, NJ 07974, USA
(1975)

30 information and software technology

16 Sethi, R 'Control flow aspects of semantic-directed
compiling' A CM Trans. Programming Languages
and Syst. Vol 5 No 4 (1983) pp 554-595

17 Mosses, P 'SIS - Semantics Implementation System:
reference manual and user-guide' MAIMI MD-30,
Computer Science Dept, Aarhus University, De-
nmark (August 1979)

18 Bahike, R and Snelting, G 'The PSG - Programming

System Generator' ACM SIGPLAN Notices Vol 20
No 7 (July 1985) pp 28-33

19 Duee, D A and Fielding, E V C 'Formal specification
- a comparison of two techniques' Computer J. Vol
30 No 4 (August 1987) pp 316-327

20 Miehaelson, G 'Interpreters from functions and
grammers' Computer Languages Vol 11 No 2 (June
1986) pp 85-104 []

vo130 no 1 january/february 1988 31

