
Text generation from grammars
G Michaelson

The generation of text from grammar rules using the Navel
interpreter-interpreter language is discussed•

programming, functional languages, rules, semantics

I have been intrigued by computer-generated text since
reading Cybernetic serendipity ~, which contains a wide
range of material on computers and art from 1968. My
first program, written in IMP under EMAS on an Eng-
lish Electric 4/75, produced rather laconic and somewhat
'60s prose from a set of rules developed with Paul Cock-
shott. Subsequently, I rewrote the program in Basic and
Jack Campin at Glasgow University changed the rules to
generate Vogon poetry in the spirit of the Hitch hiker's
guide to the galaxy 2.

The program is based on a numeric representation of
simple rules. Each rule is made up of references to one or
more word classes. Each word class is made up of one or
more strings. The rules and word classes are held in
arrays and the generation program works through
random rules, randomly selecting from word classes. The
main disadvantages of this approach are the lack of
options on the right-hand sides of rules and the need to
hand translate rules into the numeric representation•

More recently, I have been developing the NaveP
interpreter-interpreter system, which is based on a func-
tional language with integrated context-free g rammar
rules. Navel is used to build interpreters from formal
definitions written in a denotational semantics 4 style.

In Navel, rules are objects in their own right. They
may be passed to and returned from functions and may
be generalized through abstraction over nonterminal and
terminal symbols. Rules may be used for text generation
as well as parsing, for example, to generate test sequences
from rules.

Here the generation of paper titles, rhyming gibberish,
and limericks using Navel is considered. Note that Navel
runs in an interactive environment and prompts for an
expression or command with:

ok

PAPER TITLES
Consider the problem of generating titles for learned
papers on computing. Titles might be described in Back-
us-Naur Form (BNF). Given a list of topics:

Department of Computer Science, Heriot-Watt University, 79 Grass-
market, Edinburgh EH 1 2H J, UK.
Paper submitted: 28 January 1990.
Revised version received: 19 March 1990.

<topic> ::= COBOL d VDM I hash tables p data bases I
networks I LISP I gotos

then plausible titles might have the form:

<conjunction> ::= and I or I with I through
<title> ::= <topic> <conjunction> <topic>

From these titles could be generated, for example:

networks through hash tables
VDM with COBOL

Starting with a < title > , generate a random < topic >
followed by a random <con junc t ion> followed by
another random < top ic> .

Navel rules are, effectively, BNF right-hand sides,
enclosed in {}s. Nonterminals are variables and terminals
are strings. Thus the above example is:

ok
deftopic = {"COBOL" "VDM" ! "hash tables" I "data bases"

"networks" I "LISP" I "gotos"};
ok
defconjunction = {"and" l "or" l "with" l "through"};
ok
def title = {topic " " conjunction " " topic};

Here:

def < name > = < expression > ;

defines the global variable < n a m e > and associates nt
with the value of < expression > . Subsequent references
to < name > will return the associated value• Thus the
reference to conjunction in title will pick up the rule:

{"and" "or" I "with" I "through"}

In Navel, the operator ? generates random numbers,
selects random elements from lists, and generates
random strings from rules. For example:

ok
? title;
"data bases with gotos"

The system command ' repeat ' will repeat endlessly the
evaluation of an expression, for example:

ok
repeat ? title;
"COBOL or VDM"
"LISP through networks"
"gotos and hash tables"

566 0950-5849/90/0805664)3 © 1990 Butterworth-Heinemann Ltd information and software technology

PENGUIN SPEAK

Steve Bell 's e p o n y m o u s penguin 5 says "Yibble!" in per-
iods o f stress. "Yibble" might be abs t r ac t ed over and
sequences o f words genera ted tha t end in a doub le conso-
nan t and "le". F i r s t o f all, "y ibble" m a y be genera l ized by
abs t r ac t ion over the ini t ial consonan t :

ok
defconsonant = {"b"l"c" "d" "f"l"g" "h" "j" "k"

"1" I "m" ["n" I "p" I "r" I "s" I "t" I "v" [
"w" I "y" I "z"};

ok
def penguin = Iconsonant "ibble"};
ok
repeat ? penguin;
"fibble"
"mibble"
"libble"

Next abs t rac t over the vowel:

ok
defvowel = {"a" l"e" "i" "o" l "u" l ;
ok
def penguin = ',consonant vowel "bble"};
ok
repeat ? penguin:
"yabble"
"dobble"
"jibble"

Next abs t rac t over the doub le consonan t :

ok
def double = ~,"b d f" "g rn" %" "p"
ok
def penguin d = lconsonant vowel d d "le"};

"t" "z"};

Here ' pengu in ' is a funct ion which, when app l ied to a
letter, re turns a rule with that let ter doubled :

ok
? (penguin "b"):
"babble"

N o w genera te a r a n d o m ' doub le ' for the p a r a m e t e r 'd ' :

ok
repeat ? (penguin (2 double));
"gipple"
"juddle"
"pebble"

Al terna t ive ly , cons t ruc t a rule to genera te rhyming pairs
o f penguin words. Fi rs t o f all, abs t rac t over the vowel
and the doub le consonan t :

ok
def penguin v d = Iconsonant v d d "le"};

Here "penguin" is a funct ion which, given a vowel for
p a r a m e t e r 'v" and a doub le c o n s o n a n t for p a r a m e t e r d,
will re turn a rule in which only the first consonan t may
change.

N o w cons t ruc t ano the r funct ion tha t bui lds a rule for
a pa i r o f rhyming words:

ok
def penguins v d = {(penguin v d) " " (penguin v d)};

Here bo th words have the same vowel and doub le conso-
nan t but r a n d o m init ial consonan ts , which may, o f
course, be the same. F o r example:

ok
repeat ? (penguins (? vowel) (? double));
"yabble nabble"
"goggle toggle"
"beddle heddle"

LIMERICKS

Cons ide r the genera t ion o f l imericks using the g rammar :

<adjectivel > :: : young tall l short large small
<person> ::= girl boy I lass I lad
< n o u n > ::= pig i wig fig cat mat l hat dog log! cog
<place> ::= beach: park pub
<pronoun> ::= she he
<verb> ::= sat on ~ ran to slept by ate up
<possessive> ::= her his
<adjective2> ::= silly foolish cunning: clever
<limerick> ::= there was a <adjectivel > <person> with a <noun>

who went to the < place > with a < noun >
<pronoun> <verb> <possessive> <noun>
and <verb> <possessive> <noun>
did that <adjective2> <adjectivel> <person> with a

< flOUfl >

This g r a m m a r may be used to generate ' l imer icks ' like:

there was a young lass with a pig
who went to the pub with a cog
he sat on his fig
and ate up her log
did that clever large lad with a cat

A number of p rob lems are immedia te ly apparen t :

• the < noun > s in lines 1, 2, and 5 should rhyme
• the < adjec t ive l > < person > and < noun > in lines l

and 5 should be the same
• the < noun > s in lines 3 and 4 should rhyme
• the genders o f the < p e r s o n > , < p r o n o u n > and

< possessive > should match

Consider , first o f all, the p rob lem of ensur ing rhyming
< noun > s at the ends o f lines. Break the < noun > s up
into rhyming classes:

ok
defig = {"pig" i "wig" I "fig"};
ok
defog = {"dog" I "log" I "cog"};
ok
defa t = l"cat" I "mat" I "hat"l;
ok
def nouns = ig:og:at::

Here ' nouns ' is a list of noun classes jo ined toge ther with
the conca tena t ion opera to r . N o w select an a rb i t r a ry
noun class f rom nouns, for example:

ok
? nouns;
~"dog" I "log" i "cog"}

Cons ide r next the p rob lem of ensur ing gender matches.
G r o u p gendered people in a list with the a p p r o p r i a t e
p ronouns :

vol 32 no 8 october 1990 567

ok
def female = {"lass"p"girl"}:"she":"her";
ok
def male = {"lad" d "lad"}:"he":"his";
ok
defpeople = female:male:;

and then select an arbi t rary gender class:

ok
? people;
{"lass" l "girl"}:" she" :"her"

Next define the remain ing word classes:

ok
defadjectivel = {"young" F"tall" "short" I"large" I"small"};
ok
defplace = {"beach" "park" "pub"};
ok
def verb = {"sat on" "ran to" "slept by" I "ate up"};
ok
defadjective2 = {"silly" "foolish" I"cunning" "clever"};

Now, to generate a limerick, select a < n o u n > class for
lines 1, 2, and 5, select a < p e r s o n > class, const ruct a
rule that ensures that lines 1 and 5 have the same
< adjectivel > , < p e r s o n > , and < n o u n > , and then
generate the limerick:

ok
def limerick n =
let nounsl = ? nouns
and nouns2 = ? nouns
and persons:pronoun:possessive = ? people
and adjl = ? adjectivel
and person = ? persons
and nounl = ? nounsl
and phrase = {adjl " " person " with a " noun l}
in
? {"there was a " phrase " \n"

"who went to the " place " with a " nounsl " \n"
pronoun " " verb " " possessive " " nouns2 " \n"
"and " verb " " possessive nouns2 " \n"
"did that " adjective 2 phrase};

Here the construct:

let < name> = <expression >
and < name > = <expression>

in < expression >

introduces local < name > s with associated values• The

< name > s may be referred to in any other < expres-
sion > in the construct , enabl ing local mutua l recursion.

The construct:

and persons:pronoun:possessive = ? people

is used to match the gender list re turned from 'people '
and sets 'persons ' to the rule for gendered people, 'pro-
n o u n ' to the gendered p ronoun , and 'possessive' to the
gendered possessive p ronoun .

Note that:

\ n

is used as an explicit newline symbol in the final rule:
pretty pr in t ing a string conta in ing it generates the ' non-
pr in table ' ASCII newline sequence.

This funct ion will generate limericks that satisfy the
four criteria above:

ok
limerick();
"there was a large boy with a hat
who went to the beach with a cat
he sat on his pig
and ate up his wig
did that foolish large boy with a hat"

The const ruct ion of more varied word classes enables the
generat ion of even more and even less plausible limer-
icks.

P O S T S C R I P T

Navel is writ ten in C and runs under Unix. The system is
available at no charge from the author.

R E F E R E N C E S

l Reichardt, J Cybernetic serendipity Studio International
(1968)

2 Adams, D The hitch hiker's guide to the galaxy Pan (1979)
3 Miehaeison, G 'Interpreters from functions and grammars'

Comput. Lang. Vol 11 No 2 (1986) pp 85-104
4 Sehmidt, D Denotational semantics: a methodology for lan-

guage development Allyn & Bacon (1986)
5 Bell, S I f . . . chronicles Methuen (1983)

568 information and software technology

