
Information and Software Technology 1995 37 (10) 547-555

Implementing Prolog Definite Clause
Grammars with SLR(l) parsers on
the Relational Algebra Accelerator

Greg Michaelson
Depawent of Computing and Electrical Engineering, Heriot- Watt University, Riccation EH14 4AS, Scotland, UK
e-mail:greg@cee.hw.ac.uk

Definite Clause Grammars (DCGs) are a Prolog extension which are widely used to specify and
implement front ends to Prolog based systems. Effkient restricted DCG implementations may
be based on LR(K) parsing techniques. The use of the Relational Algebra Accelerator @AA),
a bit serial/word parallel logic co-processor, for fast access to LR parse tables brings substantial
performance improvements over software DCG implementations. The generation of SLR(l)
parsers from DCGs and their implementation using the RAA are discussed, and performance
figures are presented.

Keywords: Prolog, DCGs, SLR(l) parsing, Relational Algebra Accelerator

Declarative languages like Prolog are moving steadily from
research and teaching to industrial and commercial use
for system prototyping and development. Such languages
enable a high degree of correspondence between program
and data structure through case structured rule or function
definitions and pattern matching. This enables the relatively

quick construction of succinct programs.
Many Prolog implementations support the Definite Clause

Grammar (DCG) notation for defining context free
grammars. These are particularly useful for experimenting
with text based user interfaces as system actions may be
associated directly with different syntactic constructs.

As always, alas, there is a price to pay. Prolog is based
on backtracking as a fundamental program control mech-
anism. This is used to search data bases of facts and rules
so that a partial match may be undone in the light of
subsequent processing. The steps leading to that match may

then be retraced to try to find other better matches. Back-
tracking is computationally expensive as a record must be
kept of all partial match points so that they may potentially
be undone.

Prolog DCGs are a very general form of grammar rule
and depend on backtracking for their implementation, to
search all possible paths through a grammar when matching
a sentence. This can lead to appreciable delays in responses
to DCG based commands and to noticeable variations in
response times for apparently similar commands. However,
most text based interfaces do not require this generality
and the corresponding commands can, in principle, be

identified on a single pass through the grammar without
backtracking.

By restricting the form of DCGs, much faster implemen-

tations may be provided through non-backtracking automata
which can be generated automatically in Prolog from DCGs .
While such automata offer performance improvements over
backtracking based implementations, they still depend on
the underlying Prolog system. A second improvement may

be found by utilizing special hardware to assist the
searching of Prolog data bases to minimize backtracking.

The Relational Algebra Accelerator (RAA) is a co-

processor which can perform all the set theoretic and
relational operations. It can also be used in computing
decision tables, and to manipulate quadtree and octree
spatial data representations. Its main applications are in
support of main memory and deductive databases. In

particular, UNSW Prolog has been implemented using the
RAA to select suitable candidates for matches from very
large fact and rule databases.

This paper discusses the use of the RAA to support Prolog
SLR(l) parsing automata generated from DCGs. The next
sections consider DCGs and the RAA in more detail.
Subsequent sections present the generation of automata
from DCGs and consider the resultant performance when
implemented using the RAA.

Definite Clause Grammars and their implementation

Definite Clause Grammars are a means of defining and

0950-5849/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 547

Dejinite Clause Grammars: G Michaelson

utilizing extended context free grammars within Prolog,

developed by Warren and Pereira’. A DCG rule has the
form:

(non-terminal) --> (body)

where the body is a conjunction of terminals and non-
terminals. Such a rule may be read as:

to recognize the (non-terminal), recognize the (body).

DCG non-terminals are Prolog terms and terminals are lists
of Prolog terms. At simplest, non-terminals and terminals
are Prolog atoms. For example, the BNF for binary numbers:

(digit) ::= 011
(binary) :: = (digit) I (digit) (binary)

might be written as the DCG:

digit -) [0] .
digit -) [11.
binary -) digit, binary.
binary --) digit.

Note that in DCGs, unlike BNF, rules for the same non-
terminals are not amalgamated into a single composite right-
hand side with options.

In many implementations, DCGs are translated directly
into Prolog clauses which are then used to parse lists of
terminal symbols. Each DCG is converted to a parsing
clause with explicit parameters, which consumes an initial
terminal symbol list and returns a final terminal symbol list.
For example, the above DCG translates to:

digit(T1 ,T2) :- connects(T1 ,O,T2).
digit(T1 ,T2) :- connects(T1 ,l ,T2).
binary(T1 ,T3) :- digit(T1 ,T2), binary(T2,T3).
binary(T1 ,T2) :- digit(T1 ,T2).
connects([SIL] ,S,L).

The connects construct may be removed by moving
terminal symbols in the body into the clause head to take
advantage of unification. Thus, the digits clauses in the
above DCG may be rewritten as:

digit([OIT] ,T).
digit([1 IT] ,T).

DCG terminal and non-terminal symbols may also be

arbitrary terms, including nested structures. These may be
used to pass information between the rule non-terminal and

the rule body, typically for attribute transmission or to
build trees. For example, the above DCG might be extended
to build a tree representation of binary numbers:

digit(O) --> [0] .
digit(l) --> [1 I.
binary(numb(D,B)) --> digit(D), binary(B).
binary(D) -> digit(D).

After translation, defined parameters precede the generated
parameters in the clausal form. For example, the previous

DCG translates to:

digit(0, [OIT] ,T).
di$t(l , [1 IT] ,Tj.
binary(numb(D,B),Tl ,T3)) :- digit(D,Tl ,T2),

binary(B,T2,T3).

Reversing the rules makes no difference:

print -) [print], [‘-txt’] , file.
print --> [print], file.

binary(B,Tl ,T2) :- digit(D,Tl ,T2). Consider matching:

For example:

?- binary(T, [1 ,O,l] ,R).
T = numb(1 ,numb(O,l))
R= [I

DCGs may also contain semantic actions. These are arbitrary
Prolog terms within { }. For example, to calculate the value
of a binary number:

digit(O) --> [0] .
digit(l) --> [1 I.
binary(N1 ,N3) --) digit(D),

(N2 is 2*Nl +D},
binary(N2,N3).

binary(N1 ,N2) --) digit(D),
{N2 is 2*Nl+ D}.

For translation, the semantic actions are placed at the
corresponding positions in the clause body. For example,
the previous DCG translates to:

digit(O, [OITI ,T).
digit(l) [1 IT] ,T).
binary(N1 ,N3,Tl ,T3) :- digit(D,Tl ,T2),

N2 is 2*Nl+ D,
binary(N2,N3,T2,T3).

binary(N1 ,N2,Tl ,T2) :- digit(D,Tl ,T2),
N2 is 2*Nl +D.

For example:

?- binary(O,B, [1 ,O,l] ,R).

B=5
R= [1

DCGs are more powerful than unrestricted context free
grammars but this power is unnecessary for many applic-
ations. Unrestricted context free grammars are computa-

tionally expensive to implement as the equivalent parsing
automata are non-deterministic. DCG implementations based
on translation to Prolog clauses utilize the full underlying
backtracking mechanism which will be sub-optimal for

many grammars.
For example, consider the following contrived printer

command:

print --> [print], [‘-txt’] , file.
print --> [print], file.

where a (file) may not start with a -. The intention is that
the (file) is implicitly PostScript unless -txt is present in
which case it is raw text. Now, consider parsing:

print document

where document is some file. Parsing involves:

match: print - succeeds
match: -txt - fails
backtrack
match: print - succeeds
match: (file) - succeeds

548 Information and Sofrware Technology 199.5 Volume 37 Number 10

Dejinite Clause Grammars: G Michaelson

print -txt document

Now:

match: print - succeeds
match: (file) - fails
backtrack
match: print - succeeds
match: -txt - succeeds
match: (file) - succeeds

However, if the parser were able to look ahead after

making a match to decide what to do next, then there would
be no need to backtrack. For the last example, the two
options for the rule differ after the common first print has

been matched:

match: print - succeeds
lookahead: -txt - choose 2nd option
match: -txt - succeeds
match: (file) - succeeds

There are extremely useful sub-classes of context free
grammars, for example the LL(K) and LR(K)* grammars

for which more optimal parsing automata may be con-
structed. Many compiler generators produce LR parsers,
for example YACC3. LR parsers have also been used as
the basis of more efficient DCG implementations. For
example, AID4 is an SLR(l) parser generator for DCGs.
Morley’ has used constraints in SLR(l) parser generation
from DCGs to restrict non-determinism.

However, parser performance is still ultimately bound by
the performance of the underlying Prolog system. Here we

discuss an SLR(1) parser generator for DCGs which utilizes
the Relational Algebra Accelerator (RAA) co-processor to
obtain substantial performance improvements.

The Relational Algebra Accelerator

The Relational Algebra Accelerator6 is a bit serial/word

parallel co-processor. It may be thought of as a CPU with
256 registers each of which is 4K bits long. The RAA
enables logical operations to be carried out between
registers with a performance of 100 million bit operations
per second. In typical applications, a large data set is
encoded and held in the memory. The data set is then
accessed and manipulated through bit operations performed
on all records in parallel.

The RAA has been used as a pseudo-associative memory
for fast clause retrieval from Prolog clause databases’.

Superimposed coding is used to encode database clauses
and queries. Coded clauses are held in the RAA memory
and a query code is used to construct a sequence of logical
operations which are performed on the clause codes. The
result is a bit sequence which identifies those database
clauses which may satisfy the query. Thus, the effect is of

pre-unification filtering: with very large databases this
reduces unification substantially.

For example, consider the Prolog facts:

fruit(apple,granny_smith).
fruit(apple,golden_delicious).
computer(apple,macintosh).

With some suitable superimposed coding these might be

represented by the following 8 bit codes:

fruit(apple,granny_smith). = 11111100
fruit(apple,golden_delicious). = 11110101
computer(apple,macintosh). = 11010011

These might be loaded into 8 RAA registers as:

register
76543210

I 1 1 1 1 1 1 1 1 1 1 1 I 0 IO 1 fruit(apple,granny_smith).
1 1 1 1 1 1 1 1 IO I 1 1 0 1 1 1 fruit(apple,golden_delicious).
I 1 I 1 IO I 1 IO 10 (1 1 1 I computer(apple,macintosh).

The query:

fruit(apple,X).

might then be coded as:

fruit(apple,X). = 10110100

Thus, we wish to find all facts with:

register 7 = 1
register 5 = 1
register 4 = 1
register 2 = 1

which is equivalent to:

register 7 AND register 5 AND register 4 AND register 2

Carrying out these operations on the RAA registers gives:

I 1 I fruit(apple,granny_smith).
I 1 I fruit(apple,golden_delicious).
IO) computer(apple,macintosh).

so the facts:

fruit(apple,granny_smith).
fruit(apple,golden_delicious).

are good candidates for solutions to the query.
Note that superimposed coding, as with any coding tech-

nique based on a reduction in discriminatory information,
may result in a number of distinct facts having the same
code. This will in turn result in false drops from query
processing. None the less, with large Prolog databases, this
approach results in substantial savings over ordinary unific-
ation. The RAA has been integrated’ with UNSW Prolog’

using superimposed coding. On a SUN 31160 this runs at
100 kLIPS compared with 2 kLIPS without the RAA.

The RAA is well suited to LR parser implementations.
LR parsers are based on state machines where the next
action is determined by the current parser state and current
input symbols. Such parsers operate in linear time. State
machines are highly amenable to table driven implemen-
tations and the tables are usually sparse. Thus, parsers for
restricted DCGs may be implemented on the RAA as state
transition tables, represented as Prolog clauses, driven by
a simple Prolog program.

LR parsing

LR parsing2 is based on Left to right parsing with a

Information and Software Technology 1995 Volume 37 Number IO 549

Dejnite Clause Grammars: G Michaelson

Rightmost derivation. It is an efficient, non-backtracking
method which can be used to recognize a wide range of

useful grammars including almost all context free program-
ming language constructs.

Art LR parser is a pushdown automata. It works from
left to right along a sequence of input symbols changing
state as it recognizes grammatical constructs corresponding
to grammar rules. Its components are the input, which
is the sequence of symbols to be parsed, the stack,
which holds consumed symbols from the input and corres-

ponding state information, and the parsing table, which
indicates the parsing action for each possible state and input
symbol.

Parsing tables have entries of the form:

table((state),(symbol)) = (action)

For a given input symbol, (symbol), in a given state,
(state), the parsing table is consulted, the appropriate
action, (action), is carried out and a new state is entered

ready to process the new current input symbol. Parsing
actions depend on how the current input symbol affects the
recognition of the current grammatical construct.

A shift action, shift((state)), takes place if the parser is
in the middle of recognizing some construct and the current
input symbol, though valid, does not complete that con-

struct. Then, the current state and symbol are pushed onto
the stack, the next input symbol becomes the current symbol
and a new state, (state > , is entered to deal with it.

A goto action, goto((state >), takes place if the parser is
in the middle of recognizing some construct and a sub-

construct has been recognized which, though valid, does
not complete that construct. Then, a new state, (state), is
entered to deal with the current input symbol.

A reduce action, reduce((rhs)), takes place if the current
input symbol indicates that the parser has successfully
recognized a construct, say corresponding to the rule:

I --> rl, r2, . . . rN

The stack will already contain the symbols for the right-
hand side of the construct, rl , r2, . . . rN, and the corres-
ponding states from preceding shift actions. These symbols
and states are removed from the stack uncovering the state

preceding the start of the recognition of the construct, say
(old state). The non-terminal for the construct, I, is
pushed onto the stack to indicate that the construct has been

recognized and a new state:

table((old state),I) = goto((new state))

is entered to deal with the current input symbol.
An accept action, accept, takes place when the sentence

construct has been recognized and the parse has succeeded.
An error action, error, takes place if the current input
symbol is inappropriate in the context of the current state
of recognition of the current construct. Error recovery may
then be invoked or the parse may be abandoned.

Simple LR parsers with 1 place lookahead, SLR(l), are
a subset of the more general LR(l) parsers which are very
easy to implement.

For example, the binary number DCG:

digit --) [01.
digit --) [11.
binary --) digit.
binary --) digit, binary.

has the SLR(1) parse table:

table(O, [01) = shift(3)
table(O, [1 I) = shift(4)
table(O,digit) = goto(2)
table(O,binary) = goto(1)

table(1, [$1) = accept

table(2, [01) = shift(3)
table(2, [1 I) = shift(4)
table(2, [$]) = reduce(binary --> digit)
table(2,digit) = goto(2)
table(2,binary) = goto(5)

table(3, [0]) = reduce(digit --> [0])
table(3, [I]) = reduce(digit --> [0])
table(3, [$]) = reduce(digit --> [Ol)

table(4, [0]) = reduce(digit --) [l I)
table(4, [1 I) = reduce(digit --> [l I)
table(4[$]) = reduce(digit --) [l I)

table@, [$I) = reduce(binary --> digit, binary)

For example, to parse [1 ,O] starting in state 0:

input = [l,O] stack = [0]
table(O, [1 I) = shift(4)

input = [O] stack = [O,[l I,41
table(4, [01) = reduce(digit --> [1 I)

input = [O] stack = [O,digit]
table(0,digit) = goto(2)

input = [0] stack = [O,digit,2]
table(2, [O]) = shift(3)

input = [] stack = [O,digit,2,[0],3]
table(3, [$]) = reduce(digit --> [Ol)

input = [] stack = [O,digit,2,digit]
table(2,digit) = goto(2)

input = [] stack = [O,digit,2,digit,2]
table(2, [$I) = reduce(binary --> digit)

input = [] stack = [O,digit,2,binary]
table(2,binary) = goto(5)

input = [] stack = [O,digit,2,binary,5]
table@, [$]) = reduce(binary --> digit, binary)

input = [] stack = [O,binary]
table(O,binary) = goto(1)

input = [] stack = [O,binary,ll
table(1, [$I) = accept

Implementing SLR(l) parsers on the RAA

Parser generation

An SLR(1) parser generator, based on the algorithms from
Aho, Sethi and Ulhnan2, was written in UNSW Prolog.
Prolog proved to be an excellent implementation language
for prototyping: the initial parser generator was completed
very quickly. However, the use of Prolog with the above
algorithms resulted in highly recursive clauses operating on
lists which execute much more slowly than the equivalent
iterative algorithms operating on arrays in a compiled
language. They are also slow because of UNSW’s sub-
optimal clause indexing mechanism. In addition, they

550 Information and Sofrware Technology I995 Volume 37 Number 10

Dejinite Clause Grammars: G Michaelson

quickly consume all available stack space on relatively small

DCGs as UNSW Prolog has no tail recursion optimization.
Subsequently, the clauses were converted to MU-Prolog”

and then to SICStus Prolog”. The latter has an efficient
clause indexing mechanism and tail recursion optimization,
and enabled the construction of parse tables from larger
DCGs.

Adapting parse tables for the RAA

To begin with, tables similar in format to those above were

produced based on simple shift/reduce/got0 entries. Table
entries were of the form:

t((state),(symbol),(action))

where:

(action) :: = shift((state)) I
goto((state)) I
reduce((number),(symbol))

where (number) is the number of right-hand symbols to
be reduced. The end of input symbol was rstop instead of

$.
For the binary number grammar, the table entries for

state 0 are:

t(0, [01 ,shift(3)).
t(0, [11 ,shift(4)).
t(O,digit,goto(e)).
t(O,binary,goto(l)).

The whole table is shown in Appendix A.
Parsing was driven by the explicit parse clause shown in

Appendix B. This first attempt enabled table generation to
be checked but was very slow, partly because of explicit
stack popping for reduce actions. It was also hard to adapt
to parameterized DCGs.

Next, tables were generated in a recursive form with

stock popping for reduce actions effected through explicit
unification. Table entries took the form:

t([(state) I(rest of stack)] ,
[(symbol > I(rest of symbols) I,
(result),(left over symbols)) :-

t(< params for next action))

For example, the state 0 table entries for the binary
numbers DCG are:

t(lO I SYI, [101 I VI ,TH,H) :- t(l3,lOl ,O I SYI ,T,TR,R).
t(lO I SYl,ll11 I lTl,TH,H) :- t(l4,111,0 I SYl,T,TH,H).
goto(O,digit,2).
goto(O,binary,l).

The full table is in Appendix C. This gave a substantial
improvement in speed and enabled the introduction of para-

meterized DCGs. However, when parse tables were loaded
into the RAA, the performance was rather disappointing.

First of all, the RAAKJNSW Prolog interface involves
the explicit reconstruction and initiation of a clause body
after clause selection. This was overcome by putting the
clause body into the clause head. The potential infinite
recursive regress was avoided by abstraction at the recursion
point and the use of unification to pick up the abstraction.
The recursive call is then invoked explicitly:

rt(A,B,C,D) :- t(A,B,C,D,E), E. Vo pick up RHS at E &
% invoke E - E will
% call rt

exp(E,T,R) :- rt([O] ,E,T,R).

For example, the state 0 table entries for the binary number
grammar are:

t([O 1 SYI 3 [101 I Tl ,TH,H,fl(l% 101 ,O I SYI
1

,T,TR,R)).
t(10 SYI 3 [[11 I Tl ,TH,V(14, [11 ,O 1 SYI ,T,TH,R)).
goto(O,digit,2).
goto(O,binary,l).

The full table is in Appendix D.

The second source of poor performance was because the
general purpose superimposed coding used normally to

load Prolog clauses into the RAA was not appropriate to
this application. There was insufficient variation in the
codes for table entries and so there were several false drops

on each RAA access. Charles Chung observed that entries
are distinguished by state and symbol and he introduced a
field encoding to represent entries. This set 1 bit in 64 bit

fields for both states and symbols giving a unique match on
each RAA access. These changes brought significant gains
in performance, which are presented below.

Problems with table generation from DCGs

Table generation involves, in part, the use of symbol
sequences from DCG productions, for example to identify
non-terminal symbols and production right-hand sides.
This led to difficulties with the movement of Prolog

variables from parameterized rules into inappropriate
scopes. These may arise from user mistakes where symbols
introduced for lexical analysis and symbols in the grammar

contain the same variable names. This may result in in-
appropriate sharing, for example, between a symbol on the
stack and a symbol in the input sequence.

However, there may also be computer generated clashes
if the symbol starting a production is also the symbol
following a production. Consider for example the rule for

a line of BASIC:

line --> [number(N)], command.
lines --) line.
lines --) line, lines.

Now, note from the second lines production that a line
may be followed by lines and hence by another line. Thus
[number(N)] which starts a line is also a follower for line

so there is a reduce action to recognize:

[number(N)], command

having encountered the symbol [number (N)] . Thus there
is a table entry with [number (N)] both on the stack and
in the input:

t([, [number(N)] ,_,line,NS I NSY] ,
[[number(N)]]__I,. .) :- . . .

Alas, the Ns should be distinct. This was solved by renaming
variables in symbols before table entry construction to
ensure distinct names.

Another source of difficulty was the treatment of semantic
actions in DCGs. These present no problems when they

Information and Sojbvare Technology 1995 Volume 37 Number IO 551

Dejnite Clause Grammars: G Michaelson

occur at the end of productions. However, it is not clear
how to handle actions within productions. The construction
of tables separates the entries for recognition of sub-items
from the entry for the recognition of the item. Thus, it is
hard to decide whether to carry out the semantic action for
a sub-item on the shift action for that sub-item or on the
reduce action for the enclosing item. If the semantic action
is carried out on the shift action, when the sub-item is
recognized, then it cannot communicate information to the
rest of the item by implicit variable sharing. If the semantic
actions for sub-items are carried out together on the reduce
action, at end of the item, then they cannot affect sub-item

recognition.
In parsing it is usual to restrict semantic actions to the end

of productions so the same restriction to DCGs has been
adopted. Thus, it is necessary to introduce explicit sub-

productions for intermediate actions, and intermediate
actions will not interact other than via the Prolog database
through the explicit use of assert/retract.

Testing and timing

LR parser tests

The parser generator was first tested with a DCG for
restricted [sic] English, from Clocksin and Mellish”
(after Pereira and Warren)‘. This had 15 productions and
the corresponding parser had 55 actions.

More substantial tests were then made with a DCG for an
SQL subset, based on a YACC grammar in Heerjee and
Sadeghi13. This had 27 productions and the corresponding

parser had 162 actions. The SQL parse table had 40 states
with 18 terminal symbols. Times in seconds for test
sentences of symbols, with and without the RAA, were:

symbols actions RAA time no RAA time
10 25 .26 diff .50 diff
15 38 .39 .13 .72 .22
20 51 .51 .12 .94 .22
25 64 .65 .14 1.17 .23
30 77 .77 .12 1.40 .23
35 90 .90 .13 1.61 .21
40 103 1.04 .14 1.84 .23
45 116 1.13 .09 2.07 .23
50 129 1.27 .14 2.29 .22
55 142 1.40 .13 2.51 .22

Note that the difference in times (dim as the number of
symbols in successive test sentences increases is almost
constant, corresponding to the anticipated linear correlation
between sentence length and parse time.

The average time per action was:

RAA .Ol
no RAA .018

Thus, parsing with the RAA was around 1.8 times as fast.
Assuming that the same amount of time was spent pro-

cessing each successfully matched clause with and without
the RAA, and that the RAA time for clause matching is
insignificant, then the difference in times as a proportion of
the time without the RAA:

(no RAA - RAA) I no RAA

gives the proportion of time spent in unsuccessful clause
matching without the RAA. Here it was around 45 % of the
time.

A DCG for a BASIC subset was also tested. This had 43
productions and the corresponding parser had 449 actions.
The BASIC parse table had 81 states with 32 symbols.
Times in seconds with and without the RAA were:

symbols actions RAA no RAA
58 153 1.67 7.37
95 258 2.87 12.34

146 401 4.41 19.26
179 481 5.26 23.16

The average time per action was:

RAA .Ol 1
no RAA .048

Thus, parsing with the RAA was around 4.4 times as fast.
Using the above formula, without the RAA around 77%

of the time was spent in unsuccessful clause matching. The
SQL and BASIC tests suggest that worthwhile time savings
result from the use of the RAA. They also suggest that as
the size of the DCG and hence the size of the parse table

increase so do the gains from using the RAA. It would be
interesting to make the same comparisons with substantially
larger grammars but the parser generator implementation
did not permit this.

LR and direct DCG parsing

The BASIC DCG was also tested as a direct translation to
UNSW Prolog using SICStus Prolog as a translator. This
generated Prolog with explicit connects clauses as described
in the first section of the paper. On the same test set as

above, the times in seconds were:

symbols DCG RAA no RAA
58 1.07 1.67 7.37
95 6.78 2.87 12.34

146 7.80 4.41 19.26
179 49.44 5.26 23.16

These times illustrate the apparently erratic behaviour of
top down parsing. The first time is better than LR bottom
up with the RAA. The second and third times are better
than LR without the RAA and worse than LR with the
RAA. The last time is worse than LR both with and without

the RAA.
As discussed above, DCGs are normally translated directly

into Prolog clauses with one clause for each DCG
production. Parsing then involves the normal Prolog search

mechanism with full backtracking. This might be expected
to be faster than the LR technique as the latter is based on
an explicit interpretation mechanism sitting on top of the
underlying Prolog mechanism.

Furthermore, the DCG consists of a relatively small
number of clauses with a relatively large number of dis-
tinct principle functors and a relatively small number of
options for each functor. The LR approach is based on
a table which has more clauses than those for the equiv-
alent DCG. The table has one common principle functor
and a relatively large number of options. Thus, the clause

552 Information and Sofrware Technology 1995 Volume 37 Number 10

Definite Clause Grammars: G Michaelson

indexing mechanism will affect their relative speeds.
UNSW Prolog uses principal functor clause indexing and

then searches for appropriate options within clauses. Thus,

the short time taken to locate the unique table functor for
the LR approach must be offset against the far longer time
spent searching for the correct option corresponding to the

current state and symbol.
More recent Prologs, like NU, Quintus and SICStus, use

first argument indexing. With the LR approach this would
identify all the clauses for the appropriate state within the
table but still necessitate searching for the clause for the
current symbol. Thus, the timings for direct DCG parsing
and LR parsing without the RAA might be more similar
than with principal functor indexing. The use of the RAA

should still be superior, particularly when there are large
numbers of terminal symbols relative to the number of
productions, as it removes all option searching.

However, the direct DCG approach can also be far

slower, as the last test example above shows. LR parsing
is always in linear time, proportional to the number of
symbols in the sentence, and it involves no backtracking.
Direct DCG parsing without backtracking may be faster
than LR parsing but that depends on the sentence being

parsed. The order in which DCG productions are attempted
is fixed by the underlying Prolog search mechanism and so
backtracking will often occur where an optimal method like
LR will avoid it. Full DCGs are, of course, more powerful

than LR grammars and so expressive strength must be
offset against efficiency.

Future work

The present system is experimental: it does not analyse
grammars to ensure that they are SLR(l) and parse tables
are not factored to reduce entries.

A fundamental limitation to the investigation of this
approach to parsing is the small size of the DCG which can
be handled by the current Prolog system. This might be
overcome by building a C version which uses iteration on
arrays to build LR parse tables. This would enable the
testing of LR parser implementations on the RAA with
much larger DCGs. It would also be interesting to investigate

the use of LR parsing with a RAA interface to an optimized

Prolog like Quintus, SICStus or NU.
In the longer term, it might be appropriate to investigate

at the implementation of parse tables from the YACC

LR parser generator on the RAA. This would enable its
evaluation with a large body of existing software developed
for UNIX use. For Prolog work, DCGs might then be

translated to YACC grammars.

Acknowledgements

This work was carried out at the CSIRO Division of
Information Technology in Sydney, Australia. I would like

to thank Charles Chung for his help with the implementation
of LR parse tables on the RAA, in particular for his
development of a field encoding for table entries. I would
also like to thank Bob Colomb for his advice and support
throughout this project.

References

1 Pereira, F C N and Warren, D H D ‘Definite Clause Grammars for
language analysis-a survey of the formalism and a comparison with
augmented transition networks’ Artificial Infelligence Vol 13 (1980)
pp 231-278

2 Aho, A V, Sethi, R and Ullman, J D Compilers: principles, techniques
and tools Addison-Wesley (1977)

3 Johnson, S ‘YACC: yet another compiler compiler’ CSTR 32, Bell
Laboratories (1975)

4 Nilsson, U ‘AID: an alternative implementation of DCGs’ New
Generation Computing Vol 4 No 4 (1986) pp 383-399

5 Morley, D ‘Efficient parsing using constraints’ in Proc. 12th Australian
Computer Science Conference Vol 11 Australian Computer Science
Communications (1989) pp 37-47

6 Colomb, R M ‘Table searching using a content addressable memory’
Australian Computer J Vol 20 No 3 (August 1988) pp 105-l 12

7 Colomb, R M ‘Enhanced unification in Prolog through clause indexing’
Jour& of Logic Programming Vol 10 No 1 (1991) pp 23-44

8 Chung, C ‘Integration of Relational Algebra Accelerator with UNSW
Prolog’ TR-FEI88-04 CSIRO Division-of IT (February 1988)

9 Sammut, C UNSW Proloa Reference Manual Universitv of NSW
10 Naish, L MU-Prolog 3. lib Reference Manual Melbour&e University

(May 1984)
11 Carlsson, M and Widen, J ‘SICStus Prolog User’s Manual’ SICS

R88OV7B Swedish Institute of Computer Science (October 1988)
12 Clocksin, W F and Mellish, C S Programming in Prolog Springer-

Verlag (1987)
13 Herjee, K B and Sadeghi, R ‘Rapid implementation of SQL: a case

study using YACC & LEX’ If: and Soft. Technol. Vol30 No 4 (May
1988) pp 228-236

Appendix A
Direct encoding of parse table

t(0, [01 ,shift(3)).
t(0, [11 ,shift(4)).
t(O,digit,goto(2)).
t(0, binary,goto(1)).

t(1, [Mop] ,oh).

t(2, [Ol ,shift(3)).
t(2, [11 ,shift(4)).
t(2, [rstop] ,reduce(l ,binary)).
t(2,digit,goto(2)).

t(2,binary,goto(5)).

t(3, [0] ,reduce(l ,digit)).
t(3, [11 ,reduce(l ,digit)).
t(3, [rstopl ,reduce(l ,digit)).

t(4, [O] ,reduce(l ,digit)).
t(4, [11 ,reduce(l ,digit)).
t(4, [rstopl ,reduce(l ,digit)).

t(5, [rstopl ,reduce(2,binary)).

Information and Software Technology 1995 Volume 37 Number 10 553

Definite Clause Grammars: G Michaelson

Appendix B
Top level parser

exp(E,T,R) :- sr([O] ,E,T,R).

% sr((stack),(lexemes), (result>,(extras>).

sr([SISY],[H(Tl,TR,R):-
t(S,H,reduce(N,P)),
popN[S I SYl,[NS I NW),
t(NS,P,NNS),
sr([NNS,P,NS 1 NSY],[H IT],TR,R).

pop(N,[S,SY I Tl,R) :- Nl is N-l, pop(Nl,T,R).

sr([S 1 SY] , [H 1 T] ,TR,R) :-
t(S,H,shifW),
sr(W,H,S I SY] ,T,TR,R).

sr([S I__], [H I Tl ,ok,T) :- t(S,H,W

sr(_,E,fail,E).

% reduce action?
% pop RHS
010 find goto action
% push LHS & next
% state & try
O/o again

% shift action?
% push symbol H &
% enter state V

% success? check
% for halt state

% fail so return
O/o symbols
O/o at failure point

Appendix C
Parse table with reduce actions through unification

t([O I WI, [[Ol I Tl ,TR,W :- t([%[Ol ,O I SYI ,T,TRW.
t([O I SYl,[[ll I Tl,TR,W :- t([4,[11,0 I SYl,T,TRW.
goto(O,digit,2).
goto(O,binary,l).

t([1 ,binary I _I, [[rstop] I ,binary,T).

t(]2 I SYl,[LO1 1 Tl,TR,W :- t([3,[01,2 I SYl,T,TR,R).
t([2 I SYl,[ill I Tl,TR,R) :- t([4,[11,2 I SYl,T,TR,R).
t([2,digit,NS I NSY], [[rstop]] ,TR,R) :-

goto(NS,binary,NNS),
t([NNS,binary,NS I NSY I, [[rstwl 1 ,TRW.

goto(2,digit,2).
goto(2,binary,5).

t([3, LO1 AS I NW, 1 [Ol
goto(NS,digit,NNS),
t([NNS,digit,NS I NSY]

t([3,[Ol,NSI NSYl,[[ll 1
goto(NS,digit,NNS),
t([NNS,digit,NS I NSY] , [[11 (Tl ,TR,R).

t(P, [Ol ,NS I NW, t [rstopl 1 ,TW :-
goto(NS,digit,NNS),
t([NNS,digit,NS I NSY] , [[rstop]] ,TR,R).

t([%[ll,NS I NSYl,[[Ol ITl,TRR) :-
goto(NS,digit,NNS),
t([NNS,di

t([4,[1l,NS 7
it,NS I NSY] , [[Ol I T] ,TR,R).
NSYl,[[ll ITl,TRR) :-

goto(NS,digit,NNS),
t([NNS,digit,NS I NSY], [[l I 1 T] ,TR,R).

t([&[l],NSI NSY],[[rstop]],TR,R) :-
goto(NS,digit,NNS),
t([NNS,digit,NS I NSY] , [[rstop]] ,TR,R).

T] ,TR,R) :-

[101 I Tl ,TR,W.
T] ,TR,R) :-

t([5,binary,_,digit,,NS I NSY I, [[rstopl I ,TR,R) :-
goto(NS,binary,NNS),
t([NNS,binary,NS I NSY] , [[rstop]] ,TR,R).

t(_,E,fail,E).

exp(E,T,R) :- t([Ol ,E,T,R).

Appendix D
Parse table with explicit recursion

t([O 1 SYI v[LOI 1 Tl ,TR,R,rt([3, [Ol ,O I SYI ,T,TR,W).
t(t0 1 SYl,[[II 1 Tl,TMWt([4,[1l ,O I SYl,T,TWW.
goto(O,digit,2).
goto(O,binary,l).

t([1 ,binary I _I, [[rstop]] ,binary,T,true).

t(]2 1 SW, [[Ol I Tl ,TWt),rt([3, [01,2 I SW ,T,TWW.
t(]2 I SW, [ill I Tl ,TRR,rt([4, [l I,2 I SW ,T,TMW.

554 Information and Sojtware Technology 1995 Volume 37 Number 10

Dejinite Clause Grammars: G Michaelson

t([2,digit,NS 1 NSY] , [[rstop
(goto(NS,binary,NNS),
rt([NNS,binary,NS I NSY]

goto(2,digit,2).
goto(2,binary,5).

t(L3, LOI JS I NW, [LOI I T
(goto(NS,digit,NNF),

1 ,TRR

[[rstopl 1 ,TRR)).

,TR,R,

rt([NNS,digit,NS I NSYI, [[O] I T] ,TR,R)).
t([3,[Ol,NSINSYl,[[11 ITl,TR,R,

(goto(NS,digit,NNS),
rt([NNS,digit,NS I NSY] , [[I] I T] ,TR,R)).

t([3, WI AS I NW, [[rstopl 1 ,TR,R,
(goto(NS,digit,NNS),
rt([NNS,digit,NS I NSYI, [[rstop]] ,TR,R)).

Information and Sofrware Technology 1995 Volume 37 Number 10

t(i4, [I 1 ,NS I NSYI, [101 1 Tl ,TRR,
(goto(NS,digit,NNS),
rt([NNS,digit,NS I NSYI, [[O] I T] ,TR,R)).

t([4,[1l,NSINSYl,[[ll ITl,TR,R,
(goto(NS,digit,NNS),
rt([NNS,digit,NS I NSYI, [[l I I T] ,TR,R)).

t([4, [II AS I NW, [[rstopl 1 ,TR,R,
(goto(NS,digit,NNS),
rt([NNS,digit,NS I NSYI , [[rstop]] ,TR,R)).

t([5,binary,_,digit,NS I NSYI , [[rstop]] ,TR,R,
(goto(NS,binary,NNS),
rt([NNS,binary,NS 1 NSY], [[rstop] 1 ,TR,R)).

t(_,E,fail,E,true).

555

