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Declarative languages like Prolog are moving steadily from 
research and teaching to industrial and commercial use 
for system prototyping and development. Such languages 
enable a high degree of correspondence between program 
and data structure through case structured rule or function 
definitions and pattern matching. This enables the relatively 

quick construction of succinct programs. 
Many Prolog implementations support the Definite Clause 

Grammar (DCG) notation for defining context free 
grammars. These are particularly useful for experimenting 
with text based user interfaces as system actions may be 
associated directly with different syntactic constructs. 

As always, alas, there is a price to pay. Prolog is based 
on backtracking as a fundamental program control mech- 
anism. This is used to search data bases of facts and rules 
so that a partial match may be undone in the light of 
subsequent processing. The steps leading to that match may 

then be retraced to try to find other better matches. Back- 
tracking is computationally expensive as a record must be 
kept of all partial match points so that they may potentially 
be undone. 

Prolog DCGs are a very general form of grammar rule 
and depend on backtracking for their implementation, to 
search all possible paths through a grammar when matching 
a sentence. This can lead to appreciable delays in responses 
to DCG based commands and to noticeable variations in 
response times for apparently similar commands. However, 
most text based interfaces do not require this generality 
and the corresponding commands can, in principle, be 

identified on a single pass through the grammar without 
backtracking. 

By restricting the form of DCGs, much faster implemen- 

tations may be provided through non-backtracking automata 
which can be generated automatically in Prolog from DCGs . 
While such automata offer performance improvements over 
backtracking based implementations, they still depend on 
the underlying Prolog system. A second improvement may 

be found by utilizing special hardware to assist the 
searching of Prolog data bases to minimize backtracking. 

The Relational Algebra Accelerator (RAA) is a co- 

processor which can perform all the set theoretic and 
relational operations. It can also be used in computing 
decision tables, and to manipulate quadtree and octree 
spatial data representations. Its main applications are in 
support of main memory and deductive databases. In 

particular, UNSW Prolog has been implemented using the 
RAA to select suitable candidates for matches from very 
large fact and rule databases. 

This paper discusses the use of the RAA to support Prolog 
SLR(l) parsing automata generated from DCGs. The next 
sections consider DCGs and the RAA in more detail. 
Subsequent sections present the generation of automata 
from DCGs and consider the resultant performance when 
implemented using the RAA. 

Definite Clause Grammars and their implementation 

Definite Clause Grammars are a means of defining and 
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utilizing extended context free grammars within Prolog, 

developed by Warren and Pereira’. A DCG rule has the 
form: 

(non-terminal) --> (body) 

where the body is a conjunction of terminals and non- 
terminals. Such a rule may be read as: 

to recognize the (non-terminal), recognize the (body). 

DCG non-terminals are Prolog terms and terminals are lists 
of Prolog terms. At simplest, non-terminals and terminals 
are Prolog atoms. For example, the BNF for binary numbers: 

(digit) ::= 011 
(binary) :: = (digit) I (digit) (binary) 

might be written as the DCG: 

digit -) [0] . 
digit -) [ 11. 
binary -) digit, binary. 
binary --) digit. 

Note that in DCGs, unlike BNF, rules for the same non- 
terminals are not amalgamated into a single composite right- 
hand side with options. 

In many implementations, DCGs are translated directly 
into Prolog clauses which are then used to parse lists of 
terminal symbols. Each DCG is converted to a parsing 
clause with explicit parameters, which consumes an initial 
terminal symbol list and returns a final terminal symbol list. 
For example, the above DCG translates to: 

digit(T1 ,T2) :- connects(T1 ,O,T2). 
digit(T1 ,T2) :- connects(T1 ,l ,T2). 
binary(T1 ,T3) :- digit(T1 ,T2), binary(T2,T3). 
binary(T1 ,T2) :- digit(T1 ,T2). 
connects( [SIL] ,S,L). 

The connects construct may be removed by moving 
terminal symbols in the body into the clause head to take 
advantage of unification. Thus, the digits clauses in the 
above DCG may be rewritten as: 

digit( [OIT] ,T). 
digit( [ 1 IT] ,T). 

DCG terminal and non-terminal symbols may also be 

arbitrary terms, including nested structures. These may be 
used to pass information between the rule non-terminal and 

the rule body, typically for attribute transmission or to 
build trees. For example, the above DCG might be extended 
to build a tree representation of binary numbers: 

digit(O) --> [0] . 
digit(l) --> [ 1 I. 
binary(numb(D,B)) --> digit(D), binary(B). 
binary(D) -> digit(D). 

After translation, defined parameters precede the generated 
parameters in the clausal form. For example, the previous 

DCG translates to: 

digit(0, [OIT] ,T). 
di$t(l , [ 1 IT] ,Tj. 
binary(numb(D,B),Tl ,T3)) :- digit(D,Tl ,T2), 

binary(B,T2,T3). 

Reversing the rules makes no difference: 

print -) [print], [‘-txt’] , file. 
print --> [print], file. 

binary(B,Tl ,T2) :- digit(D,Tl ,T2). Consider matching: 

For example: 

?- binary(T, [ 1 ,O,l ] ,R). 
T = numb(1 ,numb(O,l)) 
R= [I 

DCGs may also contain semantic actions. These are arbitrary 
Prolog terms within { }. For example, to calculate the value 
of a binary number: 

digit(O) --> [0] . 
digit(l) --> [ 1 I. 
binary(N1 ,N3) --) digit(D), 

(N2 is 2*Nl +D}, 
binary(N2,N3). 

binary(N1 ,N2) --) digit(D), 
{N2 is 2*Nl+ D}. 

For translation, the semantic actions are placed at the 
corresponding positions in the clause body. For example, 
the previous DCG translates to: 

digit(O, [OITI ,T). 
digit(l) [ 1 IT] ,T). 
binary(N1 ,N3,Tl ,T3) :- digit(D,Tl ,T2), 

N2 is 2*Nl+ D, 
binary(N2,N3,T2,T3). 

binary(N1 ,N2,Tl ,T2) :- digit(D,Tl ,T2), 
N2 is 2*Nl +D. 

For example: 

?- binary(O,B, [ 1 ,O,l ] ,R). 

B=5 
R= [ 1 

DCGs are more powerful than unrestricted context free 
grammars but this power is unnecessary for many applic- 
ations. Unrestricted context free grammars are computa- 

tionally expensive to implement as the equivalent parsing 
automata are non-deterministic. DCG implementations based 
on translation to Prolog clauses utilize the full underlying 
backtracking mechanism which will be sub-optimal for 

many grammars. 
For example, consider the following contrived printer 

command: 

print --> [print], [ ‘-txt’] , file. 
print --> [print], file. 

where a (file) may not start with a -. The intention is that 
the (file) is implicitly PostScript unless -txt is present in 
which case it is raw text. Now, consider parsing: 

print document 

where document is some file. Parsing involves: 

match: print - succeeds 
match: -txt - fails 
backtrack 
match: print - succeeds 
match: (file) - succeeds 
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print -txt document 

Now: 

match: print - succeeds 
match: (file) - fails 
backtrack 
match: print - succeeds 
match: -txt - succeeds 
match: (file) - succeeds 

However, if the parser were able to look ahead after 

making a match to decide what to do next, then there would 
be no need to backtrack. For the last example, the two 
options for the rule differ after the common first print has 

been matched: 

match: print - succeeds 
lookahead: -txt - choose 2nd option 
match: -txt - succeeds 
match: (file) - succeeds 

There are extremely useful sub-classes of context free 
grammars, for example the LL(K) and LR(K)* grammars 

for which more optimal parsing automata may be con- 
structed. Many compiler generators produce LR parsers, 
for example YACC3. LR parsers have also been used as 
the basis of more efficient DCG implementations. For 
example, AID4 is an SLR(l) parser generator for DCGs. 
Morley’ has used constraints in SLR(l) parser generation 
from DCGs to restrict non-determinism. 

However, parser performance is still ultimately bound by 
the performance of the underlying Prolog system. Here we 

discuss an SLR( 1) parser generator for DCGs which utilizes 
the Relational Algebra Accelerator (RAA) co-processor to 
obtain substantial performance improvements. 

The Relational Algebra Accelerator 

The Relational Algebra Accelerator6 is a bit serial/word 

parallel co-processor. It may be thought of as a CPU with 
256 registers each of which is 4K bits long. The RAA 
enables logical operations to be carried out between 
registers with a performance of 100 million bit operations 
per second. In typical applications, a large data set is 
encoded and held in the memory. The data set is then 
accessed and manipulated through bit operations performed 
on all records in parallel. 

The RAA has been used as a pseudo-associative memory 
for fast clause retrieval from Prolog clause databases’. 

Superimposed coding is used to encode database clauses 
and queries. Coded clauses are held in the RAA memory 
and a query code is used to construct a sequence of logical 
operations which are performed on the clause codes. The 
result is a bit sequence which identifies those database 
clauses which may satisfy the query. Thus, the effect is of 

pre-unification filtering: with very large databases this 
reduces unification substantially. 

For example, consider the Prolog facts: 

fruit(apple,granny_smith). 
fruit(apple,golden_delicious). 
computer(apple,macintosh). 

With some suitable superimposed coding these might be 

represented by the following 8 bit codes: 

fruit(apple,granny_smith). = 11111100 
fruit(apple,golden_delicious). = 11110101 
computer(apple,macintosh). = 11010011 

These might be loaded into 8 RAA registers as: 

register 
76543210 

I 1 1 1 1 1 1 1 1 1 1 1 I 0 IO 1 fruit(apple,granny_smith). 
1 1 1 1 1 1 1 1 IO I 1 1 0 1 1 1 fruit(apple,golden_delicious). 
I 1 I 1 IO I 1 IO 10 ( 1 1 1 I computer(apple,macintosh). 

The query: 

fruit(apple,X). 

might then be coded as: 

fruit(apple,X). = 10110100 

Thus, we wish to find all facts with: 

register 7 = 1 
register 5 = 1 
register 4 = 1 
register 2 = 1 

which is equivalent to: 

register 7 AND register 5 AND register 4 AND register 2 

Carrying out these operations on the RAA registers gives: 

I 1 I fruit(apple,granny_smith). 
I 1 I fruit(apple,golden_delicious). 
IO ) computer(apple,macintosh). 

so the facts: 

fruit(apple,granny_smith). 
fruit(apple,golden_delicious). 

are good candidates for solutions to the query. 
Note that superimposed coding, as with any coding tech- 

nique based on a reduction in discriminatory information, 
may result in a number of distinct facts having the same 
code. This will in turn result in false drops from query 
processing. None the less, with large Prolog databases, this 
approach results in substantial savings over ordinary unific- 
ation. The RAA has been integrated’ with UNSW Prolog’ 

using superimposed coding. On a SUN 31160 this runs at 
100 kLIPS compared with 2 kLIPS without the RAA. 

The RAA is well suited to LR parser implementations. 
LR parsers are based on state machines where the next 
action is determined by the current parser state and current 
input symbols. Such parsers operate in linear time. State 
machines are highly amenable to table driven implemen- 
tations and the tables are usually sparse. Thus, parsers for 
restricted DCGs may be implemented on the RAA as state 
transition tables, represented as Prolog clauses, driven by 
a simple Prolog program. 

LR parsing 

LR parsing2 is based on Left to right parsing with a 
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Rightmost derivation. It is an efficient, non-backtracking 
method which can be used to recognize a wide range of 

useful grammars including almost all context free program- 
ming language constructs. 

Art LR parser is a pushdown automata. It works from 
left to right along a sequence of input symbols changing 
state as it recognizes grammatical constructs corresponding 
to grammar rules. Its components are the input, which 
is the sequence of symbols to be parsed, the stack, 
which holds consumed symbols from the input and corres- 

ponding state information, and the parsing table, which 
indicates the parsing action for each possible state and input 
symbol. 

Parsing tables have entries of the form: 

table((state),(symbol)) = (action) 

For a given input symbol, (symbol), in a given state, 
(state), the parsing table is consulted, the appropriate 
action, (action), is carried out and a new state is entered 

ready to process the new current input symbol. Parsing 
actions depend on how the current input symbol affects the 
recognition of the current grammatical construct. 

A shift action, shift( (state)), takes place if the parser is 
in the middle of recognizing some construct and the current 
input symbol, though valid, does not complete that con- 

struct. Then, the current state and symbol are pushed onto 
the stack, the next input symbol becomes the current symbol 
and a new state, (state > , is entered to deal with it. 

A goto action, goto( (state >), takes place if the parser is 
in the middle of recognizing some construct and a sub- 

construct has been recognized which, though valid, does 
not complete that construct. Then, a new state, (state), is 
entered to deal with the current input symbol. 

A reduce action, reduce( ( rhs )), takes place if the current 
input symbol indicates that the parser has successfully 
recognized a construct, say corresponding to the rule: 

I --> rl, r2, . . . rN 

The stack will already contain the symbols for the right- 
hand side of the construct, rl , r2, . . . rN, and the corres- 
ponding states from preceding shift actions. These symbols 
and states are removed from the stack uncovering the state 

preceding the start of the recognition of the construct, say 
(old state). The non-terminal for the construct, I, is 
pushed onto the stack to indicate that the construct has been 

recognized and a new state: 

table((old state),I) = goto(( new state)) 

is entered to deal with the current input symbol. 
An accept action, accept, takes place when the sentence 

construct has been recognized and the parse has succeeded. 
An error action, error, takes place if the current input 
symbol is inappropriate in the context of the current state 
of recognition of the current construct. Error recovery may 
then be invoked or the parse may be abandoned. 

Simple LR parsers with 1 place lookahead, SLR(l), are 
a subset of the more general LR(l) parsers which are very 
easy to implement. 

For example, the binary number DCG: 

digit --) [ 01. 
digit --) [ 11. 
binary --) digit. 
binary --) digit, binary. 

has the SLR(1) parse table: 

table(O, [ 01) = shift(3) 
table(O, [ 1 I) = shift(4) 
table(O,digit) = goto(2) 
table(O,binary) = goto(1) 

table( 1, [ $1) = accept 

table(2, [ 01) = shift(3) 
table(2, [ 1 I) = shift(4) 
table(2, [$]) = reduce(binary --> digit) 
table(2,digit) = goto(2) 
table(2,binary) = goto(5) 

table(3, [0]) = reduce(digit --> [0]) 
table(3, [I]) = reduce(digit --> [0]) 
table(3, [$]) = reduce(digit --> [Ol) 

table(4, [0]) = reduce(digit --) [l I) 
table(4, [ 1 I) = reduce(digit --> [l I) 
table(4[$]) = reduce(digit --) [l I) 

table@, [$I) = reduce(binary --> digit, binary) 

For example, to parse [ 1 ,O] starting in state 0: 

input = [l,O] stack = [0] 
table(O, [ 1 I) = shift(4) 

input = [O] stack = [O,[l I,41 
table(4, [ 01) = reduce(digit --> [ 1 I) 

input = [O] stack = [O,digit] 
table(0,digit) = goto(2) 

input = [0] stack = [O,digit,2] 
table(2, [O]) = shift(3) 

input = [ ] stack = [O,digit,2,[0],3] 
table(3, [$]) = reduce(digit --> [Ol) 

input = [ ] stack = [O,digit,2,digit] 
table(2,digit) = goto(2) 

input = [ ] stack = [O,digit,2,digit,2] 
table(2, [$I) = reduce(binary --> digit) 

input = [ ] stack = [O,digit,2,binary] 
table(2,binary) = goto(5) 

input = [ ] stack = [O,digit,2,binary,5] 
table@, [$]) = reduce(binary --> digit, binary) 

input = [ ] stack = [O,binary] 
table(O,binary) = goto(1) 

input = [ ] stack = [O,binary,ll 
table(1, [$I) = accept 

Implementing SLR(l) parsers on the RAA 

Parser generation 

An SLR( 1) parser generator, based on the algorithms from 
Aho, Sethi and Ulhnan2, was written in UNSW Prolog. 
Prolog proved to be an excellent implementation language 
for prototyping: the initial parser generator was completed 
very quickly. However, the use of Prolog with the above 
algorithms resulted in highly recursive clauses operating on 
lists which execute much more slowly than the equivalent 
iterative algorithms operating on arrays in a compiled 
language. They are also slow because of UNSW’s sub- 
optimal clause indexing mechanism. In addition, they 
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quickly consume all available stack space on relatively small 

DCGs as UNSW Prolog has no tail recursion optimization. 
Subsequently, the clauses were converted to MU-Prolog” 

and then to SICStus Prolog”. The latter has an efficient 
clause indexing mechanism and tail recursion optimization, 
and enabled the construction of parse tables from larger 
DCGs. 

Adapting parse tables for the RAA 

To begin with, tables similar in format to those above were 

produced based on simple shift/reduce/got0 entries. Table 
entries were of the form: 

t((state),(symbol),(action)) 

where: 

(action) :: = shift((state)) I 
goto((state)) I 
reduce((number),(symbol)) 

where (number) is the number of right-hand symbols to 
be reduced. The end of input symbol was rstop instead of 

$. 
For the binary number grammar, the table entries for 

state 0 are: 

t(0, [ 01 ,shift(3)). 
t(0, [ 11 ,shift(4)). 
t(O,digit,goto(e)). 
t(O,binary,goto(l)). 

The whole table is shown in Appendix A. 
Parsing was driven by the explicit parse clause shown in 

Appendix B. This first attempt enabled table generation to 
be checked but was very slow, partly because of explicit 
stack popping for reduce actions. It was also hard to adapt 
to parameterized DCGs. 

Next, tables were generated in a recursive form with 

stock popping for reduce actions effected through explicit 
unification. Table entries took the form: 

t( [ (state) I( rest of stack) ] , 
[ (symbol > I( rest of symbols) I, 
(result),(left over symbols)) :- 

t(< params for next action )) 

For example, the state 0 table entries for the binary 
numbers DCG are: 

t(lO I SYI, [ 101 I VI ,TH,H) :- t(l3,lOl ,O I SYI ,T,TR,R). 
t(lO I SYl,ll11 I lTl,TH,H) :- t(l4,111,0 I SYl,T,TH,H). 
goto(O,digit,2). 
goto(O,binary,l). 

The full table is in Appendix C. This gave a substantial 
improvement in speed and enabled the introduction of para- 

meterized DCGs. However, when parse tables were loaded 
into the RAA, the performance was rather disappointing. 

First of all, the RAAKJNSW Prolog interface involves 
the explicit reconstruction and initiation of a clause body 
after clause selection. This was overcome by putting the 
clause body into the clause head. The potential infinite 
recursive regress was avoided by abstraction at the recursion 
point and the use of unification to pick up the abstraction. 
The recursive call is then invoked explicitly: 

rt(A,B,C,D) :- t(A,B,C,D,E), E. Vo pick up RHS at E & 
% invoke E - E will 
% call rt 

exp(E,T,R) :- rt( [O] ,E,T,R). 

For example, the state 0 table entries for the binary number 
grammar are: 

t([O 1 SYI 3 [ 101 I Tl ,TH,H,fl(l% 101 ,O I SYI 
1 

,T,TR,R)). 
t( 10 SYI 3 [ [ 11 I Tl ,TH,V( 14, [ 11 ,O 1 SYI ,T,TH,R)). 
goto(O,digit,2). 
goto(O,binary,l). 

The full table is in Appendix D. 

The second source of poor performance was because the 
general purpose superimposed coding used normally to 

load Prolog clauses into the RAA was not appropriate to 
this application. There was insufficient variation in the 
codes for table entries and so there were several false drops 

on each RAA access. Charles Chung observed that entries 
are distinguished by state and symbol and he introduced a 
field encoding to represent entries. This set 1 bit in 64 bit 

fields for both states and symbols giving a unique match on 
each RAA access. These changes brought significant gains 
in performance, which are presented below. 

Problems with table generation from DCGs 

Table generation involves, in part, the use of symbol 
sequences from DCG productions, for example to identify 
non-terminal symbols and production right-hand sides. 
This led to difficulties with the movement of Prolog 

variables from parameterized rules into inappropriate 
scopes. These may arise from user mistakes where symbols 
introduced for lexical analysis and symbols in the grammar 

contain the same variable names. This may result in in- 
appropriate sharing, for example, between a symbol on the 
stack and a symbol in the input sequence. 

However, there may also be computer generated clashes 
if the symbol starting a production is also the symbol 
following a production. Consider for example the rule for 

a line of BASIC: 

line --> [number(N)], command. 
lines --) line. 
lines --) line, lines. 

Now, note from the second lines production that a line 
may be followed by lines and hence by another line. Thus 
[number(N)] which starts a line is also a follower for line 

so there is a reduce action to recognize: 

[number(N)], command 

having encountered the symbol [number (N) ] . Thus there 
is a table entry with [number (N) ] both on the stack and 
in the input: 

t( [ , [number(N)] ,_,line,NS I NSY] , 
[[number(N)] ]__I,. .) :- . . . 

Alas, the Ns should be distinct. This was solved by renaming 
variables in symbols before table entry construction to 
ensure distinct names. 

Another source of difficulty was the treatment of semantic 
actions in DCGs. These present no problems when they 

Information and Sojbvare Technology 1995 Volume 37 Number IO 551 



Dejnite Clause Grammars: G Michaelson 

occur at the end of productions. However, it is not clear 
how to handle actions within productions. The construction 
of tables separates the entries for recognition of sub-items 
from the entry for the recognition of the item. Thus, it is 
hard to decide whether to carry out the semantic action for 
a sub-item on the shift action for that sub-item or on the 
reduce action for the enclosing item. If the semantic action 
is carried out on the shift action, when the sub-item is 
recognized, then it cannot communicate information to the 
rest of the item by implicit variable sharing. If the semantic 
actions for sub-items are carried out together on the reduce 
action, at end of the item, then they cannot affect sub-item 

recognition. 
In parsing it is usual to restrict semantic actions to the end 

of productions so the same restriction to DCGs has been 
adopted. Thus, it is necessary to introduce explicit sub- 

productions for intermediate actions, and intermediate 
actions will not interact other than via the Prolog database 
through the explicit use of assert/retract. 

Testing and timing 

LR parser tests 

The parser generator was first tested with a DCG for 
restricted [sic] English, from Clocksin and Mellish” 
(after Pereira and Warren)‘. This had 15 productions and 
the corresponding parser had 55 actions. 

More substantial tests were then made with a DCG for an 
SQL subset, based on a YACC grammar in Heerjee and 
Sadeghi13. This had 27 productions and the corresponding 

parser had 162 actions. The SQL parse table had 40 states 
with 18 terminal symbols. Times in seconds for test 
sentences of symbols, with and without the RAA, were: 

symbols actions RAA time no RAA time 
10 25 .26 diff .50 diff 
15 38 .39 .13 .72 .22 
20 51 .51 .12 .94 .22 
25 64 .65 .14 1.17 .23 
30 77 .77 .12 1.40 .23 
35 90 .90 .13 1.61 .21 
40 103 1.04 .14 1.84 .23 
45 116 1.13 .09 2.07 .23 
50 129 1.27 .14 2.29 .22 
55 142 1.40 .13 2.51 .22 

Note that the difference in times (dim as the number of 
symbols in successive test sentences increases is almost 
constant, corresponding to the anticipated linear correlation 
between sentence length and parse time. 

The average time per action was: 

RAA .Ol 
no RAA .018 

Thus, parsing with the RAA was around 1.8 times as fast. 
Assuming that the same amount of time was spent pro- 

cessing each successfully matched clause with and without 
the RAA, and that the RAA time for clause matching is 
insignificant, then the difference in times as a proportion of 
the time without the RAA: 

(no RAA - RAA) I no RAA 

gives the proportion of time spent in unsuccessful clause 
matching without the RAA. Here it was around 45 % of the 
time. 

A DCG for a BASIC subset was also tested. This had 43 
productions and the corresponding parser had 449 actions. 
The BASIC parse table had 81 states with 32 symbols. 
Times in seconds with and without the RAA were: 

symbols actions RAA no RAA 
58 153 1.67 7.37 
95 258 2.87 12.34 

146 401 4.41 19.26 
179 481 5.26 23.16 

The average time per action was: 

RAA .Ol 1 
no RAA .048 

Thus, parsing with the RAA was around 4.4 times as fast. 
Using the above formula, without the RAA around 77% 

of the time was spent in unsuccessful clause matching. The 
SQL and BASIC tests suggest that worthwhile time savings 
result from the use of the RAA. They also suggest that as 
the size of the DCG and hence the size of the parse table 

increase so do the gains from using the RAA. It would be 
interesting to make the same comparisons with substantially 
larger grammars but the parser generator implementation 
did not permit this. 

LR and direct DCG parsing 

The BASIC DCG was also tested as a direct translation to 
UNSW Prolog using SICStus Prolog as a translator. This 
generated Prolog with explicit connects clauses as described 
in the first section of the paper. On the same test set as 

above, the times in seconds were: 

symbols DCG RAA no RAA 
58 1.07 1.67 7.37 
95 6.78 2.87 12.34 

146 7.80 4.41 19.26 
179 49.44 5.26 23.16 

These times illustrate the apparently erratic behaviour of 
top down parsing. The first time is better than LR bottom 
up with the RAA. The second and third times are better 
than LR without the RAA and worse than LR with the 
RAA. The last time is worse than LR both with and without 

the RAA. 
As discussed above, DCGs are normally translated directly 

into Prolog clauses with one clause for each DCG 
production. Parsing then involves the normal Prolog search 

mechanism with full backtracking. This might be expected 
to be faster than the LR technique as the latter is based on 
an explicit interpretation mechanism sitting on top of the 
underlying Prolog mechanism. 

Furthermore, the DCG consists of a relatively small 
number of clauses with a relatively large number of dis- 
tinct principle functors and a relatively small number of 
options for each functor. The LR approach is based on 
a table which has more clauses than those for the equiv- 
alent DCG. The table has one common principle functor 
and a relatively large number of options. Thus, the clause 
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indexing mechanism will affect their relative speeds. 
UNSW Prolog uses principal functor clause indexing and 

then searches for appropriate options within clauses. Thus, 

the short time taken to locate the unique table functor for 
the LR approach must be offset against the far longer time 
spent searching for the correct option corresponding to the 

current state and symbol. 
More recent Prologs, like NU, Quintus and SICStus, use 

first argument indexing. With the LR approach this would 
identify all the clauses for the appropriate state within the 
table but still necessitate searching for the clause for the 
current symbol. Thus, the timings for direct DCG parsing 
and LR parsing without the RAA might be more similar 
than with principal functor indexing. The use of the RAA 

should still be superior, particularly when there are large 
numbers of terminal symbols relative to the number of 
productions, as it removes all option searching. 

However, the direct DCG approach can also be far 

slower, as the last test example above shows. LR parsing 
is always in linear time, proportional to the number of 
symbols in the sentence, and it involves no backtracking. 
Direct DCG parsing without backtracking may be faster 
than LR parsing but that depends on the sentence being 

parsed. The order in which DCG productions are attempted 
is fixed by the underlying Prolog search mechanism and so 
backtracking will often occur where an optimal method like 
LR will avoid it. Full DCGs are, of course, more powerful 

than LR grammars and so expressive strength must be 
offset against efficiency. 

Future work 

The present system is experimental: it does not analyse 
grammars to ensure that they are SLR(l) and parse tables 
are not factored to reduce entries. 

A fundamental limitation to the investigation of this 
approach to parsing is the small size of the DCG which can 
be handled by the current Prolog system. This might be 
overcome by building a C version which uses iteration on 
arrays to build LR parse tables. This would enable the 
testing of LR parser implementations on the RAA with 
much larger DCGs. It would also be interesting to investigate 

the use of LR parsing with a RAA interface to an optimized 

Prolog like Quintus, SICStus or NU. 
In the longer term, it might be appropriate to investigate 

at the implementation of parse tables from the YACC 

LR parser generator on the RAA. This would enable its 
evaluation with a large body of existing software developed 
for UNIX use. For Prolog work, DCGs might then be 

translated to YACC grammars. 
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Appendix A 
Direct encoding of parse table 

t(0, [ 01 ,shift(3)). 
t(0, [ 11 ,shift(4)). 
t(O,digit,goto(2)). 
t(0, binary,goto( 1)). 

t(1, [Mop] ,oh). 

t(2, [Ol ,shift(3)). 
t(2, [ 11 ,shift(4)). 
t(2, [rstop] ,reduce(l ,binary)). 
t(2,digit,goto(2)). 

t(2,binary,goto(5)). 

t(3, [0] ,reduce(l ,digit)). 
t(3, [ 11 ,reduce(l ,digit)). 
t(3, [ rstopl ,reduce(l ,digit)). 

t(4, [O] ,reduce(l ,digit)). 
t(4, [ 11 ,reduce(l ,digit)). 
t(4, [ rstopl ,reduce(l ,digit)). 

t(5, [rstopl ,reduce(2,binary)). 

Information and Software Technology 1995 Volume 37 Number 10 553 



Definite Clause Grammars: G Michaelson 

Appendix B 
Top level parser 

exp(E,T,R) :- sr( [O] ,E,T,R). 

% sr((stack),(lexemes), (result>,(extras>). 

sr([SISY],[H(Tl,TR,R):- 
t(S,H,reduce(N,P)), 
popN[S I SYl,[NS I NW), 
t(NS,P,NNS), 
sr([NNS,P,NS 1 NSY],[H IT],TR,R). 

pop(N,[S,SY I Tl,R) :- Nl is N-l, pop(Nl,T,R). 

sr( [S 1 SY] , [H 1 T] ,TR,R) :- 
t(S,H,shifW), 
sr( W,H,S I SY] ,T,TR,R). 

sr( [S I__], [H I Tl ,ok,T) :- t(S,H,W 

sr(_,E,fail,E). 

% reduce action? 
% pop RHS 
010 find goto action 
% push LHS & next 
% state & try 
O/o again 

% shift action? 
% push symbol H & 
% enter state V 

% success? check 
% for halt state 

% fail so return 
O/o symbols 
O/o at failure point 

Appendix C 
Parse table with reduce actions through unification 

t([O I WI, [ [Ol I Tl ,TR,W :- t([%[Ol ,O I SYI ,T,TRW. 
t([O I SYl,[[ll I Tl,TR,W :- t([4,[11,0 I SYl,T,TRW. 
goto(O,digit,2). 
goto(O,binary,l). 

t( [ 1 ,binary I _I, [ [rstop] I ,binary,T). 

t(]2 I SYl,[ LO1 1 Tl,TR,W :- t([3,[01,2 I SYl,T,TR,R). 
t([2 I SYl,[ ill I Tl,TR,R) :- t([4,[11,2 I SYl,T,TR,R). 
t( [2,digit,NS I NSY], [ [rstop] ] ,TR,R) :- 

goto(NS,binary,NNS), 
t( [ NNS,binary,NS I NSY I, [ [rstwl 1 ,TRW. 

goto(2,digit,2). 
goto(2,binary,5). 

t([3, LO1 AS I NW, 1 [Ol 
goto(NS,digit,NNS), 
t( [NNS,digit,NS I NSY] 

t([3,[Ol,NSI NSYl,[[ll 1 
goto(NS,digit,NNS), 
t( [ NNS,digit,NS I NSY] , [ [ 11 ( Tl ,TR,R). 

t(P, [Ol ,NS I NW, t [rstopl 1 ,TW :- 
goto(NS,digit,NNS), 
t( [ NNS,digit,NS I NSY] , [ [ rstop] ] ,TR,R). 

t([%[ll,NS I NSYl,[[Ol ITl,TRR) :- 
goto(NS,digit,NNS), 
t( [ NNS,di 

t([4,[1l,NS 7 
it,NS I NSY] , [ [Ol I T] ,TR,R). 
NSYl,[[ll ITl,TRR) :- 

goto(NS,digit,NNS), 
t( [NNS,digit,NS I NSY], [ [l I 1 T] ,TR,R). 

t([&[l],NSI NSY],[ [rstop]],TR,R) :- 
goto(NS,digit,NNS), 
t( [ NNS,digit,NS I NSY] , [ [rstop] ] ,TR,R). 

T] ,TR,R) :- 

[ 101 I Tl ,TR,W. 
T] ,TR,R) :- 

t( [5,binary,_,digit,,NS I NSY I, [ [rstopl I ,TR,R) :- 
goto(NS,binary,NNS), 
t( [ NNS,binary,NS I NSY] , [ [rstop] ] ,TR,R). 

t(_,E,fail,E). 

exp(E,T,R) :- t( [Ol ,E,T,R). 

Appendix D 
Parse table with explicit recursion 

t([O 1 SYI v[ LOI 1 Tl ,TR,R,rt([3, [Ol ,O I SYI ,T,TR,W). 
t(t0 1 SYl,[ [II 1 Tl,TMWt([4,[1l ,O I SYl,T,TWW. 
goto(O,digit,2). 
goto(O,binary,l). 

t( [ 1 ,binary I _I, [ [ rstop] ] ,binary,T,true). 

t(]2 1 SW, [ [Ol I Tl ,TWt),rt([3, [01,2 I SW ,T,TWW. 
t(]2 I SW, [ ill I Tl ,TRR,rt([4, [l I,2 I SW ,T,TMW. 

554 Information and Sojtware Technology 1995 Volume 37 Number 10 



Dejinite Clause Grammars: G Michaelson 

t( [2,digit,NS 1 NSY] , [ [ rstop 
(goto(NS,binary,NNS), 
rt( [ NNS,binary,NS I NSY] 

goto(2,digit,2). 
goto(2,binary,5). 

t(L3, LOI JS I NW, [ LOI I T 
(goto(NS,digit,NNF), 

1 ,TRR 

[ [rstopl 1 ,TRR)). 

,TR,R, 

rt([NNS,digit,NS I NSYI, [ [O] I T] ,TR,R)). 
t([3,[Ol,NSINSYl,[[11 ITl,TR,R, 

(goto(NS,digit,NNS), 
rt( [ NNS,digit,NS I NSY] , [ [ I] I T] ,TR,R)). 

t([3, WI AS I NW, [ [rstopl 1 ,TR,R, 
(goto(NS,digit,NNS), 
rt( [NNS,digit,NS I NSYI, [ [rstop] ] ,TR,R)). 
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t(i4, [I 1 ,NS I NSYI, [ 101 1 Tl ,TRR, 
(goto(NS,digit,NNS), 
rt( [NNS,digit,NS I NSYI, [ [O] I T] ,TR,R)). 

t([4,[1l,NSINSYl,[[ll ITl,TR,R, 
(goto(NS,digit,NNS), 
rt([NNS,digit,NS I NSYI, [ [l I I T] ,TR,R)). 

t([4, [II AS I NW, [ [rstopl 1 ,TR,R, 
(goto(NS,digit,NNS), 
rt( [NNS,digit,NS I NSYI , [ [ rstop] ] ,TR,R)). 

t( [5,binary,_,digit,NS I NSYI , [ [rstop] ] ,TR,R, 
(goto(NS,binary,NNS), 
rt( [NNS,binary,NS 1 NSY], [ [ rstop] 1 ,TR,R)). 

t(_,E,fail,E,true). 
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