
Comput Lang Vol ll. No 2, pp 85--104, 1986 0096-0551 86 5300+000
Pnnted m Great Britain Pergamon Journal~ Ltd

INTERPRETERS FROM FUNCTIONS AND GRAMMARS

GREG MICHAELSON

Department of Computer Science, Heriot-Watt Um~ersity, 79 Grassmarket, Edinburgh EHI 2HJ. U K,

(Received 23 September 1985)

Abstract--The addition of context free grammar rules to a functional language simplifies the construction
of interpreters from denotationaI semantic language definitions. Functional abstraction over grammar
rules enables the specification and processing of context sensitive language syntax aspects in a functional
style.

DenotatLonaI semantics Language design Language implementation Functional language
Grammar rules Interpreters Context sensitive processing

1. I N T R O D U C T I O N

1.1 Denotational semantics

Denotational semantics [1] is a formalism for defining programming languages. A denotational
semantic definition consists of semantic domains, abstract syntax and semantic functions. The
semantic domains define the universe of objects in which the language is given meaning, the abstract
syntax defines meaningful syntactic constructs and the meaning of each abstract syntax construct
is defined by a semantic function over the serriantic domains. Abstract syntax is distinguished from
concrete syntax which describes the physical representation of programs and contains details which
are not significant from a semantic point of view [2].

Approaches based on denotational semantics are used to provide succinct and theoretically
rigorous programming language standards. These then inform language implementations and
program manipulation. Such approaches are also used for programming language design [3] but
there are few software tools which are appropriate for experimenting with denotational semantic
based designs.

1.2 Compiler generators

Compiler generators [4], which are used to automate the construction of production compilers,
are based on very different methodologies to denotational semantics and place a far greater
emphasis on concrete syntax. A typical compiler generator, like YACC [5], inputs a formalised
definition of the context free [6] concrete syntax of a language along with semantic actions written
in an imperative language. These implement context sensitive concrete syntax checking and the
generation of the target language.

When compiler generators are used with denotational semantic designs a basic problem is the
lack of correspondence between the functional meta-language used to define semantic equations
and the imperative semantic action language. Translating semantic equations into semantic actions
loses clarity and is a potential source of errors. When the design changes so must the translation
for the compiler generator.

One alternative is to use an existing compiler generator with a new semantic action language
which has a well defined correspondence with the functional meta-language [7]. Another is to
develop a system which is oriented specifically for use with denotational semantics.

1.3 SIS

SIS [8] is a language implementation system which enables direct experimentation with
denotational semantic language designs. It takes in a full denotational semantic definition and uses
it to generate what is in effect the code for an abstract machine. The code is then interpreted.

The strict adherence to denotational semantics, however, with the formal separation of concrete
syntax, abstract syntax and semantics, appears to restrict the ease with which SIS may be used.

CL H :~: 85

86 GREG MICHAZLSOY

In particular, the denotational semantic methodology treats concrete syntax considerations as of
secondary importance with context sensitive syntax aspects often bring ignored or pushed into the
semantics. Concrete syntax is a major part of a language design as it determines the physical
appearance of programs and influences the ease with which they are understood and manipulated.
SIS provides grammar rules for specifying a context free concrete syntax and associating it with
the abstract syntax but there is no provision for context sensitivity other than incorporation in
semantic equations.

SIS is essentially a batch system and definitions are frozen by compiler-compilation. Thus, there
is no facility for moving easily from definition to test without using the host filing system and
associated tools, and re-compiling the whole definition for each change. There is, of course, no
reason why SIS should not be implemented within an interactive environment but the need for
separate but related sub-definitions may restrict flexibility and integration.

1.4 Navel

Navel*, which is described in the rest of this paper, was conceived of as an interpreter-interpreter
language which would enable the interactive testing and modification of language designs. It is a
functional language, heavily influenced by the original ' le t . . . i n . . . ' SASL [9], and has grammar
rules fully integrated as functional objects. Navel interpreters are written in a denotational semantic
style using functional semantic equations but, unlike SIS, denotational semantics is not directly
implemented. The main differences are the loss of the traditional distinction between the syntactic
and semantic meta-languages, the lack of need for abstract syntax to mediate concrete syntax and
semantics, and the absence of semantic domain specifications. These differences lose much of the
rigour of SIS but simplify interpretive implementation from a formal definition. Context sensitive
aspects of concrete syntax may be specified in a functional style through higher order grammar
rules.

Subsequent sections describe the functional language, the construction of an interpreter for a
small language from a denotational semantic definition, rule generalisation through functional
abstraction and the use of higher order rules for checking assignment before use, declarations and
type consistency.

2. NAVEL
2.1 Introduction

Navel [10] is a weakly typed functional language. It is implemented within an interactive
environment which provides file access to the host system and local editing facilities.

The main features of the language are described through examples. Each example may
pre-suppose preceding examples. In examples, the prompt 'ok' heralds the input and execution of
an expression or command ending with a ';'.

2.2 Objects and definitions

The Navel objects are integers, characters which coerce to integers, booleans, lists, fields,
functions and rules. Global definition commands are used to establish name/object associations
which are retained for use by subsequent definitions and expressions:

ok
def Value_Added_Tax = 15;
ok
Value__Added_Tax;
15
ok
def pie_beans_and_chips = 135;
ok
pie-beans_and_chips.Value_Added_Tax/! 00;
2O

*Not A Very Exciting Language.

Interpreters from functions and grammars 87

2.3 Ltsts and strmgs

The concatenation operator ':' is used to construct lists. The empty list is '() ' . The operators
"hd' and "tl" are used to extract the head and tail from lists:

ok
def squares = 1:4:9:16:25:();
ok
hd tl squares;
4

List elements may also be accessed through indexing.
The empty list is normally omitted from the end of lists:

ok
squares;
1:4:9:16:25:

Strings are lists of characters. They are usually denoted by sequences of characters within s:

ok
def orange = 'o': 'r ' : 'a ': 'n': 'g': 'e ':;
ok
orange;
"'orange"

Lists are lazy evaluated [l l], i.e. function calls in lists are not evaluated until they are selected. Lazy
infinite lists may be constructed using recursiye functions.

2.4 Fields

A field is an object tagged with a name and is denoted by the name followed by the object within
'[' and ']'. The object is selected from a field with the o p e r a t o r ' ' "

ok
def plant = [tree "larch"];
ok
p lant" tree;
"larch"

The field selection operator is overloaded to enable field object selection from lists:

ok
def plants = [tree "larch"]:[bush "privet"]:[tree "fir"]:;
ok
plants ^ bush;
"'privet"

When there are several fields in a list with the same name, the index operator '@' is used to identify
the requisite instance:

ok
plants A tree @ 2;
"'fir"

2.5 Functions

Functions are based on lambda calculus [1]. They may be defined with a single formal parameter:

ok
def cube = lam x.x,x,x;
ok
cube 3;
27

88 GREG MICHAEL.SON

or a list of formal parameters:

ok
def sum_squares = lam x:y.x,x + y,y;
ok
sum_squares 3:4;
25

For function definitions, the 'lam' may be dropped and the formal parameters moved to the left
of the ' = 's:

ok
def volume length:depth;height = length,depth,height;

Function calls are evaluated in applicative order.
Formal parameter lists may be arbitrarily complicated and used for structure match selection

with actual parameter lists:

ok
def tl_hd (hh:ht):t = ht;
ok
tl_hd ("bangers":"mash"):("fish":"chips"): ;
~'mash"

2.6 Control expressions

Navel provides 'if" and 'case' control expressions which enable the construction of recursive
functions:

ok
def power x:n =

if n = 0
then 1
else x,(power x:n-l);

ok
def fib n =

case n of
o-) ~,
1-) 1,
(fib n - l) + (fib n-2);

The 'case' expression ends with a default.

2.7 Local definitions

Local definitions are used to introduce temporary name/object associations within expressions:

ok
def sum_squares x:y--

let sq n = n , n
in (sq x) + (sq y);

They are evaluated in applicative order and are directly equivalent to function calls.
Local definitions may be mutually recursive. For global definitions, as in POP2 [12], a forward

reference to an undefined name in a function definition results in the creation of a dummy definition
for the name which may be fully defined later,

2.8 Partial application

Functions may return functions through partial application:

ok
def add x = lain y.x + y ;

Interpreters from functions and grammars 89

ok
def increment = add 1;
ok
increment 99;
100

Partial application is used in subsequent sections to construct update functions which, in effect,
extend functions. For example, an array may be modelled as a function from addresses to the values
held at those addresses. Initially, the array is empty and returns "fail" for any address:

ok
def array_0 addr = "fail";

When a value is assigned to an array address, a new function is constructed which returns that
value if passed the corresponding address or calls the old function to find the value:

ok
def new_array old_array:address:value =

lain addr. (if addr = address
then value
else old_array addr);

Now, for example, '33' may be assigned to address '3':

ok
def array_l = new_array array_0:3:33;

and "55' may be assigned to address '5':

ok
def array_2 = new_array array_l:5:55;
ok
a r r a y ~ 3;
33
ok
array__2 6;
"fail"

2.9 Input and output

Output is effected with the 'write' expression which returns the value of its argument and also
sends it to the standard output. Characters and strings are output without quotes:

ok
def writeln 1-~

let line = write 1
in

let nl = write '\n'
in ();

ok
writeln "festive greetings!";
festive greetings!

The 'readln' object returns the next line from the standard input as a string:

ok
readln;
testing testing 1 2 3
"testing testing 1 2 3"

Amusing effects result from its use in function calls in lazy evaluated lists!
Other facilities include character input, lazy file input and file output.

90 GROG MICHAELSON

2.10 Grammar rules

Navel grammar rules are based on context free productions. The notation used is yet another
variant of B.N.F. [13]. As in B.N.F., productions with the same left hand side name are combined
into a single rule with a number of options. Unlike B.N.F., right hand sides of productions are
not necessarily bound to particular left hand side non-terminals but are objects in their own right.

For Navel rules, the terminal symbols are strings and the non-terminal symbols are names
associated with strings or rules.

A rule consists of one or more options separated by Ts within '{' and '}'. At simplest, an option
is a sequence of one or more strings and names. For example, the B.N.F. for binary numbers:

(binary) :: = (digit) (binary) I (digit)
(digit) :: = 0 [1

might be rendered as:

ok
def binary = {digit binary I digit};
ok
def digit = {"0" I " i "} ;

2.11 Parsing with rules

A rule is used like a function to parse a string to return a list containing the list representation
of the parse tree, or the empty list if the parse fails, and the rest of the string. Parsing is left to
right.

For a rule, each option is tried in turrr until one succeeds. If an option begins with a string and
the argument string starts with that string then the rest of the option is applied to the rest of the
argument string and the resulting parse tree list starts with the string starting the option. Otherwise
the option fails:

ok
{"l"} "101";
("1":):"01"
ok
{"i 0"} "lOl";
(" l " : "O":) : " l "

Similarly, if an option begins with a name then its associated object is found and used and a field
consisting of the sub-tree tagged with the name forms the start of the parse tree list:

ok
{digit} "10";
([digit "1":]:):"0"
ok
{binary} "10";
([binary [digit "l":]:[binary [digit "0":]:]:]:):
ok
{binary} "0123";
([binary [digit "O":]:[binary [digit "l":]:]:]:):"2Y'

No attempt is made to automatically factor rules or to remove left recursion because, as is discussed
in Section 4, rules may be abstracted over and may contain any expressions that return strings or
rules. Thus, it is not possible in general to check statically a rule for left recursion or options with
common initial symbol sequences.

With some rules the parser may fail to recognise valid strings because there is no backtracking
within options. Option order may be important. If two options have a common initial symbol
sequence and the shorter option precedes the longer then the shorter may lead to successful

Interpreters from funct,ons and grammars 91

recognition of a sub-string:

ok
def binary = {digit] digit binary}:
ok
{binary} "111";
([binary [digit "'1":]:]:):"I1"

2.12 Finding a rule that produced a tree

The 'rule' expression is similar to a 'case' expression and is used to identify a rule (not necessarily
unique) that produced a parse tree. For example, to interpret binary numbers:

ok
def mdigit d =

rule d of
{"0"}-) 0,
{ " 1 " } -) 1,
"fail";

ok
def mbinary v b =

rule b of
{digit binary}-) mbinary 2,v + (mdigit b A digit) b ~ binary,
{digit}-) 2,v + (mdigit b ^ digit),
"fail";

ok
def m string =

let tree:rest = binary string
in

if tree = () I r e s t () ()
then "syntax error"
else mbinary 0 tree;

ok
m "101";
5

2.13 Simplifying rules

Rules may contain sub-rules. A successful sub-rule option is treated as if it were in-line.
The empty rule '{ }' matches anything and returns the empty list '()'. This may be used to factor

rules:

ok
def binary = {digit {binary I { }}};

The Navel rule 'number' matches a sequence of decimal digits and the rule "word' matches a
sequence of letters:

ok
word "praxis";
"praxis":
ok
{number} "2001";
([number "2001"]:):

The rule 'fail' always fails. This is used in subsequent sections to initialise rules which are to be

extended.
Rules may be used for the generation of strings but this is not discussed here.

92 GREG MICHAELSON

2.14 Implementation

The present Navel implementation is written in C and runs under UNIX*.
Navel objects are represented by linked lists of tagged two-field cells held in a heap. All

name/object associations are made and accessed via a stack. Programs are compiled to parse trees
which contain stack frame relative addresses for names. These are found by symbolic evaluation
at compile time.

At run time, when a function is encountered the positions of objects for free variables are known
from the compile time symbolic evaluation and the objects are picked up directly to make a closure.
When a function is entere d, the actual parameter and free variable objects are pushed onto the
stack. When the object associated with a name is required it is accessed directly through the stack.

No text is held for programs. A pretty printer is used to reconstruct text from parse trees for
function editing and saving global name/object associations as definitions in the hostess filing
system.

Preliminary timing tests suggest that for worst case insertion sort and for Ackermann's function.
Navel runs at more than twice the speed of the 1979 SASL [14], the same speed as interpreted
FRANZ LISP [15] and half the speed of CProlog [16].

3. FROM D E N O T A T I O N A L SEMANTICS TO A NAVEL I N T E R P R E T E R

3.1 Introduction

The following sections describe a denotational semantics based on that for TINY [2] and discuss
the construction of a Navel interpreter from it.

TINY is an imperative language with assignment, integer arithmetic and I/O. Here. a subset of
TINY is used without conditional and iterative commands to simplify the presentation.

For example, to output double-the value of an input:

a: = read
b : = a + a
output b

3.2 Denotational semantics

3.2.1 Semantic domains and abstract syntax. The semantic domains for TINY are:

State = Memory , Inpu t ,Outpu t
Memory = Ide-) [Num + {unbound}]
Input = N u m ,
Output = N u m ,
Ide = identifiers
Num = numbers

A memory is a function mapping names onto values and returns 'unbound' for a name without
an associated value.
Inputs and outputs are lists of numbers.
The abstract syntax is:

E : : = 0 1 1 [read] I I E l + E 2

where "E' ranges over the domain 'Exp' of expressions, and

C : : = I : = E l output E I C1 C2

where 'C' ranges over the domain 'Corn' of commands.
3.2.2 Semantic notation and auxiliary definitions. In the semantic notation, a list is denoted as

a sequence of elements separated by ",'s within '(' and ")'. Alternatively, '.' is used as the
concatenation operator. 'hd' and 'tl' select the head and tail of lists respectively.

*UNIX is a trademark of Bell Laboratones.

Interpreters from functions and grammars 93

The condit ional e x p r e s s i o n - - ' a -) b , c ' - - m e a n s that if "a" is true then "b" is returned: otherwise
"c" is returned. This may also be used to match a list of values with a list o f variables and bind
the ,,ariables, as, for example, in the second definition for function sequencing below.

The opera to r "," is used for function sequencing. There are cases for sequencing a monadic
function with m o n a d m and dyadic functions:

a) f: D 1 -) [D 2 + {errorl] g: D 2 -) [D 3 + {error}]

f , ,,--c" D I -) [D 3 + {error's]
f • g = larnbda x.(f x = e r ro r) -) e r ro r , g (f x)

b) f: D I -) [[D 2 • D3] + {error's] g: D 2 -) D 3 -) [D 4 + {error~j]

f • g: D I -) [D 4 + {error~j]
f • g = lambda x.(f x = e r ro r) -) e r ro r , (f x = (d2 ,d3)) -)g d2 d3

It also traps errors.
For funct ion updating. "f[rv/lv]" means that a new function is constructed which when called

returns ' rv ' for an a rgument with value "Iv'; otherwise "f" is called with the argument:

f[rv/lv] 1 = 1 = l v -) r v , f t

This is used to extend the memory function with a name and value f rom an assignment.
The following auxiliary function is used in semantic definitions:

result: N u m -) S t a t e -) [[N u m • State] + [errorl]

result = l ambda v s.(~.s)

3.2.3 Semantic functions. The semantic function for expressions is:

E: E x p -) S t a t e -) [[N u m • State] + {error}]

E[0] = result 0
E[I] = result 1
E[read] = lambda (ma.o).null i -) e r ro r , (hd i,(m,tl i,o))
E[I] = l ambda (m,i ,o).m I = u n b o u n d -) e r r o r , (m I,(m,i,o))
E[EI + E2] = E[E1] , l ambda v l .E [E2] , l ambda v2.result (vl + v2)

Note that for an identifier T in an expression, the memory function ' m ' returns "unbound" if the
identifier has not been assigned to. Thus the context sensitive syntax requirement that names be
assigned before use has been dealt with in the semantics. In Section 5, a syntactic specification for
this using higher order g r a m m a r rules is discussed.

The semantic function for c o m m a n d s is:

C: C o m -) S t a t e -) [S ta t e + {error}]

C[I: = E] = E[E] • l ambda v (m,i,o).(m[v/I),i,o)
C[output E] = E[E] • l ambda v (m,i,o).(m,i,v.o)
c [c 1 c2] = C [C 1] • C[C2]

3.3 Navel interpreter

3.3.1 Concrete syntax. To construct a Navel interpreter f rom this definition, it is first necessary
to contrive a concrete syntax for the language. Left recursion is removed through the introduct ion
of auxiliary rules:

ok
def b a s e = { " 0 " I "1'" I "'read'" [word};
ok
def exp = {base " ' + ' " exp [base}:
ok
def c o m m = {word "': = ' " exp I " 'ou tput" exp};
ok

94 GREG MICHAELSON

def comms = {comm comms [comm};
ok
{comms} "a: = 0 b: = a";
([comms

[comm
[word "a"]:": = ":[exp [base "0":]:]:

]:
[comms

[comm
[word "b"]:": = ":[exp [base [word "a"]:]:]:

]:
]:

]:
):

3.3.2 Semantic notation and auxiliary definitions in Navel. Many aspects of the semantic notation
have direct Navel equivalents but function sequencing must be modelled explicitly:

ok
def stara f g x = i f (f x) = e r r o r

then error
else g (f x);

ok
def starb f g x = i f (f x) = error

" then error
else

let d2:d3 = f x
in g d2 d3;

Function updating is modelled by the functional:

ok
d e f u f r v l v =

lain arg. (if arg = lv
then rv
else f arg);

'unbound' and 'error' are modelled as strings:

ok
def unbound = "unbound";
ok
def error = "error";

The auxiliary function 'result' translates to:

ok
def result v s = v:s;

3.3.3 Semantic functions. The semantic functions in Navel are:

ok
def mbase b =

rule b of
{"0"}-)result 0,
{" l"}-) resu i t 1,
{"read"}-) lam m:i:o.(if i = ()

then error
else (hd i):(m:(tl i):o)),

Interpreters from functions and grammars 95

{word}-) l am m:i:o.(if (m b "

"e r ro r -base" :b ;
ok
def mexp e =

rule e of
{base}-)mbase e ^
{base " + "

word) = unbound
then error
else (m b word):(m:i:o)),

base,
exp}-) s t a rb (mbase e " base)

lam vl . (s tarb (mexp e exp)
lam v2.(result vl + v2)),

"e r ro r -exp" :e
ok
def m c o m m c =

rule c o f
{word ": = " exp}-) s t a rb (mexp c ^ exp)

lam v m:i:o.(u m v c " word):i:o,
{"ou tpu t " exp}-) s t a rb (mexp c ^ exp) lam v m:i:o.m:i:(v:o),
"error--comm":c;

ok
def m c o m m s c =

rule c o f
{ c o m m } -) m c o m m c ^ comm,
{comm comms}-) s t a r a (mcomm c
"e r ro r - comms" :c ; -

^ ^

comm) (mcomms c comms),

3.3.4 Interpreter. To run the semantic functions as an interpreter, a function is constructed which
takes the string for a T I N Y program with the input list, parses the program and calls the "mcomms'
semantic function with the tree, an initial memory which returns ' u n b o u n d ' for all names, the input
and an empty output list:

ok
def interpret text input =

let tree:rest = comms text
in

if tree = () [r e s t () ()
then "syntax error":rest
else

let s = mcomms tree (lain name.unbound) : input :
in

if s = error
then error
else

let m:i:o = s
in o;

ok
interpret "a: = read output a + a" 1:;
2:

3.3.5 Interactive testing. For interactive testing, ' interpret ' may be called repeatedly by a
recursive function that p rompts for and inputs the p rogram text and input lists:

ok
def p rompt_read p rompt =

let p = write p rompt
in readln;

96 GREG MICHAELSON

ok
def run n =

let text = prompLread " 'program)"
in

let data = convert (prompt_read " 'data)")
in

let output = writeln (interpret text data)
in run n;

ok
run ();
program) output read + read
data) 1 0
1:
program) . ..

The function 'convert" should transform a string into a list of numbers. One way is to parse the
string and strip out the fields from the tree:

ok
def convert string =

let numb = {"0" I "1"}
and numbs= (numb numbs I numb}
and value n =

if n = "0":
then 0
else 1

and strip n =
rule n of
{numb}-) (value n ^ numb):,
{numb numbs}-) (value n ^ numb):(strip n " numbs),
"'input error":n

in strip (hd (numbs string));

Thus, rules may also be used to define and process the inputs for a programming language. Full
checks that the inputs are correct are not included here.

3.4 Denotational semantics and Navel

A denotational semantics consists of three separate sections with distinct description languages.
In Navel, there are no semantic domain specifications and syntax and semantics are described in
a unitary language.

The domain specifications are used to describe the functionality of the semantic equations. This
would correspond to specifying explicitly the types of formal parameters and results of functions
in a strongly typed language and would enable checks for type consistency at compile time. Navel
is weakly typed with run-time type checking. It is thus less rigorous than denotational semantics
and has a relatively inefficient implementation.

In denotational semantics, abstract syntax mediates concrete syntax and semantic equations. In
Navel, there is no necessity to introduce abstract syntax. In principle, its absence will make the
interpreter less general: the semantic functions must be changed if the concrete syntax is changed
whereas for a denotational semantics it would only be necessary to change the concrete/abstract
syntax association specification. In practise, however, it is not clear that language design and
development proceed cleanly with changes in one area isolated from other areas. The omission of
abstract syntax may lead to extra semantic functions, as in this example, but reduces the number
of different stages in a design.

There is one denotational semantic equation for each abstract syntax construct with sub-
equations for each sub-construct. Sub-constructs and sub-equations are associated through implicit
pattern matching on the sub-construct abstracted implicitly from a sub-tree. Sub-trees are then
selected implicitly by mention of the associated sub-construct name.

Interpreters from functions and grammars 97

Part of the motivation for Navel's development was to investigate the association of syntax and
semantics in language definitions. This is highlighted through explicit operations on tree represent-
ations for rule identification and sub-tree selection. Here, Navel interpreters are more akin to
operational semantics [17].

4. G E N E R A L I S I N G RULES

Rules have the same civil rights as other Navel objects. In particular they may be abstracted over
which enables the specification of rule schemas. For example, consider the following rules for
sequences of numbers and words:

ok
def numbers = {number {"," numbers l[}}}:
ok
def words= {word ['1:" words I {}}};

These have a common structure which may be expressed by:

ok
def sequence one separator m a n y = {one {separator many I~ ~fi,~'~"

and they may now be defined by:

ok
def numbers = sequence number " ," {numbers};
ok --
def words = sequence word ":" {words};

When rules are formed in this way, the parse tree list fields will contain the names from the schema:

ok
numbers "11,22";
([one [number "1 I"]]:
[separator ",":]:
[many [numbers [one [number "22"]]:]:]:):

Unlike LISP[18] literals are not objects and so here there is no literal replacement. As with
functions, the values of the arguments are used.

Navel allows rules to contain bracketed expressions returning rules or strings. These are then
treated as if they were in-line. Bracketing a name results in its value being used without a field being
constructed for the resulting sub-tree. This may be used to make rule schemas which give
appropriate names to fields:

ok
def sequence one separator many = {(one) {(separator) (many) [{)}I:
ok
def numbers = sequence number " ," {numbers};
ok
numbers "11,22";
([number "'11"]:

[numbers [number "'22"]:]:):

Such abstraction over rules enables the equivalent of consistent substitution in two-level grammars
[19]. Two-level grammars are based on the generation of rules from rule schemas through what
is in effect the macro expansion of rule names. This contrasts with Navel where names are fixed
and rules are generated from schemas through parameter substitution.

98 GILEG MtCrtAELSON

For example:

ok
def match n symb =

i f n = l
then {(symb)}
else {(symb) (match n-1 symb)};

will generate a rule to recognise a specified length sequence for a given symbol. This may be used
to recognise:

a.b.c ~

for any given 'n';

ok
def anbncn a b c n = {(match n a) (match n b) (match n c)};
ok
def xnynzn--

let x = "x"
and y = "y"
and z = "z"
in anbncn {x} {y} {z};

ok
xnynzn 2 "xxyyzz";
([x "'x"]:[x "'x"]:[y "y"]:[y "y"]:[z "z"]:[z "z"]:):

Recognising:

anbnc n

for an unknown 'n' is more tricky. It might appear that:

ok
def anbncnstar a b c n =

{(anbncn a b c n) I (anbncnstar a b c n + 1)};

would do the trick. This is, alas, only a partial solution. If the string being checked is not of the
fo rm:

anbnc n

then there is no value of 'n' for which the first rule option can succeed and the rule will recurse
indefinitely.

Such context sensitive checking requires the passing of information about the parse from one
part of a rule to another. Context free rules have no mechanism for information passing other than
that an earlier rule part must have succeeded for a later rule part to be reached. This may be
overcome within a functional framework by making the application of each rule part explicit and
then generating and passing information between them through intermediate processing. In effect,
information from the start of the parse is used to select or construct appropriate rules from the
rest of the parse.

For example, to return to:

a,bOc .

where 'n' is unknown until the sequence has been examined, processing the 'a's may be used to
guide the construction of a new rule to recognise the corresponding number of 'b's and ~c's.

For each 'a', a new 'b' is added to the rule for 'b's and a new 'c' is added to the rule for "c's.
At the same time, the tree for the 'a's is accumulated. When all the 'a's have been found, a rule

Interpreters from functions and grammars 99

is built to recognise the same number of "b's and "c's. The trees for the 'a's and for the "b's and
'c's are joined to form the final tree.

ok
def an a b c atree bn cn text =

let tl:sl = a text
in

if t l ()()
then an a b c (hd tl):atree {(b) (bn)} {(c) (cn)} sl
else

let t2:s2 = {(bn) (cn)} sl
in (append atree t2):s2;

ok
def anbncn a b c = a n a b c () {} {};

These approaches are used in the next two sections for parsing context sensitive aspects of
programming languages.

5. C H E C K I N G VARIABLE A S S I G N M E N T BEFORE USE

5.1 Assignment checking

Considering the language TINY from section 4 with the additional requirement that an identifier
in an expression must have appeared on the left had side of a preceding assignment. This may be
specified in Navel in a manner similar to dynamic syntax [20, 21] by constructing rules from
assignments for use in checking subsequent commands.

Initially, a base may only be a digit ~3r a 'read':

ok
def base= {"0" I "1" [" read"} ;
ok
defexp = {base " + " e x p l base};
ok
def comm = {word ": = " exp I " o u t p u t " exp};

and there are no assigned variables:

ok
def assigned = fail;

The rule for assigned variables is extended by the function:

ok
def new id old = {(id) [(old)};

which when passed an identifier and the previous rule for assigned variables returns a rule which
tries to recognise that identifier before using the previous assigned variable rule.

When an assignment has been recognised, the identifier is checked to see if it is recognised by
the rule for assigned identifiers. If it is then it has been assigned already and the current rules for
assigned identifiers and commands are returned. Otherwise, the identifier is added to the rule for
assigned identifiers which is then used to build a new rule for recognising commands:

ok
def check id:assigned:comm =

let t:r = assigned id
in

if t()()
then assigned:comm
else

let newassigned = new id assigned
in newassigned:(makecomm newassigned);

100 GREG MICHAELSON

ok
def makecomm assigned =

let b a s e = {assigned I '0"" I "1"" I " 'read"]
and exp = {base " ' + "" exp I basel
and c o m m - - [w o r d "': = "" exp I " 'output" exp l
in {comm};

5.2 Command sequence and program checking

Comm and sequences are recognized by a rule that picks up the first command. If it is the last
command in the sequence then the tree for it is returned. Otherwise, if it is an assignment then
new command and assigned identifier rules are constructed. The commands rule is called recursively
to recognise the rest of the sequence and a final tree is constructed and returned:

ok
def comms assigned:comm text =

let t l : r l = c o m m text
in

if tl = ()
then ():text
else

if r l - - ()
then ([comms tl]:):
else

let t'~:r2 =
rule t l " comm of
{word "': = " exp}-) comms (check (id t l) :assigned:comm) r l ,
comms assigned:comm rl

in
if t 2 = ()
then ():text
else ([comms (hd tl):t2]:):r2;

ok
def id c = c ^ comm ^ word;

The rule for a program is constructed from the rule for commands with the initial assigned identifier
and command rules:

ok
def p rogram = comms assigned:{comm};
ok
program "'a: = 0 b: = a";
([comms

[comm
[word "a"l:":---":[exp [base "0":]:]:

1:
[comms

[comm
[word "b"] :" : = ":[exp [base [assigned "a":]:]:]:

]:
]:

1:
):

The interpreter can now be simplified with the removal of checks for errors from unassigned
identifiers.

Interpreters from functions and grammars I01

5.3 Checking in syntax and semantics

In the TINY semantics in Section 4, the update function:

def u f r v I v=
lam arg.(if arg = lv

then rv
else f arg);

was used to extend the memory function. Here:

def new id old = {(id) I (old)};

is used in the same way to extend rules. "Iv' and ' f ' in the update function correspond to "id' and
'old" in the rule extender, The return of ' rv ' for 'Iv' in the update function corresponds to the return
of a tree for the successful recognition of 'id'. There is no equivalent for "arg' because rules have
implicit formal parameters. Here it may be made explicit by:

def new id old =
lain arg.({(id) L (old)} arg);

The use of the update and rule extender functions are further analogous. In TINY, assignments
both introduce and update name/value associations For a name in an expression, the memory
function is used to find the corresponding value. If the required name had not been introduced
by a previous assignment then the memory function would return 'unbound'. Assignment before
use is a syntactic requirement and is irrelevant for semantics [2] but the use of a memory function
implicitly encompasses the checking of this requirement.

6. D E C L A R A T I O N AND TYPE C H E C K I N G

6.1 Syntax for declared and typed variables

The following rules describe partially the syntax of a language fragTnent with declarations.
assignment and integer arithmetic:

ok
def program = {declarations statements};
ok
def declarations = {declaration {declarations I }}};
ok
def declarat ion= {{"long" I "short"} word};
ok
def statements = {statement {statements I {I}}:
ok
def statement = {word ": = " expression}:
ok
def expression = {base { " + " base I { }}};
ok
def base = {word [number ["(" expression ")"};

It is required that no identifier may appear in more than one declaration and that an identifier must
appear in a declaration before it appears in a statement. It is intended that the language should
enable 'long' and 'short' precision arithmetic, that variables be typed according to the precision
of the values they may hold and that 'long' values may not be coerced to 'short'. Thus if the
identifier on the left of a statement appears in a declaration preceded by "short" then all identifiers
in the expression on the right of the statement must also appear in declarations preceded by
"short".

6.2 Denotational semantics with declarations

For a denotational semantic definition of an imperative language with declarations it is
sometimes convenient to model name/value associations in two stages, mediated by addresses,

CL I I 2--D

102 GREG MICHAELSON

through an environment function which records name/address associations and a store function
which records address/value associations. When a declaration is encountered, a new name/address
association is added to the environment. When a name is encountered in a command, the
environment is used to find the associated address. If the name is in an expression then the address
is used to find the corresponding value from the store. If the name is that of a variable which is
being assigned to then a new address/value association is added to the store.

As with the memory function for TINY, environment use may encompass name checking. If a
name in a command has not appeared in a preceding declaration then the environment will not
have an address for it. Similarly, if a name in a declaration has appeared in a preceding declaration
then the environment will already have an associated address for it. The environment function may
also be extended to enable the recording and checking of type information for names.

6.3 Declaration checking

Name checking may be transferred to the syntax with the construction of appropriate rules from
declarations. For the above language, separate rules will be used to check whether or not identifiers
have been declared as "'short" or "'long". Initially, nothing has been declared and so these rules
should not match anything:

ok
def init_short = fail;
ok
def init_long = fail;

As before, rules are extended with the function:

ok
def new old name =-{(name) [(o l d) } ; -

When a declaration is found, the rules are used to check the identifier for re-declaration and the
appropriate rule is then extended with the identifier:

ok
def decls string:long:short =

let tree:rest = {{"short" I "long"} word} string
in

if tree = ()
then long:short:string
else

if hd(long tree " w o r d) () () I hd(short tree ^ w o r d) () ()
then long:short:string
else

rule tree of
{"long" word}-) decls rest:(new long tree ^ word):short,
{"short" word}-) decls rest:long:(new short tree ^ word),
"never going to reach h e r e . . . " ;

6.4 Assignment and program checking

Separate rules are required to recognise assignment to variables declared as "long' and 'short'.
They are built from a schema which defines local rules for recognising expressions:

ok
def makeassign nametype basetype =

let base = {(basetype) J number f "(" expression ")"}
and expression = {base { " + " base I { }}}
in {(nametype) "': = " expression};

Programs are parsed by a function which uses 'decls' to parse the declarations and construct the
rules for 'long's and "short's. They are then used with the assignment schema to construct the

Interpreters from functions and grammars 103

assignment rules which are incorporated into local rules for recognising statements:

ok
def program string =

let long:short:rest = decls string:init_long:init_short
in

let lassign = makeassign {long} {long ! short}
and sassign = makeassign {short} {short}
and statement = {lassign I sassign}
and statements = {statement {statements [{ }}}
in statements rest;

ok
program "'short a long b short c c: = a + a b: = c + b";
([statement

[sassign
[short "c":]:

[exp [base [short "a":]:]:" +": [base [short "a":]:]:]:
]:

]:
[statements

[statement
[lassign

[long "b":]:

[exp [base [short "c":]:]:" +" : [base [long "b":]:]:]:
]~

]:
1:

):

To simplify the example there are no diagnostics and no tree is built for declarations: these could
easily be added.

7. C O N C L U S I O N S

The approaches described here could be used with any language with general pattern recognition
facilities. For example, string scanning in Icon [22] is ideal for context free parsing and may be
combined naturally with list construction for tree production. Prolog [23] provides context free
grammar rules as syntactic sugaring of the underlying pattern recognition aspects of unification.
Navel's novelty lies in the integration of grammar rules as first class objects within a functional
language.

Work continues on the use of higher order grammar rules in interpretive language imple-
mentations, for example for handling forward references and to associate abstract and concrete
syntax. Another area of interest is the more general use of grammar rules for the direct construction
of data structures from data specifications.

8. S U M M A R Y

This paper discusses Navel, a functional language which is intended for use as an interpreter-
interpreter to simplify the construction of interactive tests intepreters from formal language
definitions.

Denotational semantics provides a rigorous and versatile methodology for defining pro-
gramming languages. However, current production compiler generators are not suitable for direct
experimentation with such language definitions because their semantic definition facilities are based
on imperative languages which do not correspond closely to denotational semantics semantic

[04 GREG M[CHAELSON

equations. The compiler generator SIS is designed for use with denotational semantic definitions
but is based on the separation of lexicaL syntactic and semantic formalisms which may restrict its
flexibility.

Pure functional languages are very similar to the semantic equations of denotational semantics
but lack facilities for syntactic specification. Navel is a functional language with fully integrated
grammar rules, implemented in an interactive environment. Its use enables the unitary expression
of the syntactic as well as the semantic aspects of a denotational language definition. Although
there is some loss of rigour, interpreter construction is simplified greatly. Here, Navel is illustrated
through examples and used to construct an interpreter from the denotational semantic definition
of a simple assignment language.

Denotational semantics does not address the context sensitive aspects of programming language
syntax. Navel provides a means to handle context sensitivity through functional abstraction over
grammar rules to construct rule schemas, which are analogous to higher order functions. Here, this
approach is presented through discussion of the classic 'a"b~c "' problem and is used to process
assignment and declaration before used, and simple type matching.

Acknowledgements--This work was started in the Department of Computing Science, University of Glasgow and is
continued in the Department of Computer Science, Heriot-Watt University. The author wishes to thank Bdl Findlay
(Glasgow). David Watt (Glasgov,). Paul Chisholm (Heriot-Watt) and Stuart Anderson (Heriot-Watt) for much fruitful
d~sputation, Zdrav Podolski (Glasgow,,) and Chris Miller (Heriot-Watt) for making UNIX intelligible and David Watt, Paul
Ch,sholm, Stuart Anderson and Hov~ard Williams (Heriot-Watt) for chewing through previous drafts of this paper.

R E F E R E N C E S

I. Stoy J Denotational Semantics: The Scott-Strachey Approach to Programming Language Theoo'. MIT Press.
Cambridge. Mass. (1977).

2. Gordon M. The Denotational Description of Programm#tg Languages. Springer, New York (1979).
3. Tennent R. Language design methods based on semantic principles. Acta Informatica 8, 97-112 (1977).
4. Gries D. Compiler Constructton for Digttal Computers. Wdey, New York (1971).
5 Johnson S, Yacc: yet another compiler compiler No 32, Computing Science Technical Report, Bell Laboratories.

Murray Hill, NJ 07974 (1975).
6. Hopcroft J. and Ullman J. Formal Languages and their Relation to Automata. Addison-Wesley, Reading, Mass. (1969).
7. Sethi R. Control flow aspects of semantic-directed compiling. ACM Trans. Programming Lang. Systems 5(4), 55'4-595

(1983).
8. Mosses P. SIS--Semantics lmplementatton System Reference Manual and User Guide. DAIMI MD-30, Computer

Science Department, Aarhus University, Denmark (1979).
9. Turner D. SASL Language Manual. Department of Computational Science, University of St Andrews, St Andrews,

Scotland (1975).
10. M,chaelson G. User Gutde to NAVEL. Department of Computer Science, Heriot-Watt University, Endmburgh,

Scotland (1984)
11. Friedman D. and Wise D. CONS should not evaluate its arguments. In Automata, Languages and Programming (Edited

by Milner R. and Michaelson S.), pp. 257-284. Endinburgh University Press, Edinburgh, Scotland (1976).
12. Burstall R., Collins J. and Popplestone R. Programming in POP2. Edinburgh University Press, Edinburgh, Scotland

(1977).
13. Naur P. (Ed.), Revised report on the algorithmic language ALGOL 60. Commun. ACM 6(1). 1-17 (1963)
14. Turner D. SASL Language Manual. CS/79/3, Department of Computational Science, University of St Andrews, St

Andrews, Scotland ([979).
15. Foderaro J. and Sklowar K. The FRANZ LISP Manual. University of California at Berkeley (1983).
16. Pereira F. CProlog User's Manual Verston 1.1 EdCAAD, Department of Architecture, University of Edinburgh,

Edinburgh. Scotland (1982).
17. Wegner P. The Vienna defimtion language. ACM Comput. Surv. 4(I), 5-63 (1972).
18. McCarthy J. The LISP 1.5 Programmers" Manual. MIT Press, Cambridge, Mass. (1969).
19. Cleaveland J. and Uzgahs R. Grammars for Programming Languages, 4. Elsevier Computer Science Library

(Programming Languages Series), Amsterdam (1977).
20. Hanford K. and Jones C. Dynamic syntax: A concept for the definition of the syntax of programming languages. TR

12.090, IBM Tech. Rep. (1971).
21. Ginsburg S. and Rounds E. Dynamic syntax specification using grammar forms. IEEE Trans. Software Engng SE..4I 1).

44-55 (1978).
22. Griswold R. E. and Griswold M. T. The Icon Programming Language. Prentice-Hall, Englewood Chffs, N.J. (1983).
23. Clocksin W. F. and Mellish C. S. Programming in Prolog. Springer, Berlin (1981).

About the Author--GgEGOR'~ JoH'q MICHAELSON has a B A. in Computer Science from the Umvers~ty of
Essex (1973) and an M.Sc. in Computational Science from the University of St Andrews (1982). He has
taught Computer Studies at Napier College, Edinburgh. Computing Science at the University of Glasgow,
and is at present a Lecturer in Computer Science at the Heriot-Watt University, Edinburgh. His current
research is into the use of formal definmons in programming language implementations.

