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1. Overview 

 

Teaching of programming has long been dominated by language oriented approaches, 

complemented by industrial design techniques, with little attendant pedagogy. An 

influential alternative has been Papert's constructivism, through playful exploration of 

constrained microworlds. The archetypal microworld is based on turtle graphics, as 

exemplified in Papert's Logo language. Here, students compose and repeat sequences 

of operations to steer and move a turtle that leaves a trail behind it.  Contemporary 

graphical environments, like Alice and Scratch, augment the turtle world with 

colourful interacting animated avatars. 

 

However, the microworld approach scales poorly to systematic programming driven 

by problem solving. Many students find the transition from novice coding to problem 

solving oriented programming problematic (Moors and Sheenan, 2017). Furthermore, 

microworld languages tend to be relatively impoverished, lacking types and data 

structures. 

 

Objects First is a contemporary approach to teaching programming through object 

orientation, which seeks to bridge microworlds and systematic programming. Here, 

students explore, modify and extend pre-formed objects analogous to microworlds, in 

constrained subsets of full strength languages, typically Java. However, there is 

growing evidence that, as with the original microworlds, some students find the 

transition to problem solving based programming difficult. 

 

Computational thinking (CT), as popularised by Wing, offers an approach to problem 

solving in which programming is the final stage. CT has been widely heralded as a 

new pedagogy of programming. However, interpretations of CT vary widely from a 

loose assemblage of techniques to a systematic discipline. 

 

In this chapter, I will argue that both microworlds and Objects First build superficial 

programming skills at the expense of deeper competences in problem solving. I will 

further argue that systematic CT, driven by seeking patterns in concrete instances, 

offers a way to refocus on problem solving for programming. 

 

What follows may seem a bit disjointed but it gets there in the end. My approach is a 

mix of pedagogy, history and opinion: I trust it’s clear which is which.  

 

2. Microworlds and Logo 

 

Since Wing’s highly influential intervention (2006) there has been worldwide interest 

in Computational Thinking (CT) as a pedagogy of problem solving. Tedre and 



2 

 

Denning (2016) offer a succinct account of CT before and after Wing. In particular, 

they draw attention to the key role of Papert in envisioning CT.  

 

Papert (1993) was a proponent of Piaget’s constructivist model of cognitive 

development. Here, a child’s transition, from the pre-adolescent concrete to the adult 

abstract operational stages of though, is informed by learning by discovery, termed 

bricolage, that is the exploration of different assemblies of available skills. Thus, 

Papert expounded a notion of problem solving based on combinatorial thinking, i.e. 

systematic exploration, in some microworld  i.e. a constrained domain, through 

thinking about thinking i.e. debugging an incorrect solution to find a better one. 

 

This approach derives from early Artificial Intelligence research. In their report on 

activities in the MIT Ai laboratory, Minsky and Papert (1971) say that: 

 

 “…we see solving a problem often as getting to know one's way around a 

"micro-world" in which the problem exists.” (Minsky and Papert ,1971) (cited 

in (Weir, 1987, p.12)). 

 

and that: 

 

“We think that learning to learn is very much like debugging complex 

computer programs. To be good at it requires one to know a lot about 

describing processes and manipulating such descriptions.” (italics in original) 

(Minsky and Papert ,1971)  

 

Hence, a notation for describing microworld processes, and an environment for 

manipulating process descriptions, could facilitate both combinatorial thinking and 

thinking about thinking. 

  

Papert was highly enthused by the educational possibilities offered by mass access to 

computers with graphical capabilities. He envisaged how what we now call personal 

computing facilities might be used to embody and animate microworlds for teaching 

children. 

 

Primarily concerned with mathematics education, Papert’s Logo programming 

language was intended for manipulating a geometric microworld of turtle graphics. 

His idea was that, by acting out the behaviours they wished the turtle to perform, a 

neophyte could learn how to assemble rules characterising those behaviours in the 

microworld on the computer. Rule assemblies could then be falsified by comparing 

the behaviour of the on-screen turtle with the intended behaviour, for reformulation. 

 

Papert promoted the benefits of: 

 

“…deliberately thinking like a computer, according, for example, to the 

stereotype of a computer program that proceeds in a step-by-step, literal, 

mechanical fashion. There are situations where this style of thinking is 

appropriate and useful. Some children’s difficulties in learning formal subjects 

such as grammar or mathematics derive from their inability to see the point of 

such a style.”(italics in original) (Papert,1993, p.27). 
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While Papert is somewhat vague about his pedagogy, his collaborator Weir (1987) 

thoroughly explored how best to use computers to support  “a kind of messing about”. 

For Weir, a microworld is a: 

 

“small, coherent domain of objects and activities implemented as a computer 

program and corresponding to an interesting part of the real world” (italics in 

original)(Weir, 1987, p.12) 

 

She went on to elaborate the key features of computer based environments for 

exploring a microworld, of which I think the following are the most pertinent: 

 

“1. …as the learner interacts with environment (sic), she “manipulates” 

concrete embodiments of the concepts to be learned; she “experiences” the 

concepts directly, not through language about them. 

 

2. … The idea is to juxtapose experience in the real world with experience in 

the computational world, so that each complements the other. 

 

3. A cluster of activities is made available so that any one concept is met in 

several different contexts and in different combinations. 

… 

5. It is useful to choose aspects of the environment about which the learner is 

likely to have intuitions, to have naïve theories arising from her “street 

sense”… 

… 

7. There should be several levels of formal description, so that a student can 

move backward and forward from experiential to formal modes of operation. 

,,, 

9. It is to be expected that there will be some things you CAN’T do easily in a 

particular microworld.” (Weir, 1987, p.105). 

 

We can see in this characterisation the essential elements of the Object First approach, 

which we will explore below. 

 

Logo’s design was strongly influenced by its MIT stablemate LISP (Berkley, 1964). 

Logo (McArthur, 1973) is procedural rather than declarative, and has a richer syntax 

than LISP, making it more suitable for use with beginners. Nonetheless, like LISP, 

Logo is untyped and uses a list form for all data structures. Like LISP, while Logo is 

Turing complete, its expressiveness depends heavily on a substantial vocabulary of 

symbolic operators.  

 

The typical use of Logo for teaching is to start with sequences of concrete turtle 

operations, introduce fixed repetition, and then explore abstraction through naming 

sequences as procedures, and generalising operation arguments as variables. Weir 

notes that: 

 

“Using variables in this way provides a concrete way of approaching the 

abstract notion of an algebraic variable as it occurs in school mathematics.” 

(Weir, 1987, p23). 
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I think that abstraction through the introduction of variables is the key link from 

coding to programming. However, neither Papert nor Weir offer any guidance for 

how to do so. We will return to this below. 

 

It is important to remember that Logo was intended to support a constructivist 

pedagogy that integrated combinatorial thinking and thinking about thinking, not as a 

programming language per se.  Weir seemed to regret the latter use: 

 

“The books that have appeared since tend to regard “doing Logo” as learning 

to program. But what about acquiring aesthetic and scientific concepts?” 

(Weir, 1987, p.11). 

 

 

Reflecting on his widely read book Mindstorms, Papert (1993) acknowledged that: 

 

“Mindstorms unquestionably has a bug for giving prominence to structured 

programming as a model for thinking about thinking … although Mindstorms 

emphatically proposes the idea of “bricolage” as  a model for general scientific 

theorizing, this idea comes late in the book and is not developed as an 

alternative style of programming…” (Papert, 1993, p.xv). 

 

There is an enormous literature about Logo and its deployment, much supportive and 

much critical. There is also an enormous literature about constructivist pedagogy, 

again much supportive and much critical.  I will not explore either here.  

 

Nonetheless, it is salient to reiterate that, in its constructivist conception, Logo was 

developed to facilitate learners making the transition through bricolage from pre-

adolescent concrete thinking to adult abstract thinking. Little consideration was given 

to its use with adolescents and adults, like senior secondary and undergraduate 

students, who might be expected to have attained abstract thought, and for whom the 

bricolage learning style may not be appropriate.  

 

3. From Logo to Objects 

  

From the outset, Logo was widely adopted for school use, at least by schools that 

could afford the required computing and support infrastructure. For example, an early 

report for Alberta Education (Kieran, 1984) recommends its deployment across 

schools, at all levels, for a variety of topics. However, the report is guarded about the 

use of Logo in Computer Literacy and Computer Science, beyond early years, and 

recommends avoiding premature use of more advanced features like:  

 

“procedures, sub-procedures, variables, recursion, or top-down programming” 

(Kieran, 1984, p.23). 

 

That is, the use of abstraction mechanisms are to be delayed. 

 

Within mainstream Computing education in Higher Education (HE), Logo had 

considerably less purchase. Programming courses had become universal from the 
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mid-1960s onwards, with content and pedagogy driven largely by changing industrial 

practices (Michaelson, 2015).  

 

Nonetheless, the motivations behind Logo were taken seriously by both Computing 

educationalists and language developers. In particular, Logo influenced the evolution 

of the general purpose object oriented Smalltalk, at Xerox PARC in the early 1970s 

(Kay, 1993).  

 

Object orientation (OO) long pre-dates Logo: the Simula languages (Dahl, 2004) were 

developed in the 1960s for discrete event simulation, and Simula 67 was the first 

widely used OO language. Kay, Smalltalk’s designer, acknowledged Siumla as a key 

influence on Smalltalk (Kay, 1993). 

 

Kay, having encountered  Piaget’s and Papert’s pedagogies through Minsky, visited 

Papert’s team in 1968, and was impressed by Logo’s use with children in local 

schools. His group started teaching Smalltalk to school children from 1973, deploying 

what were effectively microworlds to underpin learning (Kay, 1993).  

 

Smalltalk is a far more expressive language than Logo, but, like Logo, was 

implemented from the start in a visual environment.  Indeed, one of the first classes 

constructed in Smalltalk was for Logo turtle graphics (Kay, 1993).   

 

However, Kay observed that non-programmer adults found the transition from very 

simple to somewhat more complex problems very hard. He analysed a program he 

thought straightforward to construct, and found 17 “non-obvious ideas”: 

 

“And some of them were like the concept of the arch in building design: very 

hard to discover, if you don’t already know them.” (Kay, 1993, p.82). 

 

To address this, Kay’s team decided that design should be taught explicitly. His 

collaborator Goldberg introduced design templates as intermediary forms, to aid 

decomposing a problem into classes and messages; this approach proved successful.  

 

We could view the use of design templates as a form of scaffolding. This 

constructivist concept was elaborated by Wood, Bruner and Ross (1976), building on 

Vygotsky’s notion of zones of proximal development (Vygotsky,1978), in turn 

developed as a critique of Piaget: 

 

“…the zone of proximal development…is the distance between the actual 

developmental level as determined by independent problem solving and the 

level of potential development as determined by problem solving under adult 

guidance or in collaboration with more capable peers.” (italics in original). 

(Vygotsky, 1978, p.86).  

 

Thus, Wood et al argued that traversing a zone of development requires scaffolding to 

facilitate it: 

 

“This scaffolding consists essentially of the adult "controlling" those elements 

of the task that are initially beyond the learner's capacity, thus permitting him 

to concentrate upon and complete only those elements that are within his range 
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of competence … It may result, eventually, in development of task 

competence by the learner at a pace that would far outstrip his unassisted 

efforts.” (Wood et al, 1976, p90). 

 

We will return to this notion below. 

 

4. OO and Objects First 

 

Through the 1970s and 80s, mainstream HE Computing continued to be led by 

industrial imperatives. Impressionistically, while COBOL, and Algol descendants like 

Pascal, still predominated, we can observe a steady transition to the OO language 

C++, driven by the rapid uptake of the free, platform independent UNIX operating 

system from Bell Laboratories.  

 

UNIX was written in C and ran on mini-computers and workstations, offering 

relatively low cost multi-access, appealing to HE, and a robust software engineering 

environment, appealing for industrial computing. In turn, C++ was derived from C, 

and, like Smalltalk, influenced by Simula 67 (Stroustrup, 1987). 

 

In the same period, emerging industrial approaches to OO design, for example 

Rumbaugh et al’s (1990) object modelling technique (OMT), were also adopted in 

HE. Typically, however, a C++ subset was used to teach traditional procedural 

programming prior to, and independently of, OO. Smalltalk was not widely adopted. 

 

A fundamental  change in undergraduate Computing education came in the mid-

1990s, with the widespread adoption of SUN Microsystem’s OO language Java 

(Gosling et al,1996), eventually displacing COBOL for commercial computing, and 

rapidly gaining use for wider software engineering alongside C++.  

 

Java is disconcertingly like C in appearance, but had OO as the key language design 

principle from the outset. Unlike Smalltalk and C++, Java supports single rather than 

multiple inheritance, making it simpler for OO teaching. 

 

Java was complemented by the integration of similar but competing industrial OO 

methodologies, including OMT, into the Unified Modelling Language (UML)  

(Booch et al,2005) which rapidly became, and remains, the standard OO design and 

education practice.  

 

Herein lie the roots of Objects First (OF). Many practitioners noted that students who 

had already been exposed to procedural programming found the subsequent adoption 

of OO difficult. It was thought that this might be circumvented by starting with OO. 

See for example (Wallace and Martin, 1997). Thus, Java and OO with UML quickly 

displaced procedural programming as the initial undergraduate teaching methodology. 

 

Nonetheless, constructivist thinking, and Papert’s pedagogy, were still current in 

Computing education. For example, Brusilovsky et al (1997) critiqued general 

purpose languages as being too large, over oriented to numeric and symbolic 

computation, and lacking visualisation. Citing Logo as a major influence, they 

advocated the use of mini-languages oriented to constrained domains, much like 
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microworlds, for teaching programming principles, in visual environments. They also 

advocated the use of subsets of full languages, which they term sub-languages.  

 

Echoing Papert and Weir, Brusilovsky et al commented that: 

 

“Note that the application of a mini-language is never the goal itself, but a 

method of mastering a set of notions and skills. If this set contains not only 

programming concepts, but also some concepts from another domain, a mini-

language might be useful to learn this domain (as Logo is used to learn 

geometry).” (Brusilovsky et al, 1997). 

 

Now, just before the emergence of Java, Kölling, Koch and Rosenberg (1995) 

critiqued extant OO languages, like C++, Smalltalk and Eiffel, as too complex, and 

their development environments as too unwieldy, for initial teaching. Subsequently, 

Kölling and Rosenberg built the Blue OO teaching language (Kölling and 

Rosenberg,1996a) and development environment (Kölling and Rosenberg,1996b). 

Serendipitously, Blue shares two key characteristics of Brusilovsky et al’s (1997) 

recommendations: a small language intended to aid learning, implemented in a simple 

visual environment to support experimentation. 

 

As Kölling acknowledges (2016), academics face an uphill struggle to broaden the 

use of novel in-house teaching languages, to compete with industrial  languages. For 

example, in 2017, Cass (2017) reported that the top ten languages for IEEE Spectrum 

readers were Python, C, Java, C++, C#, R, Javascript, PHP, Go and Swift. For 

comparison, Murphy et al (2017) reported that, in UK Universities in 2016, the top 

ten teaching languages were Java, Python, C++, C, Javascript, Haskell, C#, 

Processing, Matlab and PHP. 

 

Thus, the promising outcomes from experiences with Blue were subsequently 

revisited by Barnes and Kölling (2003), in the BlueJ environment for teaching initial 

OO in Java.  

 

BlueJ was explicitly developed to support OF (Kölling, 2016, p.13). In their 

guidelines for teaching with BlueJ, Kölling and Rosenberg (2001) observe that: 

 

“With BlueJ we can really interact with objects as the very first thing we do. 

Since objects can be created interactively, the first activity for students should 

be to open an existing project, create a few objects, make method calls on 

these objects and inspect the objects’ state. Here, we really interact with 

objects before introducing any other concept. Objects come truly first.” 

(Kölling and Rosenberg, 2001, p.2). 

 

This serendipitously met Brusilovsky et al’s (1997) third key recommendation: a 

microworld like approach to programming education.  

 

In a typical curriculum based on OF, as exemplified say by (Barnes and Kölling, 

2003), students are presented with a programming environment for visualising 

objects, pre-primed with some simple class. Students start by constructing instances 

of the class, and invoking methods to learn what changes they cause. Next, they start 

to solve problems that involve modifying instances in specified ways, by sequencing 
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method invocations.  Students then explore the code behind the methods, and, with 

appropriate guidance, modify methods to change their behaviours, and construct new 

methods with new behaviours. 

 

This approach is far more general than the original microworlds conception. In 

principle, the scope and properties of the introductory class of objects is limited solely 

by the instructor’s ingenuity and skill, rather than being constrained by a domain 

oriented notation like the original Logo.  

 

OF in general, and BlueJ specifically, have proved highly popular, and both are still 

widely used in HE. Nonetheless, the efficacy of OF is controversial. 

 

5. Critiques of Objects First 

 

Hu (2004) provides a thorough survey of limitations to OF. In particular, he observes 

that OF gives an inadequate grasp of basic algorithms, because arrays are covered 

late.  

 

Of interest from a constructivist perspective, and contrary to my suggestion above, Hu 

argues that most young adults lack appropriate abstract thinking capabilities for OO: 

 

“When addressing the reasons students were unable to see forest in their 

programming activities, Reek (1995) pointed out that “the problem isn’t that 

the students are stupid, but rather that at age eighteen their thinking maturity is 

still at the concrete level”. Teaching objects-first ignores this fact and thus 

creating an environment that forces students to think at a higher level of 

abstraction, which is often the point where the confusion starts.” (Hu, 2004, p. 

212). 

 

To me, this suggests that OF does not adequately scaffold abstraction. However, Hu 

recommends a return to procedural programming for beginners, followed by OO. 

 

Lister et al’s (2006) comprehensive, but dense, analysis of the SIGCSE mailing list 

discussion of OF, which considered 99 postings by 39 people, reached no definitive 

conclusions: 

 

“There is a fairly strong consensus that programming is hard both to teach and 

to learn, but the case that objects-early is harder (or easier) than objects-late 

has not yet been made conclusively.” (Lister et al, 2006, p.150). 

 

However, they make the interesting observation that: 

 

“A key distinction is evident from the debate, however. Two computing sub-

disciplines are contending over the role of programming as: 

1. A manipulative tool for the conduct of algorithmic thought experiments in a 

purely scientific CS model, as opposed to 

2. The centrality of design in the construction of large scale software systems 

by professional software engineers.” (Lister et al, 2006, p. 159). 
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Finally, in their well designed study, Ehlert and Schulte (2009) compared 

programming learning outcomes for 17 year olds following either an OF or a 

procedural approach in a first programming course. Both cohorts covered the same 

topics overall, but in different orders. For OF, students began with instance 

experimentation, before moving on to variables and control structures. For the 

procedural approach, students began with variables and control structures, meeting 

OO much later. The evaluation found that, at the end of the study, the OF cohort had 

somewhat higher attainment of overall concepts than the procedural cohort, but, in a 

follow up eight weeks later, there was no significant difference in attainment.  

 

Curiously, both cohorts found arrays and association difficult: the procedural cohort 

met arrays three topics before the OF cohort, and both met association as the final 

topic. To me, this suggests that neither approach provided appropriate scaffolding. 

 

6. Computational Thinking, Papert and Objects First 

 

Let us now return to  Computational Thinking (CT). In popular discourse, we can 

discern a spectrum from what we might call weak to strong CT.  

 

At one end, weak CT is toolkit of general purpose, domain independent problem 

solving techniques that derives from Computing. We have seen that for Papert (1993) 

problem solving involves “thinking like a computer”. Alternatively, CT may be 

presented as thinking like a computer scientist. For example, for Google (2017):  

 

The basic skills of computer scientists and the way they think are 

computational thinking. The area in which you apply CT can be any subject 

area or topic, even the subject area or topic you teach.  

 

Denning, Tedre and Yongpradit (2017, pp. 32-33) offer a robust, if scattergun, 

criticism of the alleged primacy and all embracing nature of CT.  

 

Contrariwise, Denning (2017) critiques what he sees as too narrow a conception of 

CT as problem solving: 

 

“Underlying all the claims is an assumption that the goal of computational 

thinking is to solve problems. Is everything we approach with computational 

thinking a problem? No. We respond to opportunities, threats, conflicts, 

concerns, desires etc by designing computational methods and tools - but we 

do not call these responses problem-solutions. It seems overly narrow to claim 

that computational thinking, which supports the ultimate goal of 

computational design, is simply a problem solving method.” (Denning, 2017, 

p39). 

 

Between weak and strong CT, Yadav, Stephenson and Hong (2017) list nine core 

concepts from the Computer Science Teachers Association/International Society for 

Technology in Education (CSTA/ISTE):  

 

“data collection, data analysis, data representation, problem decomposition, 

abstraction, algorithms and procedures, automation, parallelization, and 

simulation.” (Yadav et al, 2017, p. 57).  
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They also list six CT practices from a College Board/National Science Foundation 

standalone course:  

 

“connecting computing, creating computational artefacts, abstracting, 

analyzing problems and artefacts, communicating, and collaborating.” (Yadav 

et al, 2017, p. 58).  

 

While this offers more precision, nonetheless, on this basis just about any educational 

activity could be claimed to embody CT. 

 

At the other end of the spectrum, strong CT is a systematic discipline of problem 

solving. Thus, Kao (2011), following Wing (2006), presents the four key aspects of 

CT as: 

 

“ … 

 Decomposition: the ability to break down a problem into subproblems. 

 Pattern recognition: the ability to notice similarities, 

differences, properties, or trends in data. 

 Pattern generalization: the ability to extract unnecessary details 

and generalize those that are necessary in order to define a 

concept or idea in general terms. 

 Algorithm design: the ability to build a repeatable, step-by-step 

process to solve a particular problem.” (Kao, 2011,p6).  

 

BBC Bitesize(2017) repeats these almost verbatim, identifying Kao et al’s  (2011) 

pattern generalisation as abstraction: 

 

“There are four key techniques (cornerstones) to computational thinking: 

 decomposition - breaking down a complex problem or system into 

smaller, more manageable parts 

 pattern recognition – looking for similarities among and within 

problems 

 abstraction – focusing on the important information only, ignoring 

irrelevant detail 

 algorithms - developing a step-by-step solution to the problem, or the 

rules to follow to solve the problem” (BBC Bitesize, 2017) 

 

Note that these aspects lie at the core of the CSTA/ISTE characterisation. Curiously, 

Google(2017) includes a variant of Kao’s definition, while also repeating the 

CSTA/ISTE list. 

 

Both Papert’s approach and OF are based on some pre-given decomposition of a 

domain, and scaffold algorithm formation through combinatorial thinking, that is by 

exploring the efficacy of different groupings of rules (Papert) or methods (OF) against 

some problem requirement.  

 

Here, I think that OF offers little advance on Papert. In particular, there seems to be 

little principled consideration of what constitute key problem solving and 

programming concepts, or how their acquisition should be staged. Thus, there are no 
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explicit criteria for choosing an initial object class, or deploying it to scaffold concept 

acquisition beyond method sequencing. 

 

Furthermore, neither approach: 

 scaffolds reflection on the efficacy of potential solutions found by discovery, that 

is thinking about thinking; 

 has anything to say about pattern identification or abstraction; 

 offers any guidance on decomposition of a novel problem domain from scratch. 

  

7. Scaffolding programming with patterns and computation structures 

 

While I have critiqued Kao’s characterisation as not taking adequate account of 

information in problem solving (Michaelson, 2015), I am very much of the strong CT 

persuasion.  

 

I also see problem solving as the heart of programming. However, this view is by no 

means universal. 

 

For example, Guizdal (2017) suggests that starting with problem solving in teaching 

Computer Science may be counter productive. Citing Sweller (1988), he asserts that:  

 

“Problem-solving creates enormous cognitive load that interferes with learning 

to understand.” (Guizdal, 2017, pp. 11). 

 

Instead, Guizdal proposes starting with program comprehension: 

 

“To teach for understanding, we would give students worked examples and 

ask them questions about the examples, ask students to predict outcomes or 

next steps in a  visualisation…” (Guizdal, 2017, pp. 11) 

 

While I acknowledge that program comprehension is a vital component of learning to 

program, I think that problem solving is key to becoming an effective programmer, 

right from the start. Furthermore, I think that understanding and comparing code 

fragments is fundamental to abstraction in CT based problem solving. 

 

As I have argued elsewhere (Michaelson, 1992; Michaelson, 2015), I think that 

problem solving should be driven by abstraction from concrete instances of a specific 

problem, to identify the constructs appropriate to a general solution. In particular, we 

should use abstraction to identify the types and variables that an algorithm may 

manipulate to solve an arbitrary instance. 

 

This approach is in keeping with Vygotsky’s (1962) characterisation of the final 

stages in the development of concept formation in young persons: 

 

“Only the mastery of abstraction, combined with advanced complex thinking, 

enables the child to progress to the formation of genuine concepts. A concept 

emerges only when the abstracted traits are synthesized anew and the resulting 

abstract synthesis becomes the main instrument of thought. The decisive role 

in this process, as our experiments have shown, is played by the word, 
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deliberately used to direct all the part processes of advanced concept 

formation.” (Vygotsky, 1962, p78). 

 

That is, as Berger (2005) suggests for mathematics, I see the role of the variable in 

problem-solving as comparable to the role of the word in Vygotsky’s notion of 

advanced concept formation. 

 

Here, I think that the CT notion of pattern identification offers a very practical bridge 

from concrete instances to abstractions with variables. However, the term “pattern” 

may be misleading. We normally understand a pattern to have some repetitive fixed 

structure, for example in tiling a floor as a black and white chequerboard. But, for 

problem solving, we actually want to identify the underlying regularities in 

differences. So a pattern is some property that lots of different instances share; ideally 

one that enables us to generate new instances that also share the property. 

 

I also think that the notion of identifying a pattern should be more than just a 

metaphor for some informed intuition that comes with experience. Rather, pattern 

identification should be taken literally, as an approach that involves directly 

comparing structural and operational features in solving concrete instances of 

problems, to identify how they are similar and how they differ.  

 

This generalises Papert’s combinatorial thinking, where the learner behaves within a 

constrained domain to write down sequences of actions for the computer to perform. 

In an arbitrary domain, we proceed by solving lots of concrete instances of a problem, 

analysing what we did with the concrete data to get to the concrete results, and then 

looking for patterns across instances in both data and actions. We can do this by 

decomposing our data and actions at finer and finer levels of detail until we can 

identify and generalise the patterns amongst and across elementary operations on 

elementary data. This is reminiscent of Turing’s analysis of someone doing arithmetic 

with pencil and squared paper, going to right down to symbol by symbol operations 

(Turing, 1936). 

 

Furthermore, I think we should view patterns as templates, encompassing both 

information and computation:  

 patterns in data lead to variables and expressions to calculate with them; 

 patterns in computations lead to assignments, structured programming constructs 

and subprograms.   

 

Thus, I envisage patterns as skeletal forms in some well defined notation, for example 

a pseudo code or reference language (Scottish Qualifications Authority, 2015), or, 

indeed, some programming language. That is, ultimately, patterns are rendered as 

chunks of syntax with holes in them.  

 

Note that, here, there are fundamental differences to OO design patterns (Gamma et 

al, 1995) which are used to structure complex programs constructed from classes with 

well defined interfaces. This usually involves retrofitting extant components to a 

pattern. In my conception, control patterns have closer analogies with higher order 

function from functional programming (Michaelson, 1992). These are used to abstract 

common patterns of recursion for instantiation with context specific functions to 

control repetition and computation. 
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7.1. Finding variables and expressions 

 

An elementary expression  typically has variables for values that change and constants 

for values that don’t change, combined by unchanging operations. We can find 

expressions by abstracting over concrete calculations. 

 

For example, suppose we want to travel 400 kilometres. If our vehicle goes at 100 

kilometres per hour, the journey takes: 

 

 400/100 == 4 hours.  

 

And if our vehicle goes at 80 kilometres per hour, the journey takes: 

 

 400/80 == 5 hours.  

 

Comparing the expressions, they have “400/” in common so we can abstract where 

they differ: 

 

 400/? hours.  

 

Now, we can introduce a variable called “speed”, which has to be integer like 100 and 

80, and then for unknown values find:  

 

400/speed hours 

 

We all know how to do this. How about making it explicit? 

 

7.2. Finding computation patterns 

 

Let’s next consider three archetypal computation structures and their corresponding 

programming language forms: choice, repetition and iteration. 

 

First of all, an if statement typically has a choice condition, with branches depending 

on whether it is true or false. We can view this as a pattern for discriminated 

computation. In turn, this may depend  on being able to identify a pattern to divide 

data into two groups, where each group is processed in the same manner. That pattern 

then frames the condition.  

 

Next, a while statement typically has a termination condition and a body. We can 

view this as a pattern that determines when to stop performing a repeated 

computation. In turn, this may depend on being able to identify a pattern in either data 

or actions, characterising how each step determines the next. 

 

Finally, a for loop typically has a control variable with initialisation and 

incrementation expressions, a termination condition, and a body. We can view this as 

a pattern for counted or indexed computation. In turn, this may depend on being able 

to identify a pattern characterising a sequence of data, where each element is 

processed or generated in the same manner, or processing each element depends on 

some property of the previous element.  
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In all three cases, our understanding of the computation pattern guides our 

abstractions. That is, when we explore data looking for computation patterns, we 

should ask of it questions that enable us to choose amongst the possibilities.  

 

All three computation patterns involve: 

 a condition that determines what to do next; 

 what is done next; 

 what it is done to.  

 

So maybe we might interrogate our data by asking: 

 what have we got?  

 what are we doing to it?  

 why or when are we doing it?  

 

7.3. Example 

 

Suppose we’re organising a sports club outing to the chariot racing, and we want to 

work out how many full price and how many concession price tickets we need to 

purchase. Suppose we know everyone’s age: 

 

12 44 23 63 13 69 10 12 61 … 

 

and that anyone under 16 or over 60 can get a concession.  

 

To begin with, let’s write down what we do with at each concrete age in turn: 

 

data action condition 

12 count 1 concession under 16 

44 count 1 full price between 16 and 60 

23 count 2 full price between 16 and 60 

63 count 2 concession over 60 

13 count 3 concession under 16 

69 count 4 concession over 60 

… … … 

 

We’ve already implicitly abstracted out accumulation variables for the concession and 

full price counts, just by describing what we’re doing.  

 

On closer inspection, we can see that the action for each concrete data item involves 

incrementing a count depending on which condition is met: 

 

data action condition 

12 increment concession under 16 

44 increment full price between 16 and 60 

23 increment full price between 16 and 60 

63 increment concession over 60 

13 increment concession under 16 

69 increment concession over 60 
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… … … 

 

We can regroup by the three condition: 

 

data action condition 

12 increment concession under 16 

13 increment concession under 16 

44 increment full price between 16 and 60 

23 increment full price between 16 and 60 

63 increment concession over 60 

69 increment concession over 60 

… … … 

 

Now we can spot the choice structure pattern, abstract over the age in the three 

conditions, and introduce an if statement for each: 

 

IF age under 16 THEN 

 increment concession 

ELSE 

 IF age over 60 THEN 

  increment concession 

 ELSE 

   increment full 

 END IF 

END IF 

 

Alternatively, we can look for a pattern based on grouping abstracted actions: 

 

data action condition 

12 increment concession under 16 

13 increment concession under 16 

63 increment concession over 60 

69 increment concession over 60 

44 increment full price between 16 and 60 

23 increment full price between 16 and 60 

… … … 

 

Again, we can abstract over the age but introduce two if statements having combined 

conditions for common actions: 

 

IF age under 16 OR over 60 THEN 

 increment concession 

ELSE 

  increment full price 

END IF 

 

We can now think about how processing the sequence of data, rather than each data 

item, is structured. Let’s make the process of dealing with each item in turn more 

explicit: 
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data action condition 

 look for more data more data 

12 … … 

 look for more data more data 

13 … … 

 look for more data more data 

63 … … 

… … … 

 look for  more data no more data 

 stop  

 

This looks like a repetition structure of the form: 

 

look for more data 

WHILE more data DO 

  IF … THEN … ELSE … 

   look for more data 

END WHILE 

 

Again, we all know how to do this sort of blow by blow analysis and, with 

experience, we come to do so in big “intuitive” steps. But beginners don’t know 

where to start. Again, how about making this analysis explicit? 

 

7.4. Finding information structures 

 

Note that the notion of a type encompasses structured information, for example linear 

sequences and nested structures, not just base types like numbers.  However, 

identifying how information is structured need not lead us immediately to storing data 

in such a structure. That depends on whether processing the information requires it to 

be stored for subsequent access. 

 

For example, it is tempting to automatically identify a linear sequence of numbers 

with an array. However, finding the average of a sequence of numbers can be 

performed by taking each number in turn. In contrast, finding all the numbers less 

than the average requires them all to be held until the average is known. Again, this is 

something we can tell by systematic and detailed working with concrete instances. 

 

8. Conclusions 

 

Teaching programming is hard. It seems deeply unsatisfactory that some people seem 

to get it and some don’t, and that we don’t understand why.  

 

After critiquing the bricolage/microworld and Objects First approaches to teaching 

programming, I’ve argued that we might better deploy a pedagogy based on strong 

CT. That is, I think that we can teach beginners how to systematically analysis 

concrete instances of problems, to tease out the essential patterns in data and 

computations, leading to abstractions that can form the basis of algorithms and, 

ultimately, programs.  
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