
Towards a Box Calculus for Hierarchical Hume

Gudmund Grov and Greg Michaelson

School of Mathematical and Computer Sciences
Heriot-Watt University, Riccarton, Scotland, EH14 4AS

{gudmund,greg}@macs.hw.ac.uk

Abstract
We present a first approach towards a calculus of transformations of Hume boxes,
using an extended version of Hume called Hierarchical Hume. We present and moti-
vate Hierachical Hume, transformations and the calculus and derive some rules and
strategies. The approach is then illustrated through two examples.

1 INTRODUCTION

We have been exploring a new cost-driven, transformational approach to software
construction from certified components which is highly suited to dynamic, recon-
figurable embedded systems. This approach builds on the modern layered pro-
gramming language Hume[HM03], whose strengths lie in the explicit separation
coordination and control concerns. Hume is based on autonomous boxes linked
by wires and controlled by generalised transitions. Boxes and wires are defined
in the finite state coordination language with transitions defined in the expression
language through pattern matching and associated recursive actions. Both coordi-
nation and expression languages share a rich polymorphic type system, comparable
to contemporary functional languages like Haskell and Standard ML.

Hume offers programmers different programming levels where expressivity
is balanced against accuracy of behavioural modelling. Full Hume is a general
purpose, Turing complete language with undecidable correctness, termination and
resource bounds. PR-Hume restricts Full-Hume expressions to primitive recur-
sive constructs, enabling decidable termination and bounded resource prediction.
Template-Hume further restricts expressions to higher-order functions with precise
cost models, enabling stronger resource prediction. In FSM-Hume, types are re-
stricted to those of fixed size and expressions to conditions over base operations,
enabling highly accurate resource bounds. Finally, HW-Hume is a basic finite state
language over tuples of bits, offering decidable correctness and termination, and
exact resource analysis.

However, rather than requiring programmers to choose a level from the outset,
we have elaborated an iterative methodology based on cost-driven transformation.
An initial Hume program, designed to meet its specification, is analysed to estab-
lish resource bounds. Where established bounds are unacceptable, the offending
program constructs are transformed, usually to lower levels, and the program is
again analysed, with the cycle continuing until the required analytic precision is
reached.

X–1

At present, transformations are chosen on an ad-hoc basis and applied by hand.
In this paper we propose a calculus to direct the transformation of on an extension
of Hume, called Hierarchical Hume The calculus is intended to guarantee that
each step of a transformation preserves the program’s behaviour, and therefore
introduces the correctness by construction principle.

2 HIERARCHICAL HUME

In Hume, a program consists of unitary boxes connected by wires, where a box
consists solely of transitions from inputs to outputs. The transitions are guided by
a list of matches – each consisting of a pattern and a corresponding expression.
A pattern match triggers the corresponding expression which produces the output.
‘∗’ in any pattern/expression means ignore input/output. A box is Blocked if an
output cannot be asserted because there is already a value on one of its output
wires. The box will not execute again until that output can be asserted i.e. another
box consumes the old wire value.

The Hume execution model is based on cyclical execution, where on each cycle
all boxes attempt to consume inputs to generate outputs once, and all input/output
changes are then resolved in a unitary super-step. In this model, execution order is
irrelevant: boxes are stateless and have no side effects on the external environment.
However, as every box executes once on each cycle, in a naive implementation, as
the number of boxes grows so does the potential for unnecessary but nonetheless
resource consuming activity, where boxes repeatedly fail to consume inputs until
other boxes make them available as outputs.

Now, the main loci of transformation from an upper to a lower level is to move
activity from control to coordination, reducing activity within a box but increas-
ing the number of boxes in compensation. For example, in moving from primitive
recursive forms in PR-Hume to iterative forms in FSM-Hume, using a variant of
the well known tail recursion optimisation [Man74], a call to recursion within a
PR-Hume box is replaced by wires from that box to a new FSM-Hume box using
feedback wires to enable iteration - see Figure 1. Wires, represented by labelled
directed arcs, are indicative and the labels refer to the name of the output/input in
the box. The original RecBox box would execute once for a recursion of depth
N, now both RecBox’ and IterBox will execute N times with the original box
RecBox’ executing needlessly. Furthermore, while box execution is order inde-
pendent it is time dependent: changing the number of boxes and hence the time for
each overall execution cycle may have unpredictable effects on other boxes with
explicit time constraints.

In the proposed Hierarchical Hume extension[GPMI07], a box may contain an
entire Hume program, so one box may be composed from a hierarchy of nested
boxes. At the top level, the program is still scheduled by a single superstep. How-
ever, nested boxes may now be scheduled repeatedly for one cycle of the nesting
box.

X–2

FIGURE 1. Recursion to Box Iteration.

The introduction of nested boxes greatly mitigates the impact of transforma-
tion. If one box is replaced by a hierarchy, then timing effects are localised and
may be considered independently of the rest of the program, provided the trans-
formed box retains the same or compatible top-level timing behaviour.

Figure 2 illustrates the effect of the transformation of a single box half adder to
a hierarchical box containing the equivalent multi-box AND/XOR configuration.
The original single box (a) on the left is a straight transcription of the equivalent
truth table1. In the new hierarchy (c) on the right, the nesting box inputs and
outputs are wired explicitly to the appropriate nested box inputs and outputs. In
the graphical representation of the hierachical box (b), the transition details within
the box are elided.

For nested boxes, parent box inputs are immediately wired to child box inputs,
and child box outputs to parent box outputs. Thus the matches in a parent box are
soley indicative of the combinations of presence or absence of inputs and outputs
that characterise termination. For instance, in box half2, ‘(,)->(,)’ means
that it will start executing when all inputs are available and terminate when all
outputs are available.

Informally, a transformation is correct if the top level wires in the new config-
uration always have the same values at the same stages in execution as the equiva-
lent wires in the original configuration. Consequently, in a correct transformation
the top level boxes observationally implement the boxes before the transforma-
tion. In the example given in Figure 2 this means that the transformed box half2
(b/c) must behave as half1 (a). Due to the hierarchy, top level timing can be
ignored, and the focus is within the new box. Firstly, half1 is defined for all
type correct inputs, and produces values on all outputs. This is achieved by the
‘(,)->(,)’ match of half2. It is easy to see that the c (first) output of
half1 with the given inputs is basically and XOR gate. Further, s is an AND
gate. By “fanning out” the inputs to an XOR/AND pair the same output will be
produced, which is exactly the case in half2. It therefore implements half1.
In the example given by Figure 1, if we assume functional correctness, then the
transformation is correct if RecBox’ and IterBox are nested inside a first level
box, with i and o wired to the parent box.

1as are the AND and XOR boxes within the new hierarchy (c).

X–3

-- Only 0 and 1
type Bit = int 1;

box half1
in (x,y::Bit)
out (s,c::Bit)

match
(0,0) -> (0,0) |
(0,1) -> (1,0) |
(1,0) -> (1,0) |
(1,1) -> (0,1);

a. Half Adder 1: Truth Table

b. Half Adder 2: (Graphic)
XOR and AND gates

box half2
in (x,y::Bit) out (s,c::Bit)

match
(_,_) -> (_,_)

boxes
box fanout

in (x,y::Bit)
out (x1,y1,x2,y2::Bit)

match
(x,y) -> (x,y,x,y);

wire fanout (half1.x,half2.y)
(xor.x,xor.y,and.x,and.y);

box xor
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

wire xor(fanout.x1,fanout.y1)
(half1.s);

box and
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 0 |
(1,0) -> 0 |
(1,1) -> 1;

wire and (fanout.x2,fanout.y2)
(half1.c);

end;

c. Half Adder 2: Source Code

FIGURE 2. Half Adders in Hierarchical Hume

3 THE RULE SYNTAX AND SEMANTICS

While, the box calculus should reflect the formal semantics of Hume, Hierarchical
Hume does not yet have a formal semantics and many features in the Hume se-
mantics are not relevant for this discussion. Consequently, we have simplified the
Hume semantics slightly to ease presentation of the new hierarchical features.

A Hume program configuration consists of a triple 〈θ,η,bcs〉: θ is the wire
heap with allocated space for each wire. It also holds potential initial wire values;
η is the internal heap, including internal wires for hierarchical boxes – which in
this instance for simplicity, we assume remains allocated throughout execution;
bcs is a list of box configuration. Each box configuration consists of the elements
〈id, iws,ows,rs, ii, io, ibcs〉 : id is the box’s name; iws is a list of locations holding
the input wires; ows is a list of locations holding the output wires; rs is a list of
matches; The three last elements are empty (lists) if the box is not nested: ii is a
list of location of internal inputs wires; io is a list of location of internal output
wires; and ibcs is a list of box configurations of internal (nested) boxes. We let
runbcs represent one execution cycle of the program including the super step. It is

X–4

a predicate on two pairs of wire and internal heaps
〈
〈θ,η〉,〈θ′,η′〉

〉
where 〈〈θ,η〉

is a ‘before heaps’ and 〈θ′,η′〉 an ‘after heaps’. runbcs then holds if given 〈θ,η〉 the
result of executing bcs is 〈θ′,η′〉.

The box calculus consists of a set of conditional rewrite rules. A rule changes
the triple 〈θ,η,bcs〉 and has the syntax

θ,η;bcs ` Rule(X1, · · · ,Xn) ⇓ θ
′,η′;bcs′.

This is read as “Rule with parameters X1, · · · ,Xn will, under the configuration
〈θ,η,bcs〉 create the configuration 〈θ′,η′,bcs′〉”. To achieve a set of rules that
is expressive enough, steps that change timing behaviour must be allowed. It is
therefore imperative that the preconditions are strong enough to ensure that the
actual behaviour remains unchanged. This is mostly a coordination issue and the
nature of this layer often require temporal properties. In fact, this is the reason for
using the HW-Hume level as a starting point for the calculus.

TLA [Lam94] allows us to separate the control and coordination for reasoning,
and fits very well into the Hume framework [HGMI06, GPMI07]. However the
idiosyncrasies of TLA, and particularly the syntax, make it hard to understand for
novices. Since these details are beyond the scope of this paper they have been
omitted. Consequently the proof rules below have a more complex underlying
TLA machinery. In particular, hierarchies must be flattened for us to prove that
a transformation is in fact correct, i.e. global and local steps are not separated
at this level. At the end of the day, it is only the values on the wires that are
interesting, while the internal details purpose is to help achieving this. These are
therefore hidden. The details are again very intricate, and will not be discussed
in great detail. Although, it should be noted that logically by hiding a component
the specification is strictly weaker. Further, hiding internal details is essential in
transformation proofs involving hiearchies. We write η to show that η is hidden,
and runbcs for running bcs with η hidden. We then use an induction principle to
show the correctness: initially, the new heaps must be strictly stronger than before
the transformation – and all actions updating the heaps must be strictly stronger
than the actions before the transformation:

〈θ′,η′〉 ⇒ 〈θ,η〉 runbcs’ ⇒ runbcs

〈θ′,η′,bcs′〉 ⇒T 〈θ,η,bcs〉

Note that the primed components are the translated ones. Further, ⇒T is actu-
ally a specialisation of TLA rules for Hume, and its soundness therefore follows
the soundness of TLA. An important feature, which underpins the calculus, is the
transitivity of ⇒T :

Theorem 1. 〈θ,η,bcs〉⇒T 〈θ′,η′,bcs′〉 and 〈θ′,η′,bcs′〉⇒T 〈θ′′,η′′,bcs′′〉 implies
〈θ,η,bcs〉 ⇒T 〈θ′′,η′′,bcs′′〉 .

Proof. The proof reduces to transitivity of ⇒ which is trivial.

X–5

4 RULES

The general categories of transformation rules in the box calculus will be famil-
iar from many comparable calculi. Thus, there are rules to: introduce/eliminate
identity boxes; introduce/eliminate nesting boxes; introduce/eliminate wires; com-
bine/separate boxes horizontally and vertically; expand/contract match patterns and
results; reorder patterns and results. Special to Hume are rules for moving activity
between result expressions within boxes and coordination between boxes. Indeed,
in Hume, coordination and expression level transformation are tightly coupled, and
there are necessarily strong links between the apparently distinct categories above.

A full formal definition of all the rules will require much more space than
available here. We will therefore limit this to two rule derivation and sketch their
correctness proofs. The remaining rules are listed in Appendix A. The listing
also includes some auxiliary functions, which do not have any side effects on the
program configuration. Details, like pre conditions, has been omitted in the listings.
We use standard logical terminalogy in the rules: A rule postfixed by ‘I’ is a rule
that “introduces something”, and its dual, the elimination rule, is postfixes by ‘E’.
In the rule derivation we give an informal graphical representation of impact of
the rule. In the graphical representation we do not show any potential siblings or
parents of relevant boxes. Henceforth these, together with the box itselft, will be
known as the context of the box. It is important to note timing contraints only
relates to the context of a box. Everything outside the context is independent of
this.

The first rule nests one box B inside another box A with name N. This rule
introduces a bounded context for B, only consisting of A and B. By applying this
rule we can ignore the top level timing dependies when transforming B, and many
(temporal) preconditions of rules require a bounded context. The rule copies input
and output wires to the internal heap, by using HeapLocs Copy. These are the
new wires of the newly created nested box B′, and the internal wires of the nesting
box A. Further, A consists of one nested box B′ and generalises B’s rule set into the
more restricted hierarchical form, by Gen Rules:

〈B, iws,ows,rs, iw,ow, ibcs〉= get box(B,bcs)
〈niw,η′′〉= HeapLocs Copy(iws,θ,η)
〈now,η′〉= HeapLocs Copy(ows,θ,η′′)

B′ = 〈B,niw,now,rs, iw,ow, ibcs〉 irs = Gen Rules(rs)
A =

〈
N, iws,ows, irs,niw,now, [B′]

〉
θ,η;bcs ` Replace

(
[A], [B]

)
⇓ θ,η′;bcs′

θ,η;bcs ` HieI(B,N) ⇓ θ,η′;bcs′

Next we sketch the proof that shows that the transformatoin is indeed correct.

Theorem 2.
If θ,η;bcs ` HieI(A,N) ⇓ θ′,η′;bcs′

then 〈θ′,η′,bcs′〉 ⇒T 〈θ,η,bcs〉

X–6

Proof. Since we only extend η and do not change θ, 〈θ′,η′〉⇒ 〈θ,η〉 holds. In bcs,
B is replaced by A. Since As rule set generalises Bs the matching will be the same.
Further, with this and since A only contains B, the computation and termination will
be the same, and therefore also the result. Therefore runbcs’ ⇒ runbcs holds.

In the second derivation two non-nested boxes, A and B, are horizontally com-
posed into a new box called N. However, A and B must always have the same
Blocked status, since N will be Blocked if either of them are: If one, but not the
other, is Blocked the behaviour of the composed box N will not capture the sum
of A and B. The inputs and outputs of A prefixes Bs inputs and outputs. For all
matches, the patterns and expression of the A and B are pairwise composed by
project. This projection might introduce non-determinacy, so the patterns must
be mutually exclusive. Finally, A might execute while B fail to pattern match the
inputs, and vice verse. This is captured by postfixing the composed rule set above
with a rule set where A’s rule set is composed with only ‘∗’s, and the same for B.
The box N′, capturing all the above, replaces A and B:

〈A, iwsA,owsA,rsA, [], [], []〉= get box(A,bcs)
〈B, iwsB,owsB,rsB, [], [], []〉= get box(B,bcs)

2
(
is Blocked(A)≡ is Blocked(B)

)
mutually exclusive(rsA) mutually exclusive(rsB)

iws = iwsA@iwsB ows = owsA@owsB
nA = len(iwsA) mA = len(owsA)
nB = len(iwsB) mB = len(owsB)

∗A = [〈∗, · · · ,∗︸ ︷︷ ︸
nA

〉 → 〈∗, · · · ,∗︸ ︷︷ ︸
mA

〉] ∗B = [〈∗, · · · ,∗︸ ︷︷ ︸
nB

〉 → 〈∗, · · · ,∗︸ ︷︷ ︸
mB

〉]

rs = project(rsA,rsB) @ project(rsA,∗B) @ project(∗A,rsB)
N′ = 〈N, iws,ows,rs, [], [], []〉

θ,η;bcs ` Replace([N′], [A,B]) ⇓ θ,η;bcs′

θ,η;bcs ` HCompI(A,B,N) ⇓ θ,η;bcs′

The unification with the empty lists ensures that the boxes are not nested, when
calling get box. The mutual exclusiveness test is straightforward, and the proof
of the Blocked status temporal invariance proof. This has therefore be prefixed by
the the temporal ‘always’ operator 2 – denoting that this must hold throughout
execution.

Theorem 3.

If θ,η;bcs ` HCompI(A,B,N) ⇓ θ,η;bcs′

then 〈θ′,η′,bcs′〉 ⇒T 〈θ,η,bcs〉

Proof. There is no nesting, hence η = η. Further, it is obvoius that θ′ = θ and
η′ = η, thus 〈θ′,η′〉 ⇒ 〈θ,η〉. The proof of runbcs’ ⇒ runbcs is by case-analysis
on the “execution state” of A and B: Since 2

(
is Blocked(A)≡ is Blocked(B)

)
we

know that A and B are always Blocked at the same time. Hence, if one is Blocked
then so is the other, and since N will be Blocked if either of them are, then so is
N. If both A and B succeeds then, since all possible matches are composed, so will

X–7

N. Since the patterns are mutually exclusive only one pattern that can succeed,
and the result is obviously the same. If both boxes fail to execute, then so will N
since it only composes A and B. Finally, the case where only one box succeeds is
captured by the case where each match is composed with only ‘∗’s. Thus the goal
holds.

5 STRATEGIES

The rules will often be too low-level to work with. Instead a user will work with
higher-level strategies, which are derived from rules and other strategies. An ex-
ample of a strategy, although still rather low-level, is the elimination of threading.
A wire is threaded through a box if there is a one-to-one correspondence between a
pattern x and an expression y in all matches. x cannot be used in other expressions
(6= y). Further, x and y must form an identity box. When elimated, the threaded
value will arrive earlier at the destination. This must not have any effect on the
context. Finally, a Blocked state on B will prevent the threaded value leaving B,
which is not the case when eliminated. This must again not have any impact on
the context. Since the rule is derived from other rules these precondition can be
ignored since they are implicitly captured by the precondition of the rules in the
derivation. Threading elimination, ThreadE, is derived as follows: x and y are
horizontally de-composed into a new box Id by HCompE. Id is then an identity
box eliminated by IdE:

Σ,θ,L ` HCompE(B, [x], [y], Id,B) ⇓ Σ1,θ1,L1
Σ1,θ1,L1 ` IdE(Id) ⇓ Σ′,θ′,L ′

Σ,θ,L ` ThreadE(B,x,y) ⇓ Σ′,θ′,L ′

The correctness proof for strategies are trivial since they only rely on Theorem 1:

Theorem 4.
If Σ,θ,L ` ThreadE(B,x,y) ⇓ Σ′,θ′,L ′

then 〈Σ′,θ′,L ′〉 ⇒T 〈Σ,θ,L〉

Proof. Since the two given are applied sequentially the proof reduces to the transi-
tivity of ⇒T . This is proved by Theorem 1.

6 EXAMPLES

6.1 Example 1: Half-Adder

First we apply the box calculus to the half adder example above. We will do it
stepwise, and a graphical representation of each of these steps is shown in Figure
3. We use a dot ‘.’ notation to refer to nested boxes, starting from the first level. If
a rule has more than one parameter, it is sufficient to give the full path to one of the
boxes, since we can only work in one context at a time. We omit the configuration
triple to make the text easier to read. The rules are sequentially applied.

X–8

FIGURE 3. Transformation of Half Adder

1. Since the transformation has a forward direction we start with the box shown
in Figure 2a. First rule HieI(half1,half2) which replaces box half1
with a box half2 that simply nests it.

2. Since there are no ‘∗’ in the context nested by half2 there are no depen-
dencies. We can therefore introduce identity boxes for both input wires of
half1: IdI(half2.half1,x,Id) followed by IdI(half2.half1,y,Id′).
The input/output variables of the identity boxes are v/v’ by default. These
are renamed to x/x1 and y/y1 respectively: VRename(half2.Id,v,x),
VRename(half2.Id,v’,x1), VRename(half2.Id’,v,y) and VRename
(half2.Id’,v’,y1).

3. The two identity boxes are then horizontally composed into one box called
fanout: HCompI(half2.Id,Id’,fanout):

box fanout
in (x,y::Bit) out (x1,y1::Bit)

match
(x,y)->(x,y) | (x,*)->(x,*) | (*,y)->(*,y) ;

A simple invariant of the internal behaviour of half2 shows that it will
never be the case that only one of fanout’s inputs is empty. The last
two matches of fanout will therefore never succeed. This is the only
precondition in the match elimination rule, and can therefore be applied:
MatchE(half2.fanout,3) and MatchE(half2.fanout,2).

4. We then duplicate the two wires connecting fanout and half1. We name
them x2 and y2: DupI(half2.fanout,x1,x2,half1,x,x2) followed
by DupI(half2.fanout,y1,y2,half1,y,y2).

5. In half1 we now have two set of identical inputs: {x,y} and {x2,y2}.
We can then state that output s depends on the first set and c on the sec-
ond, and decompose the box. The first of this boxes is exactly the same

X–9

box adder1
in (x,y,c::Bit)
out (s,c’::Bit)
match
(0,0,0) -> (0,0) |
(0,1,0) -> (1,0) |
(1,0,0) -> (1,0) |
(1,1,0) -> (0,1) |
(0,0,1) -> (1,0) |
(0,1,1) -> (0,1) |
(1,0,1) -> (0,1) |
(1,1,1) -> (1,1) ;

a. Adder 2: Truth Table

b. Adder 2: (Graphic) Half
Adder and OR gate

box adder2
in (x,y,c::Bit) out (s,c’::Bit)

match
(_,_,_) -> (_,_)

boxes
box h1

in (x,y::Bit) out (s,c::Bit)
match

(0,0) -> (0,0) |
(0,1) -> (1,0) |
(1,0) -> (1,0) |
(1,1) -> (0,1);

wire h1(adder2.x,adder2.y)(h2.x,or.x);

box h2
in (x,y::Bit) out (s,c::Bit)

match ... -- same as h1
wire h2(h1.c,adder2.c)(adder2.s,or.y);

box or
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

wire or(h1.c,h2.c)(adder2.c);
end;

c. Adder 2: Source Code

FIGURE 4. Full Adders in Hierarchical Hume

as the xor while the second is the same as the and box of Figure 2(b/c):
HCompE(half2.half1, [x,y], [s],xor,and). Finally, we rename the
inputs of the and box: VRename(half2.and,x2,x) and VRename
(half2.and,y2,y). This concludes the transformation.

6.2 Example 2: A Full Adder

The second example is more complex: A full adder represented as a truth table
(Figure 4a) is transformed into a representation using two half adders and an OR
gate (Figure 4b/c). Again, the transformation is step-by-step and each step is graph-
ically illustrated in Figure 5:

1. The transformation starts with adder1 from Figure 4a. First we move all
the matches inside a case expression. Since the patterns are total with respect
to the Bit type this is allowed: CaseI(adder1,1,8):

box adder1
in (x,y,c::Bit) out (s,c’::Bit)

match
(a,b,c) -> case (a,b,c) of ...;

X–10

FIGURE 5. Transformation of Full Adder

f(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (1,0,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (0,0,1) ...;

g(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0) |
(1,0,0) -> (1,0) |
(0,0,1) -> (0,1) |
(1,0,1) -> (1,1) ...;

ff(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (1,0,0) |
(0,1,0) -> (0,1,0) |
(0,1,1) -> (1,1,0) ...;

gg(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (0,1,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (1,1,0) ...;

FIGURE 6. Auxiliary Functions Used in Full Adder Transformation

The case expression is then replaced by the function composition g ·f(a,b,
c): ReplaceExpr(adder1,1,g ·f(a,b,c)) where f and g are shown in
Figure 6. The next step is to vertically de-compose this box – where f is the
expression of the first and g the expression of the second box. However, this
will introduce an extra step, and we do not know anything about the context,
so we need to nest the boxes first: HieI(adder1,adder2). The boxes can
then safely be de-composed: VCompE(adder2.adder1,h1h2, [s,x’,
c’],or, [z,x,y]).

2. The newly created or box has one match with the expression g, where
g consists of a (total) case expression. We unfold g and move the case-
expression into the match: Unfold(adder2.or,g) followed by CaseE
(adder2.or,1). The result is illustrated on the left side below. The first
pattern and expression are identical (and total). We therefore replace them
by a variable: MatchVarI(adder2.or,x,s). We now have a threading of
a variable which we can eliminate (since there are no ‘∗’ in the context):
ThreadE(adder2.or,x,s). The result is illustrated on the right side:

X–11

box or
in (z,x,y::Bit)
out (s,c’::Bit)

match
(0,0,0) -> (0,0) |
(1,0,0) -> (1,0) |
(0,0,1) -> (0,1) |
(1,0,1) -> (1,1) ...;

box or
in (x,y::Bit)
out (c’::Bit)

match
(0,0) -> 0 |
(0,0) -> 0 |
(0,1) -> 1 |
(0,1) -> 1 ...;

Matches 2,4,6 and 8 are now duplicates of their previous matches, and can
therefore be removed: MatchE(adder2.or,8),MatchE(adder2.or,6),
MatchE(adder2.or,4) and MatchE(adder2.or,2). Finally, the output
wire is renamed to z: VRename(adder2.or,c’,z). The or box is now
the same as in Figure 4c.

3. Box h1h2 consists of one match with expression f. This function can
be replaced by function composition gg ·ff(a,b,c) where ff and gg
are shown in Figure 6: ReplaceExpr(adder2.h1h2,1,gg ·ff(a,b,c)).
Since the context do not contain any ‘∗’s we can apply vertical function de-
composition VCompE(adder2.h1h2,h1, [s,x’,c’],h2, [x,y,c]):

4. In box h2 the match has the expression gg which is unfolded and the (to-
tal) case-expression is moved into the body: Unfold(adder2.h2,gg) and
CaseE(adder2.h2,1) as illustrated on the left side below. The last pattern
and second expression in all matches can be replaced by a variable, which
creates a threading that can be eliminated: MatchVarI(adder2.h2,c,s)
and ThreadE(adder2.h2,c,s) – as illustrated on the right side:

box h2
in (x,y,c::Bit)
out (s,x’,c’::Bit)

match
(0,0,0) -> (0,0,0) |
(0,0,1) -> (0,1,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (1,1,0) ...;

box h2
in (x,y::Bit)
out (s,c’::Bit)

match
(0,0) -> (0,0) |
(0,0) -> (0,0) |
(0,1) -> (1,0) |
(0,1) -> (1,0) ...;

Matches 2,4,6 and 8 are now duplicates of previous matches and therefore
removed: MatchE(adder2.h2,8), MatchE(adder2.h2,6),
MatchE(adder2.h2,4) and MatchE(adder2.h2,2). After renaming the
last output to c’ we have created a correct implementation of a half adder:
VRename(adder2.h2,c’,c).

5. The transformation of h1 is follows the same pattern as h2 (and or): First
the case expression is removed, followed by a variable introduction and
threading elimination: Unfold(adder2.h1,ff), CaseE(adder2.h1,1),
MatchVarI(adder2.h1,c,x’) and ThreadE(adder2.h2,c,x’). Then

X–12

the duplicate matches are removed, which creates a correct implementa-
tion of a half -adder: MatchE(adder2.h1,8), MatchE(adder2.h1,6),
MatchE(adder2.h1,4) and MatchE(adder2.h1,2). By remaming c’
to c we have concluded the transformation: VRename(adder2.h1,c’,c).
To achieve an even lower level representation we can now apply the half-
adder transformation to h1 and h2, as explained above.

7 RELATED WORK

A Hume transformation is a strategy. Following Visser [Vis05] this can either be
categorised as a program rephrasing, where the source and target language are the
same, or as a program translation, where the target language deviates from the
source language.

We have already stated that a transformation from an upper to a lower level is a
move of activity from control to coordination, i.e. a translation from the expression
layer of a box into the coordination layer within a nested box. This has also been
illustrated by our examples. A (full) transformation can therefore be seen as form
of program translation called program synthesis from a control to a coordination
representation. In particular, our correctness proof rule is based on a form of syn-
thesis called program refinement: the lower level transformed program implements
the upper level program. In TLA such implementation is represented as logical
implication.

However, what is distinctive here compared with synthesis techniques, like
Birds-Meertens Formalism [BdM97] and calculational programming [HW06], is
the necessarily strong interplay between coordination and expression transforma-
tion: changes to box/wire configurations affect matches which in turn affect pat-
terns and results. A single rule application is not therefore just a program migration
from one representation to another, but hold more resemblence to a form of pro-
gram rephrasing called program refactoring [Fow99]: just as Hume integrates a
finite state coordination language with a functional transition control language, the
work presented here draws on the twin traditions of process network and functional
program transformation. The coordination aspects of the rules have many similar-
ities with those found in box calculus for Petri nets[DKR03] as well as process
calculi [Bae05]. The control aspects resembles classic functional programming
techniques including curry/uncurry, fold/unfold [BD77] and functional refactoring
[LT06]. Hence, a full transformation can be seen as a program translation, consist-
ing of several program rephrasing steps.

In principle the transformation proofs could have been achieved using (obser-
vational) bisimulations in a process algebra like CSP[Hoa85]. However, it is not
possible to to achieve an adequate representation of Hume’s rich expression layer
in a process algebra requiring the introduction of further formalism, for example
Schneider’s B/CSP cpmbination[ST05]. Here, we think a “lifted logic”, like TLA,
that may be founded on any underpinning predicate formalism is more appropriate.

X–13

Previously, we have explored horizontal box integration in establishing infor-
mally that FSM-Hume actually is finite state [MHS04]. Different strategies for
general formal verification of Hume programs are first discussed in [Gro05]. TLA
is first used to verify programs in [HGMI06], while Hierarchical Hume and linear
recursion to box iteration with respect to scheduling is discussed in [GPMI07].

8 CONCLUSION AND FUTURE WORK

We have presented a first approach towards a box calculus for Hume programs,
which introduces correct transformation by construction, formalised through struc-
tural operational semantics and TLA. We have then discussed rule derivation and
the combination of rules into strategies, and presented the use of the calculus
through two HW-Hume transformation examples.

Our work at the lowest, least expressive HW-Hume level has given us con-
fidence in the calculus and allowed us to focus on the intricate properties of the
coordination layer, which are the same for all Hume levels. Extending the calculus
to the higher levels of Hume will mainly require an extenstion of the purely func-
tional transformation rules, together with data refinement. This will allow us to
tackle problems that have substantive behavioural and hence resource cost impli-
cations, like the recursion to iteration example previously discussed. We sepeculate
that it may also be necessary to incorporate rules which are not behaviour preserv-
ing on their own, but which can be combined into “correct” rules/strategies.

Our next step is to identfy a sufficient set of rules which is adequate for the
classes of transformations between and within levels that may be used to opti-
mise resource use. The rules will be realised in the Isabelle theorem prover, which
will require a deep embedding of at least the expression layer. A TLA layer will
then be built on top of this embedding. In the longer term, we intend the calculus
to be used from a graphical-based IDE for Hume. We will also explore how to
minimise user-interaction in cost-oriented program development using proof plan-
ning[Mad91, CIMS05] heuristics to guide transformations.

ACKNOWLEDGMENTS

This work is supported by the EU FP6 EmBounded project, and Gudmund Grov is
supported by a James Watt Scholarship. We would like to thank our EmBounded
colleagues for discussions of transformation and Hierarchical Hume, in particular
Robert Pointon and Andrew Ireland. We are also grateful for the excellent student
feedback from the two anonymous TFP reviewers.

REFERENCES

[Bae05] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer
Scisence, 335(2-3):131–146, 2005.

X–14

[BD77] R. Burstall and J. Darlington. A transformation system for developing recur-
sive programs. Journal of the ACM, 24(1):44–67, January 1977.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.
[CIMS05] A. Cook, A. Ireland, G.J. Michaelson, and N. Scaife. Discovering applications

of higher order functions through proof planning. Journal of Formal Aspects
of Computing, 17(1):38–57, 2005.

[DKR03] R. Devillers, H. Klaudel, and R-C. Riemann. General parameterised refine-
ment and recursion for the M-net calculus. Theoretical Computer Science,
300(1-3):259–300, May 2003.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, August 1999.

[GPMI07] G. Grov, R. Pointon, G. Michaelson, and A. Ireland. Coordination, Computa-
tion and Hume Scheduling, 2007. in preparation.

[Gro05] Gudmund Grov. Verifying the correctness of hume program - an approach
combining algorithmic and deductive reasoning. In Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineering
(ASE-05), pages 444–447. ACM Press, 2005.

[HGMI06] K. Hammond, G. Grov, G. Michaelson, and A. Ireland. Low-Level Program-
ming in Hume: an Exploration of the HW-Hume Level. In International
Conference on Implementation and Application of Functional Languages, Bu-
dapest, Hungary, September 2006. accepted for publication.

[HM03] K. Hammond and G.J. Michaelson. Hume: a Domain-Specific Language for
Real-Time Embedded Systems. In Proc. Conf. Generative Programming and
Component Engineering (GPCE ’03), Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall Interna-
tional, 1985.

[HW06] G. Hutton and J. Wright. Calculating an exceptional machine. In H-W. Loidl,
editor, Trends in Functional Programming Volume 5, pages 49–64, 2006.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Toplas, 16(3):872–923,
May 1994.

[LT06] H. Li and S. Thompson. A Comparative Study of Refactoring Haskell and Er-
lang Programs. In Proceedings of 6th IEEE Workshop on Source Code Analy-
sis and Manipulation, Philadelphia, USA, September 2006.

[Mad91] P. Madden. Automated Program Transformation Through Proof Transforma-
tion. PhD thesis, University of Edinburgh, 1991.

[Man74] Z. Manna. Mathematical Theory of Computing. McGraw-Hill, 1974.
[MHS04] Greg Michaelson, Kevin Hammond, and Jocelyn Sérot. The Finite State-Ness

of FSM-Hume. In Trends in Functional Programming, volume 4, pages 19–28.
Intellect, 2004.

[ST05] Steve Schneider and Helen Treharne. CSP theorems for communicating B
machines. Formal Asp. Comput, 17(4), 2005.

[Vis05] Eelco Visser. A survey of strategies in rule-based program transformation
systems. Journal of Symbolic Computation, 40(1):831–873, 2005. Special
issue on Reduction Strategies in Rewriting and Programming.

X–15

A SUMMARY OF PROOF RULES

A.1 Functions

get box(B,bcs): Returns box configuaration with box id B from list bcs.
Gen Rules(rs): Returns a generalisation of rs. In patterns variables

are replaced by ‘ ’ while the rest is unchanged. In expression everything
but ‘∗′ is replaced by ‘ ’, and all function calls are removed.

HeapLocs Copy
(
[l1, · · · ln],H1,H2

)
: Returns a tuple 〈[l′1, · · · l′n],H ′

2〉 holding
a copy of [l1, · · · ln] of H1 into H2 and the updated H2.

is Blocked(B): Holds if box B cannot be executed.
mutually exclusive(rs): Holds if the patterns of rule set rs are mutually exclusive.
len(L): Returns the length of list L.
L1@L2: Concat list L1 in front of list L2.
project

(
[(p1 → e1), · · ·(pn → en)], [(p′1 → e′1), · · ·(p′m → e′m)]

)
: Pairwise comb-

ines each pattern pi and p′j with ei and e′j where i ∈ 1..n and j ∈ 1..m.

A.2 Rules and Strategies

Replace
(
[A1, · · · ,An], [B1, · · · ,Bm]

)
: Replaces boxes A1, · · · ,An by B1, · · · ,Bm.

ReplaceExpr(A,n,e) : The expression of match n of box A is replaced by e.
Rename(A,N): Renames box A to N.
VRename(A,x,N): Renames wire x of box A to N.
Unfold(B,n, f) : Unfolds function f in match n of box B.
HieI(B,N): Replaces box B by N which only holds B.
HCompI(A,B,N): Horizontally composes box A and box B into N.
MatchVarI(B, i,o): Replaces constants in inputs i and output o by a variable.
CaseI(B, i, j) : Replaces match i to j in box B by a case-expression.
IdI(B,v,N): Introduces an identy box N to wire connected to v of box B.
HieE(B): Replaces B with it’s (only) child box.
HCompE(B, [i1, · · · , in], [o1, · · · ,om],X ,Y) : Horizontally de-composes box B

into boxes X and Y , where X has inputs [i1, · · · , in] and outputs [o1, · · · ,om].
Y will have the inputs/output of B not in [i1, · · · , in]/[o1, · · · ,om].

VCompE(B,N, [o1, · · ·on],M, [i1, · · · in]) : Vertically de-composes box B into
two sequentially composed boxes N and M, where N has B’s inputs and
[o1, · · ·on] as outputs, and M has [i1, · · · in] as inputs and B’s outputs.

MatchE(B,n): Eliminates match n of box B.
CaseE(B, i) : Moves case expression in match i of box B into B’s rule set
IdE(B): Eliminates identity box B.
DupI(A,x,x′,B,y,y′) : Duplicates wire connecting x of box A and y of B,

with wire names x′ (of A) and y′ (of B) respectively.
ThreadE(B,x,y) : Removes threading of through input x and output y of box B.

X–16

