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Hume Cost Analyses for Imperative Programs

Abstract— Cost analysis of conventional imperative/object-
oriented languages, such as C or Java, is both undecidable in
theory and highly restricted in practice. In contrast, since the
novel Hume language is based on strong formal foundations,
it allows close alignment between implementations and cost
analyses, so providing high-quality static cost analysis. In this
paper, we present a formal translation from a C subset (miniC)
to Hume, explore the scope for applying Hume cost analyses to
such a translation, and discuss the efficacy of applying Hume
worst-case execution time (WCET) analysis to translated miniC
exemplars.

I. INTRODUCTION

Despite sustained research over three decades, curiously little
progress has been made in developing cost analyses of Turing-
complete (TC) languages. Of course, TC languages suffer from
the classic undecidability results which preclude algorithmic
determination of termination, in general, and hence of be-
havioural costs such as time and space needs. Nonetheless,
the gut feeling that heuristic automatic cost analysis should be
tractable for all but pathological programs, based on human
success in hand analysis of a wide body of algorithms, has
simply not been borne out to date. Conversely, languages that
are tractable to automatic cost analysis, usually impose signif-
icant limitations on the programmer (prohibiting, for example,
recursion, exceptions, or complex data structures [30]).

Hume [9] was substantially developed as a response to this
apparent impasse. Rather than trying to provide a language that
artificially restricts expressiveness to syntactic or skeletal con-
structs with known properties, the Hume design encompasses
a hierarchy of programming levels, where lower levels have
less expressive power but stronger analyses: full TC Hume,
PR-Hume (primitive recursive), Template-Hume (higher-order
functions), FSM-Hume (finite state) and HW-Hume (hardware
abstractions). The Hume methodology is to develop a program
without consideration of level or analysis. The program is then
repeatedly analysed, and, where analysis is problematic or sug-
gests unacceptable costs, offending constructs are reformulated
in a lower level.

To support these levels, the Hume design is based around
two layers: a coordination layer, that abstracts over concurrent
finite state boxes linked by wires. Box transitions are then
specified in a pattern matching expression layer, that offers at
full strength the usual constructs of a contemporary polymor-
phic functional language, Hume levels are then determined by
the types that may be used on wires and in patterns, and the
constructs that are permissible on the output (expression) side
of box transitions.

Hume has synergistic formally-specified semantics and cost
models, and the HUume tool chain closely aligns with this
specification. There are now a stable reference interpreter,
abstract machine and native code compiler for full Hume, com-
plemented by architecture-specific, robust time- and space-

analyses for HW- and FSM-Hume, and highly promising
research analyses for PR-Hume(see http://www.hume-
lang.org).

Given the progress with Hume, the question now arises
as to how applicable the approach is to more traditional
languages, in particular commonly-used imperative languages.
It would certainly be possible to build analogous models and
analyses from scratch for an extant language, such as C.
However, to do so would depend crucially on the availability
of a formal semantics for that language, and on a tool chain
with formally known characteristics. Clearly, to pursue such
an approach would be very labour-intensive. We have there-
fore instead been exploring direct translation from imperative
source programs to Hume for subsequent costing using the
existing Hume cost analyses. Our premise is that, given a
formally-defined translation schema, it might then be feasible
to relate Hume target analyses back to the original source
program constructs. Of course, this approach is fraught with
difficulties, not least the semantic-gap between the source
language and Hume, potentially necessitating the generation
of cost-distorting “glueware” artefact’s in translations.

Our initial source language is “miniC”, a C subset which
offers iteration and choice over assignable integer arrays.
In this paper, we discuss the translation of miniC to the
Hume expression layer and the analysis of the resultant Hume
programs. In the following sections we describe miniC and our
translation schemes to Hume expressions, discuss the results
of analyses of translated miniC exemplars and compare them
with instrumented compiled miniC, and reflect on the efficacy
and future of this approach.

II. SOURCE LANGUAGE: MINIC

Figure 1 shows the abstract syntax of miniC, miniC is a
proper subset of ANSI-C, where all declarations precede
all statements, and all variables must be given an explicit

program ::= prelude main() body
prelude ::= include0 . . . includen n ≥ 0
include ::= #include <id.h>
body ::= {decl1 · · · decln stmt1 · · · stmtm}
cbody ::= stmt | {stmt1 · · · stmtn} n ≥ 1
decl ::= int id; | int id[ int ];
stmt ::= id = expr; | id[ expr1 ] = expr2;

| if ( expr ) cbody
| if ( expr ) cbody1 else cbody2

| for ( stmt1 ; expr ; stmt2 ) cbody
| printf("%d",id); | scanf("%d",&id);

expr ::= int | id | id[ expr ]
| expr1 binop expr2 | ( expr )

binop ::= == | != | < | <= | + | - | * | / | %

Fig. 1. miniC abstract syntax
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type (either an integer or an array of integers – sufficient
to implement many interesting examples). miniC does not
provide any form of function declaration, apart from the
main function, which must contain the entire program. At
the expression level, miniC supports both standard variable
and array assignments, conditionals (if) with or without
else branches, and repetition based on a limited version of
a for-statement. Finally, miniC allows integers to be read
from standard input via scanf and written to standard output
via printf. Overall, miniC constitutes a small, but Turing-
complete and representative, imperative language. To illustrate
the use of miniC, and its translation into Hume in the next
section, we will define an algorithm which multiplies two 3×3
matrices (a and b) and stores the result in a 3× 3 matrix (c):

main (){
int a[9]; int b[9]; int c[9];
int i; int j; int k;
for(i=2; 0 <= i; i=i-1)

for(j=2; 0 <= j; j=j-1) {
c[(i*3)+j] = 0; /* ex */
for(k=2; 0 <= k; k=k-1)

c[(i*3)+j]=c[(i*3)+j]+a[(i*3)+k]*b[(k*3)+j];
}

}

Since multi-dimensional arrays are not supported, a 3 × 3
matrix is flattened into a one-dimensional array of length 9.
Thus an array access to element a[i][j] is instead written
as a[(i*3)+j], where 3 refers to the number of columns.
In the algorithm, i is used to enumerate the columns, while
j enumerates the rows. When multiplying a with b, each
element of the result, c, is the sum of the corresponding
column of a multiplied with the corresponding row of b. In
the innermost loop, k enumerates over these elements.

III. TRANSLATION INTO HUME

Each miniC construct is translated into a corresponding set of
Hume boxes and expressions. A miniC int is 16 bits, and
is represented as a 16 bit Hume integer, of type int 16. A
miniC array has a fixed size (and type), and is represented as
a Hume. So, a miniC array of N integers is represented as a
Hume vector of N int 16s. Since miniC arrays are indexed
from 0, where Hume vectors are indexed from 1, index i of
a miniC array corresponds to index i+1 of a Hume vector.

Let JprogramK be the Hume translation of a miniC program.
A full miniC program is represented by one box. Each
statement is a function, and sequentiality is ensured by correct
function composition. In Hume, streams are handled in the
coordination layer, and there are thus two additional require-
ments that are not present in C: a scanf statement cannot
be preceded by a non-scanf statement (i.e. all scanfs
appear first in the program); and a printf statement cannot
be followed by a non-printf statement (i.e. all printfs
appear last in the program). These properties can easily be
checked statically, and we will thus assume, in the remainder
of this paper, that they hold in all cases. The formal translation
rule for miniC programs JprogramK is shown in Figure 4.
This builds on translation rules for the other miniC program
structures in Figures 2–3.

A. The state space

In miniC, the (implicit) meaning of a variable id is the
projection of that id onto the values held on the miniC stack.
Assignments to id then update the stack value that id points
to. This is not the case in a functional language. Here, the
state-space must be explicitly sent between each “statement
function”. The state-space is represented by a tuple, which
is created using the miniC declarations (decl). To manipulate
and access the state space, each declared variable is given a
store and load function, with the obvious meaning. The
rules JsKstore and JsKload creates the two functions. These
rules assume that s is a list of variable name and type pairs.
This is created by the sp function using the decl rule:

sp (int id) = [(id,int 16)]
sp (int id[int]) = [(id,vector int of int 16)]
sp (decl1;decl2) = sp (decl1) @ sp (decl2).

Note that = is used for auxiliary meta-functions like sp, while
; is used for a translation rule (which generates Hume source
code). Moreover, to separate the target Hume code from the
source miniC code, the Hume code is underlined. Standard
list notation is used, where @ represents list append. JsKload

is defined using the auxiliary loadf function:

loadf ((id, t) : []) s ; load(CAP id) (patt s) = id ;
loadf ((id, t) : tl) s ; load(CAP id) (patt s) = id ;

loadf tl s
JsKload ; loadf s s

Here, standard pattern matching is used on the lists where [] is
the empty list and : is a list constructor. CAP prints the given
variable name with capital letters, while patt prints the list of
the variables in a variable/type pair. This is a simpler version
of the rep rule used by JsKstore:

rep ((id, T ) : []) x e ; IF id = x THEN e ELSE id
rep ((id, t) : sp) x e ; IF id = x THEN e ELSE id ,

rep sp x e

which prints the list of the variables, except for x where e is
printed instead. Note that IF-THEN-ELSE is part of the meta-
language used to define the translation. JsKstore is then defined
using the auxiliary stf function:

stf ((id, t) : []) s ; store(CAP id) e(patt s)
=(replace s id e);

stf ((id, t) : tl) s ; store(CAP id) e(patt s)
=(replace s id e);
stf tl s

JsKstore ; stf s s

To illustrate the use of JsKload and JsKstore,

storeC e (a,b,c,i,j,k) = (a,b,e,i,j,k);
loadC (a,b,c,i,j,k) = c;

are generated for the c variable in the above example, and
(a,b,e,i,j,k) is the state space tuple. Henceforth, we
will always use st to refer to the state-space tuple.



3

J==Ko ; ==
J!=Ko ; !=
J<Ko ; <
J<=Ko ; <=
J+Ko ; +
J-Ko ; -
J*Ko ; *
J/Ko ; div
J%Ko ; mod

JintKe ; int
JidKe ; load id st
Jid[expr]Ke ; (load id st)@( JexprKe +1)
Jexpr1 binop expr2Ke ; Jexpr1Ke JbinopKo Jexpr2Ke

J(expr)Ke ; (JexprKe)

JexprKe′ ; LET x = FRESH() IN
x st= JexprKe′ ;
RETURN x

Fig. 2. Translation rules for miniC binary operators & expressions

B. miniC binary operators and expressions

Figure 2 shows the translation rules for miniC binary operators
JbinopKo and expressions JexprKe. The miniC binary operators
(binop) are directly translated into the corresponding Hume
operators. In a miniC expression (expr), an integer is trans-
lated directly into its Hume equivalent. A miniC variable is
translated into a call to the corresponding load function:
e.g. JiKe becomes loadI st. In Hume, vector projection
is written using the infix @ notation, so the array projection
x[e] is translated into JxKe@(JeKe+1), where +1 is because
Hume vectors are indexed from 1. The remaining JexprKe

rules are straightforward. Note that JexprKe′ represents the
translated expression as a function and returns the function
identifier. FRESH() is part of the meta-language and creates an
unused/fresh function/variable name. LET/RETURN are also
part of the meta-language, with the obvious meaning. JexprKe′

is needed by one of the for-statement translation rules.

C. miniC statements

Figure 3 defines the translation rules JstmtKρ
s for miniC state-

ments stmt. To achieve a correct translation of input and
output streams, the rules are augmented by an environment ρ
which will be elaborated in due course. Moreover, each state-
ment creates a function (which may require sub-functions),
and each rule return this function identifier together with
the new environment. This is illustrated in the first rule of
the figure, which handles sequences. A miniC assignment
statement uses the load and store functions and a miniC
array assignment Jx[n] = eKρ

s uses the built-in Hume up-
date function for vectors. Thus, the expression (body) of
the function generated by Jx[n] = eKρ

s becomes storeX
(update (loadX st) (JnKe+1) (JeKe)) st. For ex-
ample, (Jc[(i*3)+j] = 0;K) (the statement labelled with
/* ex */ above) results in a function f st, with the body:

Jstmt1;stmt2Kρ
s ;

LET 〈f, ρ′〉 = Jstmt1Kρ
s IN

LET 〈g, ρ′′〉 = Jstmt2Kρ′

s IN
RETURN 〈g(f), ρ′′〉

Jid = exprKρ
s ;

LET x = FRESH() IN
x st = store(CAP id) (JexprKe) ) st;
RETURN 〈x, ρ〉

Jid[expr1]=expr2Kρ
s ;

LET x = FRESH() IN
x st = store(CAP id)(update (load(CAP id)

st)Jexpr1Ke Jexpr2Ke ) st;
RETURN 〈x, ρ〉

Jif (expr) stmtKρ
s ;

LET x = FRESH() IN
LET 〈s, ρ〉 = JstmtKρ

s IN
x st = exIf JexprKe s st;
RETURN 〈x, ρ〉

Jif ( expr ) stmt1 else stmt2Kρ
s ;

LET x = FRESH() IN
LET 〈s, ρ〉 = Jstmt1Kρ

s IN
LET 〈t, ρ〉 = Jstmt2Kρ

s IN
x st = exIfElse JexprKe s t st;
RETURN 〈x, ρ〉

Jfor(id=expr1; expr2 binop id; id=id-expr3)stmt3Kρ
s ;

LET x = FRESH() IN
LET y = FRESH() IN
LET 〈f, ρ〉 = Jid = expr1Kρ

s IN
LET 〈s, ρ〉 = Jstmt3; id=id-expr3Kρ

s IN
y st id = if Jexpr2Ke JbinopKo id

then y (s st) (id - Jexpr3Ke) else st;
x st = y st Jexpr1Ke ;
RETURN 〈x(f), ρ〉

Jfor ( stmt1 ; expr ; stmt2 ) stmt3Kρ
s ;

LET x = FRESH() IN
LET 〈f, ρ〉 = Jstmt1Kρ

s IN
LET e = JexprKe′ IN
LET 〈s, ρ〉 = Jstmt3 ; stmt2K IN
x st = loop e s st;
RETURN 〈x(f), ρ〉

Jscanf("%d",&id)Kρ
s ;

LET x = FRESH() IN
LET (s, t) = head(rev ρst) IN
LET ρ′ = ρ[st 7→ rev(tail(rev ρst))] IN
stream s from "std in";
x ( patt ρst ) = ( replace id s ρ′st )
RETURN 〈x, ρ′〉

Jprintf("%d",id)Kρ
s;

LET s = FRESH() IN
LET x = FRESH() IN
LET ρ′ = ρ[os 7→ ρos@[(s,int 16)],

st 7→ ρst@[(s,int 16)]] IN
stream s to "std out";
x ( patt ρst ) = ( patt ρst , id );
RETURN 〈x, ρ′〉

Fig. 3. Translation rules for miniC statements
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storeC (update (loadC st)((((loadI st)*3)
+ (loadJ st))+1)0) st;

miniC control structures are represented by a common set of
higher order functions (HOFs):

exIf true s st = (s st);
exIf false _ st = st;
exIfElse true s _ st = (s st);
exIfElse false _ t st = (t st);
loop e s st = if ((e st)

then (loop e s (s st))
else st;

exIf represents an if-statement without an else-clause,
while exIfElse represent the version with an else-clause.
Both functions are defined by pattern-matching the input
condition (the Hume translation of the original condition), and
are parameterised on the state space (st). exIf also takes
the translation of the body of the if-statement, represented
as a function from the state-space tuple into a new state-space
tuple, while exIfElse also takes the translated else-clause.
The loop HOF captures all but the initialisation statement of a
for loop. Note that because the condition refers to a variable
which changes value, this is defined as a predicate on the
state-space rather than a boolean value. Unfortunately, loop
is often too generic to obtain an adequate cost from the Hume
analysis tools. Thus, a more costable subset is created using
a specific translation rule (the first rule for for-statements in
Figure 3). We use this rule rather than the second, generic,
rule whenever a for-statement has the form

for(id=expr; int1< id; id = id − int2) cbody
for(id=expr; int1<=id; id = id − int2) cbody

and cbody does not change id, i.e. does not contain a statement
of the form id = expr. Since all three for-statements of the
matrix multiplication example are of this form, we can now
use this rule to create specific functions in each case rather
than using the generic HOF. For example, the innermost for
statement can be translated as:

g st k = (if (0 <= k)
then (g (fbody st) (k - 1))
else st);

h st = g (i st) 2;

where fbody is the function identifier holding the result of
translating the loop body (including k=k-1), i translates the
initialisation statement k = 2, and h initialises the accumu-
lator variable.

The environment ρ is required for the translation of
streams. Jscanf("%d",&id)Kρ

s yields an additional input
wire for the program box, wired to the Hume standard input
stream, while Jprintf("%d",id)Kρ

s results in an additional
Hume output stream, wired to standard output. Furthermore,
Jscanf("%d",&id)Kρ

s returns a tuple of length one less than
the input, while Jprintf("%d",id)Kρ

s adds one element to
the tuple. To achieve this, ρ contains two partial maps st and
os. We use a subscript to access these variables (e.g. ρst), and
define ρe to be the empty environment. ρ[st 7→ e] is ρ with
the exception of ρst which is now e. For input streams, the
environment (ρst) is assumed to already have the state space
(from decl) and the input streams. Thus, this must be created

Jprelude main(){ decls stmts }K ;

LET s = sp decls IN
LET istrs = is stmts IN
LET ρ = ρe[st 7→ s @ istrs] IN
JsKload JsKstore

LET 〈e, ρ′〉 = JstmtsKρ
s IN

LET x = FRESH() IN
x ( patt ρ′st ) = ( ignore s , patt ρ′os );
box program
in( head s ”” , head istrs ”” )
out( head s ”’” , head ρ′os ”” )

match
(patt s ,patt istrs )-> x(e(patt s,patt istrs));

wire program
( init wires program s ”’” , patt istrs )
( wires program s ”” , patt ρ′os );

Fig. 4. Translation rules for miniC programs

before the translation is performed. The input stream list of
variable/type pair is found by the following meta-function:

is (stmt1;stmt2) = is (stmt1) @ is (stmt2)
is (scanf("%d",&id)) = [(FRESH(),int 16)]
is = [].

where succeeds for any value. In ρst, the list created by is
is assumed to be appended to the state-space list (created by
sp). Jscanf("%d",&id)Kρ

s creates a stream, and removes the
last element of ρst. Note that rev reverses a list, while head
and tail return respectively the head and tail of a list. As an
example, the function f created from a scanf("%d",&x),
where the input stream is given the FRESH() name s, and the
program variables are x, y and z, becomes:

f (x,y,z,s) = (s,y,z);

For Jprintf("%d",id)Kρ
s , ρos is assumed to be initially

empty. ρos is used to link the “program box” and the output
stream. The rule adds the output to both partial maps of ρ,
creates a new output stream and a function that maps the cor-
rect variable to this output. For example, printf("%d",x),
with the above assumptions becomes:

f (x,y,z) = (x,y,z,x);

D. The full program

Figure 4 shows the JprogramK translation rule for a full miniC
program. The prelude contains any required C libraries (to
enable support for C compilers), and is thus not required in
Hume. First, the “state space list” and “input streams list” are
generated, and the initial environment created. Then the load
and store functions are generated, and all the “statement
functions” created. Then a function x is created which discards
all variables except the output streams, replacing them with
the Hume * (ignore) construct. This stops the program from
entering an infinite loop. Next, the program box is created.
The state-space, together with any optional inputs from the
inputs for the box. Similarly, the state-space and outputs are
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the box outputs. The head function creates a syntactically-
correct box header, containing the variable names and types.
The last argument of this function is a suffix which is added
to the end of the name to ensure that all input and output
names are unique. Thus, the miniC variable, x, becomes the
input variable, x, and the output variable, x’. The state-space
is wired as a feedback loop. Thus, e.g. program.x’ is
wired back to program.x. This is achieved by the wires
and init wires rules. wires is defined as

wires box ((id, T ) : []) l ; box.id l
wires box ((id, T ) : sp) l ; box.id l , wires box sp l

while init wires is similar but also gives all variables an initial
value. This is required since all Hume variables must have a
value. Thus, initially all values (including vector elements) are
0. This may, of course, deviate from miniC, which is simply
given the old value of the stack cell it is allocated to, without
really having any effect when applying the Hume analysis.

IV. HUME RESOURCE ANALYSIS

Accurately determining the cost of executing a program faces
two primary difficulties: firstly, it is generally necessary to
reduce the complexity of the program in the cost metric, since
there is little insight gained if the description of the cost is
as complex as the program itself; and secondly, the costs of
executing individual machine instructions/source statements
may vary significantly, depending on the machine state, but
tracking all possible machine states at all program points is
infeasible in general. The solution lies in abstraction, trading
precision for clarity. However, one has to be very careful
how this is done. For example, achieving constant costs by
simply assuming the worst-case over all consistent states,
as opposed to all states that could be possible at a certain
point for a certain input, does not work, since such a naive
approach would assign infinite worst-case execution time
to well-behaved functions such as sleep(n). Compared with
other approaches, our analysis is particularly radical, since
we will abstract the entire state and represent it by a single,
non-negative rational number, referred to as the potential of
the machine state. The analysis then constructs very simple
linear constraints describing relative changes to the potential.
This ensures both simple understandable bounds and highly
efficient solving. Furthermore it allows the analysis to scale
very well for increasingly complex and large programs.

It is important to note that we will never actually compute
this number, the potential, for any actual machine state other
than the initial state. Instead, we examine the relative effect
of each program step on the overall potential and define the
amortised cost of an instruction I as a suitable constant such
that

amortised costI ≥ actual costI
− potential beforeI + potential afterI

holds for all possible states, with equality being preferred. The
benefit is that determining the amortised cost for an entire
sequence of operations is then very easy, since the amortised

cost is constant and no longer depends on the state. The
actual cost of the entire sequence is then bounded by the sum
of the amortised costs plus the potential of the initial state,
which is easy to determine. This technique is well known
in complexity theory where it is referred to as “Amortised
Analysis” [29], and used as a manual analysis technique. A
significant challenge of applying this technique automatically
is how to design the abstraction of the machine state. This
problem has been overcome by Hofmann & Jost’s automatic
inference system [11], [14], at the expense of restricting the
potential so that it depends linearly on the sizes of objects
(a restriction which is not inherent to the amortised analysis
approach). It follows that only programs whose cost can be
linearly bounded by their input can be analysed using the
Hofmann & Jost method. However, this still admits many
interesting programs.

The automatic analysis first constructs a standard typing
derivation for the Hume program. It then associates variables
with each different type of input value. The analysis then gen-
erates a set of constraints over this set of variables, according
to the program’s dataflow and the actual costs for each possible
path of computation. Each Hume source construct is examined
precisely once. Loops in the source program are dealt with by
identifying some resource variables from the constraint set.
The generated constraint sets are well behaved and can easily
be solved using a standard LP-solver, such as [1]. In this
way, bounds on resource consumption are associated with each
source expression through their types. The potential annotated
types then give rise to a simple linear closed-form expression
that depends on the input sizes. We have formally proved that
these expressions always yield guaranteed upper bounds on
the resource consumption of the analysed program.

V. RESULTS

Table I summarises the results of analysing and measuring a
range of example programs written in miniC and compiled
to Hume using the translation approach described above. The
Hume is then compiled to native code using the humec com-
piler which successively generates Hume Abstract Machine
code and C for final compilation with gcc. Analysis and
instrumentation results are given for a Renesas board incorpo-
rating an M32C/85U processor with 24KBytes of RAM. This
restricts the maximum possible heap usage to about 4000 4-
byte cells.

Despite the memory limitations, we have been able to run
and analyse a number of small testbed examples. The fact
program computes the factorial of 15. The fibsum program
computes the sum of the first 20 Fibonacci numbers. The
matmult programs performs a matrix multiplication with
input matrices of sizes 2 × 2 and 3 × 3, respectively. The
arrayrotate program rotates the array of length 10. The
mediumarrayrotate program rotates an array of length
20. Finally, the smallarraysearch program searches for
an input value in an array of length 25.

HTA/HT in Table I compares analysis results with mea-
sured runtime for the Hume code that was generated from the
miniC source. This is really a “sanity check” on the analysis: it



6

Program Hume Time Hume HTA/HT C-code HTA/CT
Analysis Time Time

fact 130431 83659 1.56 1751 74
fibsum 224298 133193 1.68 1413 159
matmult2 464956 229469 2.03 713 652
matmult3 1410990 665363 2.12 2126 664
arrayrotate 529560 186851 2.83 746 710
mediumarrayrotate 1363580 378035 3.61 1737 785
smallarraysearch 1235690 477408 2.59 2705 457

TABLE I
ANALYSIS AND MEASUREMENT RESULTS

shows that there is a fair consistency of actual with predicted
execution times for Hume code on the Renesas board. The
over-estimation is explained by the special structure of the
automatically generated Hume code: it consists of many small
functions, with heavy use of higher-order functions. The for-
mer leads to a high impact of inaccuracies in costing function
calls. The latter necessarily leads to defensive approximations,
since the analysis must account for all possible instances of
the supplied function arguments. However, considering that
these results are guaranteed upper bounds on execution time,
we find them acceptable.

Of more interest is HTA/CT which shows the ratio of
Hume analysis to miniC runtime. We would not expect the
Hume analysis itself to correspond closely to the miniC time:
after all, we have compiled miniC to Hume to C and so the re-
sulting program is inevitably far less efficient than the original.
Nonetheless, the ratios show considerable consistency for four
of the test programs: the matmults and the arrayrotates.
In the cases of fact and fibsum the bounds inferred by
the analysis are significantly closer, because these programs
use only a small number of variables and no compound data-
structures. Therefore, the state space is small and updates are
fairly cheap.

VI. RELEVANT WORK

The translation of imperative to functional languages has
been known since the first use of functional notations in
denotational semantics [25]. In particular, functional meta-
languages are commonly deployed in both semantics-directed
compiler-compilers[21] and theorem provers. For example,
[22] formalises a Java-like language in Isabelle/HOL, while
[24] mechanises a more C-like language using the same
theorem prover. Resource analysis also has a long pedigree.
Most closely related to our approach are the amortised cost
based analyses of heap space in the linearly-typed functional
programming language LFPL [10], in the Java-like language
RAJA [12], [13], in Camelot [20], and for several languages
in the AHA project [27]. A stack-space analysis using this
approach is given in [2]. A system that combines type-based
resource inference with the automatic generation of certificates
for such bounded resource consumption is described in [4].
An alternative type-based approach used to infer size bounds
is that of sized types [17]. Several heap- or stack-space

consumption analyses build on this work [17], [16], [23], [3],
[32], [7]. While Vasconcelos states in his PhD thesis [31]
that this is equally within reach of these methods, none of
these currently considers worst-case execution time. Other
functional notations with ad-hoc techniques for analysing
resource consumption include GeHB [28], with a two-level
staged notation that also builds on LFPL, and RT-FRP [33],
which, like Hume, targets embedded systems.

Finally, a variety of academic and commercial tools exist
for calculating guaranteed bounds on worst-case execution
time [34], including aiT[5], bound-T[15], SWEET[26], [19],
The state-of-the-art is epitomised by AbsInt’s aiT tool, which
uses abstract interpretation to provide a guaranteed, and tight,
upper bound on actual run-times for C code fragments with
known data inputs. The aiT tool includes precise models of
cache [6] and pipeline behaviours [18]. Such tools typically
work on machine-code or C fragments, yielding analyses for
specific input cases that, in the best cases, closely conform
to the actual execution time. In constructing solutions for
concrete programs, however, the programmer must usually
provide additional detailed information, and this may require
significant effort. For example, it may be necessary to indicate
the range of values that a loop variable may take if the
associated iteration is not bounded by a literal value.

VII. CONCLUSION

We have formalised a translation from a canonical core im-
perative language miniC to Hume, to explore direct use of the
Hume WCET analysis to characterise miniC programs. Our
results suggests that:

• the Hume WCET analysis is in itself fairly robust;
• naive translation from miniC to Hume captures salient

components of the complexity of the source programs;
• hence, the WCET analyses of translated miniC programs

may be used to compare at least their relative time
complexities.

Of course, our translation is naive and we have only conducted
experiments on a small cohort of very simple test programs.
Nonetheless, our results suggest that this approach would re-
pay further study and that analytic techniques for one language
may fruitfully be used directly with another.

We next plan to study the use of the Hume space analyses
to characterise space complexity of miniC. We have also
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developed a translation from miniC to the coordination layer,
and of miniC extended with pointers and dynamic memory
allocation to the expression layer. We intend to investigate
properties of the miniC translation to the Hume coordination
language and of extended miniC.

While our work is formally motivated it is by no means
yet fully formalised. In particular, while we do not anticipate
significant technical problems, we would like to prove that the
translation from miniC to Hume is sound, i.e. that it preserves
the meanings of source miniC programs in the translated Hume
code. We have already produced full semantic definitions of
Hume [8] and of miniC; establishing soundness would require
inductive proofs of equivalence of meanings of source and
translated target for each miniC abstract syntax construct.

Finally, a longer term challenge of substance would be to
formally “reverse engineer” the Hume cost model in order to
develop a direct WCET model for miniC, or even a richer
subset of ANSI C.
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