
Formal Verification of Concurrent Scheduling Strategies using TLA

Gudmund Grov, Greg Michaelson and Andrew Ireland
School of Mathematical and Computer Sciences

Heriot-Watt University, Riccarton, Scotland, EH14 4AS
{gudmund,greg,air}@macs.hw.ac.uk

Abstract

There is a high demand for correctness for safety critical
systems, often requiring the use of formal verification. Sim-
ple, well-understood scheduling strategies ease verification
but are often very inefficient. In contrast, efficient concur-
rent schedulers are often complex and hard to reason about.

This paper will show how the TLA logic can be used to
verify schedulers of concurrent components. TLA allows
us to prove that one program preserves the behaviour of
another program, in particular that an efficient scheduling
strategy preserves the behaviour of a simpler one. For an
arbitrary program we can use the simpler scheduler for cor-
rectness verification, knowing that the properties also hold
in the more efficient one, which we then implement. This ap-
proach is illustrated with the Hume programming language,
which is based on concurrent rich automata. We show an
efficient extension to the Hume scheduler, and prove that
this extension preserves the behaviour of the standard Hume
scheduler.

1. Introduction

There is a high demand for correctness for safety critical
systems. Thus, many standards for developing such sys-
tems, like the UK MoD 00-55 [16], require the application
of formal methods. Due to the concurrent, rather than se-
quential, nature of distributed systems, composition of pre-
post conditions of components, as found in e.g. Hoare logic
[10], is not valid for such verification. More details are re-
quired for the coordination of the components and, temporal
logic has successfully been applied to verify correctness of
these types of systems. However, it is notoriously hard to
both specify and reason about properties in temporal logic.
Thus, to reason about concurrent systems inside a tempo-
ral logic, a simple and well-understood formal model of
the system is highly desirable. However, simple schedul-
ing strategies are often very inefficient. In this paper we
will show how TLA [12] can be applied to the formal veri-

fication of schedulers. We will show how we can formally
verify that an efficient scheduling strategy preserves the be-
haviour of a simple model. Consequently, correctness prop-
erties of the simpler strategy also hold for the more efficient
one, thus allowing us to reason inside the simple strategy,
knowing that these properties hold in the more efficient one.
The efficient scheduler can therefore be implemented, while
the simple one is used for verification.

We will illustrate our approach with the Hume [15] pro-
gramming language. In Hume, a program is a set of con-
current finite state automata, making it well suited to im-
plement concurrent systems. We motivate and define a
more efficient scheduling strategy for Hume. We then for-
malise both the current and the more efficient scheduling
in TLA, and prove that the efficient extension preserves the
behaviour of the current scheduler.

2. TLA

Temporal Logic of Actions (TLA) [12] combines tempo-
ral logic with actions. It is a three-tier logic where:

- in the state level a state function/predicate is a func-
tion/predicate on one particular state, where a state is
mapping from variables to values;

- in the action level an action is a predicate on two states:
a “before” and “result” state of the action;

- in the temporal level a formula is a predicate on an
infinite sequence of states.

TLA can be “lifted” on top of any predicate logic, hence
all three layers have a full propositional calculus. Addition-
ally, the action level has a priming (’) operator to separate
variables in the “result” state (primed) from those of the
“before” state. At this level, “beforeW” variable v and its
“result” counterpart v′, are distinct. The temporal level has
two additional operators: 2P which denotes P is True if it
holds in all states of the sequence, and an operator ∃∃∃∃∃∃∃∃ which
is used to hide internal details.

To show that a property holds for a program, we must
show that the program implements the property. In TLA
both programs and properties are specified in the same
logic, hence this is formalised as

Program ⇒ Property. (1)

Programs are compared in a similar fashion. For exam-
ple, to prove that a more efficient program preserves the
behaviour of the original Program we must show that

Efficient Program ⇒ Program. (2)

Due to transitivity, (1) ensures that Property also holds for
Efficient Program. Thus, if (2) holds, it is sufficient to prove
the required properties for Program. The key in proving
properties such as (2) is allowing stuttering steps, i.e. steps
that leave the state unchanged. This allows the use of in-
ternal action, which is important when comparing many
scheduling algorithms. However, this is not required here,
and will not be discussed further (see [1, 12] for details).

To define a program we must specify an initial state I ,
and an action N , representing the transitions. N is a predi-
cate which compares a “result” and a “before state”. The
action must hold throughout execution, i.e. 2N . How-
ever, this does not support stuttering steps. Let 〈v, i〉 be
the tuple of all visible v and internal i variables of the pro-
gram. We refine 2N to 2(N ∨ 〈v, i〉′ = 〈v, i〉), which
asserts that in all transitions either N holds, or the state is
left unchanged. This supports stuttering, and is abbreviated
by 2[N]〈v,i〉. We will use monolithic specifications of our
programs. Such specifications, with the internal variable
hidden, are written:

∃∃∃∃∃∃∃∃ i : I ∧2[N]〈v,i〉. (3)

To ease reasoning, TLA requires that N must always spec-
ify the complete “result” state. Thus, unchanged variables
must be explicitly stated. In a monolithic specification the
subscript, i.e. 〈v, i〉, should therefore hold for all the vari-
ables.

3. Hume

Hume [15] is a novel programming language which ex-
plicitly separates the coordination and the computation con-
cerns. It is based on autonomous boxes, linked by wires,
and controlled by generalised transitions, termed matches,
of the form:

pattern → expression

A pattern is matched with the inputs and, if it succeeds,
causes the expression to generate output. If it fails, the fol-
lowing match is tried. If none of the matches succeed, then
no transition is made. Boxes and wires are defined in the

finite state coordination language. Transitions within boxes
are defined in the purely functional expression language
through pattern matching and associated recursive actions.
This discussion will focus on the scheduling of boxes, and
we will therefore not go into the full expression layer and
pattern matching details.

3.1. Hume Scheduling

The Hume coordination layer is static. Thus, each wire
has a source and destination which will not change. For
simplicity, we will assume that all wires are between boxes,
i.e. there are no connected external devices. A wire is a
single value buffer that connects two boxes. An important
feature is the ability of a pattern to ignore inputs on given
wires, and an expression to not produce outputs on all out-
put wires. This is identified by ‘∗’ in the source code. Since
a wire is single buffered, a box will block with pending out-
put until all of its required output wires become empty.

Since Hume targets safety critical systems, there is a
strong focus on formal analysis, which requires determin-
istic programs, and a simple execution model. In Hume,
this is achieved by cyclical execution, where each cycle has
two phases: in the first phase each box is run once and at-
tempts to consume inputs and generate outputs; and in the
second phase the output changes are resolved in a unitary
super-step. At the end of each phase a box will be in one of
the following states:

- Rn (Runnable) The box has successfully consumed in-
puts and asserted outputs.

- Bl (Blocked) The box has successfully consumed in-
puts but failed to assert outputs. It will attempt to assert
outputs on subsequent cycles.

- Mf (Matchfail) The box has failed to match inputs.

Hume then uses a lock-step scheduling, thus achieving de-
terministic programs. The scheduling works as follows:

for ever
for each Rn and Mf box

execute (box)
super step

3.2. Hume Scheduling Formalised in TLA

We will formalise a high-level definition of Hume in
TLA. A fuller formalisation, at a lower grain of atomicity, is
given in [4] which also gives a detailed exploration of §5.1
and §6.

The layering of TLA fits well into the Hume design.
Properties of a one-shot execution of a box are action predi-
cates, while properties of the coordination layer are tempo-
ral formulas. In the formalisation we assume the following:

there is a set BS of box identifiers, henceforth boxes; all
components below, except the scheduling variable s, are tu-
ples of distinct variables. The ith element is accessed by a
sub-script, e.g. sti. For boxes, we assume that the tuple is
ordered with respect to the box identifier, that is, sti is the
state for box i ∈ BS; there is a tuple ws of wires; each box
i has a tuple of input iwsi and output owsi wires; feedback
loops are allowed, thus a wire in iwsi may also occur in
owsi; if iwsi or owsi for all i ∈ BS are composed this it will
equal ws; a wire in ws will occur in only one iwsi and one
owsi; each box i has a state variable sti and a result buffer
resi; for all i ∈ BS sti ∈ {Rn,Bl,Mf}; resi has the same
number of elements as owsi.

S , (s = E ⇒ s′ = S) ∧ (s = S ⇒ s′ = E)
Be

i , sti 6= Bl ⇒ 〈iwsi, resi, sti〉′ = ei(iwsi)
∧ sti = Bl ⇒ 〈iwsi, resi, sti〉′ = 〈iwsi, resi, sti〉

Bs
i , Qi ⇒ 〈owsi, resi, sti〉′ = 〈w(resi, owsi),⊥, Rn〉
∧ ¬Qi ⇒ 〈owsi, resi, sti〉′ = 〈owsi, resi, Bl〉

Bi , (s = E ⇒ Be
i) ∧ (s = S ⇒ Bs

i)
Hl , I ∧2[S ∧

∧
i∈BS Bi]〈s,ws,res,st〉

H , ∃∃∃∃∃∃∃∃ s,res,st : Hl

Figure 1. Lock-step scheduling in TLA

Figure 1 shows the TLA actions. S is defined to alter-
nate between the execute E and super-step S phase. Be

i is
the box action for an arbitrary box i in the E phase. Note,
the check that a box is Rn or Mf is moved into the box ac-
tion, and not before it is called, as explained in §3.1. This
is a consequence of TLA’s requirement for explicitly defin-
ing unchanged variables, and eases the specification of the
action. If the check succeeds then ei(iwsi) will match and
consume the required inputs, produce the result output, and
set the new state – i.e. Rn if a match succeeds and Mf if
not. If the check fails, then iwsi and resi are left unchanged.

Similarly, Bs
i , represents the super-step phase of a box.

The Qi predicate succeeds if, for all corresponding ele-
ments k of resi and owsi, one of them is ‘∗’:

Qi , ∀k ∈ len(owsi) :
(
(resi)k = ∗

)
∨

(
(outi)k = ∗

)
where len(owsi) is the number of element in tuple owsi. If
Qi succeeds then the new computed values of resi are writ-
ten to the output wires, achieved by w(resi, owsi). The out-
put buffer is set to empty, represented by ⊥, and the state is
Rn. If it fails, the output buffer’s value is left dangling, and
the box will be Bl at least until the next super-step, where
Qi is re-checked.
Bi uses the “scheduling phase value” s to determine if

Be
i or Bs

i should be called for an arbitrary box i. Hl is the
program specification. We leave the initial state I unde-
fined. The complete next-state action is the conjunction of

the scheduler S and the next actions for all boxes i ∈ BS.
Finally, in Hume we are only interested in the values on the
wires, thus H hides all variables, except ws, using ∃∃∃∃∃∃∃∃ .

4. An Efficiency Problem

Figure 2. Multiplication as Iteration

The motivation behind the layered design of Hume was
to add the ability for static costing of time and space usage
[8, 14]. However, many such properties are undecidable in
the expression layer. Thus, the balance between expressive-
ness and decidability is a key factor in Hume development,
and often requires us to find more decidable representation
of expressive constructs. One such example is to represent
repetition as iteration in the coordination layer, instead of
recursion in the expression layer – where the latter is hard
to cost. Iteration is achieved by the use of a feedback wire,
in the same way as in hardware systems.

Figure 2 illustrates coordination iteration by implement-
ing multiplication using two boxes. mult is the “interface”
to the rest of the program. When it receives inputs on input
wires x and y, the iteration begins if the previous result has
produced output on o. This is achieved by the c’ → c
wire. A match on these inputs causes the (0,x,y) triple
to be sent to itermult box. In each iteration itermult
will add x to the previous result, represented by r, initially
set to 0 – and decrement y by 1. The iteration “terminates”
when y is 0. The result is sent back to mult2. Note that
‘ ’ in a pattern denotes that a value must be present, and
this value is consumed. Further, note that (· · ·) is used for
both pattern/expression and tuples. We have left the rest of
the program unspecified for now.

The Hume scheduler will always attempt to run boxes
which do not have a Bl state. In an iteration of depth N (the
initial y value), the program requires N+4 steps to compute
the output. For N + 2 of these steps, the mult box will be
in a Mf state. This will be the case for all boxes that depend,
directly or indirectly, on such an iteration. Hence, it must
be possible to reduce this unnecessary scheduling overhead.

5. Towards Staged Scheduling

In the usual execution of a box, an Rn box may have
either asserted outputs to other boxes and itself, or just to
other boxes, or just to itself. If it has asserted outputs just to
itself then it can have no impact on the ability of any other
box to consume inputs. We say that such boxes have the
self-output property.

Thus, in principle, such boxes may execute repeatedly
until they assert an output for another box, without affecting
the overall outcome of program execution, provided there
are no strong timing dependencies elsewhere in the pro-
gram. To achieve this, Rn is divided up into two sub-states:

- Rns (Runnable) The box has successfully consumed
inputs and asserted outputs, and is not only writing to
internal wires.

- Sf (Selfout) The box has successfully consumed inputs
and asserted outputs, and is only writing to internal
wires.

Then the staged scheduling strategy is:

for ever
if no box is Rns

then for each Sf box
execute (box)

else for each Rns,Sf and Mf box
execute (box)

super step

Both the interpreter and the compiler have been updated
with this staged scheduling, resulting in the expected effi-
ciency gain. For example, for the interpreter, in the repeti-
tion as iteration example in §4, by connecting x and y to a
generator producing the first 1411 integers, and connecting
o to standard output, the staged scheduling had an increased
timing saving of 14% (57s vs. 70.9s) compared to lock-step
scheduling.

5.1. Staged Scheduling Formalised in TLA

Figure 3 shows the TLA actions for staged scheduling.
S and I are unchanged from Figure 1. SO is used in the ex-
ecute phase – which is now defined by sBe

i for an arbitrary
box i. It behaves as specified in §5, by executing only Sf
boxes when SO holds, and as for lock-step scheduling when
it does not hold. sBs

i defines the box action in a super-step.
Here, we assume a sub-tuple nowsi of owsi for all i ∈ BS.
This tuple holds all the wires that are not wired back to box
i. Moreover, emp(nows′i) holds if nows′i only holds ‘∗’s, i.e.
all output values are on the wires wired back to i. If the box
only writes to internal wires, i.e. emp(nows′i), then it is in
an Sf state.

SO ,
∧

i∈BS sti 6= Rus

sBe
i , if (SO ⇒ sti = Sf) ∧ (¬SO ⇒ sti 6= Bl)

then 〈iwsi, resi, sti〉′ = ei(iwsi)
else 〈iwsi, resi, sti〉′ = 〈iwsi, resi, sti〉

sBs
i , Qi ⇒ 〈owsi, resi〉′ = 〈w(iwsi),⊥〉
∧ st′i = if emp(nows′i) then Sf else Rns

∧ ¬Qi ⇒ 〈owsi, resi, sti〉′ = 〈owsi, resi, Bl〉
N ,

∧
i∈BS

(
s = E ⇒ sBe

i) ∧ (s = S ⇒ sBs
i)

sHl , I ∧2[S ∧ N]〈st,s,ws,res〉
sH , ∃∃∃∃∃∃∃∃ st,s,res : sHl

Figure 3. Staged scheduling in TLA

6. A Proof of Correctness

We will now outline the proof that staged scheduling pre-
serves the behaviour of lock-step scheduling, that is, prov-
ing (2) from §2.

R1.
I2 ⇒ I1 (B2 ⇒ B1) (x′ = x) ⇒ (y′ = y)

I2 ∧2[B2]x ⇒ I1 ∧2[B1]y

E1. ` F{f/x} ⇒ ∃∃∃∃∃∃∃∃ x : F E2.
F ⇒ G

x does not occur free in G
(∃∃∃∃∃∃∃∃ x : F) ⇒ G

Figure 4. TLA Proof Rules

We will rely on the proof rules shown in Figure 4. For-
mulas above the line are assumptions and the formula below
the line is the conclusion of a rule. Rule R1 is a specialisa-
tion of standard TLA rules for this particular example. It
states that a monolithic program implements another if the
initial state implements the initial state, the next-action im-
plements the next-action and, the new state space is strictly
larger than the old. E1 and E2 are direct copies from [12].
E1 is the introduction rule for ∃∃∃∃∃∃∃∃ . If F holds with variable x
replaced by a state function f , then F holds with x hidden.
E2 is the elimination rule for ∃∃∃∃∃∃∃∃ . It states that if a variable
is free in the conclusion of an implication, then it can be
bound in the assumption/given.

To prove our theorem we rely on the following fact,
which follows directly from the definition of Rns and Sf:

Theorem 1 sti = Rn iff sti ∈ {Rns,Sf}

In the proof we must provide witnesses for the ∃∃∃∃∃∃∃∃ bound
variables in H , using the state space of sH. In TLA the sum
of these witnesses are called the refinement mapping [1].
If we ignore the subtle type differences between variables

and state functions then s and res are just replaced by them-
selves. All the sti are replaced by the following function,
based on Theorem 1:

sti , if sti ∈ {Rns,Sf} then Rn else sti

For any action, formula, etc. · · · we use · · · to denote
· · · {sti/sti} (for now we ignore the trivial s and res substi-
tution). The substitution · · · distributes over all operators.

Before the proof of the main Theorem 3, we prove The-
orem 2. Here we remove all the ∃∃∃∃∃∃∃∃ and prove that sHl im-
plements Hl{sti/sti}. Note that we unfold H/Hl/sH/sHl

in the theorems. We will use Lamport’s structured way of
writing mathematical proofs [13]: The proof should be read
hierarchically. The jth step of the current level i proof is la-
belled 〈i〉j. Further, 〈i〉j QED denotes the proof of the cur-
rent level i−1 goal. A ⇒ B is written ASSUME: A PROVE:
B, and in case-splits, ASSUME is replaced by CASE while
the goal is the same as the i− 1 goal.

Theorem 2

〈1〉1. ASSUME: I ∧2[S ∧ N]〈s,ws,res〉
PROVE: I ∧2[S ∧

∧
i∈BS Bi]〈s,ws,res,st〉

PROOF: Rule R1 reduces the proof to
〈2〉1. ASSUME: I

PROVE: I
PROOF: I and I are identical.

〈2〉2. ASSUME: S ∧ N
PROVE: S ∧

∧
i∈BS Bi

PROOF: Standards propositional reasoning and un-
folding of N reduces the proof to:
〈3〉1. ASSUME: S

PROVE: S
〈3〉2. ASSUME:

∧
i∈BS

(
s = E ⇒ sBe

i) ∧ (s = S ⇒ sBs
i)

PROVE:
∧

i∈BS Bi

PROOF: It is sufficient to show the goal for an arbi-
trary box i ∈ BS. The proof follows by a case-split
on s and some simplifications:
〈4〉1. ASSUME: s = E ∧ sBe

i

PROVE: Be
i

PROOF: The proof is by a case analysis on both
the SO property and on sti. We will only address
the key cases (see [4] for full details):
〈5〉1. CASE: SO ∧ sti = Sf

PROOF: By assumptions 〈5〉1 and 〈4〉1 and the
definition of sBe

i we have
〈iwsi, resi, sti〉′ = ei(iwsi) (4)

Further, assumptions 〈5〉1 implies by definition
that sti = Rn. This and (4) implies Be

i by
definition.

〈5〉2. CASE: SO ∧ sti = Rns

PROOF: By contradition. Assumption 〈5〉1 im-
plies both SO and sti = Rns. However, by

definition SO implies sti 6= Rns and we obtain
a contradiction.

〈5〉3. Q.E.D.
PROOF: By 〈5〉1, 〈5〉2 and all the other remain-
ing cases.

〈4〉2. ASSUME: s = S ∧ sBs
i

PROVE: Bs
i

PROOF: By the refinement mapping, both
emp(nows′i) and ¬emp(nows′i) will give the state
Rn, which is the case in Bs

i . The remaining parts
of the proof follow directly.

〈4〉3. Q.E.D.
PROOF: By 〈4〉1 and 〈4〉2.

〈3〉3. Q.E.D.
PROOF: By 〈3〉1 and 〈3〉2 .

〈2〉3. ASSUME: 〈s,ws,res〉′ = 〈s,ws,res〉
PROVE: 〈s,ws,res,st〉

′
= 〈s,ws,res,st〉

PROOF: This is trivial by the definition of · · ·.
〈1〉2. Q.E.D.

Using this theorem, we can now prove the main theorem
that staged scheduling preserves the behaviour of lock-step
scheduling.

Theorem 3 Staged scheduling behaves like lock-step
scheduling.

〈1〉1. ASSUME: ∃∃∃∃∃∃∃∃ s,res,st : I ∧2[S ∧ N]〈s,ws,res〉
PROVE: ∃∃∃∃∃∃∃∃ s,res,st : I ∧2[S ∧

∧
i∈BS Bi]〈s,ws,res,st〉

〈2〉1. ASSUME: (I ∧2[S ∧
∧

i∈BS Bi]〈s,ws,res,st〉){st/st}
PROVE: ∃∃∃∃∃∃∃∃ s,res,st : I∧2[S∧

∧
i∈BS Bi]〈s,ws,res,st〉

PROOF: By applying E1 with st for f and st for x to
assumption 〈2〉1 followed by E1 with the dummy sub-
stitutions {res/res} and {s/s} (and ignoring the subtle
type differences between variables and state functions)
we obtain the goal.

〈2〉2. ASSUME: I ∧2[S ∧ N]〈s,ws,res〉 ⇒ H
PROVE: ∃∃∃∃∃∃∃∃ s,res,st : I ∧2[S ∧ N]〈s,ws,res〉 ⇒ H

PROOF: By the definition of H , s,res and st are bound
by ∃∃∃∃∃∃∃∃ . Rule E2 can therefore be applied three times to
assumption 〈2〉2 to obtain the goal.

〈2〉3. Q.E.D.
By applying Theorem 2 sequentially to 〈2〉1 followed
by 〈2〉2.

〈1〉2. Q.E.D.
By 〈1〉1.

7. Relevant Work

Both algorithmic and deductive verification techniques
have been applied to verify schedulers. For example, Ca-
dena [9] uses model checking. Model checkers have the
advantage of being fully automating, but require a finite
model and thus, cannot be applied to verify scheduling

strategies. Moreover, the model must be sufficiently small.
Narasimhan et al [17] applies theorem proving to verify
the correctness of the FDLS scheduling strategy. Our ap-
proach is distinct from these by following the “refinement
method” where we reason with a simpler model and ver-
ify that a more efficient strategy refines it. This eases rea-
soning since we are only required to prove the refinement
once (for the strategy) – and can use the simpler scheduling
to reason about all programs. The B tool [3] is probably
the most well-known approach based on refinement. How-
ever, B cannot deal with concurrency, thus making TLA,
which targets such systems, more suitable. TLA has previ-
ously been applied to other problems of a concurrent nature,
like [2, 11]. However, with the exception of previous Hume
work [7], we are not familiar with the use of TLA at the
programming language level. Consequently, it has not been
used for schedulers at this level either.

In [6] we explore a different scheduling strategy for
Hume, using hierarchies of boxes. However, this work is
not purely a scheduling problem, and is mainly motivated
by transformations. Further, we do not discuss the use of
TLA. [5] is based on the hierarchical structure in [6], and as
in [6], the TLA aspect is not considered.

8. Conclusion

We have shown how to formally verify properties of
concurrent programs with complex schedulers, by reason-
ing with a simpler scheduler and showing that the complex
strategy preserves the behaviour of the simpler. This has
been illustrated by showing that an efficient extension to the
standard scheduler in Hume is behaviour preserving. The
extension is now standard in both the Hume interpreter and
compiler. As a result of the theorem proven here, we can
still use the easier lock-step scheduling in our proofs, al-
though the staged approach is used in actual programs. We
have formalised both strategies in TLA and given a formal
proof.

We are interested in the verification of properties of
Hume programs and have found TLA very useful for prop-
erties of the coordination layer. We are exploring both
model checking [7] and a theorem proving approach using
Isabelle. We intend to mechanise the proof of this theorem
in Isabelle.

Acknowledgements

Thanks to Robert Pointon. This work is supported by EU
FP6 EmBounded project and a James Watt Scholarship.

References

[1] M. Abadi and L. Lamport. The Existence of Refinement
Mappings. Theoretical Computer Science, 82(2):253–284,
31 May 1991.

[2] M. Abadi, L. Lamport, and S. Merz. A TLA solution to
the RPC-memory specification problem. volume 1169 of
Lecture Notes in Computer Science, pages 21–66. Springer,
1994.

[3] J.-R. Abrial. The B-Book - Assigning Programs to Meanings.
Cambridge University Press, Aug. 1996.

[4] G. Grov. A Formal Account of Hume Scheduling. Technical
Report HW-MACS-TR-0052, Heriot-Watt University, 2007.
http://www.macs.hw.ac.uk/techreps/.

[5] G. Grov and G. Michaelson. Towards a Box Calculus for
Hierarchical Hume. Under review for TFP, 2007.

[6] G. Grov, R. Pointon, G. Michaelson, and A. Ireland. Preserv-
ing Coordination Properties when Transforming Concurrent
System Components. Submitted to APLAS, 2007.

[7] K. Hammond, G. Grov, G. Michaelson, and A. Ireland. Low-
Level Programming in Hume: an Exploration of the HW-
Hume Level. In IFL, 2006. Accepted for publication in
LNCS 4449.

[8] K. Hammond and G. Michaelson. Hume: A Domain Specific
Language for Real-Time Embedded Systems. In Proceed-
ings of GPCE’03: Generative Programming and Component
Engineering, Erfurt, Germany. Springer, LNCS, September
2003.

[9] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ran-
ganath. Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems. In
International Conference on Software Engineering, volume
1169, 2003.

[10] C. A. R. Hoare. An Axiomatic Basis for Computer Program-
ming. Communications of the ACM, 12(10):576–585, Octo-
ber 1969.

[11] P. B. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy
caching in TLA. Distributed Computing, 12(2-3):151–174,
1999.

[12] L. Lamport. The Temporal Logic of Actions. ACM Toplas,
16(3):872–923, May 1994.

[13] L. Lamport. How to Write a Proof. American Mathematical
Monthly, 102(7):600–608, Aug./Sept. 1995.

[14] G. Michaelson, K. Hammond, and J.Serot. FSM-Hume: Pro-
gramming Resource-Limited Systems using Bounded Au-
tomata. In SAC, pages 1455–1461. ACM Press, March 2004.

[15] G. Michaelson and K.Hammond. The Hume Language Defi-
nition and Report, Version 0.2. Technical report, Heriot-Watt
University and University of St Andrews, Jan. 2002.

[16] Ministry of Defence. The procurement of safety critical soft-
ware in defence equipment (part 1: Requirements, part 2:
Guidance). Defence Standard 00-55, Issue 1, Ministry of
Defence, Directorate of Standardization, 1991.

[17] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindara-
jan, and R. Vemuri. Theorem proving guided development
of formal assertions in a resource-constrained scheduler for
high-level synthesis. Formal Methods in System Design,
19(3):237–273, 2001.

