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Abstract: The worst case execution time (WCET) analysis of an imperative lan-
guage (miniC*) with pointers and memory allocation, through direct translation
to a functional subset of Hume, is discussed. The formal translation rules are pre-
sented and comparisons of empirical miniC* measurements with corresponding
translated Hume WCET predictions are made.

1.1 INTRODUCTION

This paper aims to provide WCET bounds for a minimal C language with explicit
dynamic memory management. This is achieved by translation into our Hume
language, for which tried and tested (validated) analyses of resource consumption
are available.

Our claim is that the WCET bounds obtained from the generated Hume code
give a realistic time profile of the original program.

Hume [9] is a contemporary language which seeks to reconcile high expres-
sivity with strong resource use guarantees. As is well known, Turing Complete
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(TC) languages have undecidable termination for arbitrary programs. If it is not
possible to determine whether or not a program terminates then it it is not possi-
ble to determine how long it runs for and hence how much memory it consumes
or how much power it requires. Sub-TC languages like those based on primitive
recursion may guarantee program termination and hence enable the establishment
of strong bounds on resource use, but at the price of compromised expressivity.

The Hume approach has been grounded in a separation of an impoverished
coordination layer based on concurrent finite state automata controlled by a vari-
able expressivity expression layer based on modern functional language concepts.
Thus, the coordination layer populated with a minimally expressive expression
layer of tuples of bits offers precise cost analysis, and varying the types and con-
trol structures deployed in the expression layer increases expressivity while re-
ducing costability, but in a principled manner.

Hume now enjoys a stable tool set grounded in strong semantic specifications
including a reference interpreter, abstract machine compiler and interpreter, na-
tive code compiler, and WCET and space analysers. The base language imple-
mentations are highly portable, and there is a well enunciated methodology for
instantiating the cost analysers for new CPUs. To date, Hume offers highly accu-
rate analyses for the Renesas M32C CPU and substantial progress has been made
towards PowerPC 3 analyses.

Recently, we have been exploring the applicability of the Hume models and
analyses to more traditional imperative language settings. Rather than construct-
ing new models and analyses, we have built translators to Hume and then looked
at how well costs from Hume static analyses correspond to the instrumented be-
haviours of the original programs.

Our first experiments[8] were with a very simple imperative language termed
miniC, with integers, one-dimensional arrays, assignment, choice, iteration and
input/output. We elaborated a set of formal rules mapping miniC constructs to
pure Hume expressions, with explicit state passing, which formed the basis of
a translator implementation. We then applied the Hume worst case execution
time (WCET) analysis instantiated for the Renesas board to translated miniC, and
also timed the miniC compiled directly to M32C machine code. Results from
a small set of test programs suggest that there is a discernible correspondence
between observed miniC behaviour and translation analysis prediction. This gives
us confidence that translation from miniC to Hume is preserving key semantic and
complexity features of miniC, despite the inevitable mismatch of expressibility.

We now turn our attention to a somewhat more elaborate language, miniC*,
which is miniC augmented with explicit dynamic memory allocation and pointers.
The following sections discuss amortised cost models, the mapping from miniC*
to Hume, compare analytic and empirical results, and consider the efficacy of
reusing models and analyses for one language with another through translation.
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1.2 HUME RESOURCE ANALYSIS

Determining the cost of executing a sequence of instructions can be easy for a
given machine model, if each instruction has a constant cost. It is also possible to
determine a useful upper bound on the execution costs if the variation in cost is
quite small for each instruction, such as bounding the cost of adding two arbitrary
integer. However, in practise the cost of many instructions varies significantly,
depending on arguments and/or the overall state of the machine. As an extreme
example, a function call might return after an arbitrarily large amount of time,
which makes it useless to assume the worst case (never). Therefore one needs to
consider all possible machine states at the start of the computation and track all
possible state transformations during execution, which is a tedious and generally
infeasible approach.

The only solution to this problem is to abstract all possible states into a smaller,
more manageable classes of equivalent states. Our approach is especially radical,
since we will abstract the entire state and represent it by a single, non-negative
rational number, referred to as the potential of the machine state. Note that we
will never actually compute this number, the potential, for any actual machine
state other than the initial state. Instead, we examine the effect of each operation
on the overall potential and define the amortised cost of an instruction I as a
suitable constant such that

amortised costI ≥ actual costI −potential beforeI +potential afterI

holds for all possible states, with equality being preferred. The benefit is that
determining the amortised cost for a sequence of operation is very easy, since the
amortised cost is constant and does not depend on the machine. The actual cost
of the entire sequence is then bounded by the sum of the amortised costs plus the
potential of the initial state.

This technique is well known in complexity theory and referred to as “Amor-
tised Analysis”, pioneered by R. E. Tarjan [28]. However, a significant chal-
lenge of this technique is how to design the abstraction of the machine state.
This problem was overcome by an automatic inference presented by Hofmann &
Jost [11, 12], at the expense of restricting the potential to depend linearly on dif-
ferent sizes of objects within a machine’s memory. Hence only programs whose
cost can be linearly bounded by their input can be analysed. Nevertheless, many
interesting programs can be successfully analysed by this technique as already
shown Hofmann & Jost.

Another interesting improvement in the way we apply the amortised analysis
technique is that the potential contributed by each memory object is assigned on
a per reference basis. Note that we do not need to count the references to a par-
ticular object, all we need to take care of is the point where aliasing is introduced.
This allows us to assign differing potential to states which differ only by some
pointers, but otherwise contain identical objects in the memory. The assignment
of potential on a per reference basis is a major improvement over previous work,
such as the important work of C. Okasaki [22], who resorted to lazy evaluation in
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order to circumvent this problem.
For example, deep-copying a list takes time proportional to the length of the

list, say 123 cycles per element. The deep-copy operation can nevertheless be
assigned an amortised cost of zero, if we require that it receives a reference which
contributes 123 potential credits per element. So a list of length 5 would contribute
a total 615 credits towards the overall potential. Once the first element has been
copied, the pointer moves to the next list element, thereby decreasing the potential
contributed by this pointer down to 492. The difference of 123 credits thus “pays”
for the cost of copying the first element, and so on.

Automatically performing the analysis means that we first construct a standard
typing derivation. Next, each constructor is then assigned a resource variable
(ranging over non-negative rational numbers), representing the potential credited
by each node of that constructor of that particular type (note that types may differ
by their potential only). The analysis generates a set of constraints over those
variables, according to the dataflow and the actual cost occurring in each possible
path of computation.

Each instruction of the source program is examined precisely once. Loops
in the source program are dealt with by identifying some resource variables con-
tained in the constraint set. The generated constraint sets are well behaved and can
easily be solved by using a standard LP-solver, such as [1]. In this way, bounds on
resource consumption are associated with each expression in the program through
their types. The potential annotated types then give rise to a linear closed form
expression, depending on the input sizes, which represents an upper bound on the
execution costs. Because we have used a type-based approach, we have already
formally proven that our analysis will always give a guaranteed upper bound on
resource consumption.

1.3 SOURCE LANGUAGE: MINIC*

Figure 1.1 shows the abstract syntax of miniC*, where square brackets [· · · ] de-
notes optional features. It does not allow any function declaration, except the
main function, which contains the whole program. Since it is a proper ANSI-C
subset, all declarations must precede the statements. It supports both integers and
pointer to integers with multiple indention.

Both input streams and output streams are supported via scanf and printf,
however, to easy the translation into Hume, a scanf must come first, while all
printf statement are at the end of the code. Both standard assignment, and
assignment using the * pointer operator is supported, as are conditionals (if)
with and without else branching is supported. Repetition is based on a limited
version of a for-statement.

Dynamic memory management is supported by malloc and free [17]. To
ensure portability, the malloc argument can be multiplied with sizeof(int),
and the translation rules assumes that this is included for pointers directly to in-
tegers – unless each heap cell is 16 Bytes, which is the size of a miniC* int.
Finally, normal arithmetic and comparison expression are supported, as are the
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program ::= prelude main() body

prelude ::= include0 . . . includen n ≥ 0
include ::= # include <id.h> | # include "id.h"

body ::= {decl1 · · · decln [scan] stmt1 · · · stmtm print0 · · · printl} n,m ≥ 1, l ≥ 0
cbody ::= stmt | {stmt1 · · · stmtn} n ≥ 1
star ::= id | *star
decl ::= int star;
scan ::= scanf ( "%d" , expr );
print ::= printf ( "%d" , expr );
caststar ::= int | caststar*
cast ::= ( caststar )
stmt ::= id = expr; | if ( expr ) cbody | if ( expr ) cbody1 else cbody2

| for ( stmt1 ;expr ; stmt2) cbody | *expr1 = expr2;
| expr1 = [ cast ] malloc( expr2 [ * sizeof(int) ] ) | free( expr );

expr ::= int | id | expr1 binop expr2 | ( expr ) | cast expr | *expr | &id
binop ::= == | != | < | <= | + | - | * | / | %

FIGURE 1.1. miniC* abstract syntax

de-reference * and reference & operators. Overall, miniC* constitutes a Turing-
complete pointer language.

As illustration of miniC*, a program which multiplies two 2× 2 matrices is
implemented:

#include <stdio.h>
#include <stdlib.h>
main (){
int **a; int **b; int **c;
int i; int j; int k;

a = (int**) malloc(2 * sizeof(int));
b = (int**) malloc(2 * sizeof(int));
c = (int**) malloc(2 * sizeof(int));

for(i = 2; 0 < i; i = i - 1){

*(a+i-1) = (int*) malloc(2 * sizeof(int));

*(b+i-1) = (int*) malloc(2 * sizeof(int));

*(c+i-1) = (int*) malloc(2 * sizeof(int)); }

for(i = 2; 0 < i; i = i - 1){
for(j= 2 ; 0 < j; j = j - 1){

*(*(c+j-1)+i-1) = 0;
for(k = 2; 0 < k; k = k - 1)

*(*(c+j-1)+i-1) = *(*(c+j-1)+i-1)
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+ *(*(a+k-1)+i-1) * *(*(b+j-1)+k-1); }}}

Here a is multiplied with b, and the result is stored in c. A matrix has two
dimensions, thus it is represented as an array of pointers, i.e. a pointer to a pointer,
in miniC*. Before the multiplication, all elements are allocated space in the heap.
Matrix multiplication requires three nested loops and the i,j and k variables are
used for this iteration. Here, i enumerates over the columns, while j enumer-
ates of the rows. When multiplying the a matrix with the b matrix, each element
of the resulting c matrix is the sum of each each corresponding column of a
multiplied with the corresponding row of b. In the inner-most loop, k enumer-
ates over these elements. Note, that two dimensional array projection a[i][j]
is written *(*(a+j)+i) in miniC*. Further, note that the “strange iteration
like for(i = 2; 0 < i; i = i - 1), with -1 in the array projection,
instead of for(i = 1; 0 <= i; i = i - 1) and direct projection, is to
obtain more accurate costing.

1.4 TRANSLATION RULES

1.4.1 The state space

In the translation, the state space is given a “deep” embedding in Hume: it is
represented as a (large) Hume vector; variables are mappings from an environ-
ment to a vector index; and the value is return by projecting the index of the state
space vector. To simplify the memory management the following assumptions are
added with respect to the use of free: it has to be applied in the opposite order
as malloc. Thus, free can only be applied to the last allocated (and non de-
allocated) variable. With this assumption, the state-space vector can be divided
into 3 parts:

<<v1, · · · ,vstack︸ ︷︷ ︸
1.stack

,vstack+1, · · · ,vl −1︸ ︷︷ ︸
2.allocated

,vl , · · ·vmaxsize︸ ︷︷ ︸
3.unallocated︸ ︷︷ ︸

heap

>>

The first element represents the stack which holds all the variables: this means
the value for an integer variable, and a vector index for a pointer variable. Hence,
and index (location) and a value has the same type.

The remaining part of the state-space vector is the heap. Due to the assumption
with the usage of free, the heap part of the state vector can be split into the
allocated and un-allocated heap, by using a variable represented by l above. Here,
l points to the first un-allocated location. This is in fact the alloc and afree
memory management model, as described in [17]. However, it is not supported
in (newer versions of) gcc, thus the use of alloc/free. Now, allocation and
de-allocation can thus be represented by the following functions in Hume:

afree n l = if n > stack && n < l then n else 0;
alloc n l = if n <= maxsize - l then l+n else 0;
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T ′
e ( int )  int

T ′
e ( id )  state@(env Tvar (id) )

T ′
e ( expr1 binop expr2 )  T ′

e (expr1) To ( binop ) T ′
e (expr2)

T ′
e ( (expr) )  ( T ′

e (expr) )
T ′

e ( cast expr )  T ′
e (expr)

T ′
e ( &id )  env Tvar (id)

T ′
e ( *expr )  state@( T ′

e ( expr ))

Te ( expr )  LET x = FRESH() IN
x state = T ′

e ( expr ) ;
RETURN x

T ′′
e ( int )  int

T ′′
e ( id )  env Tvar (id)

T ′′
e ( expr1 binop expr2 )  T ′′

e (expr1) To ( binop ) T ′′
e (expr2)

T ′′
e ( (expr) )  ( T ′′

e (expr) )
T ′′

e ( &id )  env Tvar (id)
T ′′

e ( *expr )  T ′
e ( expr )

FIGURE 1.2. Te ,T ′
e and T ′′

e : translation rules for miniC* expression

The environment is a map, i.e. a Hume function, from variable names into
indexes of the stack. Since there are no local declarations, and this is a proper
ANSI-C subset, the variables are fixed by the declarations. In Hume variables are
represented by an enumeration type var. A miniC* integer is 16 Bytes, which
is a Hume int 16 type, meaning the environment has type var -> int 16.
The translation of the matrix multiplication example above, results the following
enumeration type:

data var = A | B | C | I | J | K;

with the following environment:

env A = 1; env B = 2; env C = 3;
env I = 4; env J = 5; env K = 6;

1.4.2 Expressions

The translation rules for miniC* expressions are given in Figure 1.2. Note that the
translation of miniC* binary operators To is trivial, and miniC* and Hume op-
erators are assumed to have the same precedence. Now, T ′

e gives the translation
rule for miniC* expressions. Here, @ is the built-in infix Hume vector projection
functions. In the rules, a variable preceded by the &, is not projected, meaning the
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location is returned. Moreover, an expression preceded by * is projected in the
state vector, thus returning the value rather than the location.

Te represents the expression as a function on a given state, required for
when translation a subset of the for-statements. Here, FRESH(), LET− IN and
RETURN is part of the meta-language describing the translation. FRESH() returns
an unused identifier while the other two meta-expressions have obvious meaning.
In the translation the resulting Hume code is underlined to separate it from the
miniC* code. T ′′

e is required to translate malloc statements and assignments,
discussed below. Finally, miniC* does not have a boolean type: False is 0 and
True is not 0. T ′

c turns an arithmetic expression into a Hume boolean, (T ′
c (e)

equals T ′
e (e) != 0), and Tc is the function version of this rule.

1.4.3 Statements

A miniC* statement translated into a Hume function. A miniC* statement se-
quence is represented as a function composition. A statement may change the
state space vector state, and the “heap allocation variable” l. Thus, a state-
ment has the type

(vector maxsize of int 16,int 16)
-> (vector maxsize of int 16,int 16)

where maxsize is the size of state-space vector, provided by the user to the
translation rule. With the exception of memory management, most statements
uses a set of pre-defined higher order functions (HOFs):

assign loc v (state,l) = (update state loc v,l);
exIf True s (state,l) = s (state,l);
exIf False _ (state,l) = state,l);
exIfElse True s _ (state,l) = s (state,l);
exIfElse False _ t (state,l) = t (state,l);
loop e s (state,l) =

if (e state) then (loop e s (s (state,l)))
else (state,l);

assign replaces the value of index loc with the value v, using the built-in
Hume vector update function update; exIf represents an if-statement without
an else-clause, while exIfElse represent the version with an else-clause.
Both function are defined by pattern matching the input condition. Together with
condition, exIf should receive the translated body of the if statement, of type
described above. exIfElse additionally receives the else clause body, of the
same type.

The loop HOF captures all but the initialisation statement of a for loop.
Due to the recursion the condition there is a predicate on the state-space and not
a boolean. Thus, Te should be used instead of T ′

e in this translation, since the
value of the condition may change between each call of loop.

Figure 1.3 shows the key translation rules for miniC* statements: in the trans-
lation of malloc, the function argument is assumed to be either the number of
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Ts (expr1 = [ cast ] malloc( expr2 [ * sizeof(int) ] ))
 LET x = FRESH() IN

x (state,l) =
(update state ( T ′′

e (expr1) ) l,
alloc T ′

e (expr2) l);
Ts (free( expr ))  LET x = FRESH() IN

x (state,l) =
let v = T ′

e (expr)
in (update state v 0, afree v l);

Ts (*expr1 = expr2)  LET x = FRESH() IN
x (state,l) =
assign ( T ′

e (expr1) ) (T ′
e (expr2) )

(state,l);
RETURN x

Ts (id = expr)  LET x = FRESH() IN
x (state,l) =
assign T ′′

e (id) ( T ′
e (expr) )

(state,l);
RETURN x

Ts (if ( expr ) stmt)  LET x = FRESH() IN
LET s = Ts (stmt) IN
x (state,l) = exIf ( T ′

c (expr) )
s (state,l);

RETURN x

FIGURE 1.3. Ts : translation rules for miniC* statements

heap cells, or the number of heap cells times sizeof(int). Thus, the latter
is ignored. The statement allocates expr2 locations, and location expr1 points to
the first of these allocated locations. The previously defined alloc function is
used to update l. expr1 should contain the location to the first newly allocated
cell, which is l. Due to the use of update, T ′′

e is used to translate expr1. This
is to ensure that the location, and not the value in the location is returned. As an
illustration, the first (allocation) statement of the matrix multiplication example is
shown. It results in the Hume function f1:

f1 (state,l) = ((update state (env A) l),(alloc 2 l));

free works by de-allocating the last allocated variable, and set the variable
to 0 (the NULL pointer in C). The translated Hume achieves this by application
to the previously defined afree function; assignment is handled directly by the
assign HOF. Here, T ′′

e is used to find the correct location, while T ′
e translates

the new value of that location; the other form of assignment is to prefix an expres-
sion with *, which is also translated into a call to the assign HOF. Due to the
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semantics of *, T ′
e , and not T ′′

e , is used to translated the location (T ′′
e (*expr1)

equals T ′
e (expr1)). To illustrate, the following Hume code, is the result of ap-

plying Ts to the first statement of the body of the middle for loop of the actual
multiplication algorithm for the two matrices above:

f14 (state,l) = (assign ((state@((state@(env C)) +
((state@(env J)) - 1))) + ((state@(env I)) - 1))

0 (state,l));

finally, the rule for conditional without an else branch uses the exIfHOF. Note
that T ′

c is used for the conditional expression, which returns a boolean type. The
translation for a miniC* if statement with an else clause is similar.

The for-statement can be translated using the loop HOF. However, this
HOF is too generic in order to obtain an adequate cost from the Hume analyser
tools. Thus, a costable subset is created, which has a specific translation rule. In
this subset, statements must be on the form

for(id=expr; int1< id; id = id− int2) cbody
for(id=expr; int1<=id; id = id− int2) cbody

and cbody should not change id. Due to pointers, the latter cannot be checked by
translator program. This requires more intricate techniques, and is thus assumed
here. Now, the translation rule for a for statement that is NOT in this subset uses
the loop HOF:

Ts (for ( stmt1 ; expr ; stmt2 ) stmt3)  LET x = FRESH() IN
LET f = Ts (stmt1) IN
LET e = Tc (expr) IN
LET s = Ts (stmt3 ; stmt2) IN
x (state,l) = loop e s (state,l);
RETURN x( f )

Here, Tc ensures that the condition is a function on the state-space. The trans-
lation rule for a for-statement that belongs to this costable subset is defined as
follows:

Ts (for ( id = expr1; expr2 binop id ; id = id - expr3) stmt3)  
LET x = FRESH() IN
LET y = FRESH() IN
LET f = Ts (id = expr1) IN
LET s = Ts (stmt3 ; id = id - expr3) IN
y (state,l) id = if T ′

e (expr2) To (binop) id
then y ( s (state,l)) (id - T ′

e (expr3) )
else (state,l);

x (state,l) = y (state,l) T ′
e (expr1) ;

RETURN x( f )
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All the for statements of the matrix multiplication example belong to the costable
subset. As the rule above shows, here an accumulator variable is used for the rep-
etition, which is explored by the Hume analyser tools. For example, the innermost
for loop of the main multiplication algorithm becomes:

f18 (state,l) k = (if (0<k) then (f18(f19(state,l))(k - 1))
else (state,l));

f20 (state,l) = (f18 (state,l) 2);

Now, k is the accumulator variable, f20 initialises the loop, while f19 is the
body of the statement, including the last statement of the header.

1.4.4 The full program

Sequences are represented as function composition: in a sequence stmt1 ; stmt2,
if stmt1 is translated into function f, and stmt2 is translated into function g, then
the sequence is translated into the composition g(f...), where ... is the
translation of the statements preceding stmt1.

The strict stream ordering in miniC* is a result of the stream handling in
Hume. In the translation of streams, an input stream is handled in the same way
as an assignment, with an additional input to the function, which is the stream.
Similarly, an output stream adds another output to the box, which will have the
value given by the expression in the printf statement.

The full miniC* program is represented as one Hume box. The input is a
dummy boolean value, wired to its output, used to initialise the program, in ad-
ditional to the optional input stream. The output is the dummy value, although
nothing (*) is sent to it, since the program should only be execute once, together
with optional outputs.

The translation rules have been implemented in a Haskell program. In addition
to the miniC* source file, it requires a value holding the size of the state space
vector. In the example programs in Section 1.5, the size of this vector is indicated.

1.5 RESULTS

To estimate the quality of our analysis, we compare the values it delivers with
measurements on a real embedded systems processor, the Renesas M32C. The
actual worst-case execution costs for each primitive Hume instruction on the
M32C/85U processor have been determined by the aiT WCET tool [5], build-
ing the basic cost-model of the analysis. While the analysis results are necessarily
over-estimations, the measurements are significant under-estimations of the worst
case, because they deal with particular input data.

Table 1.1 shows the results for some miniC* programs. The first column gives
the program name, the second the size of the vector modelling the miniC* state
space. The third column gives the result from the WCET analysis on the generated
Hume program. The fourth column gives the measured time for running the Hume
program. The HTA/HT column gives the ratio of analysis result over measured
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Program Vector Hume Time Hume HTA/ C-code HTA/ HTA HTAu/
Size Analysis Time HT Time CT (unsafe) CT

arraycopy 23 494549 732158 0.67 1094 452.06 419523 383.48
arrayrotate 13 616817 303949 2.03 1798 343.06 557019 309.80
fact 13 451787 301328 1.50 3513 128.60 405392 115.40
matmult2 27 771359 500271 1.54 1861 414.49 687164 369.24
mediumarrayrotate 16 824102 376552 2.19 2347 351.13 732066 311.92
tinyarraysearch 15 569359 302224 1.89 2596 219.32 521017 200.70

TABLE 1.1. miniC* analysis and measurement results

costs, and assesses the quality of the bound itself. The sixth column gives the
measured time for running the miniC* program. The HTA/CT column is the most
interesting one, giving the ratio of analysis result over measured C costs.

First of all we observe huge factors in this column. This is not surprising, since
we first translated a low-level miniC* program into a high-level Hume program,
which makes heavy use of higher-order functions and non-destructive vector up-
dates. The analysis not only reflects the high costs of these language constructs,
but also has to be conservative in finding an upper bound on time consumption.
However, it is not our goal to give tight upper bounds through this translation pro-
cess, which would be a hopeless task. We are rather interested in the complexity
profile, i.e. how far does the factor between the programs vary? Clearly for such
an analysis a large set of programs would be needed to come up with a realistic
standard deviation to draw strong conclusions. However, already in this small set
of programs we do observe significant variations, reflecting a poor match between
bounds obtained from the Hume analysis with the actual miniC* runtimes. There
are several possible sources for these inaccuracies. Firstly, the translation could
add costs that don’t necessarily have to be present in the Hume code (for example
using higher-order functions in the translation could be such a source). Secondly,
it could be due to the Hume execution model (for example mandating that all vec-
tor updates have to be non-destructive). Finally, it could be due to limitations of
the WCET analysis (which has to be limited in being a static analysis). To rule out
the last reason we have already performed validations of the analysis on several
Hume applications and these show reasonable accuracy [16]. In order to focus on
the second reason, we have produced an alternative translation route, which gener-
ates vector update code that is destructive (this is an optional feature that we have
added to Hume in order to make specific experiments but is not part of the official
language definition). The HTA (unsafe) column gives the WCET analysis bounds
for this unsafe Hume code, and the HTAu/CT column measures the ratio between
these analysis results and the miniC* execution time. Notably, the variation in
the factors shown in this column is much narrower. Most programs are between
a factor 309 and 383, and all of these programs manipulate array data structures
of a similar size. Only two programs fall outside this range: fact which does
not use arrays at all; and tinyarraysearch which uses only small arrays in
a read-only fashion. Based on this preliminary data, we conjecture that the main
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reason for the large variation in the HTA/CT factors is due to Hume’s execution
model. But this can be circumvented by using destructive updates on vectors to
model (destructive) assignment in miniC*.

From the HTAu/CT column we conjecture that, if two miniC* programs have
“comparable” dynamic memory consumption, which we can analyse through a
related heap analysis, then Hume’s WCET analysis, applied on (generated) Hume
code that uses destructive updates, does indeed produce a realistic complexity
profile for this set of miniC* programs. In particular, if we study two related
implementations of the same algorithm, which do not drastically differ in the
amount of dynamic heap, then we can give guidance on which version is likely to
perform better.

1.6 RELATED WORK

As noted in [8], the translation of imperative to functional languages is very well
known since the first use of functional notations in denotational semantics [24]. In
particular, functional meta-languages are commonly deployed in both semantics-
directed compiler-compilers[21] and theorem provers. The most relevant mecha-
nisation of an imperative language with pointers and dynamic memory manage-
ment we are familiar with is Tuch’s PhD thesis [29]. Here a C language was
formalised in the Isabelle/HOL theorem prover. However, his motivation was
correctness verification and not resource analysis.

Resource analysis also has a long pedigree. Most closely related to our ap-
proach are the amortised cost based analyses of heap space in the linearly-typed
functional programming languages LFPL [10, 11] and Camelot [20], in the com-
prehensive Java-subset RAJA [12], and for several languages in the AHA project [26].
A stack space analysis using this approach is given in [2]. However, none of these
approaches deals with worst-case execution time.

A system that combines a type-based approach with the automatic generation
of checkable certificates for time bounded computation is described in [4], but it
lacks the inference of the bounds in the first place.

Other functional notations with ad-hoc techniques for analysing resource con-
sumption are GeHB [27], with a two-level staged notation that also builds on
LFPL, and RT-FRP [31], which, like Hume, targets embedded systems.

Another type-based approach to infer size bounds are sized types [15]. Several
analyses on heap or stack space usage build on this concept: [14, 23, 3, 30, 7], but
again none considers worst-case execution time, although P. Vasconcelos states in
his PhD thesis that this is equally within reach of these methods.

A variety of academic and commercial tools exist for calculating guaran-
teed bounds on worst-case execution time (WCET) [32], including aiT[5], bound-
T[13], SWEET[25, 19], The state-of-the-art is epitomised by AbsInt’s aiT tool,
which uses abstract interpretation to provide a guaranteed, and tight, upper bound
on actual run-times for C code fragments with known data inputs. The aiT tool
includes precise models of cache [6] and pipeline behaviours [18]. Such tools typ-
ically work on machine-code or C fragments, yielding analyses for specific input
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cases that, in the best situations, closely conform to the actual execution time. In
constructing solutions for concrete programs, however, it is usually necessary for
the programmer to provide additional detailed information, and this may require
significant effort in some cases. For example, it may be necessary to indicate
the range of values that a loop variable may take if the associated iteration is not
bounded by a literal value.

1.7 CONCLUSION

We have explored the use of the Hume WCET analysis directly with miniC*,
an imperative language with explicit memory allocation and pointers, through
translation. Because of the presence of pointers and a dynamic memory model
in miniC*, the state-space is modelled as a vector, and the basic read and write
operations in miniC* are translated to vector-lookup and -update.

First results from analysing code using the rules presented in Section 1.4
showed a wide variation of analysed (Hume) code over measured (miniC*) code,
far wider than our earlier results based on translation from miniC [8], which lacks
pointers and memory allocation. In tracking down the source of this mis-match
we modified the translation of miniC* to more accurately reflect the costs of the
original C program. In particular we use a destructive version of vector update,
to model miniC*-level assignment in the generated Hume code. In this version of
the code the variation of analysed code over measured code becomes much nar-
rower. We believe that in this version of the translation the analysis bounds can
be used as a complexity profile for miniC* programs with comparable memory
consumption.

The results presented here are preliminary results gained from the presented
translation. To obtain a more solid basis for our conclusions we would like to use
more miniC* programs, in particular programs with differing dynamic memory
consumption. Since we also have an analysis for the heap consumption of Hume
program, its results could be taken as input to classify the analysed programs, and
to test our main conjecture on.
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