Low-Level Programming in Hume:
An Exploration of the HW-Hume Level

Kevin Hammond!, Gudmund Grov?, Greg Michaelson?, and Andrew Ireland?

! School of Computer Science,
University of St Andrews, St Andrews, Scotland
Tel.: +44-1334-463241
kh@dcs.st-and.ac.uk
2 Dept. of Mathematics and Computer Science,
Heriot-Watt University, Edinburgh, Scotland
Tel.: +44-131-451-3422
{gudmund,air,greg}@macs.hw.ac.uk

Abstract. This paper describes the HW-Hume level of the novel Hume language.
HW-Hume is the simplest subset of Hume that we have identified. It provides
strong formal properties but posseses limited abstraction capabilities. In this pa-
per, we introduce HW-Hume, show some simple example programs, describe an
efficient software implementation, and demonstrate how important properties can
be exposed as part of an integrated formally-based verification approach.

1 Introduction

The novel Hume language embeds a strict, purely functional expression layer, that de-
scribes computations, within a process layer, that describes a system of asynchronous
communicating processes. By varying the structure of the Hume expression layer, a
number of distinct Hume levels can be identified, where each level fully contains the
level below, but increases the difficulty of providing accurate cost information and other
properties. Full-Hume, or Hume, is a Turing-Complete language based on concurrent
finite state automata whose transitions are controlled by pattern matching over rich
types to initiate actions described by general recursive expressions. PR-Hume, restricts
repetition to primitive recursion, enabling decidable termination. Template-Hume only
permits repetition through pre-defined higher-order operators. FSM-Hume is a finite-
state language with fixed size types and first order functions. Finally, HW-Hume, aimed
at hardware realisation, is a relatively impoverished language for manipulating tuples
and vectors of bits, with exact time and space use prediction.

We have previously introduced the Hume language [22]], defining the different levels
of Hume, as outlined above, and shown how translations may be made between lev-
els [21]]. We have also demonstrated that it is possible to construct bounded space cost
models for FSM-Hume [23]], and for time and space up to PR-Hume [34/35]]. We are in
the process of constructing automatic analyses to provide bounds on amortised time and
space cost information on levels up to PR-Hume. This paper considers HW-Hume in
considerably more depth than in the general papers mentioned above [21122]. Section[2]
introduces HW-Hume and provides some simple examples; Section 3] discusses formal
verification of safety, liveness and real-time properties using model-checking; Section[d]

Z. Horvith, V. Zs6k, and A. Butterfield (Eds.): IFL 2006, LNCS 4449, pp. 91-{I07] 2007.
© Springer-Verlag Berlin Heidelberg 2007

92 K. Hammond et al.

describes a software implementation of HW-Hume and provides some performance
results; Section [3] discusses possible hardware implementations; Section [6] describes
related work; and finally, Section[/] concludes.

2 HW-Hume

HW-Hume programs (Figure[I)) are built from a series of box declarations linked using
static wires. Multiple identical instances of a box may be defined using a template for
subsequent instantiation. A single HW-Hume box comprises a set of pattern-directed
rules, rewriting a set of inputs to a set of outputs, plus appropriate type information for
each input/output. The most primitive type of value is a bit, which may be grouped into
fixed-size vectors or tuples in either a pattern or an expression. Patterns and expres-
sions may be formed from bit literals, variables, the wildcard pattern _, vector or tuple
structures, or (at the top level) the asynchronous * construct, which ignores its input
and produces no output. 7 defines the valid HW-Hume types: bit types, word 1; the unit
type, (); tuple types 71 X ... X T,; bounded vector types, vector n of 7, where n is
the bound; and named types, fypeid.

2.1 Boxes and Coordination

HW-Hume boxes are abstractions of processes that correspond to (usually finite) state
machines. The left-hand-side (pattern part) of each rule defines the situations in which
that rule may be active, i.e. could be executed. The right-hand-side of each rule is an
expression specifying the results of the box when the rule is activated and matches the
corresponding pattern. A box may become active when any of its rules are active, i.e.

program ::= decl, ; ... ;decl, ; nx1

decl ::= box | wire | type | template | instantiation

box ::= box boxid ins outs (match | fair) matches

insfouts ::= (ioidy :: 1y, ... , d0id, :: 7,) n>0

T = word1l |) | (1, ... ,7) | vector n of 7 | typeid m=2,n2>1

matches ::= match, | ... | match, nx1

match ::= Cpaty , ..., pat,) — expr n>0

expr/pat ::= O|1|varid|_|*|OQ|C expr,/pat, , ... , expr,/pat,) n>2
| vector expr,/pat, ... expr,/pat, n>1

wire ::= wire link; to link, [initially expr]

link ::= boxid . ioid | deviceid

type ::= type typeid = 7

template ::= template templateid ins outs (match | fair) matches

instantiation ::= instantiate templateid as boxid [* nat]

Fig. 1. HW-Hume Syntax

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 93

X y c X y
Py T

fanout ¢ half adder
half adder

S/ N7

xor and

! !

sum carry ;

Fig. 2. a) Half-adder b) Full-adder

they may match the inputs that have been provided. In this case, the box runs to comple-

tion, producing any required outputs. For example, we can define boxes to implement
xor, and, and a two-in to four-out fanout as:

box xor box and box fanout
in (a,b::Bit) |[in (a,b::Bit) |in (x,y::Bit)
out (x::Bit) out (x::Bit) |out (x1,yl,x2,y2::Bit)

match match match

(1,1) > 0 (1, —>1 &x,y) > &,y,x,y);
| (0,0 >0 || (L,00 ->0;
| 0 > 1;

For each box, we first specify the names and types of the inputs and outputs — here all
single bits. Note that boxes may use the same names: these are always qualified exter-
nally by the box name. We then specify the pattern-matching rules that take the given
inputs and produce the correct output. The final rule in the first two cases uses “anony-
mous” variable patterns, defined using _. HW-Hume boxes are connected into a static
process network using wires to connect one specific output to one specific input. For ex-
ample, Figure2lshows: (a) a half adder built from a fanout box, an and box and an xor
box; (b) a full adder built from two half adders and an or, where the half adder is either
built from simpler components as in (a) or defined in its own right from a truth table:

box or box half-adder
in (a,b::Bit) |in (x,y::Bit)
out (x::Bit) out(s,c::Bit)
match match

,0) >0 0,0) -> (0,0
| 2 > 1; |1 0,1 -> (1,0
| (1,0) -> (1,0
| (1,1) -> (0,1);

In either case, the boxes are then wired into a static process network using the obvious
wiring declarations. The use of a static process network allows strong program proper-
ties to be obtained, as discussed in Section[3]

Asynchronous Language Constructs. Unlike the widely-used synchronous languages
for real-time systems, such as Lustre [[10], Signal [[L7] or Esterel [8], HW-Hume is an

94 K. Hammond et al.

asynchronous language, allowing the expression of hardware/software systems that are
not explicitly clocked, and where individual boxes may produce outputs without syn-
chronising on their inputs. The two main mechanisms for asynchronicity in Hume are
to allow some or all inputs/outputs to be ignored, using *, and to allow fair matching
on rules, where on each box cycle the first rule considered is that after the one that
succeeded on the previous cycle. The *-pattern indicates that the corresponding input
position should be ignored, i.e. the match always succeeds without demanding any in-
put. * can also be used in a top-level expression position. For example, a multiplexer
can be described by the rules below, where the fourth rule will discard the selector if no
other input is available.

type Bit = word 1;
type Byte = vector 8 of Bit;
type Selector = (Bit,Bit);

box multiplexer
in (bl, b2, b3 :: Byte, sel :: Selector) out (b :: Byte)
fair

(b, *, *, ©,0)) >b
| &, b, *, @©,1)) >b
| ¢, *, b, (1,0) > b
| (:‘.‘, 7’:, :‘.‘, _) -> 7’:’

Note that, in this example, although there is no explict input clock signal, the selector
input acts as a trigger, effectively requiring synchronisation between the selector and
the corresponding input. A more asynchronous version can be produced, if required, by
simply eliminating the selector input.

box multiplexer2
in (b1, b2, b3 :: Byte) out (b :: Byte)
fair

Now each input is immediately mapped to the output without waiting for some selector
to be present. Outputs are chosen from the three possibilities fairly [SI22]. Multiplexing
is an example of an operation that cannot easily be expressed in a single-layer purely
functional notation, since it is non-deterministic at the box level. Despite this local idea
of non-determinacy (an essential part of the problem specification), it is important to
realise that the system as a whole is still deterministic in that it will respond identically
to the same inputs received at the same relative times [22].

2.2 A Simple Traffic Lights Example in HW-Hume

As a more detailed example, we consider a set of traffic lights, as used in the UK, which
displays a sequence of red (stop), red and amber (prepare to go), green (go) and amber
(prepare to stop) light. We might encode these state changes as:

! A variant of this example has also been used in [21]] to illustrate inter-level transformations.

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 95

light(s) [state|meaning red|amber|green
red 0 |[stop 1 |0 0
red/amber|l |prepareto go |1 |1 0
green 2 |go 0 (0 1
amber 3 |prepare to stop|0 |1 0

where a 1 indicates that the corresponding light is on and a 0 that it is off. In HW-
Hume, we could model a traffic light as a box which changes state when it receives
a signal. We encode the state as a two-bit binary number, and the light settings as a
tuple of bits. So that we can reuse the lights definition later, we will use a template
definition:

template trafficlights
in (signal::Bit, state::(Bit,Bit))
out (state’::(Bit,Bit),lights::(Bit,Bit,Bit))
match
(1,00,0)) -> ((0,1),(1,1,0))
I (1,00,1)) > ((1,0),(0,0,1))
I (1,(1,8)) —> ((1,1,0,1,0)
| (1,(1,1)) -> ((0,0),(1,0,0));

instantiate trafficlights as lights;

wire change to lights.signal;
wire lights.state to lights.state’;
wire lights.lights to display;

where change and display are unspecified external connections. On each box cycle, if
the signal on change is 1 then, for the current state, a new setting on 1ights is sent
to display and a new state is produced on state’. Unlike the earlier, combinational
examples we have seen, this is an example of sequential logic: it is necessary to record
the state value as feedback between box iterations.

3 Verifying HW-Hume Programs

Because of the cost and difficulty involved in applying bug fixes, low-level system de-
signs often possess strong correctness criteria. This is especially true for hardware,
where there is a long tradition of using automated verification and formal methods to en-
hance confidence in the correctness of such systems. In particular model checking [12]]
has been successfully applied to many hardware systems. In this approach, a property
is specified in a temporal logic, and its correctness against a given model (program) is
verified algorithmically by exploring the complete state space of the model.

We exploit TLA* [29] which combines TLA (Temporal Logic of Actions [28])
with a variant of ZF set-theory and which allows both system (model) and properties
to be specified in the same logic. The validity of a program property can therefore be

96 K. Hammond et al.

expressed by logical implication: Program = Property. This validity can then be
checked by the TLC model checker [29] for TLA*. TLA(*) also have a proof sys-
tem, meaning we can give deductive proofs of properties, which will be required in
the higher levels of Hume. It has a similar layering to Hume, and this together with
both the algorithmic and deductive proofs support, made TLA fit really well into our
work. In HW-Hume, individual box definitions are fairly simple, and the most inter-
esting properties (and errors!) consequently arise when combining two or more boxes.
We therefore illustrate our approach using a slightly extended version of the traffic light
example, where two instances of the trafficlights template are connected to model
a complete road junction under the control of the controller box below.

instantiate trafficlights as lights * 2;

box controller

in (state :: (Bit,Bit,Bit))
out (state’ :: (Bit,Bit,Bit), lightsl,lights2 :: Bit)
match
(0,0,0) > ((0,0,1),1,%) -- lightsl: Red -> Red-amber
| (0,0,1) -> ((0,1,0),1,*) -- lightsl: Red-amber -> Green
| (0,1,0) -> ((0,1,1),1,*) -- lightsl: Green -> Amber
| (0,1,1) -> ((1,0,0),1,*) -- lightsl: Amber -> Red
| (1,0,0) -> ((1,0,1),*,1) -- lights2: Red -> Red-amber
| (1,0,1) -> ((1,1,0),*,1) -- lights2: Red-amber -> Green
| (1,1,0) -> ((1,1,1),*,1) -- lights2: Green -> Amber
| (1,1,1) -> ((0,0,0),%,1); -- lights2: Amber -> Red

In the remainder of this section we will discuss both safety and liveness properties of
this program. We also show how time analysis of the expression layer can be combined
with TLA* to verify bounded real-time properties of the coordination layer.

3.1 Safety Properties

A safety property specifies that certain undesired behaviour never occurs [4]. The
safety-part of a specification therefore specifies what a good behaviour is, but does
not require that something actually happens. We formalise the safety part of the traf-
fic light example as follows. Let Prog denote the safety part of our program. The state
space consists of 1, all the internal variables used in any box, and w, all the wires used
in the program. These are given an initial value by Init. For each box, we define ac-
tions Ny, Np and N, which update the state space. Since TLA™* is a logic rather than
a programming language, these actions are defined as predicates on a before-step and
an after-step, where all variables in the after-step are primed. For example, if /1 can
be executed then N;; will match the (unprimed) input wires (unfairly). If it succeeds,
then the (primed) input wires are set to empty since there are no * in the pattern, and
the primed outputs are updated with the result of the computation. A next-action N up-
dates the complete state space, and is defined in terms of the execution of all the boxes

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 97

in the program (N A Nz A Ngy). It must have the form [N](;,W), which abbreviates

N V (i,w) = (i,w). This is an important feature since it allows “internal actions” that
do not alter the state space. Since we are working in a temporal logic, this next-action is
required to hold throughout execution. We therefore prefix the action with the temporal
always operator (0) to give O[N] ;. In the traffic lights program, only state transitions
are specified: at any given time/state we do not know which lights are on and which are
off. Since we are interested in the current colour of the lights, we introduce two auxiliary
variables, #/; and tl,, to expose this information in the model. These variables emulate
the actual lights, allowing us to formalise the required safety properties much more
naturally. We assume that the lights are initially red. The action Ny ; updates these
variables if (and only if) the corresponding light changes colour. Prog2 extends Prog
with these definitions. Note that these auxiliary definition do not change the behaviour
of Prog:

Prog2 = Wi Inity g Alnit AOIN A N A Nea ANy 1 1wl 1

Here the H operator is a form of existential quantification that is used to hide the
state, that is, the internal variables of the boxes are hidden. The first safety property we
define is an invariant asserting that both lights cannot be green at the same time:

Prog2 = (il # (0,0, 1) V 1l # (0,0, 1))

The O-prefix ensures that the property holds throughout execution. This can be stren-
gthened to show, e.g., that if one of the lights is not red, then the other light is red:

Prog2 = af(t # (1,0,0) = tl = (1,0,0) A (th, # (1,0,0) = Iy = (1,0,0)))

The final safety property we define is that the order of the light changes is correct.
This is no longer a state invariant, since we need to compare two states: that before the
change and that after the change. We define a pseudo-function Next as follows:

Next 1 = case 1 of (1,0,0) -> (1,1,0)
| (1,1,80) -> (0,0,1)
| (0,0,1) > (0,1,0)
| (0,1,0) -> (1,0,0);

where Next is a meta-level definition used in the reasoning process and not part of
the HW-Hume program. We can then verify that the next-action of Prog2 implies
this change. We use Next #/;/tl, to ensure that there exists a correspondence between
changes in the action and the associated value.

Prog2 = O[tl] = Next tll]tll
Prog2 = O[il, = Next llz]tlz

The subscripts to the actions ensure that only those steps where the lights actually
change value are considered. This is necessary if the formula is to be valid.

98 K. Hammond et al.

3.2 Liveness Properties

Liveness properties assert that something good will eventually occur [4]. The specifica-
tion must therefore be constrained to remove non-progress behaviours. We constrain it
with a type of liveness called fairness. There are two types of fairness, both building on
the enabled predicate: An action is enabled when it could successfully execute. Weak
fairness asserts that if an action remains enabled, then it will eventually execute, while
strong fairness asserts that if an action is enabled infinitely often then it will eventually
execute. The scheduling of Hume guarantees both strong and weak fairness of boxes.
This is because all boxes that can be executed are always executed. Further, since the
only way an executable (enabled) box can become non-executable (disabled) is by exe-
cuting it, weak and strong fairness are both equivalent for Hume. Note that this notion
of fairness is distinct from the notion of fair matching introduced earlier. We only re-
quire weak fairness for our proofs, extending Prog2 with the fairness predicate for all
the boxes:

Prog3 = Prog2 A WF ;- (Niu A Np A Nea)

The first liveness property we show is that at any given time, there will always be a time
in the future when the lights are green:

Prog3 = 0ol = (0,0, 1)) A oo (s = (0,0, 1))

O¢ is read as “always eventually”. One kind of liveness property which is very im-
portant for HW-Hume programs is a so-called leads-to property. For example, we can
specify that if #/; is red then #/, will eventually become green:

Prog3 = tl; = (1,0,0) ~ tl, = (0,0,1) A tl, = (1,0,0) ~ tl; =(0,0,1)

where A ~> B means that (always) when A is True then eventually B will be T rue. Note
that this property is strictly weaker than the previous property, which can be specified
simply as True ~ tl; = (0,0, 1). Note that o0GT specifies termination, i.e. the produc-
tion of some result. This termination property can be strengthened to only check for
termination under certain condition P: This is formalised as a leads-to property P ~> T.

3.3 Real-Time Properties

One of the novel aspects of, and indeed a prime motivation for, the design of Hume is
that upper bounds on time and space can be guaranteed for the expression layer. Since
HW-Hume is a language of bits, tuples and vectors, it is straightforward to produce
precise models of both space and time usage. For brevity, we omit formal definitions of
these models here (definitions for FSM-Hume can be found in [23]]), but will show how
time bounds for the expression layer obtained from such a model can be combined with
TLA™ to give time bounds for the Hume coordination layer.

We are interested in properties of the form “if #/; = (1,0, 0) then ¢/, = (0,0, 1) within
time Bound”’, that is where Bound represents an upper bound on the time usage. Let
T11/12/cn be the time bounds guaranteed from the analysis of the expression layer. Fur-
ther, let T, and T, be respectively the upper bounds on the time it takes to consume

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 99

and write all values. Error indicates that Bound has been exceeded and Disabled in-
dicates that we are not between #/; = (1,0,0) and tl, = (0,0, 1). Let ¢ be a variable
representing time, and N> be the conjunction of all next-actions. We can then define
the real-time specification:

Progd = di: Inity g Nlnit Nt = Disabled A O[N* At = NextTime(t)]G,W,ﬂl,ﬂm

where ¢ is initially Disabled. For each step NextTime(t) calculates the new value of
t as follows: if 1I; = (1,0,0) then 7 is set to Bound. For all the following steps ¢ is
decremented with either T} + T + Tey + Teon, if boxes are executed sequentially; or
Max(Ty, Ty, Tey) + Teon + Teooras If €xecution is concurrent. Ty, 18 the coordination
cost, if applicable. If 7, = (0,0, 1) then ¢ is reset to Disabled. Finally, if t < 0 then ¢ is
set to Error. Since we want to verify that our specified time bound is never exceeded,
we must prove the property:

Prog4 = O(t # Error)

We use explicit-time model checking [30] to verify this property. This obviates the use
of a special real-time logic or model checker, and may not be much less efficient than
such a checker in practice [30]. In our experiment we used the value 7)) = 2,Tp =
2, Ty = 1,Teon = 1, Tyrire = 1. When executing the boxes sequentially, we found we
were unable to guarantee a Bound of 30 or 50, but were able to guarantee a Bound of
60. In general, concrete time values, such as 7;;, Tj» and T, above, can be obtained by
using a worst-case execution time analysis on the expression layer; while Tcon, Trire
and, if present, 7,4 Will be platform-dependent, but should be easy to determine. A
companion paper [7]] shows how this could be done, giving concrete values for a simple
architecture, and describes the construction of a worst-case execution time analysis for
Full-Hume. Note that these values are not fixed in the TLA™ specification, but can be
supplied to TLC as part of the configuration of the model that must be checked.

4 A Software Implementation of HW-Hume

This section describes a high-performance software implementation of HW-Hume that
can be used as the basis for software/hardware codesigns (where some HW-Hume boxes
are implemented as described and others are replaced by hardware equivalents). The im-
plementation also serves as a low-memory, high-performance implementation of Hume,
where the source program is either restricted to the HW-Hume level, or can be trans-
formed from a higher level of Hume into HW-Hume, for example as shown in [21]. We
discuss hardware/software integration at the end of the section.

4.1 HW-Hume Abstract Machine Instructions

HW-Hume programs are compiled to a simple abstract machine which has a single
accumulator plus some temporary memory locations, and which is designed to be eas-
ily implementable using simple logical operations. Each box is compiled indepen-
dently, with each rule compiled into a sequence of abstract machine instructions. For

100 K. Hammond et al.

the pattern-part the abstract machine first determines the availability of the required
inputs, then if sufficient inputs are available, matches these inputs against the patterns,
and finally consumes the inputs; and for the expression-part, it constructs each non-
ignored output by selecting any necessary parts of the inputs (so binding variables) and
combining these with any required literal values before writing the result to one of the
output wires. Finally, rules may be reordered according to fairness criteria, and control
then returned to the scheduler.

Expression-Level Instructions: There are two main instructions. Load /it loads literal
lit into the accumulator. Select i pos size shift loads size bits into the accumulator from
input i starting at bit pos, offsetting these in the accumulator by shift bits. So:

Load 4
Select 1520

will load three bits into the accumulator, where the top bit is the constant 1 (specified
by Load 4), and the first and second bits are selected from the fifth and sixth bits of
input number 1, respectively (specified by the Select instruction). The result can then
be written to the appropriate output wire using a Write instruction.

Pattern-Matching Instructions: The Match fail i nlits lits nvars vars instruction
matches input i against literal pattern lits (whose size in bits is specified by nlits), dis-
regarding any input positions that will be bound to variables according to vars (whose
size in bits is specified by nvars). If the input doesn’t match, execution continues at
label fail, usually corresponding to the next rule.

Match next 2 3 5 3 2

requires the first and third bits of input 2 to be constant ones (as specified by the literal
5), but accepts any value for the second bit (as specified by the value 2 for vars). Both
literals and variables are three bits wide. Each set of Match instructions is preceded by a
CanConsume instruction which determines whether the necessary inputs are available,
and followed by a Consume instruction which unlatches the corresponding input. For
example,

CanConsume next 4 6
Consume 4 6

checks whether the second and third input can be consumed (specified by the bit pattern
6), consuming them if so, and otherwise branching to the label next. For example, we
can compile the simple selector box below:

box sel in (s :: Bit, x1, x2 :: Byte) out (y :: Byte)
match

,x1,) > x1
| (1,_,x2) -> x2;

into the following sequence of instructions (which have beeen wrapped in a pair of
Box/EndBox pseudo-instructions):

Box "sel" "sel” 3 1 2 "sel_init"

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 101

Label "sel" Label "sel_1"
CanConsume "sel_1" 3 7 CanConsume "sel_2" 3 7
Match "sel 1" 0 1 0 1 0 Match "sel 2" 0 1 110

Match "sel_1" 1 8 255 8 255 Match "sel_2" 1 8 255 8 255
Match "sel_1" 2 8 255 8 255 Match "sel_2" 2 8 255 8 255

Consume 3 7 Consume 3 7
Load 0 Load ©

Select 1 0 8 0 Select 2 ® 8 0
Write © Write ©
Schedule Schedule

Label "sel_ 2"

EndBox "sel"

4.2 Compilation

We have produced a template-compiler that translates each abstract machine instruction
into portable C source code. This can then be compiled to give a native implementation
of HW-Hume. Each box is compiled as a void C function. We also define an associated
set of output wire buffers and a set of pointers that define the box’s inputs. Boxes are
placed in a scheduler queue and scheduled using a simple round-robin scheduler, where
qgrem simply removes and returns the next function from the queue if there is one, or
else returns NULL. Boxes are added to the scheduler queue when they have sufficient
inputs to be able to execute. When no boxes can execute, termination occurs.

void runHume () { while((next=qrem()) != NULL) (void) (*next)(); }

The main function adds the _initial function to the scheduling queue. This ensures
that wires are properly initialised with any required values. It then adds the checkavails
function, which will check input availability for each box and add it to the scheduler
queue. Finally the main function enters the scheduler runHume, shown above.

Individual abstract machine instructions are defined as C macros, with Hume Ab-
stract Machine (HAM) labels translated directly into C labels that can be branched to
using a goto. For the Match instruction, we define the macro shown below. By xoring
the input against the literal pattern, we will obtain a value which is 1 for each bit where
the pattern matches the input and O otherwise. We then complete the match by setting
each bit that is matched by a variable to 1. In this way, wherever the pattern matches,
we will obtain a 1, and wherever it does not match, we will obtain a 0. We then check
this against a mask that is all 1s for the number of input bits, branching to the fail
label if unsuccessful.

#define Match(fail,input,nlits,lits,nvars,vars) \
{ unsigned match = " ("thisbox->inp[input] =~ "1lits) | vars; \
const unsigned mask = (l<<nlits)-1; \
if((match & mask) != mask) goto fail; \
}

Finally, the Load instruction simply loads the literal value into the accumulator and
the Select instruction is used to select the appropriate bits from the required input
position.

102 K. Hammond et al.

#define Load(val) { accum = val; }

#define Select(input,posn,size,shift)\
{ accum |= ((thisbox->inp[input] & ((l<<(posn+size))-1)) >> posn) << shift; }

4.3 Performance Results

Table [Tl shows performance results for a number of HW-Hume programs running un-
der three different implementations: #,,,; gives execution times for the prototype Hume
Abstract Machine [20], a bytecode interpreter written in portable C; #j,.. gives corre-
sponding times under the general Hume to C template-compiler we are constructing as
part of the EmBounded project; and t5w gives times under the HW-Hume implemen-
tation we have described here. Space usage is given for the HAM interpreter, sp4,,; and
for the implementation described here, sgyw. Figures in brackets are those predicted by
the cost model. All timings were obtained on a 1.67GHz Apple Powerbook G4 running
MacOSX 10.4.8 and represent the average of 10 executions. Timings were recorded
from box start to box end, and all C compilation was performed using gcc 4.0.0 using
-02 optimisation. Our results show that, for these examples, the template compiler is
slightly more than ten times faster than the bytecode compiler, and that the HW-Hume
implementation is between 2.8 and 10.9 times faster than the latter implementation.
While dynamic memory usage is low for the HAM interpreter at between 130B and
740B, it represents only a few words of memory for the HW-Hume implementation,
being between 11 and 60 bits. Binary program size is also acceptably small. On an Intel
Pentium IV running Linux, the total binary size for the HW-Hume multiplexor program,
including all static and dynamic data and program code is 3526 bytes.

Table 1. Performance Comparisons

Program |twami |thumec |taW | Shami SHW |
adder 442us|— 7.0us [130B (130B){17b
multiplexer [149us|12.9us|4.62us|732B (740B)|60b
multiplexer2|275us|24.4us|5.25us |660B (664B)|56b
lights 286us|21.5us|1.96us|136B (240B)|11b

5 Hardware Implementation from HW-Hume

A hardware implementation can be obtained from HW-Hume in one of two main ways.
Firstly, netlists can be generated directly from the description of Hume boxes and wires.
Netlists, such as the widely-used EDIF [1]], describe a collection of hardware devices,
in terms of instances of master definitions, plus the interconnections between those de-
vices, in terms of the ports associated with each device. It is then necessary to refine
these netlists to include timing, placement and detailed functional behaviour, so that
a hardware implementation can be obtained. Although substantial manual intervention
may be required in later stages, there is considerable flexibility over the form of the

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 103

final hardware implementation. In HW-Hume terms, a femplate is a master definition,
a box is an instance, box inputs/outputs are ports, and wires define interconnections.
Alternatively, the C we have produced from our software implementation above could
be passed as input to Handel-C [9] or a similar FPGA notation. This will then gen-
erate netlists and other required information so that an FPGA implementation can be
produced. An example EDIF netlist for the half-adder above might be:

(edif halfadder

-- version info
(edifVersion 2 0 0) (edifLevel 0) (keywordMap (keywordLevel 0))

-- this library
(library humeprogram
(edifLevel ®) (technology (numberDefinition) -- preamble
(simulationInfo (logicValue H) (logicValue L)))

(cell (rename HALFADDER "halfadder")(cellType GENERIC) -- half-adder
(view COMPASS_mde_view (viewType NETLIST) -- netlist
(interface
(port a (direction INPUT)) -- in/out ports

(port b (direction INPUT))
(port s (direction OUTPUT))
(port c¢ (direction OUTPUT)))))

-- export the design
(design HALFADDER (cellRef HALFADDER (libraryRef humeprogram)))))

It is also necessary to construct any required instances of HALFADDER and link these
into a coherent network.

5.1 Hardware/Software Integration Issues

Hardware components can be integrated into HW-Hume software programs either by
completely replacing some box, where they are equivalent to the HW-Hume source,
or as unspecified “pseudo-boxes”. In either case, it is necessary to provide linkages
between software and hardware so that such boxes will react to (possibly software)
inputs and produce outputs that can be directed to software boxes. For example

operation "countl" to "74HC393/1" :: vector 2 of Bit -> vector 4 of Bit;
operation "count2" to "74HC393/2" :: vector 2 of Bit -> vector 4 of Bit;

might specify two pseudo-boxes countl and count2, one attached to each half of
a 74HC393 four-bit binary counter. The two one-bit inputs are a clock signal and a
master reset input in each case. These boxes can be connected to software in the usual
way. Note that in this case, an explicit clock signal must be threaded as an additional
input to each HW-Hume box where it is required.

104 K. Hammond et al.

6 Related Work

Declarative hardware description languages are an attractive approach, allowing clean
separation of functionality from behavioural detail, supporting automatic circuit gen-
eration, and promoting much higher level of abstraction than found in the industry-
standard VHDL notation, for example. One early declarative approach, Ruby [27], was
based on relational calculus. While there is an obvious link between logic gates and
logical relations, in practice, most hardware circuits map some inputs to some outputs.
It follows that functional approaches to hardware description are not only possible, but
also completely appropriate, and several examples have been described previously.

There have been several approaches to developing functionally-based notations for
hardware. Lava [6l11], produced in association with Xilinx Corporation, uses an embed-
ded domain-specific language approach, extending Haskell with operations that allow
the high-level description of FPGA circuits. Where Lava uses non-strictness to spec-
ify links between hardware components, in Hume, boxes/wires serve the same purpose.
Other similar approaches include Intel’s ReFL¢“ language [19], which is used commer-
cially to verify properties of their processor designs; the Hawk hardware verification
language [26]; the Hydra system for logic circuit specification; the functional derivation
approach, for deriving FPGA circuits from Haskell specifications [25]; the lenient, purely
functional language Confluence for designing synchronous circuits [2]], the imperative
HDCaml hardware design/verification language [3]]; the SAFL hardware description lan-
guage [31]]; and the same authors’ Flash notation for hardware/software codesign [32].
Compared with HW-Hume, the most obvious differences in these notations are their
use of a single-level language rather than a separation between coordination and ex-
pression, their inclusion of high-level features such as higher-order functions and direct
recursion (though these may be mapped from higher levels of Hume into HW-Hume
programs), and the general absence of asynchronous constructs. The decision to include
asynchronous constructs in Hume is a careful one. The advantage of a synchronous lan-
guage design such as Lustre [10] is in terms of a simpler semantic model, that conse-
quently simplifies the construction of cost models. However, while asynchronous sys-
tems can generally be restricted to synchronous cases, and this can be detected using
model-checking as we have done in this paper, it is considerably more difficult to de-
scribe asynchronous systems starting from a purely synchronous basis. Recent work has
therefore seen hybrid notations, such as Lucid-Synchrone [[14f], which combines finite-
state-automata and a synchronous communication model, or notations that explicitly
expose clocks as additional inputs to otherwise synchronous systems [13].

While model checking has been successfully applied to several imperative lan-
guages, for example in the shape of NASA’s Java Pathfinder [24] or Microsoft’s Termi-
nator [15] tools, there are fewer systems combining functional languages with model
checking. Apart from our own work on HW-Hume and Spin [18]], the most relevant
work of which we are aware is that on ReFL* [19], on verifying SAFL programs [16]],
and on verifying resource properties in Erlang [33]]. A key difference from our work
is that we deal with real-time properties as well as liveness and safety. Since we have
constructed a formal model of the Hume coordination layer, which is identical to all
Hume levels, we are also able, in principle, to work at arbitrary levels of Hume and to
prove properties on transformed code.

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 105

7 Conclusions and Future Work

This paper represents a first exploration of HW-Hume. HW-Hume targets low-level sys-
tem descriptions, using a declarative notation combining purely functional expressions
with a high-level process notation. We have shown how essential safety, liveness and
real-time properties of HW-Hume programs can be specified in TLA* and how they can
automatically verified with the TLC model checker. In doing this, we have provided the
first example of using TLA™ to model check properties in a programming language. The
combination of time analysis on boxes with temporal logic is also novel, and reveals the
advantage of using a layered language when performing static analysis, allowing clear
separation between different aspects of the time analysis.

Since TLA™ is a much higher level notation than supported by most model checkers,
this allows a more direct embedding of HW-Hume semantics, and also helps mitigate
the “state-space explosion problem”, a major bugbear of model checking, where the
checker fails because too many states have been generated. Even more interestingly, we
have been able to extend the work reported here to model-check that the safety-part of
a property is preserved when transforming from a higher-level into a lower-level Hume
program.

We have also shown how an efficient software implementation can be produced for
HW-Hume, using a template-based compiler compiling through C. This implementa-
tion is highly space efficient. For example, for the sel box above, we can determine
a total dynamic memory usage of 42 bits (including all wiring requirements), and the
complete C program in which it is embedded has a total dynamic memory requirement
of 620 bytes, including all system data structures and runtime queues. HW-Hume may
therefore be the world’s most space-efficient functional language.

7.1 Further Work

In addition to producing a concrete hardware implementation for HW-Hume, as dis-
cussed above, a number of important issues remain to be addressed. Firstly, hardware/
software co-design is becoming increasingly important as an approach to building em-
bedded computer systems. As we have shown above, it is possible to produce both
hardware and software implementations from a single HW-Hume definition. We believe
this gives a powerful tool for developing combined hardware/software implementations
from a single source specification, and intend to investigate this further. Secondly, we
have already developed a powerful transformational framework allowing higher levels
of Hume to be mapped into HW-Hume programs. In this way, programmers have access
to higher-order combinators, repetition and other abstractions. We need to investigate
whether this approach gives an effective way to provide high-level abstractions over
hardware circuits. Thirdly although TLA™ has proved effective for HW-Hume, when
dealing with more expressive levels of Hume, it is likely to prove insufficiently pow-
erful, since we will need to deal with more sophisticated forms of data structures, for
example. We are therefore working on formalising TLA in a theorem prover. Fourthly,
TLC supports a form of state-space reduction technique called symmetry which may
yield further performance benefits. We intend to address how we may exploit this in
HW-Hume. Fiftly, we have developed a specification language for HW-Hume, based

106 K. Hammond et al.

on [[18], which captures all properties we have shown. We plan to create a translator
from HW-Hume and this specification language into TLA* which automatically veri-
fies the properties. We believe this should be a trivial thing to do. Finally, although we
have defined box templates and wiring macros to reduce repetition in describing collec-
tions of boxes, we have not developed a complete hierarchy of box-combining forms.
This would effectively involve constructing a higher-order calculus of boxes, and would
allow more modular and scalable verification of properties.

References

. Electronic Design Interchange Format Version 2.0.0,Technical ANSI/EIA-548-1988 (1988)

. Confluence: http://www.confluent.org/wiki/doku.php?id=confluence (2006)

. Hdcaml: http://www.confluent.org/wiki/doku. php|(2006)

. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21, 181-185

(1985)

5. Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs, 2nd edn.
Springer, Heidelberg (1997)

6. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in Haskell. ACM
SIGPLAN Notices 34(1), 174-184 (January 1999)

7. Bonenfant, A., Ferdinand, C., Hammond, K., Heckmann, R.: Worst-Case Execution Times
for a Purely Functional Language. In: this proceedings, Springer, Heidelberg (2007)

8. Boussinot, F., de Simone, R.: The Esterel Language. Proceedings of the IEEE 79(9),
1293-1304 (September 1991)

9. Butterfield, A., Woodcock, J.: prialt in Handel-C: an operational semantics. Int. J. Softw.
Tools Technol. Transf. 7(3), 248-267 (2005)

10. Caspi, P, Pilaud, D., Halbwachs, N., Place, J.: Lustre: a Declarative Language for Program-
ming Synchronous Systems. In: Proc. POPL *87 — 1987 Symposium on Principles of Pro-
gramming Languages, Miinchen, Germany, pp. 178-188 (January 1987)

11. Claessen, K., Pace, G.: An Embedded Language Framework for Hardware Compilation. In:
Proc. Conf. on Designing Correct Circuits (DCC 2002) (2002)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

13. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-Synchronous
Kahn Networks: a Relaxed Model of Synchrony for Real-Time Systems. In: Proc. POPL ’06:
ACM Symposium on Principles of Programming Languages, pp. 180-193. ACM Press, New
York (2006)

14. Colaco, J.-L., Pagano, B., Pouzet, M.: A Conservative Extension of Synchronous Data-flow
with State Machines. In: Proc. ACM International Conference on Embedded Software (EM-
SOFT’05), Jersey City, New Jersey, USA (September 2005)

15. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond Safety. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, Springer, Heidelberg (2006)

16. Foster, J.N.: Model Checking for a Functional Hardware Description Language, BSc Disser-
tation, Cambridge University. PhD thesis (2002)

17. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: A Declarative Language For Synchronous
Programming of Real-Time Systems. In: Kahn, G. (ed.) Functional Programming Languages
and Computer Architecture. LNCS, vol. 274, pp. 257-277. Springer, Heidelberg (1987)

18. Grov, G., Ireland, A., Michaelson, G.J., Hammond, K.: Verifying Temporal Properties in

HW-Hume. Technical report, Heriot-Watt University, School of Mathematical and Computer

Sciences (February 2006)

O R N R

http://www.confluent.org/wiki/doku.php?id=confluence
http://www.confluent.org/wiki/doku.php

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

Low-Level Programming in Hume: An Exploration of the HW-Hume Level 107

Grundy, J., Melham, T., O’Leary, J.: A Reflective Functional Language for Hardware Design
and Theorem Proving. J. Funct. Program 16(2), 157-196 (2006)

Hammond, K.: Exploiting Purely Functional Programming to Obtain Bounded Resource Be-
haviour: the Hume Approach. In: Central European Summer School on Functional Program-
ming, July 2005, Springer, Heidelberg (2006)

Hammond, K., Michaelson, G.: Bounded Space Programming using Finite State Machines
and Recursive Functions: the Hume Approach. Submitted to ACM Transactions on Software
Engineering and Methodology (TOSEM), in preparation(2006)

Hammond, K., Michaelson, G.J.: Hume: a Domain-Specific Language for Real-Time Em-
bedded Systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
37-56. Springer, Heidelberg (2003)

Hammond, K., Michaelson, G.J.: Predictable Space Behaviour in FSM-Hume. In: Peiia, R.,
Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, Springer, Heidelberg (2003)

Havelund, K., Pressburger, T.: Model Checking JAVA Programs using JAVA PathFinder. Int.
Journal on Software Tools for Technology Transfer 2(4), 366-381 (2000)

Hawkins, J., Abdallah, A.E.: Behavioural Synthesis of a Parallel Hardware JPEG Decoder
from a Functional Specification. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002.
LNCS, vol. 2400, pp. 615-619. Springer, Heidelberg (August 2002)

Launchbury, J., Matthews, J., Cook, B.: Microprocessor Specification in Hawk. In: Proc.
International Conference on Computer Languages, pp. 90-101 (1998)

Jones, G., Sheeran, M.: Circuit design in Ruby. In: J. Staunstrup, editor, Formal Methods for
VLSI Design, pp. 13—70. North-Holland (1990)

Lamport, L.: The Temporal Logic of Actions. ACM TOPLAS 16(3), 872-923 (1994)
Lamport, L.: Specifying Systems — The TLA+ Language and Tools for Hardware and Soft-
ware Engineers, Reading, Massachusetts. Addison-Wesley, London (2002)

Lamport, L.: Real-Time Model Checking Is Really Simple. In: Borrione, D., Paul, W. (eds.)
CHARME 2005. LNCS, vol. 3725, pp. 162-175. Springer, Heidelberg (2005)

Mycroft, A., Sharp, R.: A Statically Allocated Parallel Functional Language. Automata, Lan-
guages and Programming, pp. 3748 (2000)

Mycroft, A., Sharp, R.: Hardware/Software Co-Design Using Functional Languages. In:
Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 236-251.
Springer, Heidelberg (2001)

Earle, C.B., Arts, T., Derrick, J.: Verifying Erlang Code: a Resource Locker Case-Study. In:
Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 184-203. Springer,
Heidelberg (2002)

Vasconcelos, P.B.: Cost Inference and Analysis for Recursive Functional Programs. PhD
thesis, University of St Andrews, 2006. in preparation

Vasconcelos, P.B., Hammond, K.: Inferring Costs for Recursive, Polymorphic and Higher-
Order Functional Programs. In: Trinder, P., Michaelson, G.J., Pefia, R. (eds.) IFL 2003.
LNCS, vol. 3145, pp. 86—101. Springer, Heidelberg (2004)

	Introduction
	HW-Hume
	Boxes and Coordination
	A Simple Traffic Lights Example in HW-Hume

	Verifying HW-Hume Programs
	Safety Properties
	Liveness Properties
	Real-Time Properties

	A Software Implementation of HW-Hume
	HW-Hume Abstract Machine Instructions
	Compilation
	Performance Results

	Hardware Implementation from HW-Hume
	Hardware/Software Integration Issues

	Related Work
	Conclusions and Future Work
	Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

