
Higher-Order Symb Comput (2009) 22: 305–312
DOI 10.1007/s10990-010-9055-7

The Peter Landin prize

Kevin Hammond · Greg Michaelson

Published online: 10 April 2010
© Springer Science+Business Media, LLC 2010

Abstract The Peter Landin prize honours the best paper presented at each year’s Interna-
tional Symposium on the Implementation and Application of Functional Languages (IFL).
It has been awarded every year since 2003, and covers a range of topics including functional
operating systems, static analysis for cost information of functional programs, techniques
to improve array processing for data locality and parallelism, explicit parallel coordination,
supercompilation, and a rational deconstruction of Landin’s SECD machine itself. This ar-
ticle describes the history of the prize, explains why Peter Landin was chosen as nominee,
and describes each of the articles that have been awarded the prize to date.

Keywords Functional programming · Programming language design · SECD machine ·
ISWIM · Parallelism · Static analysis · Supercompilation

1 History of the Peter Landin prize

In 1999, the authors commissioned and edited a book on parallel functional program-
ming [10]. Its twenty-seven international contributors subsequently agreed that the royalties
should be donated to fund a small annual prize that could be used to promote research in
functional programming.

We were very pleased when the International Symposium on the Implementation and
Application of Functional Languages (IFL) agreed to host the prize.1 IFL originated as a
small workshop on parallel functional programming, held at Nijmegen in 1989. Since that
time, it has been held annually, growing significantly in the process, and since 1996, it has
published a high-quality post-event proceedings, containing a selection of the best papers

1See http://www.ifl-symposia.org.

K. Hammond (�)
School of Computer Science, University of St. Andrews, St. Andrews, Scotland
e-mail: kh@cs.st-andrews.ac.uk

G. Michaelson
School of Mathematics and Computer Science, Heriot-Watt University, Edinburgh, Scotland
e-mail: G.Michaelson@hw.ac.uk

http://www.ifl-symposia.org
mailto:kh@cs.st-andrews.ac.uk
mailto:G.Michaelson@hw.ac.uk

306 Higher-Order Symb Comput (2009) 22: 305–312

presented at the event. Reflecting this focus on quality, after ten years of existence, IFL was
upgraded into a Symposium. IFL has now established itself as one of the leading annual
events in the functional programming calendar, with a specific focus on practical aspects of
functional programming.

The Peter Landin prize is administered by the authors, on behalf of the donors, and has
been awarded every year to the best paper presented at the previous IFL. The prize is chosen
by the IFL programme committee based on the papers that have been submitted, without
any input on our part. It thus represents an honest and prestigious recognition of the merit
of the authors of the papers that have been so honoured. Each year, the prize certificate is
awarded in person to the authors of the successful publication (a cheque is, of course, sent
sooner, to allow the laureates to celebrate in style!).

2 Why honour Peter Landin?

It is customary to name major awards after significant contributors to the field. For example,
in Computer Science, outstanding work is recognised by the annual ACM Turing Award,
the BCS Lovelace medal and the BCS Needham award, honouring three notable pioneering
figures in the discipline, namely Alan Turing, Ada Lovelace and Roger Needham, respec-
tively. Since functional programming is a broad field, closely integrating and synthesising
programming language formalisation, design and implementation, in pursuit of principled,
rigorous and robust system construction, we felt that Peter Landin was an ideal person to ho-
nour for his foundational work in the area. Peter’s contributions are throughly documented
elsewhere in this special issue. Here, we note particularly:

– the design of the SECD machine for applicative expressions, the grandparent of all sub-
sequent abstract machines for functional languages [13];

– the elaboration of ISWIM, the grandparent of all post-LISP untyped functional lan-
guages [15]. ISWIM was both a principled and practical formalism for functional pro-
gramming, which rationalised both syntactic constructs and semantic concepts, and
founded the concept of domain specific languages.

We approached Peter in 2002, to see if he would agree to his name being used for the new
prize. He was both delighted and disarmingly modest: though we continued to correspond
with him he never mentioned the prize again.

We also asked Peter if he had any feel for the origins of parallel functional languages.
After all, Wegner in his 1971 book [23], which contains an important popularisation of the
SECD machine, had written:

Note that [the Church-Rosser] theorem essentially states that lambda expressions
can be evaluated by asynchronous multiprocessing applied in arbitrary order to lo-
cal subexpressions. (p. 185)

Peter replied:

You probably know about Samson Abramsky’s parallel (?concurrent?) SECD-
machine [1].
My choosing rands before rators was at the time an arbitrary decision constrained by
wishing to exclude that separate topic from the paper. I had been very struck by a paper
pointing to the high-speed possibilities of pure functional programming, arising from
parallel treatment of multiple operands (which of course comes to the same thing,

Higher-Order Symb Comput (2009) 22: 305–312 307

except he was not, as I remember, conscious of lambda) by a Brown(?) in an MIT
collection of articles called “High-Speed Computing” (?) circa 1960. I think he was a
prof at Sloan Business School.1

My own attempts to describe such a machine didn’t get past being overawed by
scheduling problems.
Thanks for your interest. I’m posting the (2-page) IFIP paper, which should have been
called: Certain possibilities for economising in an implementation of SECD. (email,
21/10/2002)

In the paper [14], Peter discusses ‘an equivalence relation called “sharing” among a state’s
structural positions’, and whether shared entities should be copied at construction or appli-
cation, if at all. This notion of sharing seems to foreshadow subsequent debates over parallel
graph reduction.

3 Prize awards

The Peter Landin prize has been awarded at every event since IFL 2003. It has been awarded
to a wide variety of international authors at varying stages of their careers. The topics that
have been honoured are similarly diverse, ranging from functional operating systems to new
compilation techniques; from novel static analyses to new methods of compiler construc-
tion; and from new ideas on language constructs, derived from old discoveries in number
theory, to a rational deconstruction of the SECD machine itself. Table 1 shows the Peter
Landin prize awards from 2003 to 2009. In each case, the prize refers to a paper presented
at the previous year’s IFL Symposium, and published in the post-symposium proceedings.
The prize has frequently been awarded to PhD students, in competition with much more
established researchers, demonstrating the excellent quality of the work that is often done
by pre-doctoral researchers in the field of functional programming.

2003: Arjen van Weelden and Rinus Plasmeijer [22]

The first (2003) Peter Landin prize was awarded to Arjen van Weelden and Rinus Plasmeijer
for a paper on Towards strongly-typed functional operating systems [22] based on work
done by Arjen van Weelden for his PhD at the University of Nijmegen, the Netherlands.
The paper introduced Famke, a prototype functional operating system written in the Clean
functional language, and which supports an interactive, functional shell command language.
The Famke system is capable of dealing with a variety of important constructs, including
lightweight threads, exception handling and distributed processes. A key issue covered in the
paper was to allow the communication of values of any type, including unevaluated closures,
between pairs of processors, which exploited Clean’s dynamic typing framework. This paper
represented one of the earliest attempts to define complex operating system constructs taking
advantage of the capabilities offered by a strong typing framework.

2004: Pedro Vasconcelos [21]

The second (2004) Peter Landin prize was also awarded to a PhD student, Pedro Vasconcelos
from the University of St Andrews. Pedro Vasconcelos’ paper, Inferring Costs for Recursive,

1We have been unable to locate either the author or collection.

308 Higher-Order Symb Comput (2009) 22: 305–312

Table 1 The Peter Landin Prize awards: 2003–2009

Year Winner Title

2003 Arjen van Weelden and Towards a Strongly Typed

Rinus Plasmeijer Functional Operating System

2004 Pedro Vasconcelos Inferring Costs for Recursive,

Polymorphic and Higher-Order

Functional Programs

2005 Olivier Danvy A Rational Deconstruction

of Landin’s SECD Machine

2006 Clemens Grelck, With-Loop Fusion for

Karsten Hinckfuß Data Locality and Parallelism

and Sven-Bodo Scholz

2007 Jost Berthold and Parallel Coordination made

Rita Loogen Explicit in a Functional Setting

2008 Neil Mitchell and A Supercompiler for Core Haskell

Colin Runciman

2009 Ralf Hinze Scans and Convolutions:

a Calculational Proof of Moessner’s Theorem

Polymorphic and Higher-Order Functional Programs [21] presents a new type-based analy-
sis for inferring size and cost equations for recursive higher-order programs. Unlike many
previous approaches, many of which are capable only of checking the size and cost infor-
mation that is provided by the programmer (e.g. [12]), the analysis described in this paper
is capable of inferring costs directly from unannotated source programs. The main contri-
bution of the paper is a type reconstruction algorithm that extends a basic Hindley-Milner
type inference algorithm to cover size and cost information, and which exposes recurrence
information in the form of a set of constraints that must subsequently been solved by an ex-
ternal constraint solver. Vasconcelos found that the equations produced by his system gave
accurate predictions for a large number of functions from the Haskell standard prelude. Sub-
sequent work has taken the ideas developed in this paper and applied them to cover stack
and heap space metrics. The work is currently being combined with an amortised analysis
approach developed at Ludwig-Maximilians-Universität, München, to give cost information
which is more accurate than either individual approach.

2005: Olivier Danvy [6]

The 2005 Peter Landin prize was most appropriately awarded to Olivier Danvy, Aarhus,
Denmark, for his paper on A Rational Deconstruction of Landin’s SECD Machine [6] Olivier
Danvy gave a beautiful and rational theoretical deconstruction of the basis of Landin’s SECD
machine, with the fundamental aim of explaining for the first time in the 40 years since the
publication of Landin’s foundational paper the specifics of the SECD machine. He achieved
this goal by deconstructing the SECD machine mechanically into a compositional evalua-
tion function, and then rationally reconstructing a whole range of different SECD machines

Higher-Order Symb Comput (2009) 22: 305–312 309

from this fundamental basis. These machines include a tail-recursive SECD machine, call-
by-name/call-by-need SECD machines, SEC/EC/SC/C/SCD machines and an SECD ma-
chine with an instruction set. A key contribution of the article is that it outlines a reversible
methodology for extracting the fundamental denotational semantics of an abstract machine
as a compositonal evaluation function. Since the publication of this paper, Danvy and his
PhD student Kevin Millikin have extended the reconstruction to Peter Landin’s J operator,
providing objective evidence why Peter Landin’s name should be added to the list of the
discoverers of continuations [7].

2006: Clemens Grelck, Karsten Hinckfuß and Sven-Bodo Scholz [9]

The 2006 Peter Landin prize was awarded to Clemens Grelck, Karsten Hinckfuß and Sven-
Bodo Scholz for their paper on With-Loop Fusion for Data Locality and Parallelism [9].
With-loops are a descendent of loop fusion as envisaged by Burge and Landin [5]. This
array-processing construct used in the numerically-oriented SAC language [19] to imple-
ment array operations of arbitrary shape or rank. They come in two forms, either gener-
ating a new array structure of a given shape, or reducing the elements of an array using
some operation. In this paper, the authors define high-level code transformations that fuse
(not-necessarily adjacent) pairs of with-loops into a single with-loop. This process may be
repeated as many times as required. By using this fusion technique, it is possible to avoid
repeated traversals of an array structure, and to replace memory accesses by (faster) register
accesses. For sufficiently large problems, the resulting program can be more than four times
as fast as the original code. Scholz’s research has directly influenced work on efficient ar-
ray skeletons for SAC [8], where one or more with-loops are used to implement each array
skeleton. With-loop fusion allows an efficient parallel implementation of the array skeletons.
In this way, the authors achieve a good balance between expressibility and performance, bal-
ancing the demand for fine-grained skeletons for software engineering purposes, with that
for coarse-grained skeletons for higher performance. With-loop fusion also forms a key op-
timisation in the compiler from SAC to the μTC compiler target language [20], which is a
key part of the EU Framework 7 Apple-Core project (FP7-215216). μTC is a high-level as-
sembly language which targets many-core chip multi-processors (or Microgrids). The work
exploits new optimisation techniques for with-loops to primitive μTC operations.

2007: Jost Berthold and Rita Loogen [2]

The 2007 Peter Landin prize was awarded to Jost Berthold and Rita Loogen of Philipps-
Universität, Marburg, Germany for their paper on Parallel Coordination made Explicit in
a Functional Setting [2]. This paper presents a low-level parallel coordination language for
Haskell that can be used to implement a variety of parallel extensions for Haskell as part
of the widely-used GHC compiler. Their EDI system provides a small set of basic Haskell
primitives for thread control, system information and communication. This set of primitives
can then be used to encode higher-level constructs, such as those found in the Eden par-
allel Haskell dialect [17]. In this way, a complete parallel runtime system can be written
in Haskell rather than in some lower-level language such as C. The key advantages of this
approach are that it considerably simplifies the task of writing new parallel implementa-
tions; and that it becomes much easier to ensure that the parallel implementation remains
in step with changes in the underlying sequential implementation. The authors show that
the approach carries acceptable overheads: the EDI implementation can encode the same
constructs as the higher-level Eden system without any loss of efficiency. This system is be-
ing exploited as part of ongoing and topical effort aimed at exploiting high-level skeletons

310 Higher-Order Symb Comput (2009) 22: 305–312

in Eden, including an implementation of Google’s map-reduce skeleton [3] and a skeleton
for fast-Fourier transforms [16], for work aimed at obtaining low-cost, high-performance
parallel computing as part of the ongoing EU Framework 6 Sciences project (RII3-026133)
[24, 25], and for work that explores the use of divide-and-conquer skeletons on many-core
architectures [4].

2008: Neil Mitchell and Colin Runciman [18]

The 2008 Peter Landin prize was awarded to Neil Mitchell and Colin Runciman of the Uni-
versity of York, UK for their paper on A Supercompiler for Core Haskell [18]. While func-
tional languages allow very programs to be expressed in a very elegant way, they are often
less efficient than good imperative code. Unlike conventional compilation, a supercompiler
evaluates some of the program at compile-time, so producing an optimised residual program
with superior performance properties. The paper represents the first time that supercompi-
lation has been applied to Haskell, and makes a major contribution in studying the use of
supercompilation for let-expressions, which are an important construct in functional inter-
mediate languages. Using their techniques, the authors show that it is possible to eliminate a
number of unnecessary overheads including intermediate lists, functional arguments that are
used to instantiate higher-order definitions, and unnecessary laziness and thunks. In this way,
it is possible to achieve software that is not merely as efficient as its imperative counterpart,
but which can actually be faster. Overall, the supercompilation approach achieves a 16%
improvement in performance compared with the already highly optimising GHC Haskell
implementation: an impressive result.

2009: Ralf Hinze [11]

Most recently (but not finally), the 2009 Peter Landin prize was awarded to Ralf Hinze of the
University of Oxford, UK for his paper on Scans and Convolutions: a Calculational Proof
of Moessner’s Theorem [11]. In this paper, Hinze revisits a scheme for generating the natural
kth powers that was originally described by Alfred Moessner in the 1950s. The paper intro-
duces two co-recursion schemes for stream-generating functions, scans and convolutions,
liberating them from their number-theoretic roots through the use of modern programming
language theory. In the process, Hinze shows how scans and convolutions can be represented
in Haskell, and exposes a number of useful free theorems by turning them into polymorphic
combinators. In this way, Hinze has introduced us to new language structures, with strong
theoretical roots, that will undoubtedly have significant longer-term impact.

4 Conclusion

Peter Landin’s ground breaking work on functional programming languages has proved a
consistent inspiration and source of ideas in the research community, for both practical and
theoretical ends. It is a measure of his genius that his work has such a pervasive appeal,
and a measure of his greatness that his legacy has proved permanent in our fast-paced field
of research. The papers that have been awarded the Peter Landin prize to date, and those
that will be awarded the prize in the future, form a lasting legacy of living research that
perpetuates Peter Landin’s name and reflects his own seminal contributions to research.

Higher-Order Symb Comput (2009) 22: 305–312 311

References

1. Abramsky, S., Sykes, R.: SECD-M: a virtual machine for applicative programming. In: Jouannaud, J.-P.
(ed.) Functional Programming Languages and Computer Architecture, Nancy, France, September 1985.
Lecture Notes in Computer Science, vol. 201, pp. 81–98. Springer, Berlin (1985)

2. Berthold, J., Loogen, R.: Parallel coordination made explicit in a functional setting. In: Horváth, Z., Zsók,
V., Butterfield, A. (eds.) Implementation and Application of Functional Languages, 18th International
Symposium, IFL 2006, Budapest, Hungary, September 4–6, 2006. Lecture Notes in Computer Science,
vol. 4449, pp. 73–90. Springer, Berlin (2007). Revised Selected Papers

3. Berthold, J., Dieterle, M., Loogen, R.: Implementing parallel Google map-reduce in Eden. In: Sips, H.,
Epema, R., Lin, H.-X. (eds.) Proc. Euro-Par 2009: 15th International Euro-Par Conference, Delft, the
Netherlands. Lecture Notes in Computer Science, vol. 5704, pp. 990–1002. Springer, Berlin (2009)

4. Berthold, J., Dieterle, M., Lobachev, O., Loogen, R.: Distributed memory programming on many-
cores—a case study using Eden Divide-&-Conquer skeletons. In: Großpitsch, K.-E., Henkersdorf, A.,
Uhrig, S., Ungerer, T., Hähner, J. (eds.) Proc. ARCS’09—22nd International Conference on Architec-
ture of Computing Systems, March (2009)

5. Burge, W.H.: Recursive Programming Techniques. Addison-Wesley, New York (1975)
6. Danvy, O.: A rational deconstruction of Landin’s SECD machine. In: Grelck, C., Huch, F., Michaelson,

G., Trinder, P.W. (eds.) Implementation and Application of Functional Languages, 16th International
Workshop, IFL 2004, Lübeck, Germany, September 8–10, 2004. Lecture Notes in Computer Science,
vol. 3474, pp. 52–71. Springer, Berlin (2005). Revised Selected Papers

7. Danvy, O., Millikin, K.: A rational deconstruction of Landin’s SECD machine with the J operator. Log.
Methods Comput. Sci. 4(12), 1–67 (2008)

8. Grelck, C., Scholz, S.-B.: Merging compositions of array skeletons in SAC. Parallel Comput. 32(7),
507–522 (2006)

9. Grelck, C., Hinckfuß, K., Scholz, S.-B.: With-loop fusion for data locality and parallelism. In: But-
terfield, A., Grelck, C., Huch, F. (eds.) Implementation and Application of Functional Languages, 7th
International Workshop, IFL 2005, Dublin, Ireland, September 19–21, 2005. Lecture Notes in Computer
Science, vol. 4015, pp. 178–195. Springer, Berlin (2006). Revised Selected Papers

10. Hammond, K., Michaelson, G.: Research Directions in Parallel Functional Programming. Springer,
Berlin (1999)

11. Hinze, R.: Scans and convolutions: a calculational proof of Moessner’s theorem. In: Scholz, S.-B. (ed.)
Implementation and Application of Functional Languages, 20th International Symposium, IFL 2008,
Hatfield, UK, September 10–12, 2008. Lecture Notes in Computer Science. Springer, Berlin (2009).
Revised Selected Papers

12. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized types. In:
Proc 1996 ACM Symposium on Principles of Programming Languages—POPL ’96, pp. 410–423. St.
Petersburg, FL, January (1996)

13. Landin, P.: The mechanical evaluation of expressions. Comput. J. 6(4), 308–320 (1964)
14. Landin, P.: An abstract machine for designers of computer languages. In: Proceedings of the IFIP

Congress 65, pp. 438–439. IFIP (1965)
15. Landin, P.: The next 700 programming languages. Commun. ACM 9(3), 157–166 (1966)
16. Lobachev, O., Berthold, J., Dieterle, M., Loogen, R.: Parallel FFT using Eden skeletons. In: Proc. 10th

Intl. Conference on Parallel Computing Technologies (PACT)’09. Lecture Notes in Computer Science,
vol. 5698, pp. 990–1002. Springer, Berlin (2009)

17. Loogen, R., Ortega-Mallén, Y., Peña-Marí, R.: Parallel functional programming in Eden. J. Funct. Pro-
gram. 15(3), 431–475 (2005)

18. Mitchell, N., Runciman, C.: A supercompiler for core Haskell. In: Chitil, O., Horváth, Z., Zsók, V. (eds.)
Implementation and Application of Functional Languages, 19th International Symposium, IFL 2007,
Freiburg, Germany, September 27–29, 2007. Lecture Notes in Computer Science, vol. 5083, pp. 147–
164. Springer, Berlin (2008). Revised Selected Papers

19. Scholz, S.-B.: Single assignment C—efficient support for high-level array operations in a functional
setting. J. Funct. Program. 13(6), 1005–1059 (2003)

20. Scholz, S.-B., Herhut, S., Joslin, C.: Architecture paradigms and programming languages for ef-
ficient programming of multiple COREs. Apple-Core Deliverable D4.2. http://www.apple-core.info/
wp-content/apple-core/2008/01/d42.pdf, May (2009)

21. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymorphic and higher-order
functional programs. In: Trinder, P.W., Michaelson, G., Pena, R. (eds.) Implementation of Functional
Languages, 15th International Workshop, IFL 2003, Edinburgh, UK, September 8–11, 2003. Lecture
Notes in Computer Science, vol. 3145, pp. 86–101. Springer, Berlin (2004). Revised Papers

http://www.apple-core.info/wp-content/apple-core/2008/01/d42.pdf
http://www.apple-core.info/wp-content/apple-core/2008/01/d42.pdf

312 Higher-Order Symb Comput (2009) 22: 305–312

22. van Weelden, A., Plasmeijer, R.: Towards a strongly typed functional operating system. In: Arts, T., Pena,
R. (eds.) Implementation of Functional Languages, 14th International Workshop, IFL 2002, Madrid,
Spain, September 2003. Lecture Notes in Computer Science, vol. 2670, pp. 215–231. Springer, Berlin
(2003). Revised Selected Papers

23. Wegner, P.: Programming Languages, Information Structures and Machine Organization. McGraw-Hill,
New York (1971)

24. Al Zain, A.D., Hammond, K., Berthold, J., Trinder, P., Michaelson, G., Aswad, M.: Low-pain, high-gain
multicore programming in Haskell: coordinating irregular symbolic computations on multicore architec-
tures. In: Proc. DAMP ’09: 4th International Workshop on Declarative Aspects of Multicore Program-
ming, Savannah, Georgia, USA, January (2009)

25. Al Zain, A.D., Trinder, P.W., Hammond, K., Konovalov, A., Linton, S., Berthold, J.: Parallelism without
pain: orchestrating computational algebra components into a high-performance parallel system. In: Proc.
IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA’08),
pp. 99–112. Sydney, Australia, December (2008)

	The Peter Landin prize
	Abstract
	History of the Peter Landin prize
	Why honour Peter Landin?
	Prize awards
	2003: Arjen van Weelden and Rinus Plasmeijer Weeldon02
	2004: Pedro Vasconcelos Vasconcelos03
	2005: Olivier Danvy Danvy04
	2006: Clemens Grelck, Karsten Hinckfuß and Sven-Bodo Scholz Grelck05
	2007: Jost Berthold and Rita Loogen Berthold06
	2008: Neil Mitchell and Colin Runciman Mitchell07
	2009: Ralf Hinze Hinze08

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

