
Higher-Order and Symbolic Computation, 16, 203–251, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Comparing Parallel Functional Languages:
Programming and Performance∗

H.-W. LOIDL hwloidl@macs.hw.ac.uk
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

F. RUBIO fernando@sip.ucm.es
Dpto. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, 28040 Madrid, Spain

N. SCAIFE norman@jaist.ac.jp
Japan Advanced Institute for Science and Technology, 1/8 Asahidai, Tatsunokuchi, Nomigun, Ishikawa, 923-1211

K. HAMMOND kh@dcs.st-and.ac.uk
School of Computer Science, University of St. Andrews, KY16 9SS, Scotland

S. HORIGUCHI hori@jaist.ac.jp
Japan Advanced Institute for Science and Technology, 1/8 Asahidai, Tatsunokuchi, Nomigun, Ishikawa, 923-1211

U. KLUSIK klusik@mathematik.uni-marburg.de
R. LOOGEN loogen@mathematik.uni-marburg.de
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, D-35032 Marburg, Germany

G.J. MICHAELSON greg@macs.hw.ac.uk
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

R. PEÑA ricardo@sip.ucm.es
Dpto. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, 28040 Madrid, Spain

S. PRIEBE priebe@mathematik.uni-marburg.de
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, D-35032 Marburg, Germany

Á.J. REBÓN alvaro@dcs.st-and.ac.uk
School of Computer Science, University of St. Andrews, KY16 9SS, Scotland

P.W. TRINDER trinder@macs.hw.ac.uk
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland

Abstract. This paper presents a practical evaluation and comparison of three state-of-the-art parallel functional
languages. The evaluation is based on implementations of three typical symbolic computation programs, with
performance measured on a Beowulf-class parallel architecture.

∗This work is primarily supported by the Austrian Academy of Sciences (APART fellowship 624), the Japan
Society for the Promotion of Science (Postdoctoral fellowship P00778), and UK’s Engineering and Physical
Sciences Research Council (grant nos. GR/L 93379, GR/M 32351 and GR/L 42889).

204 LOIDL ET AL.

We assess three mature parallel functional languages: PMLS, a system for implicitly parallel execution of ML
programs; GPH, a mainly implicit parallel extension of Haskell; and Eden, a more explicit parallel extension of
Haskell designed for both distributed and parallel execution. While all three languages employ a completely implicit
approach to communication, each language takes a different approach to specifying and controlling parallelism,
ranging from explicit identification of processes as language constructs (Eden) through annotation of potential
parallelism (GPH) to automatic detection of parallel skeletons in sequential code (PMLS).

We present detailed performance measurements of all three systems on a widely available parallel architecture: a
Beowulf cluster of low-cost commodity workstations. We use three representative symbolic applications: a matrix
multiplication algorithm, an exact linear system solver, and a simple ray-tracer. Our results show how moderate
speedups can be achieved with little or no changes to the sequential code, and that parallel performance can be
significantly improved even within our high-level model of parallel functional programming by controlling key
aspects of the program such as load distribution and thread granularity.

Keywords: parallel computation, functional programming, skeletons, implicit parallelism, automatic task
decomposition, load balancing, Haskell, ML

1. Introduction

The potential advantages of purely functional programming languages for prototyping and
developing parallel programs have long been recognised [8]. The high level of programming
abstraction simplifies the task of programming, fosters code reuse and facilitates the de-
velopment of substantially architecture-independent programs. The absence of side-effects
avoids the unnecessary serialisation which is a feature of most conventional programs. For
a comprehensive discussion of these issues see [25].

Realising this potential in an effective manner has proved an elusive goal, however.
Reducing or eliminating programmer control places considerable emphasis on sophisticated
automatic systems for detecting and controlling parallelism, making such systems fairly
rare and often only available on a few parallel architectures. A comparison of different
implementations of such automatic resource management mechanisms, as presented in this
paper, is even rarer—to our knowledge this is the first head-to-head performance comparison
of several parallel functional languages on the same parallel architecture.

For this paper, five research groups have cooperated to produce the comparisons. We
assess three parallel functional languages: Eden and GPH, both extensions of the standard
non-strict functional language Haskell [67], and PMLS, a parallel implementation of the
strict functional language ML [56]. The languages all have high-level coordination, repre-
sent a range of language and implementation alternatives and are three of the relatively few
robust parallel functional language implementations available. Assessment is made on both
language and performance levels. We compare the language features available to express
parallel coordination, in particular we focus on how parallel tasks are identified and created.
In the case of Eden [7], task identification and creation are explicit. In the case of GPH [79],
potential parallelism is identified through new language primitives, with tasks created auto-
matically during program execution on the basis of load. In the case of PMLS [55], parallel
tasks are identified by automatically detecting instantiations of certain higher-order function
templates, skeletons. On the performance level we use three representative symbolic appli-
cations that have also been widely studied in the general parallel programming community:
a matrix multiplication algorithm, an exact linear system solver, and a simple ray-tracer.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 205

The remainder of this paper is structured as follows: Section 2 discusses general concepts
of parallel programming and their importance in the context of a functional language.
Section 3 compares the three languages, separating the user-visible language constructs
that are needed for expressing parallelism from the implementation of these constructs.
Section 4 presents measurements of all three systems for the three example programs
mentioned above. We discuss the ease of implementing these programs, the support for
performance tuning, and the overall performance achieved on a 32-node Beowulf cluster.
Section 5 relates our languages to other parallel functional programming languages. Finally,
Section 6 concludes.

2. Parallel functional programming

2.1. Why parallel functional programming?

Parallel programming is inherently harder than sequential programming. Traditionally the
programmer must not only describe what to compute, i.e. a correct algorithm, but also
how to organise the subcomputations on the target architecture, i.e. effective parallel co-
ordination. Contemporary functional languages have three key properties that make them
attractive for parallel programming: they have powerful mechanisms for abstracting over
both computation and coordination; they eliminate unnecessary dependencies; and their
high-level coordination achieves a largely architecture-independent style of parallelism.

2.1.1. Abstraction. Functional languages have excellent abstraction mechanisms that can
be applied to both computation and coordination [33]. Two important abstraction mecha-
nisms are function composition and higher-order functions. Function composition allows
complex problems to be decomposed into simpler sub-functions. Higher-order functions,
ones that manipulate other functions, allow new control constructs to be defined as required.
Through use of powerful mechanisms such as these, functional programs are typically much
shorter than their imperative or object-oriented equivalents.

The principle of abstraction can be carried through to parallel programming, where higher-
order functions may be used to form the basis of new parallel programming constructs.
Typically, parallel functional programs will abstract over details such as process placement,
the timing and volume of communication, and synchronisation issues. More effort can thus
be devoted to improving parallel algorithms. High level abstraction of parallel constructs
encourages experimentation with alternative parallelisations, which often leads to improved
or novel solutions for parallel problems.

2.1.2. Elimination of unnecessary dependencies. The absence of side-effects makes it
relatively straightforward to identify potential parallelism. Since the natural method of pro-
gram construction is by composing functions to the depth required rather than by sequential
composition, accidental sequential dependencies are not introduced into the source pro-
gram. The only source of sequential dependency is that the arguments to a function must be
evaluated before they can be used. That is, dependencies are identified solely on the basis

206 LOIDL ET AL.

of use. Since values do not change once they have been computed, dataflow analysis is not
needed to determine usage patterns, even at an inter-procedural level.

2.1.3. Architecture-independence. Good parallel abstractions encourage high-level porta-
bility by abstracting over lower level issues. In extreme cases, this abstraction may hide
all details of the parallel implementation yielding a model of implicit parallelism. As the
low level issues often depend on properties of a specific architecture, a high-level approach
is significantly less architecture-dependent than lower-level approaches. The architecture-
independence is bought at the price of elaborate language processors: either the compiler
or the runtime system or a combination of both must adapt the high-level parallelism for
the underlying architecture. By using, at the runtime-system level, standards like PVM [70]
or MPI [60], languages can abstract over architecture characteristics. Unlike imperative
languages, functional languages enable a high degree of abstraction over such standards
through higher order functions and polymorphism.

2.2. Tasks, processes and threads

Parallel programming involves the identification and creation of sub-tasks that collectively
perform the overall task of the program. These sub-tasks must be allocated to (placed on)
processors that will execute them in some order. Depending on the system, load balancing
may occur by migrating sub-tasks between processors at execution time.

In this paper, we will distinguish two levels of parallel tasks: processes, relatively heavy-
weight tasks whose behaviour is often revealed to the programmer; and threads, which are
implicit, and which form part of a process.

2.2.1. Task identification and granularity. Tasks may be identified either explicitly by
the programmer using some language construct, or implicitly by the system identifying
potentially parallel parts of the program. In some cases, the identification may be assisted
by the use of annotations: programmer instructions that may or may not be exploited by the
language implementation. The granularity, i.e. the size of the computation, of tasks may
thus be determined by the programmer, the compiler, the runtime system or a combination
of these.

2.2.2. Task creation. Tasks may be created either statically at initialisation or dynamically
during execution of the program. In the latter case, they may be created either immediately
they are identified (eager task creation) or delayed until they are deemed to be required by
the runtime system (lazy task creation). When a task is created, it is allocated resources
that allow it to execute independently on some parallel processor. In some cases a task may
return resources to the system while being suspended, i.e. while it waits for the availability
of required data.

2.2.3. Task placement. When a task is created, it is placed on a processor that will execute it.
This placement may either be on the basis of static information determined before execution
by the compiler, or dynamically, perhaps in response to load information. Static placement

COMPARING PARALLEL FUNCTIONAL LANGUAGES 207

usually gives a good balance for regular task structures, in cases where the communication
pattern can be determined in advance. Dynamic placement is more appropriate in situations
where the task structure is irregular, cannot be pre-determined, or where the structure
changes during program execution.

2.2.4. Scheduling and load management. Scheduling is needed to manage the execution
of multiple tasks on a single processor. Such scheduling may be required to be fair, i.e.
guaranteed to execute every available thread eventually. Dynamic rebalancing of work-
load may also be required, especially for irregular task structures on high-latency systems.
Rebalancing is usually achieved by migrating tasks, but alternatives are to employ task sub-
sumption, in which smaller tasks are merged into larger ones, or to maintain a work-pool
of potential tasks, which can be communicated between processors at lower cost than tasks
which are already executing. Rebalancing may occur as a result of creating excess work on
a single processor, or as a consequence of starvation on some processors, in which case a
task stealing mechanism may be used.

2.3. Communication

Communication is fundamental to executing parallel tasks. In traditional parallel program-
ming, communication is explicit: the programmer uses explicit message-passing primitives,
or communicates through explicitly shared variables, which must normally be protected
against concurrent modifications. In the more implicit approaches advocated here, commu-
nication occurs as a consequence of shared data dependencies between tasks. The systems
use either message passing or shared-memory, as appropriate, and automatically protect the
data against concurrent modifications, as required.

2.3.1. Code or data. Traditional parallel systems usually only support data transmission.
In a functional setting, it is natural for functions to be transmitted between parallel tasks,
and in a non-strict setting, this may extend to partially evaluated or completely unevaluated
forms. Although this is no conceptual limitation, the parallel systems discussed here do not
perform code migration. Only code pointers are transmitted, as the whole code is usually
supposed to reside in all processors. This is sometimes characterised as an SPMD, single
program multiple data, approach.

2.3.2. Push or pull. Data may be transmitted either on demand (a pull mechanism) or when
produced (a push mechanism). Pulling has the advantage of transmitting only the data that
is required, but pushing will require fewer packets to be communicated if most of the data
that is transmitted is required, and will reduce the amount of synchronisation that is needed.
In some cases, however, large data structures may be transmitted unnecessarily. This leads
to speculative work, since not all of the data structure may be needed to compute the result
value. The optimal approach is application-dependent, but in general a combination of push
and pull appears to be ideal.

2.3.3. Communication topology. In the more implicit approaches the topology of pro-
cesses changes dynamically in response to load balancing demands. In this case, the topology

208 LOIDL ET AL.

is transparent to the programmer, and it might differ between identical program executions.
In more explicit approaches, the programmer can control the topology by connecting pro-
cesses in the desired way. Topologies such as rings or tori can be explicitly programmed.
In contrast to such dynamic approaches some systems use a static topology with the exact
number of processes fixed at compile time. Such a static approach is common with libraries
for parallel programming or skeletons (see Section 5.1). Note that we make no attempt at
matching the topology of the architecture to the topology of the processes, since this would
introduce an architecture-dependent aspect to program development.

2.3.4. Data marshalling. Sophisticated data marshalling techniques are employed to au-
tomatically pack complex data structures. In some cases, this marshalling extends to graphs
as well as hierarchical data structures, and may involve the packing of unevaluated as well
as fully evaluated forms (see Section 4.2.4).

2.3.5. Synchronisation. Most systems also employ implicit task synchronisation, when
values produced by one task are required by another. A task that requires an uncomputed
value may suspend execution awaiting delivery of that value. The task is resumed when
the value becomes available. Unlike conventional language approaches, such synchroni-
sation is entirely transparent to the functional programmer, and is handled internally by
the runtime system. That is, no explicit communication is required, and no other action is
required from the programmer.

3. Language comparison

This section compares the three parallel functional languages PMLS, GPH, and Eden.
A comparison of a wider range of functional languages can be found at [54]. The three
languages have been chosen for the following reasons. Firstly to be consistent with a high-
level computation language we select languages with high-level coordination and exclude
languages with imperative or low-level coordination. Secondly the languages represent
a range of language designs, e.g. both eager and lazy languages, and with coordination
ranging from almost entirely implicit (PMLS) to a language (Eden) in which processes can be
manipulated by the programmer. Thirdly, the languages represent a range of implementation
designs, e.g. both those with predominantly static coordination (PMLS) and those with
predominantly dynamic coordination (GPH). Finally we have selected three of the relatively
few robust parallel functional languages available.

In this section we introduce the underlying notions of skeleton-thread- and process-
based approaches to parallelism, classify our languages, discuss the user-visible language
constructs and the implementations of these languages.

3.1. Language

In this section we introduce the parallelism constructs in each language and compare them
in terms of expressiveness and paradigm.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 209

3.1.1. PMLS. Parallel ML with Skeletons (PMLS) is a parallelising compiler for the full
purely functional subset of Standard ML, that realises parallelism in higher-order functions
(HOFs) as algorithmic skeletons [55]. The PMLS system is based on a purist interpretation
of the skeletons “credo”, seeking to minimise programmer involvement in identifying and
exploiting parallelism.

Skeleton-based approaches define a set of parallel templates or skeletons [11]. The pro-
grammer writes the program using these skeletons as appropriate. A parallelising compiler
can then exploit the rules provided for each skeleton, in order to produce an efficient parallel
implementation of the program on the target architecture.

From the functional programmer’s perspective, a skeleton is simply a normal higher-
order function. Each higher-order function is mapped to a different abstract parallel process
topology, with parameters specifying details of the tasks that are to be performed.

Since the only parallel constructions that are available to the programmer are the higher-
order functions that have been provided by the language, programmers must design parallel
algorithms by adapting the sequential source to these functions. The compiler and runtime
system are jointly responsible for setting up the corresponding process topologies, and for
mapping processes to processors.

Higher-order functions may be given different behavioural interpretations when compil-
ing for different target architectures. This allows a single higher-order functions to abstract
over a range of possible parallel behaviours, which are selected on the basis of concrete
details such as communication latency, or the granularity of the tasks to which the function
is applied. In essence, skeletons modify behaviours but not values.

As an example Figure 1 shows an implementation of the common higher-order function
map in PMLS. It applies the function f to all the elements of the list (h::t). If f converts
something of type ’a to type ’b then map f converts an ’a list to a ’b list. If we
unfold map f across a list [e1,e2...eN], the effect is the evaluation of [f e1,f e2,
...,f eN]. There is no interaction between the evaluation of each element, so in principle
these evaluations may be carried out in arbitrary order, in particular in parallel.

A common approach to parallelising map is to construct a task farm skeleton consisting
of a farmer processor controlling worker processors pre-loaded with f. Given an initial list,
the farmer:

– records all workers as free;
– repeatedly:

• sends an unprocessed list element to a free worker and records it as busy;
• receives a processed list element from a busy worker and records it as free;

Figure 1. Parallel map in PMLS.

210 LOIDL ET AL.

– until all list elements have been processed;
– assembles the processed list in the appropriate order.

This approach is self-balancing: no workers sit idle so long as there are more list elements
to be processed, and variations in the times to process different elements have minimal
impact.

There are various topologies for task farms, for example the linear chain where each
processor has a bi-directional connection to its predecessor and successor. The farmer passes
unprocessed data down the chain of busy workers to the first free worker, and processed
data is passed back up the chain to the farmer. Here, the farmer need not keep track of free
and busy workers, and may assemble the final list as processed elements become available.

3.1.1.1. Constructs. The PMLS compiler generates parallel code solely from calls to map
and fold. No other SML constructs are provided or exploited for parallelism. However,
the system enables the introduction of new higher-order functions with new skeletons. In
some cases, like fold, a proof obligation is put on the programmer to ensure correctness
of the parallel code: in the case of fold the binary operation must be associative.

While the compiler will support the judicious local use of imperative SML constructs,
assignments to free variables in arguments to parallelised higher order functions no longer
have global effects and defunctionalisation may not preserve evaluation order.

3.1.1.2. Methodology. The programmer need have no conception of parallelism. The com-
piler will exploit parallelism in explicit uses of map and fold.

A pre-processor may also be used to synthesise higher-order functions in programs that
lack them, using proof planning driven by middle out reasoning [12]. For example Figure 2
shows how, given the function inc, this pre-processor can synthesise both inc1, defining
inc in terms of map, and inc2, defining inc in terms of fold.

3.1.2. GPH. GPH [79] is a modest conservative extension of Haskell98 [67] realising a
thread-based approach to parallelism. Thread-based approaches to parallelism allow paral-
lel threads to be created, but do not provide mechanisms to control those threads. Threads
are thus managed entirely under runtime-system control. By combining simple thread prim-
itives with higher-order functions, high-level abstractions can be constructed, such as the
evaluation strategy approach [79].

Figure 2. Program synthesis in PMLS.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 211

Figure 3. Basic coordination constructs in GPH.

3.1.2.1. Constructs. GPH provides parallel (par) and sequential (seq) composition as
coordination primitives (see Figure 3). Denotationally, both compositions are projections
onto the second argument. Operationally seq causes the first argument to be evaluated
before the second and par indicates that the first argument may be executed in parallel.
The latter operation is called the “sparking” of parallelism and is used in different variants
in many parallel languages. The runtime-system, however, is free to ignore any available
parallelism. In this model the programmer only has to expose expressions in the program
that can usefully be evaluated in parallel. The runtime-system manages the details of the
parallel execution such as thread creation, communication etc.

Experience of implementing non-trivial programs in GPH shows that the unstructured use
of par and seq can lead to rather obscure programs. This problem can be overcome with
evaluation strategies: lazy, polymorphic, higher-order functions controlling the evaluation
degree and the parallelism of a Haskell expression. Evaluation strategies provide a clean
separation between coordination and computation. The driving philosophy is that it should
be possible to understand the computation specified by a function without considering its
coordination. Figure 3 shows the basic operations over strategies. A strategy on a value
of type a is a function from a to the nullary value () executed purely for effect, and the
null value is returned to indicate completion. The using construct applies a strategy to a
Haskell expression. The basic strategy rwhnf reduces an expression to weak head normal
form (WHNF), the default in Haskell. The overloaded strategy rnf reduces an expression
to normal form (NF), i.e. containing no reductions. As there are types that are not reduced
to normal form in Haskell, e.g. function types, rnf is restricted to types that are reduced to
normal form by the NFData class which is instantiated for all major types. Because strategies
are simply functions, they can be combined or passed as parameters using standard language
capabilities.

For example the parList strategy in Figure 4 is higher-order, applying the argument
strategy strat to every element of a list in parallel. This strategy is then used in the GPH im-
plementation of parallel map (parMap). Note how the algorithmic code is cleanly separated
from the strategy, using the sequential code of map f xs unmodified when introducing
parallelism.

212 LOIDL ET AL.

Figure 4. Parallel map in GPH.

3.1.2.2. Methodology. GPH programs are developed with an integrated suite of sequential
and parallel software tools, based on the Glasgow Haskell Compiler (GHC) [66]. The tools
for sequential software development include: the Hugs interpreter, for fast development,
the GHC compiler and sequential runtime system for optimising compilation to sequential
code; and sequential time and space profilers integrated into GHC [75]. The tools for
parallel software development include: the GRANSIM parameterisable parallel simulator
[24] for flexible and accurate simulation of the parallel behaviour on a range of parallel
machines; the GHC compiler and GUM parallel runtime system for parallel execution on
multiprocessors; a set of visualisation tools for both GRANSIM and GUM, visualising the
activity of a parallel machine in several levels of detail; prototypes of more detailed parallel
profilers [38].

3.1.3. Eden. Eden [7] extends the lazy functional language Haskell by syntactic constructs
to explicitly define and instantiate processes. In contrast to the previous techniques, process-
based approaches like Eden expose parallel tasks at the language level. The programmer
must then manage the tasks using the control mechanisms provided in the language. Eden
is explicit about process creation and about the communication topology, but implicit about
other control issues such as sending and receiving messages, and process placement. Gran-
ularity is under the programmer’s control because he/she decides which expressions must
be evaluated as parallel processes, and also some control of the load balancing is possible
at the programmer’s level.

3.1.3.1. Constructs. Eden provides process abstractions and process instantiations for
coordination as shown in Figure 5. The new expression process x -> e of a predefined

Figure 5. Basic coordination constructs in Eden.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 213

polymorphic type Process a b defines a process abstraction having formal parameter
x::a as input and expression e::b as output. Process abstractions of type Process a b
can be compared to functions of type a -> b, the main difference being that the former,
when instantiated, are executed in parallel. Additionally, when the output or input expression
is a tuple, a separate concurrent thread is created for the evaluation of each tuple element.
We will refer to each of them as a channel.

A process instantiation is achieved by using the predefined infix operator(#). The context
Transmissible is needed to guarantee that the elements can be sent through the channels.
Each time an expression e1 # e2 is evaluated, a new process is created to evaluate the
application of e1 to e2. We will refer to the latter as the child process, and to the owner of
the instantiation expression as the parent process. The instantiation semantics specifies in
which processes these expressions shall be evaluated: (1) Expression e1 together with its
whole environment is copied in the current evaluation state to a new processor, and the child
process is created there to evaluate the application of e1 to e2, where e2 must be remotely
received. (2) Expression e2 is eagerly evaluated in the parent process. The resulting full
normal form data is communicated to the child process as its input argument.

Once processes are running, only fully evaluated data objects are communicated. The only
exception are lists: they are transmitted in a stream-like fashion, i.e. element by element.
Each list element is first evaluated to full normal form and then transmitted. Processes trying
to access input not yet available are temporarily suspended. This is the only synchronising
mechanism in Eden.

Figure 6 presents a simple parallel map skeleton in Eden, in which a different process
is created for every element of the input list. Strategies are used in Eden to influence the
evaluation order. In this example, the spine strategy is used to eagerly evaluate the spine
of the process instantiation list. In this way all processes are immediately created. More
sophisticated parallel implementations of map have been developed in Eden [40, 41] and
some will be discussed in Section 4.

3.1.3.2. Methodology. Like GPH, Eden is based on the Glasgow Haskell Compiler, and can
use the same sequential profiling utilities. For parallel profiling Eden provides a simulator
called Paradise [28] which is based on GRANSIM, so that tuning the performance of an Eden
program is a similar process to that in GPH.

Parallel programming in Eden can be done by explicitly defining and instantiating a pro-
cess topology. This would be equivalent to sequential functional programming with explicit

Figure 6. Parallel map in Eden.

214 LOIDL ET AL.

recursion. Sometimes this is appropriate, but an experienced functional programmer will
try to use higher-order functions, i.e. skeletons, as much as possible in order to reduce the
amount of work and the possibility of making mistakes. In a complex application both meth-
ods may be simultaneously needed. The main difference between Eden and more traditional
skeleton-based languages, such as PMLS, is the fact that skeletons can be specified within
Eden itself. Thus, Eden serves both as a computation and coordination language, providing
a high degree of flexibility for the programmer.

3.2. Implementation

In this section we compare the implementations of the languages on arbitrary parallel
architectures.

3.2.1. PMLS. The PMLS approach is based on:

– maximising compile-time activity to minimise run-time overheads;
– configuring the virtual topology of the target system to reflect closely the hierarchy of

higher-order functions in the program.

While this is relatively inflexible, for example making exploitation of parallelism across
condition branches difficult, it often results in very efficient code.

3.2.1.1. Compile time. The PMLS compiler front end parses, elaborates and type checks
SML to produce an abstract syntax tree. The ML Kit is used as the front end. The tree
is traversed to extract an abstract network showing the nesting hierarchy of higher-order
functions. Free variable lifting, or defunctionalisation, is performed to simplify passing free
variable bindings to skeletons, and to avoid runtime transmission of closures. The abstract
syntax tree and the abstract network are traversed to identify higher-order functions to be
realised as skeletons and to generate skeleton network code and MPI registration in C. The
resulting abstract syntax tree is translated into Objective Caml for linkage by the OCaml and
GNU C compilers with the appropriate skeletons, and skeleton network and MPI registration
code.

PMLS skeletons are written in C with MPI. The map function is implemented as a task
farm and fold as a divide-and-conquer network. The skeletons are hybrid and may be run
either in parallel or sequentially. Skeletons are coordinated at runtime by generic “Pskel”
nodes, dynamically switching between these hybrid modes. Otherwise, skeletons are linked
statically with no runtime change of topology. Adopting an SPMD approach, all processors
are pre-loaded with all skeletons and functions.

The use of Objective Caml and GNU C to generate native code enables a high degree
of portability. PMLS has been ported to a Fujitsu AP3000, IBM SP/2, Cray T3E, net-
works of UltraSparc workstations, SUN Enterprise and Beowulf clusters, displaying high
performance across all platforms as shown in [76].

3.2.1.2. Run time. PMLS generates code to link static skeletons through Pskel nodes. The
Objective Caml run-time environment provides garbage collection and appropriate libraries.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 215

At run-time, the Pskel nodes at each level determine their behaviour from the skeleton
network. In particular, intermediate Pskel nodes in the hierarchy will switch between parent
and child operation if initiated in parallel mode. There is no movement of code or closures
at runtime. For further details of the compiler design and implementation see [55].

The single processor efficiency, i.e. the sequential runtime divided by the parallel runtime
on 1 processor in percent, of PMLS has been measured as 86% on our Beowulf cluster. The
main sources of overhead are slight inefficiencies introduced in program transformation
stages, such as extra function calls, and the need to propagate additional information that is
used as arguments to the skeletons used for exploiting the parallelism. In a multi-processor
setup the worker nodes of the task-farm skeleton used in our measurements exhibit an
efficiency of 84%. In this case the main source of overhead is some idle time introduced
by blocking communications between nodes in this skeleton. An implementation of a more
efficient version, using non-blocking communication wherever possible, is currently in
development.

Early versions of PMLS were hampered by inefficiencies in the translation process from
SML to Objective Caml. More recent versions employ a set of optimising transformations,
allowing fairly similar performance between the output from PMLS and hand-coded Ob-
jective Caml. The highest discrepancy in single-processor runtimes we observed in our
measurements is 241s (PMLS) versus 195s (OCaml). A slowdown of around 20% is ac-
ceptable and is attributable to the remaining inefficiencies in the translation process.

3.2.2. GPH.

3.2.2.1. Compile time. The two additional language constructs of GPH, par and seq,
are treated as built-in functions by the compiler. They are implemented as system-calls in
the GUM runtime-system. GPH programs are compiled using almost all of the sequential
optimisations in GHC, although care must be taken to preserve par and seq.

3.2.2.2. Run time. The GUM runtime-system for GPH realises a parallel graph-reduction
machine built on top of GHC’s sequential STG-machine. To synchronise multiple threads,
a thread locks the node of the graph when starting its evaluation, and other threads re-
questing that data will be added to a blocking queue attached to the locked closure. Access
to remote closures is managed by new FetchMe nodes, i.e. global indirection nodes. On
requesting the contents of such a node a message will be sent to the target processor and the
requesting thread will be added to a blocking queue. The details of these synchronisation
and communication mechanisms are discussed in [47, Chapter 2].

Being integrated into GHC, GUM makes use of existing analyses and optimisations for
efficient sequential execution. A discussion of the design and implementation of GUM is
given in [80]. In summary, the additional features to enable parallel execution are:

– sparking of threads, i.e. identified program expressions may be evaluated as independent
threads or they may be inlined by other threads, achieving dynamic granularity control
as in the lazy task creation mechanism [59];

– multi-threading, i.e. independent threads of control are executed in an interleaved fashion
thereby enabling an overlap of computation and communication on each processor;

216 LOIDL ET AL.

– virtual shared heap, i.e. the physically distributed heap is treated as a shared heap with
global pointers to remote processors, with transparent communication on access of non-
local data;

– automatic marshalling of data and work, i.e. when data or work is needed on another
processor, a graph structure is automatically serialised, sent to another processor, and
unpacked into a graph;

– distributed garbage collection, i.e. weighted reference counting is used to garbage collect
global pointers that are not used any more.

In order to assess the overheads of the different systems we have measured key parameters
of the runtime-system. One important parameter is the efficiency on 1 processing element
(PE), i.e. a processor with local memory, measured as sequential runtime divided by 1 PE
runtime. For GUM we have previously measured 80%–93% on simple programs [80], and
now at least 77% for the programs used here. In a multi-processor execution it turns out
that maintaining a virtual shared heap on a distributed memory machine is most expensive.
In particular the management of a hash table mapping local heap addresses to global heap
address accounts for up to 3.8% of the total execution time, in an earlier version, pre-dating
recent improvements in GUM even up to 8%. In comparison, the costs for packing graph
structures and communication play only a minor role in the total runtime: less than 1%.
The costs for creating parallelism are, by design, very small: creating a spark requires only
adding a pointer to an array, and threads are very light (14 bytes for the thread descriptor)
with initially small, tunable stacks (1 kB).

A detailed discussion of these overheads in GPH is presented in [49]. This paper sep-
arates the overhead into that induced by the thread management, memory management
and communication subsystems of GUM. It then focuses on virtual shared memory man-
agement, which turns out to be the most expensive part. Several improvements of the
basic load balancing mechanism, that we exploit in these measurements, are presented in
[48].

3.2.3. Eden.

3.2.3.1. Compile time. Eden extends the optimising Glasgow Haskell Compiler with a
few modifications. In Eden, lazy evaluation is changed to eager evaluation in two cases.
Firstly, processes are eagerly instantiated when the expression under evaluation demands
the creation of a closure of the form o = e1 # e2. Secondly, instantiated processes eagerly
produce their output expressions and communicate them on channels. These modifications
of the standard Haskell semantics are aimed at increasing the degree of parallelism and at
speeding up the distribution of the computation, and they are implemented by automatic
compile-time transformations. The new expressions provided by Eden, i.e. process abstrac-
tions, process instantiations, dynamic channels and merge instantiations, are translated into
runtime-system calls.

3.2.3.2. Run time. The design of DREAM [6], the parallel abstract graph-reduction ma-
chine implementing Eden, is largely similar to GUM. We focus on the differences to GUM:

COMPARING PARALLEL FUNCTIONAL LANGUAGES 217

– In DREAM, the concept of a virtual shared heap does not exist. Each process evaluates
its outputs autonomously with respect to other processes. The entire graph needed by a
newly instantiated process is copied into its heap before it starts running. While this may
lead to some duplication of work it reduces the communication overhead of DREAM.
Moreover, global garbage collection reduces to the sending of terminate messages to
processes whose output has been detected to be garbage during a local garbage collection.

– In contrast to GPH, Eden threads are mandatory. Processes in DREAM and threads in
GUM are related as follows: A DREAM process is implemented by several threads,
which directly correspond to threads in GUM. These threads run concurrently on the
same processor, so that different output values can be independently produced. Threads
synchronise on shared graph nodes as in GPH. Special QueueMe closures represent input
from remote processes which is not available yet. On requesting the contents of such a
closure a thread will be blocked until the input arrives.

– Process placement in Eden is controlled by the runtime-system in two different modes
that can be set-up at the beginning of the execution: (1) round-robin mode, in which
processes are instantiated in consecutively numbered processors, or (2) random mode,
where processes are instantiated in randomly chosen processors.

As Eden shares parts of GUM’s thread management and communication subsystem, the
runtime-system overheads are similar. However, Eden overheads are smaller, as it is not
necessary to maintain a virtual shared graph. The single processor performance of the most
memory intensive test program is 89%. In general, the main bottlenecks in Eden are due to
the packing and unpacking routines, which are not yet optimised. For instance, packing a
600 × 600 matrix of integers takes 1% of the time required for multiplying it. Moreover,
as Eden does not provide multicasting, it is not possible to send the same packet to several
processors and pay the packing overhead only once. See [73] for a more detailed description
of Eden overheads.

3.3. Summary

Table 1 summarises the language and implementation features of PMLS, GPH, and Eden.
On the language level it shows the higher level of abstraction for PMLS, using a skeleton-
based approach, which does not require language extensions for parallelism at all, whereas
GPH adds combinators to expose parallelism and Eden adds a construct for explicit process
creation. On the implementation level PMLS performs sophisticated static analysis and
program synthesis in order to generate a sufficient amount of parallelism. Both GPH and
Eden rely mostly on a sophisticated runtime-system with dynamic resource management.

To achieve good single processor performance all systems use state-of-the-art sequential
compilers for functional languages: GPH and Eden use GHC, and PMLS uses OCaml. In our
benchmarks we achieve single processor efficiencies of 77% for GPH, mainly due to using
a two-space garbage collector in the current implementation, 89% for Eden (using a better
garbage collector), and 84% for PMLS which uses a two-generation garbage collector. We
have assessed the overheads in the multi-processor executions for all three languages. The
most costly components are in GPH the maintenance of hash tables in the virtual shared

218 LOIDL ET AL.

Table 1. Language comparison.

PMLS GPH Eden

Language

Approach Skeleton-based Thread-based Process-based

Constructs HOFs par/seq Proc. abstraction

Proc. instantiation

Programming – Evaluation Skeletons

Abstraction Strategies

Methodology – Simulate, Define topology
execute, and/or skeletons,
visualise simulation

Implementation

Compile-time Synthesise HOFs, – Force strict
support process network, evaluation of

link skeletons channel data

Run-time Skeleton library over Graph-red. over Graph-red. over
support distributed heap shared heap distributed heap

memory management, and in PMLS the usage of blocking communication at certain stages
and the single-master, multiple-worker parallel model. The details of these runtime-system
measurements for GPH and PMLS, including data obtained from Beowulf and SunSMP
machines, will be published in a separate paper [51].

4. Experimental results

This section describes the results we have obtained using three programs: matMult, a matrix
multiplication algorithm, linSolv, an exact linear system solver, and raytracer, a simple
ray tracer. The parallel algorithms themselves have been explained in more detail in previous
papers [46, 53]. In this section we focus on a comparison of the implementations in and the
performances achieved with PMLS, GPH, and Eden.

Although rather simple in nature, these programs represent a range of applications we are
interested in. In previous studies on developing parallel applications in GPH [53] we have
identified the class of symbolic applications, with complex data structures and irregular
parallelism, as the most interesting application domain. For pragmatic reasons we had to
keep the program size down: ensuring that all three versions implement the same algorithm
and produce comparable dynamic structures was the main engineering constraint. Of the
three programs in this section the linear system solver, with its multiple homomorphic
images approach, fits these characteristics best, with the other programs focusing on different
aspects of the execution.

More specifically, matrix multiplication is a well-studied parallel program and serves to
relate our approach to that of imperative languages (with concrete language and performance
comparisons in Section 6). The linear equation solver exhibits a structure typical for a

COMPARING PARALLEL FUNCTIONAL LANGUAGES 219

class of symbolic applications, which is quite different from conventional iteration-based
techniques. Since it performs a high amount of heap consumption and creates irregular
parallelism, it is closest to typical symbolic applications. The ray tracer is an example of a
data-parallel application, and issues of task and computation granularity become important
in this context.

4.1. Experimental framework

All measurements have been performed on a 32-node Beowulf cluster [72] at Heriot-Watt
University, consisting of Linux RedHat 6.2 workstations with a 533 MHz Celeron processor,
128 kB cache, 128 MB of DRAM and a 5.7 GB local IDE disk. The workstations are
connected through a 100 Mb/s fast Ethernet switch with a latency of 142 µs, measured
under PVM 3.4.2.

4.2. Matrix multiplication

4.2.1. Problem description. Given two square matrices of arbitrary precision integers
A, B ∈ Z

n×n, n ∈ N find their product, i.e. a matrix C ∈ Z
n×n such that Ci, j = ∑n

k=1 Ai,k ∗
Bk, j .

4.2.2. Parallel algorithms. We start with a sequential algorithm directly implementing
the above specification of matrix multiplication, shown in Figure 7. By using an algebraic
datatype Matrix a to represent matrices as lists of lists we can overload standard arithmetic
operations such as multiplication. The main function is multMatT, which takes A and BT ,
i.e. the transposed matrix B as input. It computes A∗B in a double nested list comprehension,
computing the rows of the result matrix in the outer comprehension and the elements of a row
in the inner comprehension. The function multVec computes the sum in the specification
above for two vectors of length n.

4.2.2.1. Naive data parallelism. Since each element of the result matrix can be computed
independently, we can exploit data parallelism by generating one parallel task for each

Figure 7. Sequential matMult (Haskell version).

220 LOIDL ET AL.

element in the result matrix. However, the excessive number of small computations leads
to a very poor performance in general. For example, the GPH implementation of this naive
data parallel version yields no speedup on up to 16 processors. We do not consider this
version any further.

4.2.2.2. Row clustering. The granularity of the naive parallel algorithm can be increased by
computing an entire row of the result matrix by one task. Assuming square matrices of size
n×n with integers of average size l in its internal representation, and assuming that integers
are multiplied by using the algorithm of Karatsuba and Ofman [35], the computational
complexity for each task is O(n2 ∗ l log2 3), while the total communication complexity, i.e.
the amount of data (in machine words) to be sent, is O(n3 ∗ l). The latter complexity is due
to the fact that each task requires the whole second matrix to compute one final row, and
n tasks are created. In order to effectively improve parallel performance, the granularity of
the tasks has to be increased by computing as many elements as possible inside each task
and the communication has to be minimised.

We can improve the granularity further by computing many rows of the resulting matrix
by each task. With perfect load distribution, if p processors are available, p tasks should be
created, each one evaluating n/p rows of the resulting matrix. Using such a row clustering
approach the communication complexity of the main process is O(n2 ∗ p ∗ l) whereas the
computational complexity of each process is O(n3 ∗ l log2 3/p). For large values of n better
speedups can be expected, since the computation-communication ratio increases.

4.2.2.3. Block clustering. An alternative form of clustering the data is to partition the
input matrices into blocks, performing block-clustering, and to perform the basic arithmetic
over these blocks rather than over integer values. Figure 8 depicts this partitioning, and
indicates that for the computation of one block in the result matrix, only one row of the
partitioned matrix A and one column of the partitioned matrix B is needed. In this version
the computational complexity of each process is still O(n3 ∗ l log2 3/p) but its communication
complexity is only O(n2 ∗ l/

√
p) as the processors do not require the whole second matrix.

4.2.2.4. Torus topology. All parallel versions so far rely on a broadcast of all data at
the beginning of the computation with a communication complexity of O(n2 ∗ l ∗ √

p).
Therefore, the main process tends to become a bottleneck especially for large numbers of
processors. To avoid such a bottleneck we can use a torus topology as depicted in Figure 9.
Initially each process in the torus receives only its own blocks from matrices A and B.

Figure 8. Structure of block-clustering matMult.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 221

Figure 9. Process topology generated using a torus.

In each step the processor computes the product of both blocks, adds the product to the
intermediate result computed so far, and then obtains the next blocks from its neighbours. As
shown in Figure 9 the blocks of the first matrix are transmitted from left to right in the torus,
while those of the second matrix are transmitted top down. This algorithm is well-known in
the literature as Gentleman’s algorithm [71]. In this version the communication complexity
of the main process is O(n2 ∗ l), i.e. it does not depend on the number of processors, and the
communication between the processors is spread over the entire execution of the program.
The main drawback of this approach is that it requires a perfect square number of processes
to form a torus topology.

4.2.3. Implementations.

4.2.3.1. Eden. The row-clustering version in Eden creates as many processes as processors
available with each of them computing n

p rows of the product matrix. This version, as
shown in Figure 10, uses the built-in variable noPe, representing the number of available
processors. The function splitIntoN n xs splits the list xs into n nearly equal size
sublists (see Appendix A for the definition of splitIntoN and other auxiliary functions
used in this section).

Figure 10. Row-clustering matMult (Eden version).

222 LOIDL ET AL.

The block-clustering version in Figure 11 creates size× size processes, each of them
computing a block of the product matrix. In order to reduce the total amount of communica-
tion, the typical value of size will be �√noPe	. The main difference to the row-clustering
version is the way in which the matrices are split, which is encoded in the clusterLeft
and clusterRight functions. The first function splits matrix A into a list of rows, the
second function splits matrix B into a list of columns.

The torus version of the algorithm can be expressed in Eden in terms of its general torus
skeleton [64]. The main argument of the torus skeleton is the function to be performed by
each node in the torus topology (see Figure 9). Each node has three input parameters: one
from the parent; one from the left neighbour; and one from the top neighbour. It produces
three values: one to the parent; one to the right neighbour; and one to the neighbour below.

With this torus skeleton, the matrix multiplication algorithm multMatPar shown in
Figure 12 takes the size of the torus, torusSize, splits the matrices m1 and m2 into blocks
m1ss and m2ss, respectively, thereby pairing them appropriately, and calls the torus skeleton

Figure 11. Block-clustering matMult (Eden version).

Figure 12. Torus version of matMult in Eden.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 223

Figure 13. Row-clustering matMult (GPH version).

torus with the function multMatPar’ to be applied by the node processes of the torus.
The per-node function performs a list of matrix multiplications sms—one for each pair of
blocks it receives—and sums all products to obtain the result which is returned to the
parent. Note that the first pair, (sm1,sm2), is received directly from the parent, whereas
the other pairs are received from the left and right neighbours as part of sm1s and sm2s,
respectively.

4.2.3.2. GPH. Figure 13 shows a row-clustering version of multMatPar in GPH. This
version uses the sequential matrix multiplication, multMat, as shown in Figure 7 without
change. All parallelism is defined by a strategy attached to multMat. The strategy part of
the code first evaluates both input matrices, in order to avoid competition for unevaluated
data during the evaluation, and then uses the predefined strategy parListChunk z rnf m
to fully evaluate chunks of z elements in the matrix m in parallel.

The block-clustering GPH version in Figure 14 implements the algorithm sketched in
Figure 8. In contrast to the purely strategic row-clustering version, it uses explicit functions
for clustering and declustering the input and result matrices. Note that the code used to
multiply the clustered matrices, multMatT, is the sequential matrix multiplication over-
loaded to work on matrices of matrices. The strategy attached to the clustered result matrix
guarantees that every block in the clustered result matrix is evaluated in parallel. Such
separation of data-layout from computation and reuse of sequential code greatly improves
the productivity in our languages, and is in contrast to low-level C-based block-clusterings,
where extensive code restructuring is needed to obtain very efficient parallel programs [18].

Based on experiences with different cluster functions, we have developed a generic mech-
anism for clustering arbitrary user-defined data structures, using formal program transfor-
mation to derive data parallel code such as this from the sequential code [52].

4.2.3.3. PMLS. The PMLS implementation uses nested lists for representing matrices,
and Objective Caml’s arbitrary-precision integer arithmetic library for the operations over

Figure 14. Block-clustering matMult (GPH version).

224 LOIDL ET AL.

Figure 15. Row-clustering matMult (PMLS version).

the matrix elements. There is no general overloading of the basic arithmetic functions for
matrices as in Haskell.

A straightforward sequential SML algorithm, that uses map instances instead of Haskell’s
list comprehensions, is shown in Figure 15. Since this code uses one of the higher-order
functions that is implemented as a parallel skeleton, it can be directly parallelised by the
PMLS compiler resulting in a pair of nested map skeletons. The outermost map in multMap
computes a list of matrix-vector products by mapping the matrix-vector operation, called
outer, over the rows of matrix A. The outer function computes a list of dot products by
mapping the multVec function over the columns of matrix B. Note that the entire matrix
B is free in multMat. The compiler’s free-value analysis phase detects this property and
generates code to transmit B to the workers prior to running the outer farm.

The parallel map skeleton has clustering of data built into it. The clustering size is global
to the whole program and set manually, at present. With a clustering parameter of one this
algorithm corresponds to the naive data parallel version mentioned above. In non-nested
mode, with clustering set to a suitable value, the behaviour is identical to the row-clustering
version. In nested mode, with both map skeletons implemented in parallel, the matrix B is
only transmitted to the intermediate processors.

Figure 16 shows an approximation of a block-clustering version. The blocks are gener-
ated by the map’s implicit clustering mechanism. Since PMLS does not provide a user-level
mechanism for enforcing absolute placement of data, the quality of the code
depends on the ratio of processors to blocks. The best results are achieved if the num-
ber of blocks is a multiple of the number of processors. This method is slightly less

Figure 16. Block-clustering matMult (PMLS version).

COMPARING PARALLEL FUNCTIONAL LANGUAGES 225

communications-bound than the row-clustering method since the entire matrix B is not
transmitted to all the processors.

4.2.4. Performance results. The measurements presented in this section are based on two
200 × 200 matrices of arbitrary precision integers, none of which is larger than 216 − 1, i.e.
one machine word. For the row- and block-clustering versions Eden uses as many blocks
as processors, whereas GPH uses a chunk size of 40. For the row-clustered version PMLS
uses blocks of 3 rows, while for the block-clustered version it uses blocks of size 40 × 40.

The results presented here will be related to the performance of parallel versions imple-
mented in C with PVM and GMP in Section 4.2.5 and in the conclusions (Section 6.2).

Figure 17 summarises the runtimes and Figure 18 the speedups of all versions on our
Beowulf cluster. The sequential performance of the strict language, PMLS, is noticeably
better than that of the lazy languages, Eden and GPH, with variations of about 26% between
the versions of the latter languages.

For all versions the performance tails off fairly early with an increasing number of
PEs (processing elements). In general, this is due to the high ratio of communication to
computation as elaborated in Section 4.2.2. In Eden the torus topology behaves better
than the block clustering version, which in turn is better than row clustering. The torus
version shows a small increase in performance even for large numbers of PEs. This is in
contrast to e.g. the block-clustering GPH version, which shows good speedups up to 4 PEs
but tails off after that. In PMLS the difference in performance between the simple row-
clustered and the refined block-clustered version, due to reduced communication, is most
pronounced. The amount of communication can be directly linked to the free occurrence of
B in the row- (Figure 15) but not in the block-clustered version (Figure 16). Furthermore,
PMLS uses a task farm skeleton, as presented in Section 3.1.1, for implementing map in
parallel. This model achieves a good load balance but limits the scalability of the system

Figure 17. Runtimes of matMult on the Beowulf (in seconds).

226 LOIDL ET AL.

Figure 18. Speedups of matMult on the Beowulf.

because the master process becomes a communication bottleneck for large numbers of
processors.

One important difference between the implementations of the three languages is the way
that data items are packed in order to send them to other processors. In PMLS a generic
serialisation routine is used, whereas GPH implements its own graph packing algorithm. As a
result, the PMLS version is more portable, but the GPH and Eden versions are in general more
efficient. Graph packing could be improved even further by developing specialised packing
routines for commonly used data structures, such as lists, thereby reducing packet size and
packing time. On a high-latency architecture such as the Beowulf and for communications-
bound algorithms such as matMult this should yield significant performance improvements.

In summary this example shows how Eden’s richer coordination constructs, compared
to GPH and PMLS, can be used to improve parallel performance, without having to resort
to mechanisms of explicit synchronisation. The higher level of abstraction in GPH and
PMLS reduces programming effort for the initial version, but also reduces the amount of
programmer control. Although we describe Eden as having the most explicit coordination
in this comparison, it is far more implicit than most conventional parallel programming
languages.

4.2.5. Comparison with C. The three parallel matrix multiplication algorithms have also
been implemented in C+PVM using the GMP (GNU Multi-Precision) library to handle
arbitrary sized integers. The program sizes differ substantially from the parallel functional
programs. The sequential C matrix multiplication program using the GMP library consists
of 156 lines of code (excluding blank lines and comments), while the parallel programs com-
prise 378 lines of code for the row-clustering algorithm, 436 lines for the block-clustering
version and 457 lines for the torus algorithm. The parallel C+PVM programs are a factor
of 4 to 5 longer than our parallel functional programs. Table 2 shows some runtimes and

COMPARING PARALLEL FUNCTIONAL LANGUAGES 227

Table 2. Performance results for parallel C+PVM matrix multiplication programs on the Beowulf (runtimes in
seconds).

Row-clustering Block-clustering Torus

No. of PEs RT Spdup RT Spdup RT Spdup

1 5.75 1 5.75 1 5.75 1

4 2.00 2.87 2.00 2.87 1.93 2.98

9 1.36 4.23 1.18 4.87 1.08 5.32

16 1.34 4.29 1.03 5.58 0.79 7.28

25 1.83 3.14 0.97 5.93 0.68 8.46

speedups of the different parallel C+PVM programs for 200 × 200 matrices of arbitrary
precision integers.

The most involved torus version of the program yields the best parallel runtimes and
speedups. While the sequential runtime is a factor of 4 to 6 better, the speedup values
progress in a similar way as for the functional programs.

4.3. LinSolv

4.3.1. Problem description. ThelinSolv algorithm discussed in this section finds an exact
solution of a linear system of equations of the form Ax = b where A ∈ Z

n×n, b ∈ Z
n, n ∈ N.

In contrast to more common numerical algorithms, which usually produce an approximate
solution over floating point numbers for a given accuracy, the algorithm presented here finds
an exact solution and works over arbitrary precision integers.

4.3.2. Parallel algorithm. To find an exact solution for a given system of equations,
linSolv uses a multiple homomorphic images approach [43]. This is a common computer
algebra approach and consists of the following three stages:

1. map the input data into several homomorphic images,
2. compute the solution in each of these images, and
3. combine the results of all images to a result in the original domain.

Figure 19 depicts this structure for the implementation of linSolv. This structure is
particularly useful for operations on arbitrary precision integers. In this case the original
domain is Z, the set of all integer values, and the homomorphic images are Z modulo
p, written Zp, with p being a prime number. If the input numbers are very big and each
prime number fits into one machine word the basic arithmetic in the homomorphic images
is cheap fixed precision arithmetic. Only in the combination phase, when applying a fold-
based Chinese Remainder Algorithm (CRA) [45], expensive arbitrary precision arithmetic
has to be used to construct the result values. A detailed discussion of several variants of this
algorithm is given in [46].

228 LOIDL ET AL.

Figure 19. Structure of the linSolv algorithm.

The basic parallel structure of the algorithm is one of performing all computations in
the homomorphic images in parallel. The Haskell code for the top-level function, which is
unchanged for the parallel GPH version, is shown in Figure 20. It uses LU-decomposition
followed by forward and backsubstitution to compute the solution pmx in the homomorphic
image [69]. The main difficulties in the parallel algorithm are two-fold. Firstly, we have
to make sure that new results are computed if primes turn out to be “unlucky”, i.e. if the
determinant of the input matrix A in the homomorphic image generated by this prime
number is zero. This can be done either using demand-driven evaluation (GPH) or adding
explicit code to handle that case (Eden, PMLS). Secondly, we have to avoid a sequential
bottleneck in the combination phase at the end. In earlier papers we have experimented
with a tree-based Chinese Remainder Algorithm to reduce this bottleneck. However, an
analysis of the tree-based code [46] reveals that this algorithm performs much more total
computation than a list-based one, due to the more expensive computations at each node of
the tree, and we therefore use a list-based CRA in the parallel algorithm.

4.3.3. Implementations.

4.3.3.1. GPH. The parallel GPH version attaches the strategy shown in Figure 21 to the top
level expression of the sequential code in the last line of Figure 20. We use an infinite list
xList representing the results of all homomorphic images together with the prime number,

COMPARING PARALLEL FUNCTIONAL LANGUAGES 229

Figure 20. Top level code of the sequential linSolv algorithm (Haskell version).

Figure 21. Parallel strategy for linSolv (GPH version).

230 LOIDL ET AL.

Figure 22. Parallel linSolv (Eden speculative version).

as the basis of the image, and the value of the determinant of A in that image. The strategy
guesses the number of primes needed to compute the overall result (noOfPrimes) and uses a
parListN strategy to generate data parallelism over that segment of xList. Using parList
inside the par sol strat strategy, which is applied to the solution in every image, causes
each component of the result to be evaluated in parallel. We need to check whether the
determinant is zero to avoid redundant computation. This check is done here, rather than
when computing noOfPrimes to minimise data dependencies in the algorithm. If some
prime numbers turn out to be unlucky the list cra will evaluate the additional results by
demanding as-yet-unevaluated list elements. The final strategy application parList rnf
x specifies that all elements of the result should be combined in parallel.

4.3.3.2. Eden. Even though computation in Eden is lazy, communication is eager, ex-
cept for stream-like lists. Thus, care has to be taken not to send the whole list. To ensure a
demand-driven evaluation of homomorphic solutions we use a task farm skeleton as outlined
in Section 3.1.1. More specifically, we use the replicated workers paradigm [44]. A manager
and a set of worker processes are created, and two tasks are initially released to each of the
workers. As soon as any worker finishes a task, it sends the result to the manager, and a new
task is delivered to the worker. The computation in the manager is demand-driven and trig-
gered by the availability of result values. As soon as the manager has all the needed results it
terminates all the worker processes. Notice that in this speculative version the workers may
be working speculatively on useless tasks, but only when the useful tasks have already been
consumed and hence the degree of speculation is tightly limited. More details about the repli-
cated workers skeleton can be found in [41]. Figure 22 shows the Eden code for the specula-
tive version of linSolv. The only modification to the sequential code is the use of a parallel
replicated workers map map rw instead of a sequential map over the infinite list of primes.

To avoid the potential waste of resources due to speculation we can implement a con-
servative version as shown in Figure 23. In this version the prime numbers are divided

Figure 23. Parallel linSolv (Eden conservative version).

COMPARING PARALLEL FUNCTIONAL LANGUAGES 231

into those known to be needed (p needed) and those which are only needed if some of
the earlier primes are unlucky (p spec). The function additional adds for each unlucky
prime a new prime number to the task list primes’. Note in the definition of additional
that due to the demand-driven evaluation the availability of unlucky primes in xs triggers
the generation of one result element in ys.

4.3.3.3. PMLS. The PMLS implementation has been developed from the sequential
Haskell implementation. Arbitrary length integers are provided by Objective Caml’s num
library, whereas GPH and Eden use the GNU GMP library. Replacing the default arith-
metic for SML with these arbitrary precision routines exposes some limitations of SML’s
overloading scheme. In direct comparison this step was easier in Haskell.

The main problem in the PMLS implementation, shown in Figure 24, is the handling
of unlucky primes. Because SML is strict, new primes cannot simply be demanded during

Figure 24. Parallel linSolv (PMLS version).

232 LOIDL ET AL.

the evaluation of the map skeleton. There are two possible solutions to this problem. Either
the homomorphic solution function could generate a new prime upon detecting an unlucky
one, as it is done in the conservative Eden version, or the forward-mapping phase could
be made iterative with the number of valid solution vectors as a convergent. The second of
these was implemented since there are problems with generating unique primes within the
map instance function. Unfortunately this solution to the problem of unlucky primes results
in less efficient parallelism for two reasons.

Firstly, in the iterative solution we introduce sequential synchronisation points at the end
of each iteration to exchange data between the processors. This is required to guarantee
that all processors, computing an element of the result vector, terminate on the same it-
eration. This nesting of parallelism inside an iterative structure is a general problem with
our methodology. To overcome this problem it would be possible to either broadcast the
convergent, introducing additional communication, or to define a special iterative skeleton,
as it is done in the SKIPPER system [77]. However, we choose a solution that is more general
albeit also more costly.

Secondly, the amount of parallelism is drastically reduced by the map call during the first
iteration of the getSols function. Usually, only one or two unlucky primes are found for
modest sizes of problems. If the number of unlucky primes is a multiple of the number
of processors (including zero) then there is no parallel performance penalty, otherwise
there is a minimum of one homomorphic solution time as an overhead. Additionally, the
optimal granularity of the map call will be different between the iterations, the first phase
more efficient with coarser granularity (since there will be the total number of estimated
primes to decompose over), the latter with minimal granularity (since there will only be a
small number of unlucky primes). We can set the granularity at runtime but this, currently,
requires explicit programmer input. An alternative would be to have dynamic behaviour in
our skeletons.

4.3.4. Performance results. As inputs for the performance measurements we use a dense
62 × 62 matrix of arbitrary precision integers. No element in the matrix is larger than
216 − 1 and the density of the matrix is higher than 90%. The sequential runtimes show
PMLS to achieve best single processor performance with 190.8s, followed by GPH with
307.9s, and Eden with 491.7s. We attribute this fairly large difference mainly to algorithmic
differences in the code: The PMLS version uses a more efficient forward substitution after
LU decomposition in the homomorphic solution phase. This difference, in combination with
the lazy evaluation mechanism used in GPH and Eden, leads to a higher heap consumption
resulting in higher overall runtime. Furthermore, due to implementation limitations GPH
currently has to use a two-space garbage collector, which is known to be less efficient
than the generational garbage collector used by GHC for sequential execution (see below).
Finally, the difference between Eden and GPH is due to the fact that Eden uses an older
version of GHC.

Figure 25 shows the runtimes and Figure 26 shows the relative speedups for the Eden,
GPH, and PMLS implementations of linSolv for up to 16 PEs on the Beowulf cluster.
For the input data used in these measurements a sufficient number of lucky primes are
generated to utilise all processors in the machine. Since these top-level threads can compute

COMPARING PARALLEL FUNCTIONAL LANGUAGES 233

Figure 25. Runtimes of linSolv on the Beowulf.

Figure 26. Speedups of linSolv on the Beowulf.

their results independently, they perform relatively little communication and the parallel
overhead is relatively small giving good parallel efficiency.

A direct comparison of the different languages shows that Eden achieves the best overall
speedup on 16 PEs: 14.0, compared to GPH at 11.9 and PMLS at 11.5. However, since
Eden has far higher sequential execution time, the PMLS version is the fastest one on 16
PEs. An examination of the activitiy profiles reveals that PMLS’s skeleton maintains more
parallelism while collecting the data, whereas in GPH this final stage is mostly sequential.

The Eden measurements use the speculative version with the replicated workers skeleton
that dynamically sends work to processes. This approach achieves dynamic load distribution

234 LOIDL ET AL.

without relying on a potentially expensive implementation of a virtual shared heap, as used
in GPH, and the measurements show good speedups even beyond 16 PEs.

In examining the dynamic memory management of all systems, we observe that the
total heap allocation on all PEs is highest for PMLS: 1052 MB, whereas GPH allocates
only 618 MB. However, due to higher maximal heap residency in GPH, processors spend
on average 19.0% of the total execution time on garbage collection, whereas in PMLS this
percentage is only 11.2%. Measuring the heap fragmentation of both systems as the standard
deviation of allocation on each processor we obtain similar values for both systems, 147 MB
for PMLS and 157 MB for GPH. This indicates that in linSolv, GPH’s dynamic memory
management does not dramatically increase heap fragmentation.

As these numbers indicate, GPH’s garbage collector seems to generate higher overheads
than that in PMLS. The main reason is the current usage of a one-generation copying
collector, rather than a real generational collector as supported by GHC for sequential com-
pilation [74]. Furthermore, Objective Caml’s two-generation collector, as used by PMLS,
provides cheap incremental collection for the young generation, which better exploits the
additional heap space provided by multiple PEs. The implementation of a mark-and-sweep
collector for the older generations is known to be very efficient, too [15]. Another potential
reason for this overhead is the weighted reference counting on global pointers in GPH,
although this overhead allows PEs to collect local garbage independently, avoiding global
synchronisation.

In summary the linSolv example demonstrates that for some applications lazy evalu-
ation can reduce the amount of coordination required. Both the conservative Eden and the
PMLS versions had to introduce additional coordination to model GPH’s demand-driven
generation of parallelism and to handle unlucky prime numbers. In Eden the speculative
version proved to be faster than the conservative version, but in general such an approach
bears the danger of wasting resources. Although the static partitioning and mapping of
PMLS is generally less flexible than the approach taken in GPH, the re-use of well-tuned
parallel skeletons can compensate for the loss in flexibility in this case. It also induces
smaller runtime-overheads e.g. for garbage collection. In terms of speedup the skeleton-
based versions in Eden and PMLS are more efficient in collecting the results and achieve
the following speedups on 16 PEs: 14.0 (Eden), 11.9 (GPH), 11.5 (PMLS), with PMLS
having both the fastest sequential and parallel execution.

4.4. Ray tracer

4.4.1. Problem description. The raytracer program calculates a 2D image of a scene of
3D objects by tracing all rays in a grid, or window. In tracing a ray, the intersections with
the objects are computed. When an intersection is found, the ray is reflected and the colour
of the intersection point is computed based on the strength of the ray and on the texture of
the object’s material. The code is based on the Id version that was published as a part of the
Impala suite [34] of parallel benchmark programs.

4.4.2. Parallel algorithm. Figure 27 shows the top-level function of the sequential Haskell
algorithm. The function ray takes the size of the window in x and y dimension and the

COMPARING PARALLEL FUNCTIONAL LANGUAGES 235

Figure 27. Sequential raytracer (Haskell version).

world, represented as a list of spheres, as input. The computation proceeds as two nested
maps, with the outer map operating over the lines of the grid and the inner map, do line,
applying the tracepixel function to every point in the grid, represented by the coordinates
(i,j), returning a vector representing the colour.

We consider two parallel versions of this program. Both versions exploit data parallelism
but differ slightly in the way the data is initially distributed.

4.4.2.1. Parallel map. Because the computation to be performed on each pixel,
tracepixel, is fairly cheap, we do not exploit parallelism in the inner map but instead
execute only the outer map in parallel. To achieve good granularity in the outer loop, the
computation over several lines are collected into chunks and processed together.

4.4.2.2. Direct map. The direct map version exploits the same kind of data parallelism but
differs in its initial distribution of data. Each process is given all necessary data and extracts
its own portion of the data by selecting lines in the grid. To improve the granularity of the
communication, sub-sequences of pixels are collected into packets. Typically as many tasks
as available processors (noPe) are generated. To improve the load-balance, task i (0 ≤ i ≤
noPe-1) computes all result lines i + j ∗ noPe with j ≥ 0. Note that in this version no
dynamic distribution of tasks is required after the startup phase. Compared to the parallel
map version this should achieve a faster startup of the parallel processes and a better load
distribution.

4.4.3. Implementations.

4.4.3.1. PMLS. The PMLS implementation in Figure 28 uses a parallel map and has been
developed from the sequential Haskell version in Figure 27.

The function do pixel initiates ray tracing at pixel co-ordinate (i,j) and is mapped
over the index image ind. The same considerations regarding granularity control apply to
PMLS. However, the choice whether to do the outer or inner map in parallel is determined by
the characteristics of the PMLS runtime-system. When two skeletons are direct arguments
to each other, as in the example here (map (map do pixel)), there is no advantage in
nested implementation since granularity control is performed automatically inside the map
skeleton. In addition, the PMLS compiler requires all free variables in the function position
of a map, in this case do pixel, to be sent to the individual processors when initialising

236 LOIDL ET AL.

Figure 28. Parallel raytracer (PMLS version).

the skeleton instance. Since the inner map has free values which could (potentially) change
between successive calls they have to be re-transmitted upon each call. This means that
the total amount of data transmitted is significantly less if the outer map is implemented in
parallel.

4.4.3.2. GPH. The GPH implementation is based on the parallel map version and uses an
additional explicit parameter chunk to control the size of the chunks. The code in Figure 29
shows the body of the function ray (the local definitions are unchanged), with an evaluation
strategy implementing granularity control via clustering. We use the same parListChunk
strategy as in the row-clustered matrix multiplication.

4.4.3.3. Eden. The Eden implementation uses the direct-map version and is shown in
Figure 30. The function f dm represents the work to be executed by one process. In the
direct-map version this includes the extraction of its own portion of the input data using the
takeEach function to combine every n-th line of the grid into one chunk.

Figure 29. Parallel raytracer (GPH version).

Figure 30. Parallel direct map version of raytracer (Eden version).

COMPARING PARALLEL FUNCTIONAL LANGUAGES 237

The processes are created in a list of process instantiations (outps). The sequential
strategy seqList r0 is used to drive an eager process creation, creating the processes
before the outport values are needed.

4.4.4. Performance results. The measurements in Figures 31 and 32 use a 350 × 350
image with a chunk size of 10 and a scene consisting of 640 spheres as input. The sequential
runtimes are: 177.4s for Eden, 163.3s for GPH, and 172.1s for PMLS. For this application
the sequential performance of all three versions is fairly similar with a variation of less than

Figure 31. Runtimes for raytracer on the Beowulf (in seconds).

Figure 32. Speedups for raytracer on the Beowulf.

238 LOIDL ET AL.

10%. This is mainly due to the fact that raytracer does not make use of the laziness in
the language: all parts of the picture are indeed computed and since there is no interaction
they can be computed eagerly. This dynamic program characteristic manifests itself in
similar garbage collection overheads for PMLS and GPH: 3.3% and 3.1% as mean over all
processors.

For PMLS initial sequential results showed significantly poorer performance than the GPH
and Eden versions. This is due to a known limitation of the PMLS compiler. The results
reported here required some minimal user interaction during the compilation process. The
PMLS group is currently adding an appropriate sequential optimisation step to the compiler.

The rather simple and regular structure of the computation lends itself to a static approach
such as the static task farm in PMLS or the direct-map in Eden. The partitioning of the
program can be achieved statically and the distribution of work is carried out only once at
the beginning of the program. Since the work is fairly evenly distributed, no sophisticated
dynamic load balancing is necessary. On the other hand enforcing a fixed data distribution
is easier in Eden than in GPH. In general, the more dynamic facilities of GPH are not used
in this application. We have experimented with GPH versions that model the Eden approach
more closely, but they did not yield any significant performance improvements.

Not surprisingly for an application with a fairly regular structure of parallelism, PMLS
performs best in terms of speedup as well as absolute runtime. On 16 processors the runtime
is 11.4s, corresponding to a relative speedup of 15.1. The results for Eden, with its slightly
more dynamic resource management, are similar: parallel runtime of 13.4s with a speedup
of 13.2. GPH pays a higher cost for its dynamic resource management, resulting in a
comparatively poor speedup of 6.8 on 16 processors and a parallel runtime of 24.1s.

Another problem we have observed in the GPH version is a potentially poor load distribu-
tion where few processors monopolise the entire available parallelism. This is due to a com-
bination of factors: In this program all parallelism is generated on the main processor at the
beginning of the computation, and on the Beowulf start-up times between PEs may vary sig-
nificantly. Moreover this version of the GPH runtime-system does not currently allow tasks
to migrate from a loaded PE to an idle PE. Hence the fastest processor(s) sometimes obtain all
available work before the slower processors have a chance to send their first work requests. It
is possible to crudely control the work distribution by imposing an upper limit on the number
of threads that may be alive on one PE, and that is what we used in these measurements. A
more recent prototype of a GPH runtime-system, extended with thread migration, achieves
similar performance without using such an upper limit on the number of threads [16].

In contrast, for PMLS load-balancing is assumed to be a property of the skeleton im-
plementation. The parallel map skeleton used by all applications has a degree of implicit
load-balancing as a result of the processor farming model. This works well in cases like
raytracer but requires manual tuning for particular instances which can change as exe-
cution proceeeds (for example in linSolv different balancing strategies are used for the
initial and the additional results). Eden’s replicated worker skeleton map rw as used in the
linSolv example provides implicit dynamic load balancing based on the master worker
paradigm. Surprisingly, this skeleton is outperformed for the raytracer by a static work
distribution where the work list is sent to all processors and the work packages are selected
locally within each process.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 239

In summary, the results for raytracer underline a general trend in these measurements
for Eden and GPH, namely the impact of dynamic resource management overheads on scal-
ability. Eden, which has a lower overhead, performs almost as well as PMLS. However GPH
has to maintain a virtual shared heap, and this diminishes parallel performance for larger
numbers of processors. In some cases we have observed an overhead of up to 16% of the
total execution time, although typical percentages are 3–8% [49]. We are also investigating
refined load balancing mechanisms, which show better performance.

5. Related work

For comprehensive overviews on parallel functional programming we refer to [25] and [81].
In this section we focus on comparing our approaches with other implemented systems.
Only few implementations have overcome a purely experimental status and concrete head-
to-head comparisons of different languages on the same architecture are even rarer. To our
knowledge this paper is the first such systematic comparison.

5.1. Skeleton-based approaches

The prospect of implicit parallelism with the use of skeletons has spurred the development
of several skeletons-based systems. HDC [29] is a strictly-evaluated subset of Haskell with
skeleton-based coordination, in particular support for fold and map, and several forms
of divide-and-conquer. For the Karatsuba algorithm for polynomial multiplication HDC
achieves a relative speedup of 363 on 729 processors of a 1024-processor transputer-based
Parsytec machine.

A system closely related to GPH is Caliban [36, 78] in which moreover clauses, similar
to GPH’s using, can be attached to sequential program source in order to specify paral-
lel behaviours. Expressions are annotated to indicate tasks to be created, and the linkage
between the tasks can be specified using normal functions. In the current implementation,
the process network is static, with moreover clauses being resolved at compile-time and
processes being statically mapped to the target topology. A simple raytracer, introduced in
[36], has been measured on a 128 processor Fujitsu AP1000, achieving speedups of up to
24 on 35 processors.

Other prominent skeleton-based systems are SCL [13] and P3L [1]. Both use separate
coordination languages with small sets of basic skeletons that can be freely nested. The
most mature implementation of SCL, SPF, uses Fortran as computation language. Substan-
tial applications such as a Barnes-Hut algorithm have been implemented in SPF [14] and
measured on a Fujitsu AP1000. In [63] performance results for P3L on four applications
are presented, including a parallel raytracer, obtained with the SkIE prototype environment
for P3L on a 24-node Meiko CS-2 and an 8-PC Linux cluster.

An active research area in the skeletons community is the nesting of skeletons [21]. In
particular, with support for nesting it is possible to construct complex parallel applications by
composing and transforming skeletons using given transformation rules and compositional
cost models for performance prediction as developed in [2] and [65].

240 LOIDL ET AL.

5.2. Thread- and process-based approaches

Para-functional programming [32] is the general approach of adding control directives to a
functional program in order to specify parallel execution. These control directives allow the
programmer to describe detailed schedules of the execution as well as a particular mapping
of threads to processors. First-class schedules [58] extend para-functional programming to
Haskell, using monads to separate expressions and control directives. These annotations
usually describe potential parallelism, in the sense of GPH’s par, and therefore represent
a thread-based approach. Its implementation builds on the concept of futures, as used in
MultiLisp [20]. First-class schedules have been implemented by compiling Haskell to the
MultiLisp-based operating system STING. Preliminary performance results on a 16 processor
Silicon Graphics Challenge shared-memory machine show good speedups for a parallel
Barnes-Hut algorithm for solving the n-body problem [57].

ALFL [19] is an LML-like, lazy, implicitly-parallel functional language, implemented
on a distributed-memory Intel Hypercube as well as on a shared-memory Encore machine,
with performance comparisons between the two architectures.

Concurrent Clean [62, 68] is a lazy language with parallelism annotations. In [37] per-
formance results for three systems are reported: Concurrent Clean on the ZAPP abstract
machine; Concurrent Clean on the PABC abstract machine; and a Miranda-like, implicitly-
parallel, lazy language, implemented on the abstract HDG machine [39]. All measurements
have been performed on (different) transputer networks. In contrast to this paper, no de-
tailed comparison of languages or systems is given. Good speedups are reported for small
programs such as nqueens (5.6 on 8 processors) but poorer results for a raytracer (3.9 on
16 processors) in this implementation of Concurrent Clean [37].

5.3. Other approaches

One of the most successful data parallel functional languages is NESL [3]. NESL is a
strict, strongly-typed, data-parallel language with implicit parallelism and implicit thread
interaction. It has been implemented on a range of parallel architectures, including vector
machines. A wide range of algorithms has been parallelised in NESL, including a Delaunay
algorithm for triangularisation [4], several algorithms for the n-body problem [5], and
several graph algorithms. The focus in these papers, however, is on the comparison and
improvement of algorithms rather than speedup measurements or a comparison with other
languages. Two data-parallel extensions of Haskell have been partially implemented: Data
Field Haskell [31] and Nepal [10]. No performance results are available, yet.

SISAL [9] is a first-order, strict functional language with implicit parallelism and implicit
thread interaction. Its implementation is based on a dataflow model and it has been ported
to a range of parallel architectures. Good absolute performance in comparison to Fortran
code is reported in [42].

The pHluid system [17] is a parallel implementation of Id on networks of workstations,
using a dataflow model of computation in order to achieve implicit parallelism. Id is poly-
morphic, higher-order and has a non-strict semantics, implemented via lenient or parallel
eager evaluation. A fusion of Id and Haskell, called pH, has been proposed [61] but no

COMPARING PARALLEL FUNCTIONAL LANGUAGES 241

implementation is available, yet. On a workstation cluster near-linear (relative) speedups
are reported for simple programs such as nqueens [17]. In [22] a rare language and perfor-
mance comparison of implicitly parallel Id with sequential Haskell on a realistic benchmark
program is given.

6. Conclusions

We have compared three state-of-the-art parallel functional programming systems (PMLS,
GPH, and Eden) and evaluated their performance on a Beowulf architecture using three
symbolic applications: several matrix multiplication algorithms using arbitrary precision
arithmetic (matMult); an exact linear system solver (linSolv); and a simple ray-tracer
(raytracer).

PMLS, GPH and Eden all aim to support parallel symbolic computations at low pro-
grammer cost. While it is relatively straightforward to achieve good (often linear) speedups
for regular, numerical parallel computations, it can be much harder, or even impossible,
to achieve the same results for irregular, symbolic computations, especially those with
complex data structures or irregular task structures [53]. Relatively small performance im-
provements may thus be of much greater significance to users of such systems. At the same
time, symbolic application programmers are usually domain experts rather than computer
scientists, and are often unwilling or unable to invest major effort in recoding for paral-
lelism. In this section, we will evaluate the three systems in terms of language features,
performance, and productivity. We will consider them in order of anticipated programmer
effort: namely PMLS, GPH, and Eden.

6.1. Language comparison

All three functional languages aim to provide higher-level models of parallelism, with the
objective of reducing programmer overhead. All three abstract over low-level details of com-
munication timing, data structure marshaling (including cyclic graph structures) and syn-
chronisation that must be specified in e.g. C+PVM. Moreover, in all three languages, details
of task/thread creation and program decomposition are delegated to the compilation system.

PMLS provides a convenient model of implicit parallelism using skeletons—a set of
pre-defined higher-order functions with associated parallel behaviours. Since skeletons are
partitioned into parallel components and mapped to processing units statically, this approach
has the lowest runtime overhead of the three considered here, and where the application
structure fits the pre-defined skeletons perfectly, it will also have the lowest programmer
overhead. However, such an approach is less flexible than the dynamic approaches taken
by Eden and GPH. This is apparent in less regular or longer-running applications, such as
linSolv, where a regular static structure cannot be determined from the program source.

GPH has a similar philosophy to that of PMLS, aiming to require minimal programmer
input in order to achieve acceptable parallel performance. However, it provides more con-
trol (if required) over evaluation order, strictness and parallelism, allowing programmable
evaluation strategies to be developed. This approach accepts low programmer overhead to
enable tuning of the parallel code and to be applicable to a variety of programming styles,

242 LOIDL ET AL.

but may incur potentially high dynamic overhead. This cost is most apparent in regular ap-
plications, where a simple static process to processor mapping could be determined either
manually or automatically. In such a case, manual tuning may be needed to extract good
parallel performance for GPH, where PMLS might automatically find such a mapping, or
it might be straightforward to program such a mapping in Eden. raytracer is an example
of such simple static mapping.

Finally, of the three languages studied here, Eden provides the greatest control over par-
allelism, and thus requires the greatest programmer effort. Control is provided over task
decomposition, allocation to virtual processors and communication channels. Given suffi-
cient tuning effort, it is possible to develop more sophisticated parallel algorithms, as with
the torus version of matMult (Section 4.2.2). As with GPH, all PMLS skeletons can be
easily replicated [40, 64], with a similar mapping effect. Since all load management details
must be explicitly programmed, however, and there is limited support for lazy communi-
cation there will be situations where GPH mechanisms cannot be easily replicated, such as
using a potentially infinite number of homomorphic images in linSolv.

Recognising the value of the skeletons approach for suitable applications, all three lan-
guages provide support for such a style. PMLS naturally provides the most direct support,
with static process mapping and cost modelling as part of the compilation process. GPH
provides a full set of standard skeletons written in Haskell, and using a dynamic cost model
and mapping [26]. Haskell’s constructor classes are used to abstract over machine models
and alternative data structures. Finally, a rich set of skeletons, including some novel branch-
and-bound skeletons, has been developed using Eden constructs and used on several parallel
machines [40, 64].

6.2. Performance comparison

It is received wisdom that eager evaluation (used for strict function calls) will outperform
lazy evaluation (used for non-strict function calls) due to the overhead of recording partial
results in the latter case. It follows that fully strict languages should outperform non-strict
languages: experimental results suggest that this can be over a factor of 10 in the worst
benchmark cases [27].

Similarly, it is argued that full communication should outperform lazy communication,
since fewer messages are required in the former case if an entire data structure is communi-
cated. Given that PMLS is fully strict, with strict communication, Eden is non-strict, with
strict communication and GPH is non-strict with lazy communication, we would conse-
quently expect PMLS to outperform Eden which should outperform GPH. We would also
expect the same ordering on the basis of runtime overheads, but with the possibility of
similar overheads for Eden and PMLS. The performance results summarised in Table 3 are
therefore somewhat surprising.

For all three benchmarks PMLS achieves the smallest parallel execution times. In the
case of linSolv, Eden’s speedup is higher but sequential execution time is higher, too. GPH
achieves similar speedup as PMLS with sequential time between the other two versions. In
the case of the raytracer (the most regular of the three benchmarks we have considered)
PMLS shows even better speedups than Eden or GPH. While mirroring earlier results almost

COMPARING PARALLEL FUNCTIONAL LANGUAGES 243

Table 3. Comparative performance (Seq RT: runtime on a 1 PE parallel machine; Par RT: runtime on a 16 PE
parallel machine; Spdup: Speedup on 16 PEs calculated as Seq RT

Par RT).

PMLS GPH Eden

Seq Par Seq Par Seq Par
RT RT Spdup RT RT Spdup RT RT Spdup

matMult 22.8s 4.3s 5.3 30.3s 8.9s 3.4 38.5s 13.2s 2.9

linSolv 190.8s 16.6s 11.5 307.9s 25.9s 11.9 491.7s 35.1s 14.0

raytracer 172.1s 11.4s 15.1 163.3s 24.1s 6.8 177.4s 13.4s 13.2

Table 4. Comparative performance of matrix multiplication in C (Seq RT: runtime on a 1 PE parallel machine;
Par RT: runtime on a 16 PE parallel machine; Spdup: Speedup on 16 PEs calculated as Seq RT

Par RT).

PMLS GPH Eden C

Seq Seq Seq Seq Par
RT Spdup RT Spdup RT Spdup RT RT Spdup

matMult 19.5s 3.3 – – 34.3s 1.7 5.75s 1.34s 4.3
(rows)

matMult 22.8s 5.3 30.3s 3.4 32.9s 2.1 5.75s 1.03s 5.6
(block)

matMult – – – – 38.5s 2.9 5.75s 0.79s 7.3
(torus)

exactly [26], the GPH performance for the raytracer is distinctly disappointing. This has
subsequently led us to improve the GPH load distribution mechanism [48].

For comparison, we have re-implemented the matMult benchmark in C+PVM using
the GNU Multi-Precision library for arbitrary precision arithmetic (Table 4) and the GNU
C compiler on the same parallel machine. For the block-parallel version (the only one
implemented in all four systems), the speedup results using full C optimisation (-O2) are
comparable with those for PMLS: 5.6 on 16 processors. The base sequential performance
is, however, a factor of 4 to 6 faster than for the functional languages. This factor between
functional and imperative code stems on the one hand from the general overhead of imple-
menting a high-level (lazy) language, and on the other hand the functional versions use list
structures rather than in-place arrays. We anticipate that the difference could be further re-
duced by using e.g. monadic techniques to allow in-place array updates, but at some cost in
source code legibility/programmer time. Furthermore, sophisticated type systems, enabling
in-place update, are reaching maturity with first programming language implementations
becoming available [30].

6.3. Productivity comparison

Measuring programmer productivity is notoriously difficult, due to differences in individual
ability, prototyping effects, etc. We have therefore chosen to use lines of code as a reasonable

244 LOIDL ET AL.

Table 5. Productivity comparison (in lines-of-code).

PMLS GPH Eden C

Seq Par Seq Par Seq Par Seq Par
Size Size Size Size Size Size Size Size

matMult 85 25 68 5 68 34 156 301

(3) (10)

linSolv 751 13 473 10 473 8 – –

raytracer 410 3 453 7 453 10 – –

approximation, accepting that the number of lines of code produced by any given trained
programmer is roughly constant regardless of the programming language used or the gen-
eral ability of the programmer. For the three benchmark programs used here, application
development was to some degree interleaved with system development. Therefore, a pre-
cise separation of the time spent on both activities, as we would have liked to give, was
not possible. However, for the matrix multiplication program we note that debugging of
the very simple C program, without further tuning, required more than a week already,
whereas the parallel versions in PMLS, GPH, and Eden do not require major restructuring
of the code. Whilst this does not represent a systematic comparison of parallel programming
productivity in functional versus imperative languages, which is not the aim of this paper,
we do believe that the following figures provide a realistic picture of expected productivity
for typical symbolic applications.

Table 5 gives the number of lines of code for each of the three programs that have been
studied here, plus corresponding figures for the arbitrary precision matrix multiplication
program in C+PVM, which we discussed in more detail in Section 4.2.5. The counts exclude
comments and white space. The parallel code size represents the number of lines that were
either changed in or newly written for the parallel version. As expected, these changes are
highly significant for the C program (representing some 65% of the total code size), but are
generally insignificant for the functional programs (in the worst case, representing 33% of
the total code size, for a highly tuned version of the matrix multiplication algorithm). The
sequential functional programs are a factor of 2 to 3 times shorter than the C equivalent,
with the parallel programs being 4 to 5 times shorter. Clearly, a certain amount of the C code
could be reused for other applications, but there is equally clearly a very high entry price to
parallel programming in C, especially when complex data structures must be communicated.
Although not a major difference, the sequential Haskell code is generally slightly shorter
than the SML code. This is mainly a consequence of better standard library support for
Haskell, though high-level language features such as overloading and list comprehensions
have also been exploited.

Since PMLS is the most implicit approach of the three languages studied, and Eden
the most explicit, we would anticipate that PMLS should require least changes with Eden
requiring the most changes. While this is generally true, the figures are distorted to some
extent by the performance tuning that has been carried out. Although the initial version
of the matMult in PMLS required only 3 lines, the final tuned version required 25. The

COMPARING PARALLEL FUNCTIONAL LANGUAGES 245

corresponding Eden figures are 10 lines and 34 lines, respectively. The GPH code was not
tuned, however, and therefore only 5 lines in total were changed. The linSolv application
showed a reversal of the general result, with Eden requiring fewest changes. This may
reflect the poor match between the irregular parallel structure of this application and the
standard skeletons/strategies used by the other two systems. It is worth noting that the total
number of changed lines is generally small, and that our comparisons must therefore be
correspondingly tentative.

We conclude that while C may offer better performance than unoptimised functional
code, in this example the difference is less than might be expected. Moreover, the high-
level features available in functional code mean that programmer productivity is likely to
be much greater than in C.

6.4. Maturity and usability

All three functional language systems discussed here can be rated as mature research
systems, running a range of parallel benchmark applications on a variety of parallel archi-
tectures. Work on GPH began in 1994, and it since has been applied to numerous programs,
including the 47,000 line Lolita natural language engineering system [50]. To assist pro-
gram development, it offers a sophisticated set of profiling tools [23], including ideal and
realistic simulation. GPH is publicly available in OpenSource form as part of the GHC
compiler project and its most recent version, based on GHC 5.02.3, can be downloaded
from [82].

The Eden system is a later development, sharing underlying parallel scheduling and
communication infrastructure with the earlier GPH system. It has been tested on a variety
of small and medium benchmark applications, but has not yet been applied to large-scale
applications, such as Lolita. Both GPH and Eden provide low-level portability by compiling
through either C+PVM or C+MPI.

In contrast to the two GHC-based systems, the PMLS system has a more heterogeneous
structure, exploiting state-of-the-art implementation technology from several sources. The
core system uses the Objective Caml compiler for sequential compilation and calls C+MPI
routines for implementing the parallel skeletons. Up-to-date versions of Eden and PMLS
are available from the developers on request.

7. Future work

All three systems are under active development. For PMLS the current objectives are to
provide a more expressive set of algorithmic skeletons, to optimise the performance of
the existing skeletons and to automatically identify skeleton structures in arbitrary code.
This work will exploit both dynamic profiling-based performance prediction (which has
been found to give good predictions within a narrow range of program characteristics) and
automatic program transformation techniques.

The main research direction for GPH is to improve architecture-independence by refining
the mechanisms for load balancing and data distribution in order to deal with high-latency
machines such as Beowulf clusters. Based on these refinements, research will focus on the

246 LOIDL ET AL.

development of an adaptive runtime-system capable of automatically tuning its behaviour
to suit the characteristics of the parallel machine.

Finally, following the upgrade to conform to the latest sequential GHC compiler, work
in Eden will focus on optimisations to reduce communication costs.

Appendix

A. Auxiliary functions

This appendix summarises auxiliary functions, written in Haskell98, which we have used
in the body of the paper. Most of these functions modify a data structure so as to define
parallelism over this modified data structure. The sequential code can be re-used between
GPH and Eden. In fact, the implementations of matMult and raytracer share a module
with basic functions over lists shown in Figure 34.

Figure 33 presents the GPH code for some predefined strategies used in the body of the
paper. The strategy seqListN n s xs forces the evaluation of the first n elements of the
list xs, applying the strategy s to every list element. The strategy parListChunk c s xs
specifies the evaluation of segments of size c of the list xs in parallel, applying the strategy
s to every list element.

Figure 34 summarises the functions, used in the GPH and Eden code, for splitting lists
into segments of (almost) equal size and merging them again. This is used for example
by the matMult and raytracer examples to achieve “data clustering”. Note that such
clustering is encoded within the skeletons used in PMLS and does not appear explicitly in
the user code. The function splitIntoN n xs splits the list xs into n segments of the same
size, whereas the function splitAtN n xs splits a list into segments of the size n. The
function takeEach extracts each n-th element from a given list. It is used in unshuffleN
to produce a list of lists of every n-th element, starting with 0-th, 1-st, 2-nd, etc. element.
Thus, unshuffleN is an alternative form of clustering, observing the following identity for
all n that divide the length of the input list:

shuffleN . (unshuffleN n) == id

Figure 33. Predefined evaluation strategies.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 247

Figure 34. Functions for splitting and merging lists.

Acknowledgments

The authors would like to thank the following organisations for funding the work pre-
sented here: the Austrian Academy of Sciences (APART fellowship 624), the Japan So-
ciety for the Promotion of Science (Postdoctoral fellowship P00778), the Spanish Project
TIC2000-0738, and UK’s Engineering and Physical Sciences Research Council (grants
EPSRC GR/L 93379, EPSRC GR/M 32351 and EPSRC GR/L42889). Furthermore, this
research was supported by the MRG project (IST-2001-33149) which is funded by the
EC under the FET proactive initiative on Global Computing. Our cooperative work would
not have been possible without the travel funding from the following organisations: the
British Council and the DAAD (grant 1097), and the Spanish-British Acción Integrada
HB 1999-0102.

References

1. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., and Vanneschi, M. P3L: A structured high level program-
ming language and its structured support. Concurrency—Practice and Experience, 7(3) (1995) 225–255.

248 LOIDL ET AL.

2. Bacci, B., Gorlatch, S., Lengauer, C., and Pelagatti, S. Skeletons and transformations in an integrated parallel
programming environment. In PACT’99—Intl. Conf. on Parallel Architecture and Compilations Techniques,
Vol. 1662 of LNCS, 1999, pp. 13–27.

3. Blelloch, G. Programming parallel algorithms. Communications of the ACM, 39(3) (1996) 85–97.
4. Blelloch, G., Miller, G., and Talmor, D. Developing a practical projection-based parallel delaunay algorithm.

In Symp. on Computational Geometry. Philadelphia, PA, 1996, pp. 186–195.
5. Blelloch, G. and Narlikar, G. A Practical comparison of N -body algorithms. In Parallel Algorithms, Vol. 30

of Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1997.
6. Breitinger, S., Klusik, U., Loogen, R., Ortega, Y., and Peña, R. DREAM—the DistRibuted Eden Abstract

Machine. In IFL’97—Intl. Workshop on the Implementation of Functional Languages 1997. Vol. 1467 of
LNCS, St. Andrews, Scotland, 1997, pp. 250–269.

7. Breitinger, S., Loogen, R., Ortega, Y., and Peña, R. The Eden coordination model for distributed memory
systems. In HIPS’97—Workshop on High-Level Parallel Programming Models. Geneva, Switzerland, 1997,
pp. 120–124.

8. Burge, W. Recursive Programming Techniques. Addison-Wesley, 1975.
9. Cann, D. Retire fortran? A debate rekindled. Communications of the ACM, 35(8) (1992) 81–89.

10. Chakravarty, M., Keller, G., Lechtchinsky, R., and Pfannenstiel, W. Nepal—Nested data-parallelism in Haskell.
In EuroPar’01—European Conf. on Parallel Processing, Vol. 2150 of LNCS. Manchester, UK, Aug. 28–31,
2001, pp. 524–534.

11. Cole, M.I. Algorithmic Skeletons: Structured Management of Parallel Computationg. Research Monographs
in Parallel and Distributed Computing. Cambridge, MA: The MIT Press, 1989.

12. Cook, A. Transformation and proof in a parallelising compiler. Ph.D. thesis, Dept. of Computing and Electrical
Engineering, Heriot-Watt University, 2002.

13. Darlington, J., Guo, Y., and To, H. Structured parallel programming: Theory meets practice. In Research
Directions in Computer Science, R. Milner and I. Wand (Eds.), Cambridge University Press, 1996a.

14. Darlington, J., Guo, Y., To, H., and Yang, J. SPF: Structured parallel fortran. In PCW’96—Intl. Parallel
Computing Workshop. Kawasaki, Japan, 1996b.

15. Doligez, D. and Leroy, X. A concurrent, generational garbage collector for a multithreaded implementation of
ML. In POPL’93—Symp. on Principles of Programming Languages. Charleston, SC, Jan. 1993, pp. 113–123.

16. Du Bois, A., Loidl, H.-W., and Trinder, P. Thread migration in a parallel graph reducer. In IFL’02—Intl.
Workshop on the Implementation of Functional Languages, Vol. 2670 of LNCS. Madrid, Spain, Sept. 16–18,
2002.

17. Flanagan, C. and Nikhil, R. pHluid: The design of a parallel functional language implementation on worksta-
tions. In ICFP’96—Intl. Conf. on Functional Programming. Philadelphia, PA, May 24–26, 1996, pp. 169–179.

18. Frens, J. and Wise, D. Auto-blocking matrix multiplication, or tracking BLAS3 performance from source
code. PPoPP’97—Symp. on Principles and Practice of Parallel Programming, 32(7) (1997) 206–216.

19. Goldberg, B. Multiprocessor execution of functional programs. Intl. J. of Parallel Programming, 17(5) (1988)
425–473.

20. Halstead, R. Multilisp: A language for concurrent symbolic computation. ACM Transactions on Programming
Languages and Systems, 7(4) (1985) 106–117.

21. Hamdan, M. A combinational framework for parallel programming using algorithmic skeletons. Ph.D. thesis,
Dept. of Computing and Electrical Engineering, Heriot-Watt University, 2000.

22. Hammes, J., Lubeck, O., and Böhm, W. Comparing Id and Haskell in a Monte Carlo photon transport code.
J. of Functional Programming, 5(3) (1995) 283–316.

23. Hammond, K., King, D., Loidl, H.-W., Rebón, A., and Trinder, P. The HasPar performance evaluation suite
for GPH: A parallel non-strict functional language. Technical report, 2000.

24. Hammond, K., Loidl, H.-W., and Partridge, A. Visualising granularity in parallel programs: A graphical
winnowing system for Haskell. In HPFC’95—Conf. on High Performance Functional Computing. Denver,
CO, April 10–12, 1995, pp. 208–221.

25. Hammond, K. and Michaelson, G. (Eds.). Research Directions in Parallel Functional Programming. Springer,
1999.

26. Hammond, K. and Rebón, A. HaskSkel: Algorithmic skeletons for Haskell. In IFL’99—Intl. Workshop on the
Implementation of Functional Languages, Vol. 1868 of LNCS. Lochem, The Netherlands, Sept. 7–10, 1999.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 249

27. Hartel, P., Feeley, M., Alt, M., Augustsson, L., Baumann, P., Beemster, M., Chailloux, E., Flood, C., Grieskamp,
W., van Groningen, J., Hammond, K., Hausman, B., Ivory, M., Jones, R., Kamperman, J., Lee, P., Leroy, X.,
Lins, R., Loosemore, S., Röjemo, N., Serrano, M., Talpin, J.-P., Thackray, J., Thomas, S., Walters, P., Weis,
P., and Wentworth, P. Benchmarking implementations of functional languages with “Pseudoknot”, a float-
intensive benchmark. J. of Functional Programming, 6(4) 1996.

28. Hernández, F., Peña, R., and Rubio, F. From GranSim to Paradise. In SFP’00—Scottish Functional Pro-
gramming Workshop, Vol. 2 of Trends in Functional Programming. St. Andrews, Scotland, Jul 26–28, 2000,
pp. 11–19.

29. Herrmann, C. The skeleton-based parallelization of divide-and-conquer recursions. Ph.D. thesis, University
of Passau, 2000.

30. Hofmann, M. A type system for bounded space and functional in-place update. Nordic Journal of Computing,
7(4) (2000) 258–289.

31. Holmerin, J. and Lisper, B. Development of parallel algorithms in data field Haskell. In EuroPar’00—European
Conf. on Parallel Processing, Vol. 1900 of LNCS. Munich, Germany, Aug. 29–Sept. 1, 2000, pp. 762–766.

32. Hudak, P. Para-functional programming. IEEE Computer, 19(8) (1986) 60–70.
33. Hughes, R. Why functional programming matters. The Computer Journal, 32(2) (1989) 98–107.
34. Impala: 2001, Impala—(IMplicitly PArallel LAnguage Application Suite). <URL: http://www.csg.

lcs.mit.edu/impala/>.
35. Karatsuba, A. and Ofman, Y. Multiplication of multi-digit numbers on automata. Soviet. Phys. Dokl., (7)

(1962) 595–596.
36. Kelly, P. Functional Programming for Loosely-Coupled Multiprocessors. Research Monographs in Parallel

and Distributed Computing. MIT Press, 1989.
37. Kesseler, M. The implementation of functional languages on parallel machines with distributed memory.

Ph.D. thesis, Univ. of Nijmegen, 1996.
38. King, D., Hall, J., and Trinder, P. A strategic profiler for glasgow parallel Haskell. In IFL’98—Intl. Workshop on

the Implementation of Functional Languages, Vol. 1595 of LNCS. London, UK, Sept. 9–11, 1998, pp. 88–102.
39. Kingdon, H., Lester, D., and Burn, G. The HDG-machine: A highly distributed graph-reducer for a transputer

network. Computer Journal, 34(4) (1991) 290–301.
40. Klusik, U., Loogen, R., Priebe, S., and Rubio, F. Implementation skeletons in Eden—Low-effort parallel

programming. In IFL’00—Intl. Workshop on the Implementation of Functional Languages, Vol. 2011 of
LNCS. Aachen, Germany, Sept. 4–7, 2000, pp. 71–88.

41. Klusik, U., Peña, R., and Rubio, F. Replicated workers in Eden. In CMPP’00—Constructive Methods for
Parallel Programming. Ponte di Lima, Portugal. Nova Science Books, 2001.

42. LANL: 2001, Sisal Performance Data. <URL: http://www.llnl.gov/sisal/PerformanceData.
html>.

43. Lauer, M. Computing by homomorphic images. In Computer Algebra—Symbolic and Algebraic Computation,
B. Buchberger, G.E. Collins, R. Loos, and R. Albrecht (Eds.), Springer, 1982, pp. 139–168.

44. Lester, B. The Art of Parallel Programming. Prentice-Hall, 1993.
45. Lipson, J.D. Chinese remainder and interpolation algorithms. In SYMSAM’71—Symp. on Symbolic and Alge-

braic Manipulation, 1971, pp. 372–391.
46. Loidl, H.-W. LinSolv: A case study in strategic parallelism. In Glasgow Workshop on Functional Program-

ming. Ullapool, Scotland, Sept. 15–17, 1997.
47. Loidl, H.-W. Granularity in large-scale parallel functional programming. Ph.D. thesis, Dept. of Computing

Science, Univ. of Glasgow, 1998.
48. Loidl, H.-W. Load balancing in a parallel graph reducer. In SFP’01—Scottish Functional Programming

Workshop, Vol. 3 of Trends in Functional Programming. Stirling, Scotland, Aug. 22–24, 2001, pp. 63–
74.

49. Loidl, H.-W. The virtual shared memory performance of a parallel graph reducer. In CCGrid/DSM 2002—Intl.
Symp. on Cluster Computing and the Grid. Berlin, Germany, May 21–24, 2002, pp. 311–318.

50. Loidl, H.-W., Morgan, R., Trinder, P.W., Poria, S., Cooper, C., Peyton Jones, S.L., and Garigliano, R. Parallelis-
ing a large functional program rr: Keeping LOLITA busy. In IFL’97—Intl. Workshop on the Implementation
of Functional Languages 1997, Vol. 1467 of LNCS. St Andrews, Scotland, Sept. 10–12, 1997, pp. 198–
213.

250 LOIDL ET AL.

51. Loidl, H.-W., Scaife, N., Michaelson, G., and Trinder, P. Implementation designs for parallel functional
languages. In: PPDP’03—Intl. Conf. on Principles and Practice of Declarative Programming. Uppsala,
Sweden, Aug 27–29, 2003, Submitted.

52. Loidl, H.-W., Trinder, P., and Butz, C. Tuning task granularity and data locality of data parallel GpH programs.
Parallel Processing Letters, 11(4) (2001) 471–486.

53. Loidl, H.-W., Trinder, P., Hammond, K., Junaidu, S., Morgan, R., and Peyton Jones, S. Engineering parallel
symbolic programs in GPH. Concurrency—Practice and Experience, 11(12) (1999) 701–752.

54. Loogen, R. Programming language constructs. In Research Directions in Parallel Functional Programming.
Springer, 1999, pp. 63–91.

55. Michaelson, G., Scaife, N., Bristow, P., and King, P. Nested algorithmic skeletons from higher order functions.
Parallel Algorithms and Applications, 16 (2001) 181–206. Special Issue on High Level Models and Languages
for Parallel Processing.

56. Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of Standard ML (Revised). Cambridge,
MA: MIT Press, 1997.

57. Mirani, R. High-level abstractions for parallel functional programming. Ph.D. thesis, Yale University, 1996.
58. Mirani, R. and Hudak, P. First-class schedules and virtual maps. In FPCA’95—Conf. on Functional Program-

ming Languages and Computer Architecture. La Jolla, CA, June 26–28, 1995, pp. 78–85.
59. Mohr, E., Kranz, D., and Halstead Jr., R. Lazy task creation: A technique for increasing the granularity of

parallel programs. IEEE Transactions on Parallel and Distributed Systems, 2(3) (1991) 264–280.
60. MPI: MPI-2: extensions to the message-passing interface. Technical report, Univ. of Tennessee, Knoxville,

1997.
61. Nikhil, R. and Arvind. Implicit Parallel Programming in pH. Morgan Kaufmann Publishers, 2001.
62. Nöcker, E., Smetsers, J., van Eekelen, M., and Plasmeijer, M. Concurrent clean. In PARLE’91—Parallel

Architectures and Languages Europe, Vol. 505 of LNCS. Veldhoven, The Netherlands, 1991, pp. 202–
219.

63. Pelagatti, S. Task and data parallelism in P3L. In Patterns and Skeletons for Parallel and Distributed Computing
F. Rabhi and S. Gorlatch (Eds.), Springer, 2002.

64. Peña, R. and Rubio, F. Parallel functional programming at two levels of abstraction. In PPDP’01—Intl. Conf.
on Principles and Practice of Declarative Programming. Firenze, Italy, Sept. 5–7, 2001, pp. 187–198.

65. Pepper, P. Deductive derivation of parallel programs. In Parallel Algorithm Derivation and Program Trans-
formation. Kluwer Academic Publishers, 1993, pp. 1–53.

66. Peyton Jones, S., Hall, C., Hammond, K., Partain, W., and Wadler, P. The glasgow Haskell compiler: A
technical overview. In Joint Framework for Information Technology Technical Conference. Keele, UK, 1993,
pp. 249–257.

67. Peyton Jones, S., Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel, J., Hammond,
K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury, J., Meijer, E., Peterson, J., Reid, A.,
Runciman, C., and Wadler, P. Haskell 98: A non-strict, purely functional language, 1999. Available at <URL:
http://www.haskell.org/>.

68. Plasmeijer, R., van Eekelen, M., Pil, M., and Serrarens, P. Parallel and distributed programming in concurrent
clean. In Research Directions in Parallel Functional Programming. Springer, 1999, pp. 323–338.

69. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. Numerical Recipes in C: The Art of Scientific
Computing. Chapt. LU Decomposition and Its Applications. Cambridge University Press, 2nd edition, 1992.

70. PVM: Parallel virtual machine reference manual, version 3.2. Univ. of Tennessee, 1993.
71. Quinn, M. Parallel Computing. McGraw-Hill, 1994.
72. Ridge, D., Becker, D., Merkey, P., and Sterling, T. Beowulf: Harnessing the power of parallelism in a pile-of-

PCs. In IEEE Aerospace Conference, 1997, pp. 79–91.
73. Rubio, F. Programación Funcional Paralela Eficiente en Eden. Ph.D. thesis, Universidad Complutense de

Madrid, Spain, 2001, in Spanish.
74. Sansom, P. and Peyton Jones, S. Generational garbage collection for Haskell, In FPCA’93—Functional Pro-

gramming Languages and Computer Architecture. Copenhagen, Denmark, June 9–11, 1993, pp. 106–116.
75. Sansom, P. and Peyton Jones, S. Time and space profiling for non-strict, higher-order functional languages. In

POPL’95—Symp. on Principles of Programming Languages. San Francisco, CA, Jan. 23–25, 1995, pp. 355–
366.

COMPARING PARALLEL FUNCTIONAL LANGUAGES 251

76. Scaife, N., Michaelson, G., and Horiguchi, S. Comparative cross-platform performance results from a paral-
lelizing SML compiler. In IFL’01—Intl. Workshop on the Implementation of Functional Languages, Vol. 2312
of LNCS. Stockholm, Sweden, Sept. 24–26, 2001, pp. 138–154.

77. Serot, J. Tagged-token data-flow for skeletons. Parallel Processing Letters 11(4) (2001) 377–392.
78. Taylor, F. Parallel functional programming by partitioning. Ph.D. thesis, Univ. of London, 1996.
79. Trinder, P., Hammond, K., Loidl, H.-W., and Peyton Jones, S. Algorithm + strategy = parallelism. J. of

Functional Programming 8(1) (1998) 23–60.
80. Trinder, P., Hammond, K., Mattson Jr., J., Partridge, A., and Peyton Jones, S. GUM: A portable parallel

implementation of Haskell. In PLDI’96—Programming Language Design and Implementation. Philadephia,
PA, May 21–24, 1996, pp. 78–88.

81. Trinder, P., Loidl, H.-W., and Pointon, R. Parallel and distributed Haskells. J. of Functional Programming
12(4/5) (2002) 469–510.

82. WWW-GPH. Glasgow Parallel Haskell, 2001. WWW page. <URL: http://www.macs.hw.ac.
uk/~dsg/gph/>.

