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Abstract

The conciseness conjecture is a longstanding notion in computer science that
programming languages with more built-in operators, that is more expressive
languages with larger semantics, produce smaller programs on average. Chaitin
defines the related concept of an elegant program such that there is no smaller
program in some language which, when run, produces the same output.

This thesis investigates the conciseness conjecture in an empirical manner.
Influenced by the concept of elegant programs, we investigate several models of
computation, and implement a set of functions in each programming model. The
programming models are Turing Machines, λ-Calculus, SKI, RASP, RASP2, and
RASP3. The information content of the programs and models are measured as
characters. They are compared to investigate hypotheses relating to how the
mean program size changes as the size of the semantics change, and how the
relationship of mean program sizes between two models compares to that between
the sizes of their semantics.

We show that the amount of information present in models of the same
paradigm, or model family, is a good indication of relative expressivity and aver-
age program size. Models that contain more information in their semantics have
smaller average programs for the set of tested functions. In contrast, the rela-
tive expressiveness of models from differing paradigms, is not indicated by their
relative information contents.

RASP and Turing Machines have been implemented as Field Programmable
Gate Array (FPGA) circuits to investigate hardware analogues of the hypotheses
above. Namely that the amount of information in the semantics for a model
directly influences the size of the corresponding FPGA circuit, and that the rela-
tionship of mean circuit sizes between models is comparable to the relationship
of mean program sizes.

We show that the number of components in the circuits that realise the se-
mantics and programs of the models correlates with the information required to
implement the semantics and program of a model. However, the number of com-
ponents to implement a program in a circuit for one model does not relate to the
number of components implementing the same program in another model. This
is in contrast to the more abstract implementations of the programs.

Information is a computational resource and therefore follows the rules of
Blum’s axioms. These axioms and the speedup theorem are used to obtain an
alternate proof of the undecidability of elegance.

This work is a step towards unifying the formal notion of expressiveness with
the notion of algorithmic information theory and exposes a number of interesting
research directions. A start has been made on integrating the results of the thesis
with the formal framework for the expressiveness of programming languages.
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Chapter 1

Introduction

What is the result of adding together the numbers 5 and 8?

Nearly all tasks are not fully specified. When a task is given to a person or a

machine, it is presented based on knowledge of the abilities of the assignee. If the

assignee is versed in all pertinent aspects of a task, then they require no other

information. If not, then they may need more specific instructions in order to

carry out the task.

Examine the problem above. If one can read English, can count above 10,

and knows how to perform addition, then one can obtain the correct answer: 13.

If there is a gap in one’s knowledge, one might have to learn how to read English,

how to count above 10, or how to add two numbers together.

Not knowing English is an encoding problem. One does not have the ability to

parse an English sentence into one’s own internal representation1, but one might

be able to parse the same problem in a different encoding: 5+8. If one is literate

in Russian, a Cyrillic representation might be preferable to the English version:

“Что такоерезультат сложения числа 5 и 8?”2

Not knowing how to add, or how the numerals behave above the number 10

requires some instruction in mathematics – the person doing the addition has to

be told how to add. Assuming that the assignee can count up to 10 on their

fingers, they can be instructed in how addition works by having them represent,

say two on the left hand and three on the right. For each finger they lower

1However knowledge is represented in the mind.
2Courtesy of Google Translate.
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on the left, a finger raises on the right. This is an algorithm for addition, and

with enough examples can be generalised for any numbers as long as the assignee

knows how to count up to them.

The point is: for any task to be completed, the assignee must have knowledge

of how to perform the task and subtasks, and knowledge of the behaviour and

effects of their actions upon the environment which contains the task. From the

high level specification, down to the lowest level mechanical attributes of the

assignee, each aspect of the above knowledges must be specified. The completion

of a task is a culmination of combining the various pieces of knowledge to achieve

the effect of a task.

When we discuss ourselves, or something to which we have ascribed anthro-

pomorphic traits, we say that these knowledges are either “learned” or “implic-

it/inherent”. Knowing how to tap something with a pen three times uses learned

knowledge of how to hold a pen, how to count to three, what constitutes a ‘tap’

and so on. It also uses “implicit” knowledge of sending nerve impulses to contract

muscles to manipulate the pen.

Constructing ontologies and taxonomies for knowledges and actions for living

creatures is an extraordinary undertaking owing to their complexity, but such

classifications for formal systems could be possible. Programming languages,

which encapsulate the traits of some formal mathematical model, have a spec-

ified encoding (syntax), and a set of pre-defined functions which represent the

knowledge of the language. The language intitally “knows” how to perform these

functions because the designer has decided that it should. The definitions of these

functions, and algorithms to perform them, are defined in the semantics of the

language as implicit information.

If a program is written in the language for a computational model A, and it

is not in the correct encoding, or using functions not defined in the semantics,

then A cannot compute this particular program. One would have to reformulate

the program to use only the encoding and the functions defined in the semantics.

If the programmer insists on a different encoding or the use of of some undefined

function; then either the semantics of A has to be changed, or a program written

in A to define the missing functions/translate the encodings. The computational
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model A requires more information.

There are many models like A. While a lot of them can calculate the same

set of functions, they all have a mixture of different encodings and pre-defined

functions. The full mathematical description of these encodings and functions

constitute the semantics of the model. Some models may have very large seman-

tics with lots of pre-defined functions, and some may have very small semantics

with few functions. If the size of the semantics of a computational model is taken

into account when the program is measured, then we can ask which computational

models require the least information to fully specify and compute a function.

1.1 Motivation

This thesis is an investigation into how the distribution of information in a com-

putational model affects the sizes of programs written in that model. If the

semantics of computational models are specified in a consistent manner (Section

3.4), and programs are written for each model in their respective encodings, then

measurements of the size of semantics and programs can be taken. These mea-

surement can compared with the sizes of semantics and programs in other models

to look for a relationship between semantics size and program size.

There is a high level intuition in Computer Science that languages which are

more expressive (Section 2.5) have more pre-defined functions and thus larger

semantics. Languages with larger semantics therefore produce smaller programs

than languages with smaller semantics.

If this intuition holds true, then what is the nature of the relationship be-

tween the size of semantics and the size of programs? Can the relationship be

generalised, or is it specific to each model? Additionally, questions can be asked

about how the internal and external representations effect semantic and program

sizes. This thesis is a preliminary investigation into these questions.

1.2 Investigation Overview

This investigation is conducted as an empirical study to compare multiple models

of computation of varying paradigms. There are four models: the Turing Machine
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(TM, Section 2.3.1.1), the SKI combinator calculus (Section 2.3.2.2), the Ran-

dom Access Stored Program machine (RASP, Section 2.3.1.2), and the λ-calculus

(Section 2.3.2.1).

Each of these models varies in how expressive they are (Section 2.5), so the

mechanisms behind each one need to be formalised. This is done by writing down

the semantics of each model using a common formalism. In this case, Structured

Operational Semantics (SOS, Section 2.4.1) is used. In doing this, a baseline is

established from which measurements of the information content of models and

programs can be performed.

A set of functions is implemented sampling from both the primitive and the

partial recursive functions (Section 4.1). This set covers problems as simple as

addition up to more complicated functions like sorting a list and the universal

machines. The results are presented and an analysis is performed.

There are shortcomings with the idea of measuring information at the semantic

level. Even though the semantics are all specified in SOS, the question of how the

functions which are pre-defined in SOS can be defined in another baseline can be

asked. This further begs the question of how the functions of that baseline could

be defined (Section 5.1). In an attempt to address this, the RASP and Turing

models are reduced to the hardware level using Field Programmable Gate Arrays

(FPGA, Section 5) which are configurable chips that can simulate the models at

the logic gate level.

1.3 Hypotheses

As an empirical investigation, hypotheses are first formulated as a guide. These

hypotheses are preliminary at this time, and shall be revised in the context of

the literature review (Section 3.1).

Some notion of the size of a program or semantics is required. Information

and algorithmic theory define the size of a piece of information as the number

of characters required to write it down (Section 2.2). This is a useful definition

which we adopt.

The information to compute a function in a model is split into the information
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content of the semantics, and the information content of the program computes

the function. These information values combined constitute the Total Information

of the function.

Definition 1 (Semantic Information). Semantic information (SI) for a model is

the size of the semantics of that model in characters.

Definition 2 (Program Information). Program Information (PI) is the size of a

program in characters.

Definition 3 (Total Information). Total Information (TI) is SI + PI.

It is expected that a model with more SI produces programs with less PI

for the same functions in comparison to models with less SI. The intuition is

that larger semantics are a consequence of defining more operators or constructs

for a language or model. Sensibly defined operators ease the burden on the

programmer, thus allowing them to write programs using less characters and

therefore less PI.

Hypothesis 1P (Semantic Information). For two Turing Complete models (Sec-

tion 2.1.2), if model A has more semantic information than model B, the average

size of programs written for model A will be lower than the average for model B.

For example, it is believed that a high level functional language is less of

a chore to program in than assembler. The high level of abstraction afforded

by the functional language allows the author of some program to focus their

efforts on programming to the specification, rather than the minutae of using the

model. Conversely, writing the same program in assembler often requires that

the programmer know what the layout of the registers are and their contents at

any one time. Not only does the programmer have to solve the problem, but they

have to manage resources intelligently, or risk bugs which break the program but

do not directly relate to how the programmer has solved the problem.

Extensionality is when a program is evaluated on its external effects rather

than its internal structure. Two programs are the same in an extensional sense

if they produce the same output for the the same inputs. The opposite of this is

intensionality, which evaluates programs on how they compute something.
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When applied to the same task, the extensionality of the functional program

+ semantics is equivalent to that of the assembler program + semantics. The

semantics of the functional language are more complicated than those of the

assembler, so its expected that the functional program will be appreciably smaller

than the assembly program.

As the complexity of programs (Section 3.1.2) increases, so does their min-

imum size. If the SI hypothesis is correct, then this size increase will be more

marked in languages with small semantics as opposed to languages with larger

semantics. It is hypothesised that smaller models and simpler programs will con-

tain less TI than simple programs in complex models. However as the size and

complexity of the set of programs grows, the average TI of the complex models

will be lower than that of the simple models.

Hypothesis 2P (Total Information). As the size and complexity of a program

increases, the average total information of an implementation in a model with

large semantics decreases relative to the total information of an implementation

in a model with small semantics.

Analogous hypotheses for FPGAs can be stated:

Hypothesis 3P (Semantic Circuit Size). A Model A with a larger set of seman-

tics than model B will produce a larger circuit when converted into a hardware

representation.

Hypothesis 4P (Total Circuit Sizes). The average total circuit size (semantics

+ programs) of a more expressive model will be lower than that of a less expressive

model.

These hypotheses will be expanded in Section 3.1 which evaluates and refines

the hypotheses in the context of the literature survey.

1.4 Contributions

This work makes the following contributions:
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Empirical Comparison of Program Sizes in Computational Models For

each model of computation considered in this thesis a semantics are defined in

a common representation (Section 3.4) using Structured Operational Semantics

(SOS). This representation is measured in the accepted information theoretic

metric of characters (Section 2.2.1) and produce a representative set of functions

which are as elegant (Section 2.2.2) and stylistically consistent as possible. The

programs are measured and these measurements are analysed (Chapter 6). The

analysis shows:

• In the same model paradigm, models with large semantics tend to produce

smaller programs than models with small semantics (Sections 6.2.2 and

6.2.3) [20].

• When comparing models from differing paradigms, semantic size is not a

reliable indicator of relative program size (Section 6.2.8).

• There is evidence of a phase transition in the space of models considered

in this thesis. Models below some information threshold (e.g. SKI calculus

and Turing machines) exhibit differing trends of the TI required to compute

the set of chosen functions, compared to models above the threshold (the

RASPs and λ-calculus). Models below the threshold have a significant

increase in required information when the universal machines for the RASP

and TM are included in the comparison set (Section 6.4).

• The encoding of the input to a function can drastically affect the size of

the program to calculate the function (Section 6.6). Proposals are made to

incorporate the information of encoding functions and input growths to the

broader field of Algorithmic Information Theory.

FPGA Realisation of RASP and Turing Machines Comparisons founded

on a character-based information theoretic encoding carry some problems as there

is no account of the semantics of the SOS formalism in which the model semantics

are defined (Section 5.1). Such implicitly defined operators in SOS may be used

in the semantics of one model, but not in another. Furthermore, there may

be consistency of the models within the confines of these information theoretic

comparisons, but no guarantee that this consistency holds in another mode of
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comparison.

The mathematical models of the semantics can be physically grounded by

translating the SOS of the models into a specification language for electronic

circuits such as VHDL. This specification is synthesised into a circuit schematic

suitable for implementation on an Field Programmable Gate Array (Chapter 5).

These implementations provide a concrete comparison of the number of electronic

components required to implement the semantics and programs of the models.

The analysis shows:

• FPGA realisations are correlated with the TIs of the models. The TI can

be used as an indicator of the number of components required to implement

the semantics and program (Section 6.3) [20].

• FPGA realisations are a poor indicator of relative expressiveness. One

cannot determine the expressiveness of the TM vs the RASP using the

number of components of an FPGA implementation (Section 6.3.3).

Alternative proof of the undecidability of Elegance Chaitin’s proof of the

undecidability of elegance is based on the operation of programs. An alternative

proof is obtained via proving that the information to calculate a function in some

model is a Blum complexity measure (Section 3.1.1). For a Blum complexity

measure, there exists a function where the information for a program and input

can always be reduced for almost all inputs (Speed-up Theorem, [4]).

Universal RASPs In the course of this investigation, a number of programs

drawing from the sets of primitive and partial recursive function have been writ-

ten. On of these programs is the universal RASP machine, a program which

takes the definition of a RASP and runs it according to the semantic rules of

the RASP model (Section 4.4.2). A RASP machine, Turing machine, λ-calculus

expression, and SKI combinator expression have all been written which perform

this function. A suitably encoded RASP given as input to these programs will

return the RASP in a halting state (if one exists) which is identical the halting

state of the same machine executed according to the RASP semantics.
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RASP Busy Beavers The Busy Beaver problem is that of finding a Turing

Machine of a given size that runs for the longest number of steps, and/or prints the

most symbols before halting [77]. A variant of this problem had been developed

for the finite RASP machine and an upper bound on the highest number of

instructions executed, and the highest number of outputs, has been discovered

for 23 by brute forcing all possible machines (Section A.3.1). Subsequent classes

have also been investigated and lower bounds established through the use of

seeded and non-seeded parallel genetic algorithms (Section A.3.2) [19].

1.5 Structure

This structure of this thesis is as follows: Chapter 2 is a survey of the literature,

covering the history of computability, information theory, elegance, expressiveness

and the models which are used.

Chapters 3, 4, 5, and 6 tackle the crux of the central question. Chapter 3 lays

out the semantics of the models in Structural Operational Semantics, discusses the

metrics and criteria which are used to gauge the written programs, and covers

the method used in the investigation. Chapter 4 presents the programs from

which comparisons are drawn and details their algorithms. Chapter 5 sets out

the rationale and implementation of physically grounding the TM and RASP

machines using FPGAs.

Chapter 6 provides a detailed analysis of the measured programs, semantics

and circuits. By combining, contrasting and evaluating them in multiple con-

texts, insight is gained into the shape of the information landscape and how the

information contents of models relate to each other.

Chapter 7 reflects on the investigation as a whole and concludes it. The

chapter discusses particular topics of interest which may provide further insight

into the results described herein. It proposes extensions to this work and explores

ideas of information for computation.

1.6 Publications

The publications which have resulted from this work are:
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• “Brute Force is not Ignorance”, Joseph Davidson and Greg Michaelson, The

Informal Proceedings of Computability in Europe 2013, Milan, Italy.

• “Elegance, Meanings and Machines”, Joseph Davidson and Greg Michaelson,

Computability, 2015 (accepted subject to revision).
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Literature Review

This chapter outlines the literature behind this thesis in order to prepare us to

understand the results that are to come. Figure 2.1 shows relationships between

relevant topics in computer science. Each arrow shows the influence of one topic

on another. This does not show all the relationships because in reality, the

computability bubble influences almost all the other topics and should have a lot

more arrows. Computability is where we start.

2.1 Computability

In the broadest sense, a function is computable if it can be translated into some

kind of formal representation which is then executed on a model of computation.

There are caveats to this, such as the model needs to predictably stop (halt) once

the computation is finished. In computer science, computability is the discipline

of determining if a function is computable [90].

2.1.1 Hilbert and Gödel

In 1900 the German mathematician David Hilbert had a dream. He actually had

23 dreams, each of which was a single problem that he believed was a important

question for mathematics to address in the coming century [39]. At the time

of writing, 11 are fully resolved, 7 are partially (or controversially) resolved, 4

are unresolved and one is thought to be stated too vaguely for any work to take

place [33].
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Kolmogorov-
Chaitin Complexity
Kolmogorov 1965
Chaitin 1966-69

Completeness
Incompleteness
Gödel 1929-31

Computability

Turing 1936
Church 1936

Expressiveness
Felleisen 1990

Information Theory
Shannon 1948

Algorithmic
Information Theory

Kolmogorov 1965
Chaitin 1966-69

Solomonoff 1964

Elegance
Chaitin 1999

This work
Davidson,
Michaelson 2014

Chaitin’s
Formulation
Chaitin 1974

Figure 2.1: Overview of topics related to this thesis.

Of these problems, we focus on the second one. Hilbert wanted to formalise all

of mathematics such that if someone were to write a mathematical statement in

this formal system; “it shall be possible to establish the correctness of the solution

by means of a finite number of steps based upon a finite number of hypotheses

which are implied in the statement of the problem and which must always be

exactly formulated.” [39]

To put it in a more modern vernacular, Hilbert wanted a computer program

which could take any set of axioms (a statement taken to be “self evident”) and

formulae provided by the user, and return a proof of the formulae starting from

those axioms. This mechanisation of mathematics would allow us to formulate

any unresolved question (such as the twin primes conjecture [111]), a set of basic

axioms (such as the Peano or ZFC axioms [104]) and eventually get an answer.

To do this however, needs a formal system which is is complete (able to express all

possible mathematical formulae) and consistent (there are no two true formulae

that contradict each other).

In 1931, Kurt Gödel proved that this was an impossible dream. The In-

completeness Theorems assert that even a simple formal system could express a

formula which was the negation of itself [30]. He did this by constructing the
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mathematical equivalent of the English sentence “This statement is false” using

a scheme known as Gödel numbering or Gödelisation [68].

Gödel numbering is a method of mapping some finite alphabet to the natural

numbers. As an example, say there are 3 symbols in an alphabet {(, ), x} and

the sentences (x), ()x, and x() need to be numbered. A mapping of natural

numbers to the individual letters is first defined, say {( 7→ 1, ) 7→ 2, x 7→ 3}. Then

the numberings are constructed with care taken to preserve the structure of the

formulae. The natural numbers from this alphabet can be concatenated together

(x) = 132, but an alphabet of more than 9 symbols would present a problem. If

y = 11, is 12113 = ()yx or = ()((x?

The fundamental theorem of arithmetic is an observation by Euclid that every

natural (non-negative) number has a unique prime factorisation [26]. Take the

number 523345 for instance:

523345 = 3× 17× 47× 131

Since we know that all prime numbers have only themselves and 1 as divisors, it

is clear to see that we cannot substitute any other numbers for the factors above

so it must be unique.

Prime factorisations are used to resolve the issue above. A number is con-

structed by using the prime numbers as position indicators for the formula with

the exponents of the prime numbers indicating which character is in that position.

For example:

(x) = 21 × 33 × 52 = 1350

()x = 21 × 32 × 53 = 2250

x() = 23 × 31 × 52 = 600

If y = 11, the two sentences ()yx and ()((x are as follows:

()yx = 21 × 32 × 511 × 73 = 301, 464, 843, 750

()((x = 21 × 32 × 51 × 71 × 113 = 838, 530

These are all unique, and so Gödel provided a mathematically straightforward

method of mapping sentences to the natural numbers. Gödel uses this method
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to not only map mathematical formulae of his chosen system, but also all meta-

mathematical formulae. Doing this, he could substitute meta-mathematical as-

sertions into his regular formulae which allowed him to construct a self-referential

formula which stated its own negation.

The technical details of this are complex [68], but the implications are broad

and deep across all fields of the mathematical sciences. Gödel essentially discov-

ered the existence of problems that cannot be solved. To try to solve these will

obtain a paradox. These problems are known as uncomputable, or undecidable.

Gödel’s numbering technique has applications outside of his proof. An enu-

meration of programs is a size ordering using the alphabet of the programming

language. Because any data drawn from a finite alphabet can be enumerated,

there exists a Gödel numbering function which can enumerate all programs writ-

ten in some language. The proofs and proof outlines in Sections 2.2.2, 7.3.1, and

A.2 rely on this.

2.1.2 Church and Turing

In 1936, The American logician Alonzo Church and British mathematician Alan

Turing were both concerned with the notion of what an algorithm is and how

to formalise it. Church devised an abstract substitution system known as the

λ-calculus [11] (Section 2.3.2.1) while Turing created a set of hypothetical ma-

chines [98] (Section 2.3.1.1).

Despite looking and operating in completely different manners, it can be

shown that these two models of computation are equivalent. This means that

every function that we can write in the λ calculus has a corresponding function

in Turing machines. The most straightforward proof of this lies in the power of

universal machines.

At its most basic level, a universal machine UX is a machine that will run

any program which is written in some model X. For instance, Turing’s seminal

paper introduces the UTM, a Turing machine that takes as inputs on its tape,

a description of another TM M and some input tape for M , say T . The UTM

then executes the machine M against the tape T . In essence, Turing wrote an

interpreter for Turing Machines in the language of Turing Machines.
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Universal machines can be made to prove that the λ-calculus is equivalent to

the TM model. Since we know that a universal machine for TMs can be written

and that equivalent models can represent the same functions, let us assume we

can write a UTM U in the λ-calculus. This is a λ term that takes a machine and

tape encoded as λ terms and executes the machine on the tape.

Consider a hypothetical program P that can be written in the TM but not

in the λ-calculus. The existence of a UTM λ term means that any TM can be

encoded as a λ expression and then executed according the the rules of TMs. So

if U can be written, then a TM program inexpressible in the λ-calculus such as

P cannot exist.

Implementing a UTM in the λ-calculus is fairly straightforward [99] (Section

4.4.1.3). So we know that the λ-calculus can express all functions that a TM can.

To show that the TM can express all the functions of the λ-calculus, the converse

needs to be constructed. Writing a TM to evaluate any arbitrary λ expression

is also achievable [99] so we can state with confidence that the λ calculus and

Turing Machine computational models are equivalent.

This equivalence forms the basis of Church’s (later the Church-Turing) the-

sis. This states that any function that can be computed is λ-definable, and by

extension can be computed by the λ-calculus and Turing Machines [100]. Many

other models of computation have been shown to be CT conformant such as Tag

systems [76], Markov algorithms [60], RAM machines [67], and RASP Machines

(Section 2.3.1.2).

The formalisation of this notion of computability ended a chapter of a search

that started with Hilbert. It allows for an immediate and intuitive notion that

if a problem is computable by a Turing machine, then it is computable in other

models of computation equivalent in power to a Turing machine. If model A

is equivalent in power to a Turing machines, then one can use Gödelisation to

translate a TM encoding into an encoding suitable for A. A model equivalent in

power to Turing machines is said to be universal.
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2.1.2.1 Universal Machines

A universal Turing machine is a Turing machine that can simulate any universal

system. The machines presented here follow a narrower definition in that they

simulate the Turing machine model of computation. Each machine use an in-

ternal TM representation that could be considered to be natural in that there

is a clear mapping between the tuples of the machine to be simulated and the

data/expression which is meant to represent the machine.

A machine is said to be universal if it simulates any universal system. Uni-

versal Turing machines can also be strong, semi-weak, or weakly universal. The

tape of a a weak universal machine has an infinitely repeated word (a string of

symbols) extending to the left of the input machine (semi-weak), or a word ex-

tending to the left and another word extending off to the right (weak). In these

machines, the tape is not a passive and initially informationless medium which

is merely read from or written to, but is an active part of the information of the

system. Strong universal machines do not have these repeated patterns, and the

unbounded tape is always initially blank.

The universality of a machine does not make any guarantees about which

universal system is simulated. One of the smallest strong universal machines is

from Rogohozin. It is a (4,6) UTM of 22 tuples and it is not currently known if

there is a smaller machine [81]. Universal though it is, Rogohzins machine does

not directly simulate TMs. It simulates the 2-tag system; another universal model

of computation. In accordance with the Church-Turing Thesis, any arbitrary TM

can be transformed a 2-tag system, but the process to do so is quite involved [70].

The universal machines measured in this thesis (Section 4.4) are so-called

“direct simulation” machines. These machines simulate the universal machine

UX of the model X by running a suitably encoded program for X using the

semantic rules (Sections 2.4 and 3.3.1) of X. The machine UX can be written in

any computational model as long as that model is as computationally powerful

as the model X.
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2.2 Information and Algorithmic Theories

Shannon first investigated the field of information theory in 1948 [87]. His work

not only concerned the engineering required to transmit a message, but also the

context of the message between the transmitter and receiver. This dual approach

allowed him to also investigate encoding schemes for the English language as well

as engineering aspects such as bandwidth and signal to noise ratios.

When transmitting information between two parties there are a number of

assumptions made about the message. In the most general sense, we assume that

both the sender and receiver have the same semantics with which to interpret the

message. A natural example is the assumption of a common language between

the sender and receiver.

This ‘expected context’ has implications for encoding and compressing infor-

mation. As an example, we can examine the following scenario: Suppose that

every day at the same time you get an email. That email can contain one of

two different messages: “There has been an earthquake in the last 24 hours.”

or “There has not been an earthquake in the last 24 hours.”. While each mes-

sage is several words long, they contain surprisingly little information. Since the

message only states whether there has been an earthquake, with no concern to

location/magnitude/damage etc, we could replace the entire sentence with a “0”

for no earthquake and “1” for an earthquake, with no information being lost.

The English language can be efficiently encoded by assigning a code to repre-

sent each letter. The length of the code is dependent on how frequently the letter

will appear in a piece of text. In the English language, the letter “E” is the most

common, then “T”, “A”, and so forth1 down to “Q” and “Z” which are the least

common [56].

A standard method of applying these variable length codes is Huffman en-

coding [43] which constructs a binary tree sorted by the letter frequencies. So

for any given English text (with notable exceptions [107]), we can transmit the

text in the most efficient way assuming that the frequencies used to construct the

encoding are correct.

1The precise order can vary according to the texts studied, for instance, A and T are so very
close to each other frequency-wise that some studies swap their position.
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A natural consequence of the study of information theory is the idea of com-

pression. If the author of the message can recognise the essential information

which the message conveys, then they can write a brief message with only that

information. Huffman encoding can compress text on a computer further by as-

signing a variable length code to every n bits (traditionally 8) which represent a

single character.

2.2.1 Kolmogorov-Chaitin Complexity

Kolmogorov-Chaitin Complexity [50, 9] is the measure of randomness in a string.

For a string s, the function KCL(s) returns the size of the most minimal, also

known as “elegant”, program in language L which will output s when run. The

idea is that if s has some structure, then there will exist a computer program which

is smaller than the length of s. If s is truly random, then KCL(s) ≥ size(s) since

the only way to express s will be to write it out. For example the string s:

s = xyzxyzxyzxyzxyzxyzxyzxyzxyzxyz

has a regular structure which consists of the repeated morpheme “xyz” 10

times. Writing a sentence like “xyz 10 times” is shorter than writing the string

out in full. The information of the string is compressed into fewer characters

without any loss of information so KCL(s) = 12. In contrast the string:

x = ss783hsh23sh24156ejflau356hqndgph03jaxfwhg0aqfhrfsry

has no discernible structure. So to convey all of the information in the string,

it needs to be written out in full. KCL(x) ≥ 52. If there is no structure to a

string, and all that the resultant program can do is just print the string as above,

then it is incompressible. The above function can be generalised. KCL(s|x) is the

function which returns the size of the most minimal program in L which returns

the string s when run with the input x.

The invariance theorem for Kolmogorov-Chaitin complexity states that for a

string s, the language we use LU and an ideal language LI (in which KC(s) is
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the most minimal for any L), there exists an overhead c such that:

∀s : KCLI(s) ≤ KCLU(s) + c

This is to say that to translate from one language to another requires a constant

size program which performs the task. So the Kolmogorov-Chaitin complexity

for any arbitrary string in some language is a constant factor from the ideal size.

2.2.2 Elegance

Chaitin defines an elegant program p for the output/string s in language L as

the shortest program written in L which outputs s. In other words, there is no

smaller program (less characters) which can be written in L which outputs s:

KCL(s) = size(p)

We cannot in general decide if a program p is elegant [9]:

Theorem 1 (Undecidability of Elegance (Chaitin)). In general, it cannot be

determined that a program p is an elegant program for the output s over a certain

threshold of size.

Proof. Assume there exists an ‘elegant tester’ program ET which takes a program

P as input and returns true if P is an elegant program and false otherwise.

Consider the program B which takes a number n and enumerates (via some

Gödel numbering method) all possible programs Pn which are longer than n.

For each program in Pn, B runs ET against it until ET returns true. Once an

elegant program K has been found, B runs K.

If size(n) is the size of n encoded as an input of B, consider the case of B

with n > size(B) + size(n) + 1 so that any Pn generated is greater in size than

B with n. There are an infinite number of elegant programs, so ET will find

one (K) as elegant. However B runs K and therefore returns the value of K.

The combined sizes of B and n are lower than the size of K, so the function ET

cannot do what it is assumed it can do.

The elegance of programs can only be proven up to a certain size (size(B) +
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size(n)), so elegance is undecidable in general. This formulation of elegance only

refers to programs returning a singular output s, a so-called “constant” function.

However, for any given language L there may exist some programs which are of

a size below that of B and perform some general function such as addition. In

other words, there may exist an elegant formulation p such that for an input x

and output y in a function F :

KCL(y|x) = size(p) + size(x) + size(y)

for all x and y in F . Section 3.1 proves that such a function cannot exist, and

Section 6.6 gives a concrete example of programs which exhibit the contradiction

obtained.

Despite these challenges, the concept of elegant programs has been drawn on

as inspiration for comparisons. Elegance itself cannot be directly compared across

languages because the semantics of languages are not included in the definition.

The semantics of a language affect how easily arbitrary algorithms can be realised

(expressiveness, Section 2.5), so we can question how the elegance of a set of

functions realised in language A compares to the elegance of the function in

language B with a different level of expressivity.

2.2.3 Other Measures of Complexity

Software Science, more colloquially known as Halsteads Complexity measures,

is an field which attempts to characterise aspects of algorithms and programs in

order to assess the difficulty of implementation, approximate length of a program,

and even the time to implement such programs [36].

Halsteads model and others (like Cyclomatic Complexity [64]) are built on a

series of mathematical formulae. These formulae use counting metrics of the pro-

gram like number of unique variables, number of unique operands, total variable

occurrences, and total operand occurrences. The formulae then purport that the

complexity of the program can be calculated with respect to how easy it is to

implement and understand in an arbitrary language.

If such a system of formulae exist, it would be very useful. However, such
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i n t main ( ){
i n t x = add ( 4 , 3 ) ;
i n t y = add ( 2 , 7 ) ;
r e turn add (x , y ) ;

}

i n t add ( i n t x , i n t y ){
re turn x + y ;

}

Figure 2.2: A code snippet of a procedural program.

complexity metrics tend to fall short of their claims when subjected to theoretical

and empirical scrutiny [89, 88]. It is hard to accept that nebulous concepts such

as the complexity of a program, and how easy it is to understand and write can

be ascribed to these metrics. So much depends on a programmers style and skill.

Software metrics are an attractive idea, but their present immaturity and

lack of rigour does not make them a suitable characterisation of the information

contained in a program over a more simple metric such as the number of characters

or bytes.

2.3 Models of Computation

A model of computation is an abstract formal system consisting of a set of op-

erators, a grammar for forming statements and a semantics which evaluates the

operators of the model in a consistent manner. Models have an associated lan-

guage that is the result of combining the operators with the grammar. We shall

use the terms “language” and “model” synonymously.

For a model to be considered Turing Complete, it must be capable of repre-

senting a UTM as described in 2.1.2. All of the models in this section are Turing

Complete, and their respective UTMs are described in Section 4.4.

2.3.1 Imperative/Procedural Languages

Imperative models of computation have a structure much like a recipe. A program

is a list of instructions which are executed in a sequential fashion.
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Figure 2.2 shows a small imperative program which uses the procedure add()

three times. The flow of control starts at the top of the main() procedure. Vari-

able x is assigned with a call to add(4,3), in which the flow of control ‘jumps’

into the add() procedure, and then ‘jumps’ back once the addition has been per-

formed. Variable y is then assigned with another call to add(2,7). With x = 7

and y = 9, the final call to add() finishes the program returning the value 16.

Imperative languages are typically easy to follow, but writing a program can

require that the programmer interact significantly with the underlying machine,

especially in an older language like C or C++. Tasks like allocating and ini-

tialising memory may not be handled by the semantics of simpler imperative

languages. This puts more stress on details which are not directly related to the

problem.

Programming languages are either pure or impure. Functional languages are

distinguished from imperative languages by exhibiting purity in the entirety of the

language, or in a significant part. Purity is also known as referential transparency.

A function, or sub-program is referentially transparent if the function can be

replaced with its return value without affecting the rest of the program.

In other words, the function does not change any global state of the abstract

machine running the program. In Figure 2.2, the add() function is pure. The

calls in main() of add(4,3) and add(2,7) can be replaced with 7 and 9 respectively

without affecting the rest of the program.

Consider a global variable t, which is a variable that can be accessed and used

by any part of a program. If the add() function is Figure 2.2 were to change t

when called, then the function would lose referential transparency, because the

changing of t is a side effect. The add() function does not just return a value, it

changes the global state of the program.

Modern functional languages often requires that the programmer specifies only

which structures are used and how they are used. how the problem is to be solved.

The semantics of the functional language dictate how this more abstract solution

is to be implemented on the inherently stateful underlying machine without much,

if any, intervention from the programmer.
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2.3.1.1 Turing Machines

The Turing machine (TM) is a model of computation introduced by Alan Tur-

ing [98]. Turing machines come in many variations, but the most common con-

sists of a state machine with a read/write head positioned over a tape made up

of cells. Each cell can hold a single symbol and can be overwritten as many times

as needed. The tape is unbounded in both direction, so additional cells may be

added as required.

The machine has a read/write head that can read a symbol from and write a

symbol to a single cell of the tape. It can also move the tape one square to the

left or one square to the right.

At any given moment, a TM can be in one of a number of states. A particular

state and symbol pair informs the machine what to do next according to the

symbol table. The symbol table is a function:

ST : STATE× SYMBOL 7→ STATE× SYMBOL×DIRECTION

which takes the current state of the machine: stateold and the symbol currently

under the head: symbolold. It returns a new state to transist to: statenew, symbol

to write: symbolnew, and direction in which to shift the tape: dir.

〈stateold, symbolold〉 7→ 〈statenew, symbolnew, dir〉

It is possible that the function ST does not return a result for the current

state and symbol pair. In this case, we have not defined what the machine should

do next, so it just halts. As a convention in this thesis, Turing machines will

start in state 1, the read/write head is intitally positioned over the left hand side

of our tape input (if not explicitly defined to be elsewhere), and a transition to

state 0 halts the machine. The machine will also halt if it encounters an unde-

fined state/symbol pair. There is no distinction between halting by ‘legitimately’

transisting to zero, or encountering an undefined state/symbol pair.

Consider a simple machine to invert a sequence. This sequence is defined as

a string of either ‘1’ or ‘0’ ended with two instances of ‘1’ in a row. For instance
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“1010100010011” is a sequence. A machine to invert this sequence will start at

the left hand side of the sequence and proceed by overwriting any 1s with 0s and

0s with 1s. It will halt when the machine reads the second ‘1’ in a row. The

symbol table for this machine is:

〈1, 0〉 7→ 〈1, 1, R〉

〈1, 1〉 7→ 〈2, 0, R〉

〈2, 0〉 7→ 〈1, 1, R〉

〈2, 1〉 7→ 〈0, 0, R〉

This symbol table consists of four transitions, two for each state. Every time a

‘0’ is read, the machine transists to state 1. If the machine is in state 1 and it

reads a ‘1’, it will transist to state 2. Reading another ‘1’ while in state 2 will

halt the machine by transiting to state 0.

2.3.1.2 The Random Access Stored Program Machine

The Random Access Stored Program (RASP) machine [24, 17, 38] is a register

machine with a Von Neumann memory architecture [34]. A register machine can

intuitively be thought of as a computer processor with a set of registers to hold

both the program and data.

A Random Access Machine (RAM) is a register machine with two sets of

registers, one set contains the program, and another set contains the data. The

program can read and write to the data registers, but cannot write to the program

registers [82]. This establishes a boundary between program and data which

emulates a “traditional” idea of programming such that this memory model is

supported by most mainstream languages by default.

In general, the RASP model makes no distinction between program and data

which are combined into a single register space. It is therefore conceivable that

instructions can be considered as data and vice versa.

The RASP machine was conceived by Elgot and Robinson [24] as an attempt

to introduce the notion of an extensible model which can be discussed from a
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semantic viewpoint. They define a RASP as an ordered sextuple:

P = 〈A,B, b0, Ko, h
1, h2〉

A and B are possibly infinite, overlapping, or coinciding sets of addresses and

words respectively. b0 ∈ B is the empty word.

They describe the set K of all functions k(x) which are defined on A and return

b ∈ B as the content functions. fFr each k, every a ∈ A such that k(a) 6= b0 is

part of a set known as the support of k. Finally every k with a finite support is a

member of the set Kf . Ko is a subset of K and is finitely supported if Ko = Kf .

Let Σ = K × A and Σo = Ko × A be sets of machine states. The function

h1(k, a, b) = k maps Σo×B to Σo executing a word in B to obtain a new state. The

function h2(k, a, b) = a maps Σo×B to A executing a word in B to obtain the next

address. These mappings can be combined into h(σ, b) = 〈h1(k, a, b), h2(k, a, b)〉

where σ ∈ Σo such that for any fixed b ∈ B, h(x, b) is a mapping from Σo to Σo

this mapping of a single word and state to another state is termed an (atomic)

instruction.

Elgot and Robinson’s first order and set theoretic treatment of the RASP

describes the implementation of general recursive functions and introduces the

idea of language extensions termed definitional extensions. It is clear that they

intended to use the RASP model as a basis for the implementation of semantics of

programming languages and studying how the addition of new definitions would

affect the languages. This initial treatment of semantics influenced the develop-

ment of PL/I [58] and (by means of the Vienna Definition Language) SOS [75].

However, using the RASP machine to specify these semantics never really gained

traction.

The RASP has been used to study computational complexity. Cook, Reckhow

and Hartmanis [17, 38] have investigated the time complexity of self modifying

programs relative to fixed ones. Hartmanis discovered that RASPs have the

potential to be faster than a RAM or Turing machine due to this self modification.

In contrast, the model used in this thesis is predominately finite through the

restriction of the sets A and B. RASP sizes are specified in terms of “n-bits” and

an n-bit RASP has 2n registers, each of which can hold a single natural number
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Natural Command Effect
0 HALT Halt the machine.
1 INC M[ACC] ← M[ACC]+1
2 DEC M[ACC]←M[ACC]-1
3 LOAD x M[ACC]← x
4 STO x M[x]←M[ACC]
5 JGZ x IF M[ACC] > 0 THEN M[PC] ← x
6 OUT Output the current value of the accumulator.
7 CPY x M[ACC] ← M[x]

Figure 2.3: The effects of each instruction on a RASP machine M

up to 2n−1. The registers themselves are numbered in the range 0 to 2n−1.

Registers, 0, 1 and 2 have specific functions which are used to keep track of

the state of the machine. Register 0 is the Program Counter (PC) which points

to the current register being executed. Register 1 is the Instruction Register (IR)

where the contents of the address in the PC is copied for decoding and execution,

Register 2 is the Accumulator (ACC) upon which all of the arithmetic instructions

operate.

There are 8 instructions in the RASP machine with each instruction mapped

to a natural number. Figure 2.3 shows the effects of each instruction on a RASP

machine M, where M[y] is the value stored in address y of the machine. This

instruction set borrows from [17], but has notable differences:

• No negative numbers.

• Finite number of registers and the size of a number which can be stored.

• INC and DEC rather than ADD/SUB.

• No READ for external input.

• Explicit CPY instruction for indirection.

In the event of an over- or underflow due to the execution of INC and DEC

statements or the incrementing of the PC, the machine will carry on as normal.

An overflow will set the the affected register back to 0 and an underflow will set

it to 2n − 1. If the machine attempts to decode and execute a natural number

that is not in the range 0-7, the machine will halt.

RASP machines operate according to the fetch execute cycle shown in Algo-

rithm 1. If a machine were to execute the LOAD instruction it would first copy

the instruction from the memory address pointed to by the PC into the IR. De-
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while not halted do
M[IR] ← M[M[PC]];
if M[IR] > 7 then

Halt;
end
if instruction requires a parameter then

M[PC] ← M[PC]+1;
M[IR] ← M[M[PC]];

end
Execute instruction;
if last executed instruction was not a successful jump then

M[PC] ← M[PC]+1;
end

end
Algorithm 1: RASP Fetch-Execute cycle.

Instr Data I Label
3 :PC
0 :IR
0 :ACC

STO ’here :here
INC
JGZ ’here

Figure 2.4: An example of a RASP that will self modify in order to halt.

coding the LOAD would prompt an increment of the PC and a further fetch of

the parameter into the IR. Once this has been done, the LOAD command will be

fully executed by setting the ACC to the value which is currently held by the IR.

The machine increments the PC again and continues on to the next instruction.

The most prominent feature of the RASP is the ability to self modify and

change the running program. Figure 2.4 shows an example of a machine which

does this. RASP machines are displayed using this form to make them readable.

While the machine above is {3,0,0,4,3,1,6,3}, a RASP laid out like like this is

difficult for a reader to parse.

Labels come in two forms: instruction labels and data labels. These labels are

prefixed with a ‘:’ and a ‘;’ respectively and are used as pseudo-variables/comments

and refer to the memory address of the instruction or data to which it is attached.

Labels can be referred to by a prefixed ’ which should be read as “the memory

address of the labelled information in the machine”. The machine in Figure 2.4

uses a label “:here” to refer to the address holding the STO instruction. This
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Instr Data I Label D Label
LOAD 6
STO ’Param1

LOAD 5
STO ’Param2

LOAD ’retAddress
STO ’returnAddr
JGZ ’AddStart
CPY ’Param2 :retAddress
HALT
LOAD 0 :AddStart ;Param1
JGZ 0 ;returnAddr
DEC
STO ’Param1

LOAD 0 ;Param2
INC
STO ’Param2

LOAD 1
JGZ ’AddStart

Figure 2.5: An example of a RASP pseudo function and calling code

address is 3, so when “STO ’here” is executed, the machine really executes “STO

3”.

The first action of the machine in Figure 2.4 is to store the contents of the

ACC at address 2 (0) in register 3, overwriting the STO command. Then the

machine increments the ACC, changing it to 1, and jumps back to register 3 due

to the ACC being greater than 0. At register 3, the instruction 0 is decoded and

executed and the machine halts.

While the 〈instruction,data〉 pairs and labels are used as representations in this

thesis to aid of understanding, the RASPs are measured in the comma delimited

form: 3, 0, 0 . . . as described in Section 3.3.1.

2.3.1.3 Variations of the RASP

While the RASP is perfectly usable as a model of computation, addition and sub-

traction are laborious processes. If there are multiple case of addition/subtraction

in a large program, encapsulating add/sub in a pseudo-function and calling this

function when required can save time and space.

The calling is performed by copying the data and the return address into
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Integer Command RASP2 RASP3
1 ADD x M[ACC]←M[ACC]+x M[ACC]←M[ACC]+M[x]
2 SUB x M[ACC]←M[ACC]-x M[ACC]←M[ACC]-M[x]

Table 2.1: The ADD and SUB instructions for a RASP2/3 machine M

the relevant memory, jumping to the first instruction in this function and then

retrieving the final value once the function returns.

Figure 2.5 shows an example of a reusable addition function. The first block

of instructions store the numbers 6 and 5 in the second block, store where the

function should jump back to and jump to the start of the addition function. The

addition function itself adds the two parameters together and jumps back to the

indicated location once Param1 is zero.

This approach works reasonably well for moderately sized programs, but for

very large programs with many such calls it would be preferable to also implement

an execution stack which can generalise the function call.

We can iterate on the basic RASP in two different ways by replacing INC and

DEC with ADD x and SUB x. Table 2.1 states the effects of the new instructions.

RASP2 will use ADD x and SUB x, where x is a value, such that ADD 3 will add

the value of 3 to the accumulator. RASP3 will also use ADD x and SUB x, but

the x is a memory address where the value is held. ADD 3 is akin to ADD M[3]

which adds the contents of the memory at address 3 to the accumulator. In doing

this, we eliminate the requirement for a generalised function for addition in the

RASP programs. This means that a RASP2 or 3 program will be significantly

shorter than a RASP program which performs additions.

2.3.2 Functional Language

Informally, functional languages put the onus on specifying a problem rather that

the minutiae of solving it [103]. Programs written in a functional language tend

to resemble mathematical formulae rather than the ‘recipe’ of instructions of an

imperative language.
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f a c t o r i a l 0 = 1
f a c t o r i a l n = n ∗ f a c t o r i a l (n−1)

Figure 2.6: A Haskell program for computing factorials.

For instance, the mathematical definition of the factorial function is:

fact(n) =







n = 0 : 1

n > 0 : n× fact(n− 1)

This is a recursive function. fact(n) will call itself until n = 0 and then the re-

sulting product will combine n × n − 1 × n − 2 × . . . × 1 to return the answer.

Figure 2.6 shows the definition of the factorial function in Haskell, a functional

programming language [42]. There are many different ways to express this func-

tion in Haskell, including using an if/then/else structure – similar to what you

might find in an imperative language, or using a fold function over a list of 1 to n,

but this method (pattern matching) captures the simplicity of the mathematical

definition.

Functional languages are more abstract than imperative ones. Modern func-

tional language implementations process a number of aspects of a users program

like allocating memories, performing pattern matching, and determining the flow

of control. The automated handling of these tasks eases the burden on the pro-

grammer and reduces areas in which bugs can occur [44]. Requiring the pro-

grammer to only mathematically specify the problem can lead to more (Chaitin)

elegant programs compared to imperative languages, which require much more

interaction with the machine. This abstraction comes at a cost however. The

automation of interaction with the underlying machine are contained in the se-

mantics of the language making them larger than their imperative counterparts.

2.3.2.1 λ-Calculus

The λ-calculus was devised by Church [12, 11] and is a model of computability

that relies on substitution and abstraction. The abstract syntax for this language
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is:

E := λv.E|(E E)|v

v ∈ {a . . . z}∗

where ∗ is the Kleene star [49].

The calculus is made up of λ terms generated from this grammar which are

evaluated via some evaluation strategy. Evaluation is performed by substituting

expressions and values in for variables, also known as β-reduction, each of which

is a computation step. As an example, consider a very simple λ term:

(λx.xxy)P

This term consists of a λ term (λx.xxy) and an atom P (which could potentially

be another λ term). We say that the variable x in the term is bound by the λ, and

that the variable y is free. A step of β reduction will replace all occurrences of x

in the term with the atom P , but leave the y as it is. There are two occurrences

of x in the body of the expression, so we remove the λx. and replace each (newly

freed) x with P . This is a single step of β reduction and results in the term PPy.

Consider:

(λx.λy.y)PQ

This λ term has two bound variables: x and y, and two atoms: P and Q.

The first step of β reduction replaces all occurrences of x with P . There are no

occurrences of x, so P is effectively “deleted” from the expression giving:

(λy.y)Q

We then execute the next reduction to obtain Q. When performing β re-

duction, we substitute for the very leftmost bound variable first. If there is

no expression with which to substitute for the leftmost bound variable, then the

sub-expressions are evaluated. This is known as normal order/leftmost outermost

evaluation and an expression which cannot be further evaluated is in normal form.

There do exist other evaluation strategies like applicative order/leftmost in-

nermost, where a term such as (λx.(λa.a)(λb.b)x)(λy.y) reduces (λa.a)(λb.b) first,
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and reduction to weak head normal form, where evaluation stops when the left-

most abstraction does not have an available reduction ((λx.(λa.a)(λb.b)x) in in

weak head normal form). However full normal order reduction is the only reduc-

tion strategy considered in this thesis.

The term (λx.x) is known as the identity function which takes a single argu-

ment and returns it. (λx.λy.x) and (λx.λy.y) are known as the true and false

functions. They both take two arguments and true returns the first argument

while false returns the second. The can also be though of as the select first and

select second functions.

Application is left-associative, so the reduction of a λ term (ABC) proceeds

with A applied to B, then the result applied to C. The fully bracketed notation

is ((AB)C), but we omit the extra ones for brevity. Brackets inside an expression

denote the application order if not left-associative as described above.

The natural numbers in the λ-calculus can be represented by the “Church

numerals” [11], which are higher order functions (HOFs). HOFs take another

function as an argument or return some function as an output. While nearly every

lambda term is a HOF, the Church numerals are a particularly good example of

the higher order property.

Church numerals are functions which take two λ terms. A number n applies

the first argument n times to the second one.

ZERO ≡ λf.λx.x

ONE ≡ λf.λx.fx

TWO ≡ λf.λx.f(fx)

THREE ≡ λf.λx.f(f(fx))

n ≡ λf.λx.fnx

Church numerals can be combined using other λ terms to produce the arith-

metic functions. The successor function s() adds one to a number n:

s(n) = n+ 1

The implementation of s() in the λ-calculus adds an extra ‘f’ to the left of a
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numeral n to obtain n+ 1:

SUCC ZERO ≡ (λn.λf.λx.f(nfx))(λf.λx.x)

⇒β (λf.λx.f((λf.λx.x)fx)

⇒β (λf.λx.f((λx.x)x)

⇒β (λf.λx.fx)

≡ ONE

Using SUCC, numerals can be defined in terms of other numerals:

TWO ≡ (SUCC ONE) ≡ (SUCC ZERO)

n ≡ SUCCnZERO

The opposite of the successor s() is the predecessor p():

p(n) =







0 : n = 0

x : n = (s(x))

The predecessor function decrements a natural number n if n > 0 otherwise it

will return 0. In the λ-calculus:

PRED TWO ≡ (λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λi.i))(λf.λx.f(fx))

⇒β (λf.λx.(λf.λx.f(fx))(λg.λh.h(gf))(λu.x)(λi.i))

⇒β (λf.λx.(λx.(λg.λh.h(gf))((λg.λh.h(gf))x))(λu.x)(λi.i))

⇒β (λf.λx.(λg.λh.h(gf))((λg.λh.h(gf))(λu.x))(λi.i))

⇒β (λf.λx.(λh.h(((λg.λh.h(gf))(λu.x))f))(λi.i))

⇒β (λf.λx.((λi.i)(((λg.λh.h(gf))(λu.x))f)))

⇒β (λf.λx.(λg.λh.h(gf))(λu.x)f)

⇒β (λf.λx.(λh.h((λu.x)f))f)

⇒β (λf.λx.(f((λu.x)f)))

⇒β (λf.λx.(f(x)))

≡ ONE

PRED is more complex than the successor function because it contains redun-

dant clauses which do not affect the ZERO term, but subtract an ‘f’ from any
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numeral which is not zero. The subtractive functions which make use of PRED

are therefore larger than the additive functions which use SUCC.

The addition function nominally adds two numbers x and y together by re-

cursively decrementing x to zero while incrementing y:

add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

Addition in the λ-calculus with Church numerals does not follow this recursive

definition however, as the higher order nature of the Church numerals can add n

and m by applying SUCC m times to n:

ADD TWO ONE ≡ (λm.λn.m SUCC n)TWO ONE

⇒∗
β TWO SUCC ONE

⇒∗
β SUCC(SUCC(ONE))

⇒∗
β THREE

We can test for ZERO:

iszero(x) =







1 : x = 0

0 : x 6= 0

ISZERO ONE ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ONE

⇒β (λf.λx.fx)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.(λx.(λa.λb.b))x)(λa.λb.a)

⇒β (λx.(λa.λb.b))(λa.λb.a)

⇒β (λa.λb.b)

ISZERO ZERO ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ZERO

⇒β (λf.λx.x)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.x)(λa.λb.a)

⇒β (λa.λb.a)

The resulting function from ISZERO is either TRUE ≡ (λx.λy.x) or FALSE ≡

(λx.λy.y). Both functions take two arguments and TRUE returns the first, while
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FALSE returns the second.

The HOF properties of Church numerals can be leveraged to create succinct

‘additive’ functions (addition, multiplication, exponentiation). Conversely, sub-

tractive functions (subtraction, division, square root) are large in comparison to

their additive counterparts because the predecessor function (PRED) applied to

ZERO is still ZERO and PRED has to take this into account.

Lists are constructed pairwise. They are nested lambda expressions for pairs

with the innermost pair including an end marker. This end marker will allow an

expression to test for it so that we know when we reach the end of the list.

PAIR ≡ λx.λy.λz.zxy

NIL ≡ λx.λa.λb.a

HEAD ≡ (λp.p(λa.λb.a))

TAIL ≡ (λp.p(λa.λb.b))

NULL ≡ (λp.p(λq.λr.(λa.λb.b)))

Here, NIL is the end marker and NULL is a test for that marker which returns

TRUE if it is applied to NIL and FALSE if it is applied to PAIR. Additionally,

HEAD returns the first element of the list and TAIL returns everything except

for the first element. A three element list can be constructed with the expression

(PAIR A (PAIR B (PAIR C NIL))).

Other logical connectives can be constructed to make use of the TRUE and

FALSE expressions:

AND ≡ λp.λq.pqp

OR ≡ λp.λq.ppq

NOT ≡ λp.λa.λb.pba

The fixed point combinator Y ≡ (λf.(λx.f(xx))(λx.f(xx))), is a λ term with

an unusual property. Given an argument term k, (Y k) will reduce to k(Y k) in

some number of reduction steps. If left unchecked, the reductions will continue

forever: (Yk) = k(k(. . . (Y k) . . .)). Essentially, what Y does is copy the function

k to the front of the expression and apply k to (Y k).
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(Y k) ⇒β (λf.(λx.f(xx))(λx.f(xx)))k

⇒β (λx.k(xx))(λx.k(xx))

⇒β k((λx.k(xx))(λx.k(xx)))

⇒β . . .

The copying behaviour of Y allows k to accept a copy of itself as a parameter.

There are other ways to do this, such as defining the recursive function to have a

copy of itself [65], but this is a general method.

Two λ expressions are equivalent if they have the same effect. This is a

property known as extensionality where we care only about how the term in-

teracts with other terms, rather than how the inside of the term is evaluated

(intentionality). Working out if two arbitrary terms are equivalent is generally

uncomputable [12]. But we have tools, known as α and η conversion, which we

can use to convert similar terms to test for equivalence.

Consider the two terms A = (λp.(λa.λq.a)p) and B = (λa.λb.a). These two

terms could possibly be equivalent, but we have to use both α and η conversion

to make sure. A term (λx.Mx)T , where there are no free occurrences of x in

M , will always reduce to MT for all M and all T . The abstraction over x is

superfluous as it neither duplicates, nor moves T in any way. The abstraction

over p in λ expression A can therefore be removed such that A = (λa.λq.a).

We may naïvely believe that two terms abstracting over different names can-

not be equivalent. This is where renaming or α conversion is called for. Renaming

the variables in a term is the process of changing the name of the bound vari-

able and the name of every variable which is bound by that λ. The expression

(λx.x((λx.xx)x)x) binds the variable x in two different expressions. The inner

expression binds x twice, and the outer binds x three times.

This expression is also hard to read. So we can rename either (or both)

abstractions to something different. (λy.y((λx.xx)y)y) is a little bit easier to

read, clears up any possible ambiguities and maintains the intentionality of the

term.

Applying this procedure to terms A and B, we rename the bound q in A to

match the b in B. Thereby showing that A = B = (λa.λb.a).
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Ix ≡ x
Kxy ≡ x
Sxyz ≡ xz(yz)

(a) Effects of combinators

I ≡ λx.x
K ≡ λx.λy.x
S ≡ λx.λy.λz.xz(yz)

(b) Combinator λ terms

Figure 2.7: Combinator effects and corresponding λ terms

2.3.2.2 SKI Combinator Calculus

Combinatorial logic is a simple functional model of computation developed by

Schönfinkel in 1924 [83] and independently re-discovered by Curry in 1927 [86].

The SKI combinator calculus consists of three titular combinators: S, K and

I. The I combinator is the identity combinator. For any x, which could be

another combinator or bracketed expression, Ix is x. The K combinator takes

two arguments, x and y, and returns x which is just like the TRUE function from

above. The S combinator takes three arguments and reorders them: Sxyz =

xz(yz). Figure 2.7 lists the three principal combinators of the calculus and the

λ-calculus expression which correspond to them.

The SKI combinators have simple λ-calculus counterparts as shown above.

Interestingly, these three combinators are Turing Complete. This can be proved

by a process known as bracket abstraction[101, 18, 97] which “eliminates” bound

variables by replacing the abstraction mechanisms with combinators to copy and

position parameters.

In this thesis, the SKI expressions for the tested set of functions (Chapter

4) are obtained via bracket abstraction of λ-calculus terms. There are multiple

methods of bracket abstraction available [101] and a recent version by Tromp [97]

is an effort to reduce the size of the resultant combination as much as possible.

Bracket abstraction is a process which converts λ-calculus terms into SKI

terms. It was first coined by Curry with his abstraction rules [18]. These rules

work well for expressions with a single variable to be abstracted, but the resultant

SKI expression grows in size quadratically with the number of variables in the
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term.

Turner noticed this and created his own algorithm [101] which uses new com-

binators to parse out particular patterns of nested expressions to reduce the size

of the resulting term. However this method uses combinators other than the

standard S, K, and I.

Tromp has devised a bracket abstraction algorithm which produces succinct

combinations without the use of combinators other than S, K and I [97]. Tromp’s

rules are applied in decreasing order as follows:

1.)λx.(SKM) ≡ SK [for all M ]

2.)λx.M ≡ KM [x /∈M ]

3.)λx.x ≡ I

4.)λx.(Mx) ≡M [x /∈M ]

5.)λx.(xMx) ≡ λx.(SSKxM)

6.)λx.(M(NL)) ≡ λx.(S(λx.M)NL)[M,N are combinators]

7.)λx.((MN)L) ≡ λx.(SM(λx.L)N)[M,L are combinators]

8.)λx.((ML)(NL)) ≡ λx(SMNL)[M,N are combinators]

9.)λx.(MN) ≡ S(λx.M)(λx.N)

Rules 2, 3, 4, and 9 are borrowed from Curry’s original algorithm. Much like

Turner’s new combinators, the extra rules focus on un-nesting abstracted expres-

sions (rules 6, 7, and 8). Rule 1 takes advantage of the fact that SKMT =⇒ T

so we are saving time and space by getting rid of M . Rule 5 avoids the introduc-

tion of a term of the form II. This bracket abstraction algorithm is the one we

use to produce SKI combinations from λ terms.

With this abstraction method in mind, we can define numerals and functions

like those of the λ calculus:

ZERO ≡ KI

ONE ≡ I

TWO ≡ S(S(KS)K)I

THREE ≡ S(S(KS)K)(S(S(KS)K)I)

OR ≡ SII

NOT ≡ S(SI(K(KI)))(KK)

TRUE ≡ K

FALSE ≡ KI

AND ≡ SSK
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These combinations can be tested for the desired behaviour. For example, a

Church numeral n takes two functions, f and x, as parameters and returns the

result of f applied to x n times:

(TWO f x) ≡ S(S(KS)K)Ifx

⇒S S(KS)Kf(If)x

⇒S KSf(Kf)(If)x

⇒K S(Kf)(If)x

⇒S Kfx(Ifx)

⇒K f(Ifx)

⇒I f(fx)

Tromp has confirmed that the most elegant Y combinator (via brute force

search [97]) for SKI corresponds to the λ-calculus expression (λx.λy.yx)(λy.λx.y(xyx))

and is SSK(S(K(SS(S(SSK))))K) via an exhaustive search. When obtaining

a SKI expression from a λ term, this combinator will first be substituted for any

occurrence of Y before bracket abstraction takes place.

2.4 Semantics

A program written for a computational model M is a string of characters gen-

erated from set of grammatical rules [67]. The semantics of M are a set of

rules which describe the operations of M . When semantics are applied to a pro-

gram and input (typically thought of as “running the program with input i”),

the semantic rules of M are executed against the data i in accordance with the

program [28].

Semantics can be specified in any formal system which is powerful enough to

express the operations of the language. Elgot and Robinson used first order logic

and set theory to intitally specify the RASP [24], a methodology which helped

inspire the Vienna Definition Language and Structured Operational Semantics

(SOS) [75].

There are many different semantic formalisms. Each formalism tends to focus

on a particular aspect of models:
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

Figure 2.8: Semantics for the TM on a left shift.

• SOS are concerned about how an operation is performed.

• Denotational Semantics explore the effect of an operation [84].

• Axiomatic Semantics are often used to prove properties of the model [40].

Given the various specialities of these semantic systems, it is often required to

implement a model in multiple semantic formalisms in order to fully reason about

the models properties.

2.4.1 Structured Operational Semantics

Structured operational semantics define an abstract machine that can execute a

program written for the model. SOS is a mathematical programming language

in which we define a universal machine for the model [74]. The semantic rules for

the models are often (and will be in this thesis) represented as:

Premises

Conclusions

where the conclusions are satisfied if and only if all of the premises are. The

specification of models in this thesis have a set of state variables defined where

some or all of the variables change according to the semantic rules defined.

Figure 2.8 shows a semantic rule for the Turing Machine (TM). The variables

for a TM are; the current state of the TM (st), the current tape (T ), and the

position of the read/write head on the tape (h). These are all arguments to the

E (evaluation) function shown in the conclusion of the rule. If E is executed,

then the state of the machine, tape and head position will all be affected.

There are five premises for this rule. These premises are a mixture of precon-

ditions (statements which must hold before the changes in the conclusion) and
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postconditions (statements which must hold after the changes).

The first three lines are preconditions: On the tape T at position h there is

the symbol sy. In the symbol table δ there is an entry for the current state st

and read symbol sy. The direction d in the matched entry is a left shift L.

The next two lines are postconditions: The new tape T ′ has the symbol sy′

at position h, and the new head h′ is the predecessor of the previous head. If a

TM makes a state transition which includes a left shift, then all of these pre- and

postconditions will be met and E will have been executed.

Say there are two rules; rule A has three premises and rule B has four. If the

model matches all of the conditions of rules A and B, which rule is followed? In

a situation such as this, we execute the rule which has the most premises. The

full semantics for each model are presented in Section 3.4.

2.4.1.1 Parsing

Structured Operational Semantics typically does not deal with the parsing of

programs [74]. The assumption being that only well formed statements which can

be determined from the abstract syntax provided in the semantics are executed

and that any whole or part expression is syntactically valid in the context of the

rule.

This is a perfectly reasonable approach to take. Usually the parsing of the

program takes a secondary role to the execution of the rules in that program.

Assuming that the language can be parsed (after all, why would you write me-

chanical semantics for a language that cannot be parsed) allows one to focus on

the rules rather than specifying a parser.

However an even handling of all possible models requires that expressions and

programs are first parsed before execution. Consider the array-like description

of the RASP machine and the string like description of the λ-calculus. The

RASP has an intuitive mapping of one number to one register that is easy to

manipulate. In contrast reducing a λ expression in the string form is hard because

we would have to iteratively shift parts of the expression around to make room

for substitution and so forth.

It is much easier to parse a λ term into a tree structure and perform graph
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reduction (Section 3.4.3) on it which simplifies the process of reduction to moving

nodes in a tree rather than shuffling characters. This transformation of the ex-

ternal representation to the internal representation needs to be specified though

and that specification is part of the semantics.

The parsers are specified along with the semantics of the models in Section

3.4. The RASP and TM parsers are relatively succinct in comparison to the SKI

and λ-calculus parsers, as they facilitate a less extreme transformation between

representations.

2.5 Expressiveness

Asserting that one languages is “more expressive” than another is a problematic

proposition. Intuitively, we believe that a language A, which satisfies the Church-

Turing thesis, is more expressive than language B which does not. This makes

sense, because we can then define a program p which can be written in A, but

not B. In other words p can be expressed in A, but cannot be expressed in B.

As neat as this definition is, it is too narrow to be very useful. As we saw

earlier, Turing machines can compute any function that can be computed. The C

programming language [48] is one of the most widely used languages in the world.

One of its primary applications is in the development of operating systems [25]

and can be considered the lingua franca of imperative languages. C programs

use keywords, variables and structured logic blocks in order to make the program

understandable for those versed in the syntax.

We would like to draw a distinction between the languages of C and TMs, and

our intuition is to say that C is more expressive given the wider range of operators

and more flexible management of data. However if we constrain ourselves to

comparing expressiveness solely on the basis of the computational power of the

language, then both languages have the same expressive power. Both TMs and

C are Turing Complete so this mode of comparison is not as helpful. We need to

expand the definition to accommodate the distinctions above.
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i n t i ;
f o r ( i =0; i <10; i++){

X;
}

i n t i = 0 ;
whi l e ( i <10){

X;
i++;

}

Figure 2.9: A while loop and for loop operating in the same manner

2.5.1 Formalisations

Elgot and Robinson [24] spared a paragraph to muse over the comparison of pro-

gramming languages by implementing them with RASP machines which would

result in a fully defined set of semantics to use as a baseline for language com-

parison. Landin first considered the question of what we could compare in a

language [55]. He began to classify some programming constructs as essential

and some as “syntactic sugar”.

Figure 2.9 considers the for loop versus the while loop. Either of these

looping constructs can be discarded without any effect on the computational

power of the language. A similar example for higher order functional languages is

the let construct which is a binding of a value to some variable in some expression

and is equivalent to a function call.

In logic, Kleene identified the notion of eliminable constructs [49]. Coupled

with the informal idea of a ‘core’ language [94, 79], Troelstra [96] defined the idea

of a conservative extension S ′ of a formal system S as a superset of the logical

expressions of S drawn from a richer set of operators. This extension allows S ′

to express more formulae and theorems than S, but if we were to restrict the

expressions of S ′ to use only operators of S, then we would have exactly the

formulae and expressions of S.

The extension may add computational power or be definitional extension if

there exists a mapping φ : S ′ 7→ S which maps all expressions from the language of

S ′ to that of S. A definitional extension does not increase the power of the formal

system, since every expression in S ′ using the new operators can be expressed by

S with its base set of operators.
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2.5.2 Formalising Expressiveness

Felleisen has put substantial effort into expanding the above into a formal frame-

work [27]. He starts by equating formal systems to programming languages and

defining reciprocal definitions for conservative extensions and restrictions of pro-

gramming languages. The following formulation is taken from [27].

Definition 4 (Programming Language). A programming language L consists of:

• a set of L-phrases, which is a set of terms freely generated from a grammar.

The components of a phrase are from set of function symbols F1, F2, . . . with

arities a1, a2, . . .;

• a set of L-programs which is a non-empty recursive subset of L-phrases;

• a semantics evalL which is a predicate on the set of L-programs. If evalL(P )

holds for some program P , then P terminates.

Definition 5 (Conservative Extension/Restriction). A language L′ is a conser-

vative extension of L if:

• the functions of L are a proper subset of those of L′, with the difference

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′ coun-

terparts where there are no phrases or programs that contain the extra L′

functions {F1, F2, . . .};

• evalL is a proper subset of evalL′ and for all L-programs P , evalL(P ) holds

if and only if evalL′ holds.

The converse is a conservative restriction.

Complementing the work of Kleene, for any extension to a Turing Complete

language L, the extra functions introduced in L′ can be expressed by the basic

functions of L. These are known as eliminable constructs.

Definition 6 (Eliminable Constructs). Let L′ be a conservative extension to L

where the functions of are defined as L′ = L ∪ {F1, . . . , Fn}. The extra operators

F1, . . . , Fn are eliminable if there exists a mapping φ from L′-phrases to L-phrases

such that:
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• φ(p) is an L-program for all L′-programs p;

• φ(F (a1, . . . , an)) = F (φ(a1), . . . , φ(an)) for all operators F of L (φ is ho-

momorphic in L);

• evalL′(p) holds if and only if evalL(φ(p)) holds for all L′-programs p.

It can also be said that L can express the facilities of L′. Finding which

constructs are eliminable is achieved by showing operational equivalence between

L-phrases. Felleisen defines a program context as an L-phrase or program which

has a ‘slot’ in which we insert the L-phrase to be tested. Two L-phrases, x and

y can be shown to be equivalent if and only if for every program context C,

evalL(C(x)) = evalL(C(y)).

This is essentially a test suite. If two programs complete every test possible

in a test suite (or satisfy a proof), then we can be sure that the two programs

compute the same function.

The above definitions capture the intuitive notion of expressivity. However

Felleisen wishes to impose a stricter definition where the mapping φ preserves

program structure.

Definition 7 (Macro Eliminability). As in definition 6 above, L′ is a conservative

extension to L. The extra functions of L′, {F1, . . . , Fn} are macro eliminable if

they are eliminable and the mapping φ fulfil the extra constraint:

• for each a-ary function F ∈ {F1, . . . , Fn}, there exists an a-ary syntactic

abstraction A over L such that φ(F (e1, . . . , ea)) = A(φ(e1), . . . , φ(ea))

Macro expressibility defines the intuition that we would have by introducing

an ADD function to the RASP. The RASP can express addition using JGZ, INC

and DEC amongst others, so φ would swap out cases of the addition function

with the appropriate L-phrase to satisfy the syntactic abstraction A. Macro

expressibility has theorems for contexts and operational equivalences as above.

Section 7.3.1 discusses how the work of this thesis can be viewed in the context

of this framework.
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2.5.3 The Conciseness Conjecture

Felleisen concludes by asking if a language L is Turing Complete, what is the

advantage of programming in an extended language L′? The advantage of the

extra constructs of L′ is to save programmer effort. As the size of an L-program

increases, a pattern of L-phrases emerge where we frequently use these phrases

to emulate the functionality of a more expressive language.

For example, addition in the RASP is a relatively large, if uncomplicated

procedure. A program that uses a lot of addition would have a single instance

of the procedure, and would call it when necessary. Calling a procedure in the

RASP is a process of fixing values and return locations in the procedure body, then

jumping to the beginning. This has a distinct structure of the kind that Felleisen

discusses. A more expressive language with an addition function removes the

need for these structures.

Felleisen articulates the Conciseness Conjecture where sensible use of the ad-

ditional functions in more expressive languages results in fewer “programming

patterns” than the equivalent programs in less expressive languages. This con-

jecture is a link between the ideas of elegance and expressiveness.

2.6 Conclusion

After reviewing the literature, it is concluded that Felleisens Conciseness Con-

jecture (Section 2.5.3) is a useful statement of the question which is investigated

by the work herein. We discuss different metrics of information such as Software

Science (Section 2.2.3) and Kolmogorov-Chaitin complexity (Sections 2.2.1 and

2.2.2). Due to reservations over the theories underlying Software Science, the

characters/bytes metric of Shannon et al. will be adopted.

Felleisen has studied matters relating to the expressiveness of programming

languages (Section 2.5.2), and has sketched a formal framework. A language is

at least as expressive as another if the former can express all the faculties of the

latter, within the parameters of Felleisens expressivity framework.

Expressivity in Felleisens framework is tied to the notion of conservative ex-

tensions. Such extensions will contain more information in the semantic of the
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extended language than in the base language. This tentatively suggests that there

is a connection between the expressivity of semantics, and their size. In an ideal

case, we can imagine that this is true, there may exist a counterexample however.

The hypotheses in Section 1.3 make very general statements as to the rela-

tionship between the programs and semantics. In light of the literature here, it

would be beneficial to revise these to take into account some notion of elegance

and expressivity. This shall be done in Section 3.1.

59



Chapter 3

Preliminaries

This chapter revisits the hypotheses to refine them according to the literature

surveyed and lays out the measures and methodologies for the primary investiga-

tion. It includes a discussion of the metrics we adopt, semantic representations

of the TM, RASPs, SKI combinators, and the λ-calculus. Also presented are the

formats of the semantics and programs which we measure in order to determine

their levels of information.

3.1 Hypotheses Revisited

We revisit the hypotheses originally stated in Section 1.3 in the light of the context

provided by the literature. Chaitin’s formulation of elegance is concerned with

finding the elegant program to produce output o. For every possible output o

and language l, the elegant program definition covers only programs which when

run with no input, output o.

Chaitin’s elegance is of little use for the ‘practical’ programs which we wish

to measure. Our programs compute some function given an input. The output is

thus based on that input. However it is not unreasonable to expect that Chaitin’s

definition can be extended to include such practical programs.

3.1.1 Blums Axioms

Blums axioms [5] define measures of computational complexity. An abstract

measure of the performance of a model of computation (e.g. number of steps,
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memory used) is a complexity measure if it satisfies his axioms:

Definition 8 (Blums axioms for measures of performance). For any model of

computation M , there exists a Gödel numbering φ which enumerates all machines

of M such that for any i ∈ N, φi(x) is a machine running with the input x.

Let Φ denote an ordering of some of the machines from the model M . Φ is a

sequence of performance measure functions for φ if and only if:

• φi(x) is defined ↔ Φi(x) is defined

• There exists a function R such that:

R(i, x, y) =







1 if Φi(x) = y

0 if not

So φ is a sequence of all possible functions, while Φ is the sequence of halting

functions. An input x has a unique Φ because the halting behaviour of some

functions change depending on input.

Two canonical examples of Blum complexity measures are space and time.

Using time as a measure, Φi(x) runs the (halting) function φi(x) and returns the

number of steps that it took (for a sensible definition of “step”). The function

R(i, x, y) takes the number of the function to execute i, an input x, and a guess

at step count y. It returns 1 if the guess was correct and 0 otherwise.

Blum goes on to define the speed-up theorem [4] which states: There exists a

function f with the property that for every index i for f , there exists an index j

for f such that:

Φi(n) > Φj(n)
Φj(n)

Which is to say that in any ordering of partial recursive functions there exists

a function where the Blum complexity measure (a measure of complexity that

fulfils Blums axioms) for that function can be improved to an exponential degree.

It seems natural that we can extend the definition of Chaitin’s elegance to

include programs which calculate a specific function. For any function f and

language l, a program p is elegant if p is written in l, there is no smaller program
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written in l which performs the function of p, and:

∀(x 7→ y) ∈ f : p(x) 7→ y

This is encouraging as it implies that for very simple functions, there may

conceivably exist programs with a size below the undecidability threshold which

we can be assured are elegant. However, if we were to include programs which

take input, then the input size also has to be considered when determining if a

program is elegant or not. A measurement of a program taking account the size

of the programs input makes it a Blum complexity measure.

Chaitin’s proof (Section 2.2.2) determines that elegance is undecidable for

functions over a certain size. The proof below asserts the existence of functions

where no elegant characterisation can be found for infinitely many inputs.

There is a subtle difference in the nature of the programs discussed in each

proof. Chaitin’s elegant programs are ones that return a specific output when

run. The programs here are are more general in that they return a specific output

when run with a specific input :

Theorem 2 (Undecidability of Elegance). An elegant program for a function f in

language l is a program where any smaller program written in l does not calculate

f [9]. Let Φ be an ordering of information measurement functions. Φ is a Blum

complexity measure, therefore elegance is undecidable.

Proof. This new proof proceeds by showing that Φ is a Blum complexity measure.

Given the ordering φ where function φi(n) is a function to compute f with input

n, Φi(n) = k is a function which determines the size of the program i and its input

n. The function Φi(n) is defined if and only if φi(n) is defined as you cannot work

out the information required to compute a non-halting function, which satisfies

the first condition of the axiom.

The second condition is satisfied by the existence of R such that R(i, x, y) = 1

if Φi(x) = y and 0 if not. It returns 1 if f(x) can be calculated in exactly y

characters.

Since information is a Blum complexity measure, the speed-up theorem ap-

plies. This means that in the ordering φ there exists a function f which, for any
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program φi, there exists a program φj where the information required to compute

f(n) follows:

Φi(n) > Φj(n)
Φj(n)

for almost all n. This implies that there is no singular elegant program for

computing the function f , concluding the proof.

The problem here is down to input encoding. As a concrete example, say

there exists two TMs which perform addition, where M1 uses a unary encoding

for its input, and M2 uses binary. TM M1 is exactly the unary addition machine in

Section 4.2.1, and one can imagine that M2 is slightly larger by (say) c characters:

size(M1) + c = size(M2)

Considering only the size of the program, as in the case of Chaitin’s elegance, we

could say that M1 is more elegant than M2. However, when size of inputs are

considered, the information complexity of M1 with an input i will be lower than

the information complexity of M2 with i

size(M1) + i < size(M2) + log2(i) : i < log2(i) + c

size(M1) + i = size(M2) + log2(i) : i = log2(i) + c

size(M1) + i > size(M2) + log2(i) : i > log2(i) + c

In the infinite limit, the growth rate of the input encoding is what asymptotically

determines the elegance of a given function in some language. Unfortunately,

it seems that the amount of information required to calculate a function f is a

consequence of how elegantly one can encode the inputs of f . Section 6.6 gives

another concrete example of this encoding phenomenon with the universal TMs.

3.1.2 The Semantic Information and Total Information Hy-

potheses

Explicitly invoking elegance as a necessary attribute of the programs which the

hypotheses range over is folly. The undecidability results mean that there can be

no formal assurance of the elegance of the programs measured.
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A similar case is present with input sizes. For each model and program the

realisation with the slowest input growth rate is the most elegant for infinitely

many inputs. This reduces the problem of elegance to one of finding a method

which produces the most elegant encoding of the inputs.

These problems pull focus away from the central question: How does the

amount of information in the semantics affect the amount of information required

to define a program? In the interest of fair comparisons, it is important to define

notions of how small we can reasonably expect programs to be, and the effort

expended on the encodings of program inputs.

Consider the breadth of possible encodings for some piece of data d. Depend-

ing on how large the alphabet for language l is, there is a sliding scale of the

density of the possible encoding el(d):

Definition 9 (Natural, Sparse, Dense Encodings). An input encoding e(d) is

natural if there is an approximately 1:1 ratio between the tokens of the unencoded

input and tokens of the encoded input. Where n > 1, a sparser encoding has

a 1:n ratio between the unencoded and encoded inputs (many encoded tokens to

represent one unencoded token). A denser encoding has an n:1 ratio the unencoded

and encoded inputs (one encoded token to many unencoded tokens).

The exact nature of a token depends on the language of the input of the

models. For instance, a token for the TM would be a single symbol. Tokens in

the RASP are single numbers of k characters. A token for the SKI would be

a single combinator, and tokens for the λ-calculus may be single terms such as

individual numerals, or structural terms like PAIR, NIL, etc.

Every model has an encoding method which can be deemed natural relative

to its own input language, but it may not be considered natural relative to the

language of another model. These encodings imply rates of input size growth

and are examined more thoroughly in Section 6.5. The set of programs which are

used to evaluate the hypotheses operate over natural input encodings.

Informally, programs are written to be as “elegant as possible” while admitting

natural encodings of data as inputs. To differentiate these from elegant programs,

we call them succinct.

The Semantic Information (SI) hypothesis states that a model with more
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semantic information will produce more elegant (now succinct) programs than

a model with less semantic information. Considering the extreme cases of a 3rd

generation language versus assembler (Java, Haskell), we can imagine that this

holds. But a more nuanced example which does not conform can be constructed

as follows.

Consider a conservative extension to the RASP; RASPX. RASPX has an

extra instruction, LOOP. The LOOP instruction decrements the PC so that a

RASPX machine encountering LOOP immediately enters an infinite loop. As a

conservative extension, RASPX has a larger set of semantics, but no program

can execute the LOOP function and terminate. This is a direct counterexample

to our hypothesis, so we need to make it more specific.

A program p utilises some semantic information i if p invokes some operator

defined in the semantics which depends directly or indirectly on i:

Hypothesis 1 (Semantic Information). For two Turing Complete models; if

model A has more semantic information (larger semantics) than model B, the

average size of succinct programs (where at least one program utilises the extra

semantic information) written for model A will be lower than the average for

model B.

We should consider the ‘scope’ of this hypothesis. The selection of models in

this investigation captures the following:

• Extensions to a model

• Comparisons across models in the same paradigm

• Comparisons across paradigms

Hypothesis 1 is very strong because it makes a general statement concerning

information over the entire space (all three scopes) of models and programs.

While the models of computation presented in Chapter 2 are all different, some

of them share features with each other beyond their Turing completeness. This

allows us to split this strong hypothesis into sub-hypotheses such that the strong

hypothesis is satisfied iff the three sub-hypotheses all hold.

The RASPs all share a significant portion of their semantics. The semantic

rules which guide their evaluation in the form of the fetch-execute cycle are iden-

tical, with portions of the instruction set distinguishing the models from each
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Figure 3.1: Paradigmal relationships

other. These models are said to be in the same family. While each model has

unique instructions which effect different changes on the state and contents of the

memory, the rules which govern the structure remain constant (e.g. the fetch-

execute cycle, bounded size and contents, arbitrarily rewritable and executable

memory locations).

Models which share some aspects with each other, but not as far as directly

sharing evaluation methods, can be classified in the same paradigm. In this thesis

there is the imperative paradigm, occupied by the RASPs and TM, and the func-

tional paradigm which contains SKI and λ-calculus. The RASP and TM have

a global state and their underlying structure is a linear array of numbers/sym-

bols. The λ-calculus and SKI both use graph reduction for evaluation (Section

3.4.3) and have no state. Figure 3.1 shows the models grouped into families and

paradigms.

We propose three weaker hypotheses which range over the scopes of family,

paradigm and across paradigms. This approach will allow us to apply the SI

hypothesis and discover where the hypothesis holds, even if the strong hypothesis

does not hold in general. “A programs” are defined as succinct programs written

for model A.

Hypothesis 1a (Semantic Information within family). For two Turing Complete

models A and B in the same family. If A has more semantic information than

B, the average size of A programs will be lower than the average for B programs.

Hypothesis 1b (Semantic Information within paradigm). For two Turing Com-
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plete models A and B in the same paradigm. If A has more semantic information

than B, the average size of A programs will be lower than the average for B pro-

grams.

Hypothesis 1c (Semantic Information across paradigms). For two Turing Com-

plete models A and B in different paradigms. If A has more semantic information

than B, the average size of A programs will be lower than the average for B pro-

grams.

The sizes of the semantics are stated in Section 3.5. Knowledge of these

sizes and of the above sub-hypotheses, we can predict what would happen if the

hypotheses are correct:

Prediction 1.1 (Program Sizes: RASP). The semantic sizes of the three RASP

models (measured in characters, Section 3.3.1) follow the relation RASP <

RASP2 < RASP3. It is predicted that the average succinct program sizes follow

the relation RASP3 < RASP2 < RASP .

Prediction 1.2 (RASP vs TM). The RASP semantics are larger than those of

the TM. It is predicted that succinct RASP programs are smaller than succinct

TM programs on average.

Prediction 1.3 (λ-calculus vs SKI). The λ-calculus semantics are larger than

the SKI semantics. It is predicted that succinct λ-calculus programs are smaller

than succinct SKI programs on average.

Prediction 1.4 (Across Paradigms). If model A of paradigm X has larger se-

mantics than model B of paradigm Y , it is predicted that succinct program in

model A are smaller than succinct program in model B on average.

Prediction 1.1 relates to hypothesis 1a. Predictions 1.2 and 1.3 support hy-

pothesis 1b, and prediction 1.4 supports 1c.

The Total Information (TI) hypothesis conjectures that as complexity of pro-

grams that we measure increases, the average TI of more complex models will

eventually decrease to below that of simpler models. We again reformulate the

hypothesis to include the necessary stipulation of succinct programs.

67



Chapter 3. Preliminaries

The statement of “Complex models” recalls Section 2.6 where it is tentatively

established that there is a connection between the expressivity of a model and

the size of its semantics. If this connection is well founded, we will observe

that the more expressive models which produce smaller programs will have larger

semantics.

The complexity of a function can be defined in many ways. Intuitively division

is a more complex function than addition and a universal machine is more complex

than division. Actually classifying these functions hierarchically is a surprisingly

thorny proposition. One approach is time and space complexity where the com-

plexity function is determined by the number of steps or tape cells required for

computation relative to the size of the input.

This characterisation feels unsatisfactory (especially in the context of Blum’s

speed-up theorem). One alternative is to rely on the arithmetical hierarchy [49,

80], which classifies functions on their halting and output behaviour. While the

arithmetical hierarchy separates addition and division from universal machines,

there is too little nuance to differentiate between the addition and division func-

tions.

Another alternative is to provide a definition in terms of elegant programs.

A function a is more complex than function b in some language l if the elegant

program to calculate a is smaller than the elegant program to calculate b. This

makes sense because we believe that function deemed “more complex” would have

a higher minimum requirement of information. This intuition is not objective

though, as some models may be inherently suited towards some calculations rather

than others. Any elegant comparison of the complexity of a function is made

relative to the language l.

The notion of the “complexity” of a function is based on intuition, computabil-

ity, and computational complexity. There is no definitive ranking of functions

according to their complexity, so we have to rely on this notion to guide us.

When this thesis discusses the complexity of a function, it refers to the size of

the succinct program to represent the function.

Hypothesis 2 (Total Information). For two Turing Complete models X and Y ,

where X has more semantic information than Y ; As the size and complexity of a
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program increases, the average total information (TI) of a succinct implementa-

tion in X will decrease relative to the total information of a succinct implemen-

tation in Y .

To illustrate this hypothesis, consider the RASP family. For simple functions

(say arithmetic), we predict that the TI for the RASP machine be lower than the

TI of the RASP2 or RASP3. This is because the reduction in program size for

the RASP2/3 does not outweigh the extra information in the semantics of the

RASP2 and RASP3. However as the tested functions increase in complexity (say

the universal machines), we expect to see the TI averages for the RASP2 and

RASP3 drop relative to the TI averages for the RASP. With a sufficiently large

and diverse set of functions containing programs which utilise the extra semantic

information of the RASP2 and RASP3, we should see the TI follow the relation

RASP3<RASP2<RASP.

This reformulation of the total information hypothesis is also strong, not un-

like the semantic information hypothesis above. We can again split this into

three sub-hypotheses with predictions for each analogous to the structure of the

SI hypothesis above:

Hypothesis 2a (Total Information within family). For two Turing Complete

models A and B, where A and B are in the same family and A has larger se-

mantics; as a program grows in size and complexity, the average TI to realise

the program succinctly in A will decrease relative to the average TI to realise the

program succinctly in B.

Hypothesis 2b (Total Information within paradigm). For two Turing Complete

models A and B, where A is in the same paradigm as B and has larger semantics;

as a program grows in size and complexity, the average TI to realise the program

succinctly in A will decrease relative to the average TI to realise the program

succinctly in B.

Hypothesis 2c (Total Information across paradigms). For two Turing Com-

plete models A and B, where A is in different paradigm from B and has larger

semantics; as a program grows in size and complexity, the average TI to realise

the program succinctly in A will reduce relative to the average TI to realise the

program succinctly in B.
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Again using the information from Section 3.5, we make a variety of predictions

of what will happen if the sub-hypotheses above hold:

Prediction 2.1 (Total Information: RASPs). As the size and complexity of a

program increases, it is predicted that the average TI of a succinct implementation

of the program in the RASP3 will reduce relative to the TI of the RASP2 which

in turn will reduce relative to the TI of the RASP.

Prediction 2.2 (Total Information: RASP vs TM). As the size and complexity

of a program increases, it is predicted that the average TI of a succinct imple-

mentation of the program in the RASP will reduce relative to the TI of a succinct

implementation in the TM.

Prediction 2.3 (Total Information: λ-calculus vs SKI). As the size and com-

plexity of a program increases, it is predicted that the average TI of a succinct

implementation of the program in the λ-calculus will reduce relative to the average

TI of a succinct implementation in the SKI calculus.

Prediction 2.4 (Total Information: Across paradigms). If model A of paradigm

X has larger semantics than model B of paradigm Y ; as the size and complexity

of a program increases, it is predicted that the average TI of a succinct imple-

mentation of the program in model A will reduce relative to than the average TI

of a succinct implementation in model B.

3.1.3 The Semantic Circuit and Total Circuit Hypotheses

In this thesis, we also translate the semantics for the RASP and Turing machines

into the VHISIC Hardware Description Language (VHDL). This is then compiled

down to a series of electronic components of a Field Programmable Gate Array

(FPGA), and the number of components required to implement the various ma-

chines are counted. A circuit A is said to be larger than circuit B if the combined

total of Look-up tables, slice registers, and flip-flops (Chapter 5) in A is higher

than the total for B. We hypothesise that the more semantic information in a

model, the larger the circuit to execute the semantics:
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Hypothesis 3 (Semantic Circuit sizes). Consider two models A and B. If model

A has larger semantics than model B, the FPGA circuit which realises the se-

mantics of A will be larger than the FPGA circuit for B.

Hypothesis 3a (Semantic Circuit sizes within family). For two models A and B

in the same family. If A has larger semantics than B, then the circuit to realise

the semantics of A will be larger than the circuit to realise B.

Hypothesis 3b (Semantic Circuit sizes within paradigm). For two models A

and B in the same paradigm. If A has larger semantics than B, then the circuit

to realise the semantics of A will be larger than the circuit to realise B.

Prediction 3.1 (RASP semantics order). The three RASP models have semantic

sizes measured according to the relation RASP < RASP2 < RASP3 (Section

3.5). It is predicted that the circuit sizes follow this relation.

Prediction 3.2 (RASP vs TM). The RASP has larger semantics than the TM,

therefore the circuit for the TM semantics is predicted to be smaller than the

circuit for the RASP semantics.

Predictions 3.1 and 3.2 support sub-hypotheses 3a and 3b respectively. Sim-

ilar to the TI hypothesis, we have a Total Circuit (TC) size hypothesis which

attempts to predict sizes of the total implementation (components for program

+ components for semantics) of the RASP and TM. The programs which are

mapped to FPGA circuits will be the same programs as those which are used to

evaluate Hypotheses 1 and 2 above.

Hypothesis 4 (Total Circuit sizes). For two models A and B, where the circuit

implementation of the semantics of A is larger than the circuit for the semantics

of B; as a function grows in complexity, the average total implementation size of

a succinct realisation of the function in model A will reduce relative to the average

for model B.

Hypothesis 4a (Total Circuit sizes within family). For two models A and B in

the same family; if the semantics of A are larger than the semantics of B, then

as a program grows in size and complexity, the average total implementation size

of the program in model A will reduce relative to the average for model B.
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Hypothesis 4b (Total Circuit sizes within paradigm). For two models A and B

in the same paradigm; if the semantics of A are larger than the semantics of B,

then as a program grows in size and complexity, the average total implementation

size of the program in model A will reduce relative to the average in model B.

Prediction 4.1 (RASP total circuit size). As the size and complexity of a pro-

gram increases, it is predicted that that the average total implementation size for

the RASP3 will reduce relative to the total implementation size for the RASP2

which, in turn, will also reduce relative to that of the RASP.

Prediction 4.2 (RASP vs TM). As the size and complexity of a program in-

creases, it is predicted that the average total implementation size of the RASP

will reduce relative to the average total implementation size of the TM.

3.1.4 Hypotheses Summary

The hypotheses and corresponding predictions are be summarised below:

1. Strong SI hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) prediction

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM prediction

1.3. λ-calculus vs SKI prediction

1c. SI across paradigms hypothesis

1.4. Across paradigms prediction

2. Strong TI hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM

2.3. TI λ-calculus vs SKI

2c. TI across paradigms hypothesis
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2.4. TI across paradigms prediction

3. Strong SC hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Strong TC hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

3.2 Comparison Metrics

There are two prime candidates for information comparison metrics; bytes and

characters. Both have their advantages and disadvantages.

The characters which most programming languages use to express commands

(the basic execution character set) are represented as 7 bit ASCII [46, 45]. Since

the basic execution character set is all that is needed to write programs, the

handling of characters outwith the set are typically a function of the compiler

and assorted programming tools.

Our models also draw exclusively from 7 bit ASCII, save the λ-calculus which

requires ‘λ’s. The semantics additionally use logical predicates ∀, ∃ as well as the

connectives; ∧, ∨ and =⇒ .

The predicates and connectives represent more complex ideas than a numeral

or single letter so it seems appropriate to assign more bytes (under the UTF-8

scheme [16] it is two bytes each) such characters. In this way we acknowledge

that ∀ contains more information than a numeral.

Character sets are defined not on the information required to represent an idea,

but rather the frequency with which a character is used in computer applications.

The addition and subtraction operators are also more complex ideas than a single
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numeral, but are represented in ASCII as one byte. Do we add a byte to all

occurrences of + and − to make our comparison fair?

If we do this we start creating our own character set. So the only way our

measurements would be demonstrable is if we measured them on a computer

implementing our character set. Even if we did accept that we should use a single

byte for add and subtract, and 2 bytes for other functions, the measurements we

make are still wholly dependent on the standards implemented by the machine

on which we measure. Our measurements could conceivably change from one

machine to the next.

The use of characters as a metric is established by Solomonoff [91, 92], Kol-

mogorov [50] and Chaitin [8]. Character metrics are independent of the reference

machine and are solely dependent on the input format of the model which is spec-

ified by the semantics. This is more suited to our needs so it will be the adopted

metric for the rest of this investigation.

3.3 Formats

Irrespective of the metric choice, the aim is to write programs and semantics in

a way to economise on the amount of information which is supplied. The first

and foremost method to minimise this information is in the choice of algorithm

used to compute the functions, favouring brevity over any time or (utilised) space

concerns. But how the programs and semantics are themselves presented should

also be considered.

3.3.1 Semantics

As the formalism from which everything is measured, a SOS can be encoded

in whichever way is convenient and it is assumed that an ‘SOS machine’ can

interpret this encoding and translate it to the correct corresponding SOS rules

for execution. To do this, common functionality is split out and in-lined into

the appropriate rules. Reverse Polish Notation is also employed to shorten the

expressions by removing the brackets which denote function application.

Łukasiewics [59] developed Polish (‘prefix’) notation for sentential logic and
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1,1,1,1,R
1,0,2,1,R
2,1,2,1,R
2,0,3,0,L
3,1,0,0,R
101

Figure 3.2: The ‘raw’ Turing machine for addition with an input of 1+1

we adopt the reversed notation here to remove the brackets on function calls.

Reverse Polish notation (RPN or ‘postfix’ notation) is a mathematical represen-

tation which typographically arranges functions after their parameters [37]. As

an example, the expression (3− 4)× 5 (remembering the order of operations) is

3 4 − 5×.

This expression is executed using a stack. First, the values three and then

four are pushed onto the stack. When the subtraction operator is read, the top

two elements of the stack are popped (since subtraction is a binary operator)

the operation is applied and the result is pushed back on top of the stack. The

intermediate expression is −1 5×, and with the -1 already on the stack, the 5

is pushed, then both are popped to be multiplied together and the result (-5) is

pushed back on top of the stack.

The advantage of Polish notation is that it obviates the need for bracketed

expressions. Specific examples of its usage are given in Section 3.4.

3.3.2 Turing Machines

A Turing machine is a collection of quintuples 〈stold, syold, stnew, synew, dir〉. Fig-

ure 3.2 shows the Turing machine for addition. The symbol table for this TM

consists of 5 lines of 9 characters each (45). The tape (101) is two unary numbers

separated by a single symbol ‘0’, which we define in the symbol table as a blank.

Our convention is that a TM will start over the leftmost symbol on the tape

unless there is a caret (^) in which case the head will be over the symbol to the

right of it. For example, the tape 1^011 will start the machine with the head

over the ‘0’.
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3.3.3 RASP machines

A RASP program is a 2n − 3 size array of naturals. This is represented and

counted as a comma separated list of numbers. For instance the program LOAD

1;LOAD 2;HALT would be represented as the sequence 3, 1, 3, 2, 0.

A caveat for the RASP machine is that the displayed array is exactly 2n − 3

in length. For all programs that are less than 2n − 3 instructions long, the extra

room is ‘padded out’ with HALT instructions.

3.3.4 λ-calculus

A term in the λ calculus is structured as follows; λs are not grouped, so an

expression with multiple λs would be of the form λx.λy.e. The expression is

parsed in a left associative manner, so brackets are used for disambiguation. An

expression (((λx.x)y)z) is written (λx.x)yz without any loss of meaning.

We measure λ terms by their expressions as above. For instance, the number

of characters in the term ONE (λf.λx.f x) is 9 characters long including the

space to separate the f and x variables.

We can compress complex λ functions by pushing repeated terms into ab-

stractions. To illustrate we begin with a term ready to be applied, say to linearly

search a list (Section 4.3.2):

SEARCH ≡ Y (λa.λb.λc.NULL c ONE (EQ(HEAD c)b)FALSE(SUCC(a b(TAIL c))))

HEAD and TAIL are the expressions (λp.p TRUE) and (λp.p FALSE) respec-

tively, so they are substituted into the main term:

Y (λa.λb.λc.NULL c ONE (EQ((λp.p TRUE)c)b)FALSE

(SUCC(a b((λp.p FALSE)c))))

EQ tests for the equality of two numbers, returning TRUE if equal and FALSE

otherwise, and this can again be substituted into the main term. NULL is also
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replaced with its corresponding expression:

Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n PRED m(λx.FALSE) . . .

TRUE(m PRED n(λx.FALSE)TRUE)(n PRED m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c))))

With these names fully substituted with their corresponding terms, there are

three occurrences of PRED, six occurrences of FALSE, and four occurrences of

TRUE. Since abstraction in the λ calculus enables argument duplication and

placement wherever it is desired in the body of an expression, repeated occur-

rences can be abstracted out. First, PRED is abstracted by binding a new variable

k and applying that binding to PRED:

(λk.Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n k m(λx.FALSE) . . .

TRUE(m k n(λx.FALSE)TRUE)(n k m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c)))))PRED

Then the same is done for TRUE (t) and FALSE (g):

(λg.λt.λk.Y (λa.λb.λc.(λp.p(λx.λy.g))c ONE

(((λm.λn.n k m(λx.g)t(m k n(λx.g)t)(nkm(λx.g)t)))((λp.p t)c)b)

g(SUCC(a b((λp.p g)c)))))FALSE TRUE PRED

Abstracting out some term from an expression entails adding three characters

to the start of the expression and one character per occurrence in the body. In

exchange, we can remove all but one of the occurrences of the term which is

moved to the end of the expression.

This method of reducing the size of expressions requires that we make some

pre-reductions when applying this expression in order to obtain. This involves

more computation overhead in the classic time/space tradeoff, but we do not

care about run times. The measured λ programs have all had this compression

method applied to them where possible.
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3.3.5 SKI combinators

A term in the SKI combinator calculus is expressed as a string of S,K,I characters

as well as the left and right parentheses. Unlike the λ-calculus, SKI terms do

not require spaces. For example, the term for two is S(S(KS)K)I which is 10

characters long.

Much like how the λ calculus has α and η conversion to transform superficially

different terms into a common simple term, we can structurally decompose SKI

calculus expressions into equivalent and shorter terms.

For the Church numerals, we can alternatively represent any non prime num-

ber as the product of f factors. This trick multiplicatively combines the factori-

sation into a ‘full’ numeral when something is applied to it. The generalised form

is thus:

4 = S(K TWO)TWO

8 = S(K(S(K TWO) TWO)) TWO

16 = S(K(S(K(S(K TWO) TWO)) TWO)) TWO

n = S(Kf−1)factorf

Comparing the factorised form of 4 to the (SUCCn ZERO) form saves 4 charac-

ters:

SUCC(SUCC(SUCC(SUCC ZERO)))

S(S(KS)K)(S(S(KS)K)(S(S(KS)K)I))

S(K TWO)TWO

S(K(S(S(KS)K)I))(S(S(KS)K)I)

The application of functions to the factorised numeral reduces (with more steps)

to the correct and expected form, for example:

78



Chapter 3. Preliminaries

S(K TWO)TWOfx ≡ . . .

⇒S K(S(S(KS)K)I)f(S(S(KS)K)If)x

⇒K S(S(KS)K)I(S(S(KS)K)If)x

⇒S . . .

⇒ Kf(I(S(S(KS)K)If)x)(If(I(S(S(KS)K)If)x))

⇒K f(If(I(S(S(KS)K)If)x))

⇒I . . .

⇒ f(f(Kfx(Ifx)))

⇒K f(f(f(Ifx)))

⇒I f(f(f(fx)))

When representing a number as a product of its factors, we wish to use more

factors of smaller numbers rather than less factors of larger numbers. The reason

for this is that to add another factor the overhead is: S(K . . .) of 4 characters

whereas the distance between n > 1 and SUCC n is 11 characters. If we cannot

directly factor a number, such as with a prime, then we factor an non-prime

neighbour and apply SUCC to it.

Unlike the λ-calculus, abstraction in SKI is information intensive as each level

of nesting in a SKI expression requires combinators to ‘push’ a passed expression

down to where it should be. The strategy of maximal abstraction outlined above

for the λ calculus is detrimental to the size of the resulting SKI expression. We

therefore convert λ expressions to SKI via bracket abstraction without performing

the extra abstraction detailed in Section 3.3.4. Preferring instead to normalise as

much of the expression as possible before conversion.

3.4 Semantics

Our models of computation transform their inputs into outputs by following the

rules of their semantics. If a program is a description of what is to be done, the

semantics are how it is done. The semantics of a model combine the aspects of a

model “understanding” the input program (parsing) and performing the functions
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of the model (evaluation).

The semantics for each model manipulate discrete structures for each term.

This is the internal representation of the input. The program formats above are

presented in an external representation which may not necessarily directly reflect

the internal representation.

The external representations of the SKI and λ-calculus do not directly trans-

late into the internal representation, so we require semantics which perform lexical

parsing via pattern matching. To provide an even-handed analysis, we also define

parsers for the RASP and TM which have very similar internal and external repre-

sentations. The full semantics for each model in the RPN notation are presented

in Appendix D.

3.4.1 Turing Machines

There are multiple ways to formally define Turing machines:

〈Q, δ,Σ,Γ, q0, qa, qr〉 (3.1)

〈Q, δ,Γ, γ, q0, qh〉 (3.2)

〈Q, δ,Σ,Γ, q0〉 (3.3)

Definitions 3.1, 3.2, and 3.3 are from [90, 82, 34] respectively. Further checks of

sources [78, 3, 41, 53, 15, 52] show that the TM is broadly defined as the above

with minor variances. Each definition varies in the details, but all are equivalent

in power. Q is the set of states, Γ is the tape alphabet (which symbols can be read

from or written to the tape), δ is the transition function Q×Γ 7→ Q×Γ×{L,R},

and q0 ∈ Q is the initial state. Definitions 3.1 and 3.3 also have a Σ which is

the input alphabet. The input alphabet is the tape alphabet without the blank

symbol. Definition 3.1 also has states qa ∈ Q and qr ∈ Q which are accepting and

rejecting states respectively. Definition 3.2 has a halt state qh, and definition 3.2

in lieu of a contrasting Σ has γ which denotes the blank symbol.

We can combine parts of these definitions with our conventions to produce

a definition for the TM which is different from those above, but is still Turing

complete. Our conventions are 1.) Each TM starts in state 1, and 2.) A TM
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st : Q
sy : Γ
h : Z

d : {L,R}
T : Z 7→ Γ

δ : Q× Γ 7→ Q× Γ× d
Pδ : (Γ ∪Q ∪ d ∪ {, })∗ 7→ δ

PT , PNT : (Γ∗ ∪ {^})× Z 7→ T

Figure 3.3: Type definitions for the variables and functions of the TM

halts if it transists to state 0 OR there is not a transition in δ for the current

state/symbol pair.

To define our own machines, we need a set of states and a set of transition

functions: Q and δ. We also need a tape alphabet Γ, but we would like to permit

the use of the blank symbol on the input tape so we exclude Σ, opting instead to

explicitly state the blank symbol itself as γ. Our starting state is always going

to be 1, so individual machine definitions do not need to specify it. Similarly, we

can define the halt state as a state with no exiting transitions. We wind up with

a definition of a TM conforming to our convention as:

〈Q, δ,Γ, γ〉

We now proceed to translate this definition into Structured Operational Se-

mantics.

Every TM has a tape T , the symbol table δ, the current state st and a

head position h. T is a unary function which takes an integer and returns the

symbol at that position on the tape. The symbol T (0) is defined as either the

leftmost symbol of the input, or immediately to the right of the caret (^) in a

TM definition. Our initial tape function is T0.

The symbol table δ : Q × Γ 7→ Q × Γ × {L,R} is a function which takes a

state and symbol pair and returns a triple of state, symbol and shift direction.

The type definitions for the TM are in Figure 3.3.

Before we execute the TM, we first have to populate δ and T0. The ‘raw’ TM

is an expression e ∈ (Γ ∪Q ∪ d ∪ {, })∗ where ∗ is the Kleene Closure [41]. The
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e =⇒ st, sy, st′, sy′, d e′

Pδ(e) =⇒ {〈st, sy〉 7→ 〈st′, sy′, d〉} ∪ Pδ(e′)

(a) Parsing a rule into δ

Pδ(e) =⇒ {}

(b) Default rule

Figure 3.4: Parsing a raw symbol table e into the internal representation δ

f =⇒ f1^gf2
g ∈ Γ

PT (f, 0) = PNT (f1,−1) ∪ {0 7→ g} ∪ PT (f2, 1)

(a) Finding ^, if it exists

f =⇒ gf1
g ∈ Γ

PT (f, n) = {n 7→ g} ∪ PT (f1, n+ 1)

(b) Parsing symbols after the ^

PT (f, n) = {}

(c) No symbol to parse after

f =⇒ f1g
g ∈ Γ

PNT (f, n) = {n 7→ g} ∪ PNT (f1, n− 1)

(d) Parsing symbols before the ^

PNT (f, n) = {}

(e) No symbol to parse before

Figure 3.5: Parsing a raw tape into the internal representation T

symbol table parsing rules supplied by the function Pδ are shown in Figure 3.4.

Similarly the ‘raw’ tape is an expression f ∈ Γ∗∪{^}. The function PT parses

f into the initial tape T0 and is shown in Figure 3.5. The functions δ and T are

constructed recursively by the union of each mapping of input to output. The

initial state of a TM ready to be executed is therefore:

st0 = 1

h0 = 0

T0 = PT (f)

δ = Pδ(e)

The current state, head position and tape all change during the evaluation

of the machine while none of the TM execution rules change δ. The function

E : Q× (Z 7→ Γ)× Z 7→ (Z 7→ Γ) executes a TM:
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(a) Left shift

T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = R
T ′(h) = sy′

h′ = h+ 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(b) Right shift

T (h) = sy
δ(st, sy) 6= 〈st′, sy′, d〉

E(st, T, h) =⇒ T

(c) Halting

Figure 3.6: The rules for the TM; left shift, right shift, and halt

Tend = E(st0, T0, h0)

The Turing machine consists of three rules; a rule for shifting left, one for

shifting right, and one for no defined state and symbol pair. Figure 3.6 shows

the rules for running a TM. The machine halts when there is not a defined state

and symbol pair in δ. As described earlier, this is a transition to state 0, but this

convention is not enforced by the semantics, any state without a transition for

the current symbol will do.

To minimise the size of these semantic rules, we can in-line the T functions

into the δ function. Doing this eliminates the need for the sy variable which saves

us more characters. We can also in-line the d = R/L lines too, but have to keep

the d variable for the third rule unless we do R/L variations for that too. The

shift right rule is now:

δ(st, T (h)) = 〈st′, T ′(h), R〉

E(st, T, h) =⇒ E(st′, T ′, h+ 1)

More methods to reduce the size are to remove the ‘primed’ variables and

redefine st to just s. If we define i = h + 1, t : Q and U : Z 7→ Γ we can reduce

all identifiers to single characters:

δ(s, T (h)) = 〈t, U(h), R〉

E(s, T, i) =⇒ E(t, U, h+ 1)
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Using RPN, we can remove the brackets for function calls transforming the

line δ(s, T (h)) = 〈t, U(h), R〉 into the less readable shTδ〈thUR〉 = which saves

us 6 characters The TM semantics transformed in this way total 335 characters

in size.

3.4.2 RASP Machines

Like the definitions for the Turing machine, there are numerous ways in which

we can define a RASP. Recalling the definition from Elgot and Robinson [24]:

P = 〈A,B, b0, Ko, h
1, h2〉

A and B are addresses and words, b0 is the empty word, Ko is a subset of

K which is the set of all function which map a ∈ A to b ∈ B. Thinking of the

intuitive array model of the RASP presented earlier, each permutation of the

memory is a function k ∈ K and all permutations are in K. K is the set of all

programs. For any given program, only a certain number of ks will be required;

these are what is in Ko.

The Σ0 is a set of pairs 〈k ∈ Ko, a ∈ A〉, which are thought of as the states

of the machine. Informally, the k is the current mapping of the memory and a is

the address of the next instruction to be executed. Since our model has a register

devoted to which address is current (the PC), there is no need for our states to

have the paired address. The full memory/content function is sufficient.

The two functions h1 and h2 map Σ0×B (where b is obtained by the content

function k and address a of σ ∈ Σ0) to a new memory mapping k′ ∈ Ko and the

next address a′ ∈ A. The composition of h1 and h2 results in a mapping of Σ0 to

Σ0 or states to states.

This definition of a RASP as presented by Elgot and Robinson provides a

framework for the abstract operation of the machine, but is very general. There

are a few examples of instruction that could be defined, but the details of a

machine are generally left up to the designer.

A more specific example can be found in Hartmanis [38]. Hartmanis defines a

RASP as a pair 〈M, I〉 of a machine M and set of instructions I. M contains two

84



Chapter 3. Preliminaries

Name Meaning
TRA n,
TRA <n>

Transfer control to register n or <n>
respectively. i.e.<IC>= n or <IC>=
<n>.

TRZ n,
TRZ <n>

If <AC>= 0, transfer control to regis-
ter n or <n> respectively.

STO n,
STO <n>

Store <AC> in register n or register
<n> respectively.

CLA n,
CLA <n>,
CLA <<n>>

The values n, <n> or <<n>> respec-
tively are stored in AC. The contents
of Rn and <Rn> are not altered.

ADD n,
ADD <n>,
ADD <<n>>

<AC > is replaced by <AC > + n,
<AC> + <n>, or <AC> + <<n>>
respectively.

SUB n,
SUB <n>,
SUB <<n>>

<AC > is replaced by <AC > − n,
<AC> − <n>, or <AC> − <<n>>
respectively.

HALT The machine stops and no further in-
structions are executed.

Table 3.1: Instructions of Hartmanis

special registers; an instruction counter (IC, analogous to the PC), and the accu-

mulator (AC, analogous to our ACC). These two registers are at the beginning

of the memory, and the rest of the memory consists of an unbounded sequence of

registers. Each register can hold an arbitrarily sized but finite binary sequence.

The contents of a register Rn is denoted <n>, similarly <IC> and <AC>

refer to the contents of the instruction counter and accumulator. Indirection is

indicated with <<n>> which is explained in Figure 3.7.

There are 7 instructions in the instruction set I, some of which can take

different types of parameters. For example the ADD instruction can add a natural

number to the accumulator, but it could also add the contents of another register

to <AC>, or even the contents of the address held in some other register. Each

register in this model holds a single instruction + data and after an instruction

(except HALT) is executed, <IC> is incremented for the next register. The

instructions I of Hartmanis are explained in Table 3.1.

This definition is closer to the RASP model which we have devised, but the

minutiae of implementation would prove to be quite finicky. Consider for example

the case of instructions taking one of several types of input, we see that we
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would either have to devise an encoding scheme that indicates if the parameter

to functions are direct or indirect, or we would have to split the instructions

out into special cases (i.e ADD, ADDi, ADDd for the cases of n, <n>, and

<<n>>). Furthermore, since a register holds both the instruction and data, there

is no clear way to change one or the other so that the machine can self modify.

If there exists some Gödelesque encoding for each 〈instruction, data〉 pair, we

would have to load the contents of that register and carefully edit it to change

either the instruction, or the data.

These issues lead us to believe that Hartmanis was defining his RASP as more

of a RAM machine, where the data is simply appended to the end of the program

and where the program does not actually modify itself, but does modify the

same piece of memory which holds the program and data. This implementation

is formally congruent to the specification of Elgot and Robinson, but is not as

interesting as a RASP which can modify its own program.

Recalling Elgot and Robinsons definition, an n-bit RASP machine which we

use in this thesis has sets A = B = {0, . . . , 2n − 1} and the empty word b0 is the

HALT instruction. Because all of the state information for the machine is part

of a content function k ∈ K, each content function can be considered a state,

and the set of content functions for this program Ko is the set of states that the

program can transist to.

Our analogue for the functions h1 and h2 is a single function f : K 7→ K

which takes a state k, evaluates it according to what data is in k and returns k′.

The updated expression for an n-bit variant of our RASP (taking HALT as 0) is

therefore:

P = 〈A : {0 . . . 2n − 1}, 0, Ko, f〉

The main difference between our model and that of Elgot and Robinsons is

that we have done away with the pairing of content function and address to be

executed which was superfluous because the state information of our RASP is all

contained within the RASP itself. This has a knock on effect for functions h1 and

h2, which determine the new content function k′ and next address a′ for the new

state σ ∈ Σo. The replacement function f maps our version of states to other

states. This is what is described by the semantics.
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Due to the extensible nature of the RASP family presented herein, the seman-

tics have been split into model semantics for the semantics of parsing an the F-E

cycle, and language semantics which describe the operation of the instructions.

A RASP machine is a pair 〈S,X〉 of a machine S ∈ Ko and an output vector

X. The registers of S are numbered from 0, and registers 0, 1, and 2 are the PC,

IR and ACC respectively. The vector X is written to by the OUT command and

is initially empty. For an n-bit machine, there is a set G = {0 . . . 2n − 1} of the

possible integers representable by the machine. There is also a set I ⊂ G which

represents the non-halting instructions of the machine.

The RASP machines for the primary investigation in this thesis will have

a fixed instruction set mapping of {0 7→ HALT, 1 7→ INC, 2 7→ DEC, 3 7→

LOAD, 4 7→ STO, 5 7→ OUT, 6 7→ JGZ, 7 7→ CPY }. The mapping is enforced

by the semantics, but changes to the mappings affect the total number of steps a

machine can make before halting. Chapter A investigates how the properties of

RASPs change when the instruction set mapping changes.

The type definitions for the RASP are shown in Figure 3.8. To aid the un-

derstanding of the semantics, we also define mappings for the addresses PC, IR,

and ACC to the natural numbers and do the same for the instructions.

The initial machine and output vector are S0 and X0. S0 is primed with the

initial values of the PC IR and ACC (3,0,0), and the external representation of

the RASP to be executed is e ∈ (G∪{, })∗ which is a 2n− 3 sequence of integers.

The function P parses the machine into our internal representation (Figure 3.9).

This readies the RASP for evaluation by the function E:

〈Sfinal, Xfinal〉 = E(S0 ∪ P (e, 3), X0)

Figure 3.10 shows the two rules of the RASP model semantics. If the instruc-

tion under the program counter is in I, then that corresponding instruction is

applied to the machine S. If it isn’t, the number is copied to the IR and the

machine stops. If a numeral is indeed a RASP operation, the function A applies

what is in the IR of S ′ to S ′ and X.

The language semantics for the RASP are 10 rules for the 7 non halting

instructions. Figure 3.11 shows the semantics for the INC and DEC instructions.
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Register # Content
. . . . . .
R5 1
R6 5
. . . . . .

Figure 3.7: Indirection, accessing the address stored in R6: <<6>>=<5>= 1

S : N 7→ N INC = 1
X : N DEC = 2
G : {0 . . . 2n − 1} LOAD = 3
I ⊆ G STO = 4
# : S 7→ N JGZ = 5
A : S ×X 7→ (S ×X) OUT = 6
P : (G ∪ {, })∗ × N 7→ S CPY = 7
E : S ×X 7→ S ×X HALT = 0
PC_INC(S) = mod(S(PC) + 1,#S) PC = 0
S0 = {0 7→ 3, 1 7→ 0, 2 7→ 0} IR = 1
X0 = {} ACC = 2

Figure 3.8: Definitions required for the RASP.

e =⇒ g, e1
g ∈ G

P (e, n) =⇒ {n 7→ e} ∪ P (e1, n+ 1)

(a) Parsing a natural number out of e

P (e, n) =⇒ {}

(b) Default rule.

Figure 3.9: Parsing the external representation e

S(S(PC)) ∈ I
S ′(PC) = PC_INC(S)
S ′(IR) = S(S(PC))
〈S ′′, X ′〉 = A(S ′, X)

E(S,X) =⇒ E(S ′′, X ′)

S(S(PC)) /∈ I
S ′(IR) = S(S(PC))

E(S,X) =⇒ 〈S ′, X〉

Figure 3.10: The rules for the F-E cycle of the RASP
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S(IR) = INC
S ′(ACC) = mod(S(ACC) + 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(a) The INC instruction

S(IR) = DEC
S ′(ACC) = mod(S(ACC)− 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(b) The DEC instruction

Figure 3.11: The semantics for INC and DEC

S(IR) = LOAD
S ′(IR) = S ′(ACC) = S(S(PC))

S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The LOAD instruction

S(IR) = OUT
X ′ = X ∪ {S(ACC)}

A(S,X) =⇒ 〈S,X ′〉

(b) The OUT instruction

S(IR) = CPY
S ′(IR) = S(S(PC))
S ′(ACC) = S(S ′(IR))
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(c) The CPY instruction.

Figure 3.12: The semantics for LOAD, OUT, and CPY

Figure 3.12 displays the rules for the LOAD, OUT and CPY instructions. These

instructions have a single semantic rule, and those that require a parameter load

it into the IR and call the PC_INC function again to move the PC to the next

instruction.

Figures 3.13 and 3.14 show the semantic rules for the STO and JGZ instruc-

tions. STO requires three rules to handle special cases. One case is that of the

PC where storing the contents of the ACC to the PC constitutes a jump with

a post-STO increment. The second case deals with storing the ACC in the IR,

which means that the IR equal to the ACC, rather than the destination address.

The third case is the general case for addresses > 1. The two rules for JGZ define

the cases for jumping and not jumping.

The semantics for INC are reduced to a succinct form through first substitut-

ing back the integers for PC, INC, IR etc. We define additional terms for S and

X to prevent the need for primed variants and replace the modulo function with

the commonly used infix symbol %. The intermediate semantics are:
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S(IR) = STO
S ′(IR) = S(S(PC)) = 0

S ′(PC) = S(ACC)
S ′′(IR) = 0

S ′′(PC) = PC_INC(S ′)

A(S,X) =⇒ 〈S ′′, X〉

(a) Storing the PC

S(IR) = STO
S(S(PC)) = 1

S ′(IR) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) Storing in the IR

S(IR) = STO
S ′(IR) = S(S(PC))

S ′(IR) > 1
S ′(S ′(IR)) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(c) Storing elsewhere

Figure 3.13: The semantics for storing in the PC, IR, and elsewhere

S(IR) = JGZ
S ′(IR) = S(S(PC))

S(ACC) = 0
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) JGZ when S(ACC) = 0

S(IR) = JGZ
S(ACC) > 0

S ′(IR) = S ′(PC) = S(S(PC))

A(S,X) =⇒ 〈S ′, X〉

(b) JGZ when S(ACC) > 0

Figure 3.14: The JGZ instruction
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instruction

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instruction

Figure 3.15: The ADD and SUB instructions for the RASP2.

S(0) = 1

K(2) = (S(2) + 1)%#S

A(S,X) =⇒ 〈S ′, X〉

Using RPN again, we can convert the lines into a more concise form. The

line K(2) = (S(2) + 1)%#S becomes 2K2S1 + S#% =. The semantics in this

concise form total 228 characters for the model semantics and 328 characters for

the language semantics.

3.4.2.1 RASP2

The RASP2 uses the same model semantics and largely the same language se-

mantics as the basic RASP. The difference lies the removal of the INC and DEC

rules and replacing them with ADD and SUB. Figure 3.15 shows the ADD and

SUB instructions.

These semantic rules are reduced according to the procedure laid out above

and the RASP2 semantics are measured as 228 characters for the model semantics

– the same as for the RASP – and 357 characters for the language semantics.
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instruction

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instruction

Figure 3.16: The ADD and SUB instructions for the RASP3.

3.4.2.2 RASP3

As with the RASP2, the RASP3 semantics have their own ADD and SUB in-

structions presented in Figure 3.16. The RASP3 semantics have sizes of 228 and

359.

3.4.3 λ-calculus

Unlike the variance in the RASP and TM definitions, the λ-calculus tends to

have a constant definition in the literature [12, 49, 27]. At its core, the reduction

and conversion rules β, α, η do not change. Rather, the variation arises from the

reduction strategy (i.e. normal or applicative order). A λ term E is constructed

from the grammar:

E := λv.E|(E E)|v

v ∈ {a . . . z}∗

As explained in Section 2.3.2.1, the three main rules of the λ-calculus are

β reduction, α conversion and η conversion. ‘Execution’ of a term is via the

substitution mechanism β reduction, while α and η conversion are used to tidy,

find equalities between terms, and resolve ambiguities.
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Traditional semantics of the λ-calculus assume that a reader/interpreter of

the semantics can substitute expressions in situ, expanding or contracting the

original expression as desired. But this property of expanding or contracting

expressions is quite abstract and can be problematic to implement from a me-

chanical perspective. As the RASP and TM semantics above are represented at a

resolution where we manipulate individual symbols/numbers/discrete structures,

it behoves us to represent the λ-calculus in a manner where we also manipulate

such structures.

We can represent a term as a TM tape, one character per cell of the tape

as normal. When a substitution is made, we erase the symbol which is to be

replaced and repeatedly shuffle the rest of the term to the right in order to make

a space large enough. We then copy the term in, repeat the process for any more

variables, then erase the term from the right, the abstraction at the far left and

close up the brackets.

This is a poorly disguised TM. Furthermore, this ‘string evaluation’ method

is tedious to specify, and we suspect that it would take many semantic rules to

explain the process, not including the parsing and renaming rules.

We observe that the bracketed nature of λ expressions allows us to represent

them as trees. If we do this, evaluation becomes a case of shuffling sub-trees

around until the expression is in normal form, if a normal form exists. This

method of representation and evaluation is called Graph Reduction [105, 72].

Figure 3.17 shows how we could parse the expression (λa.λb.b a)(λx.x). Pars-

ing begins by recognising the application of (λa.λb.b a) to (λx.x) This forms an

“APP” node which signifies an application. The right side has an abstraction

(“ABS”) over x and the single variable. The left side parses two abstractions,

then parses the application of a to b. While it is not explicitly shown here, the

application rule matches the expression from the right hand side. So if we had a

third expression (say X), the first match would be rule (e) with e1(X) and would

form an APP node with X on the right and the structure of 3.17 on the left.

So how do we parse an expression into this tree? The external representation

is assumed to be a λ expression with unique variable names. Brackets are included

only for disambiguation and expressions are left associative. The tree nodes are
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Figure 3.17: The parsing of a λ expression. Leaf nodes are formed by application
of rule 3.18b.

defined as T :

T = {z, TL, TR}

z = ABS|APP |v

v ∈ {a . . . z}∗ \ {∅}

An ABS node denotes an abstraction, APP an application, and v a variable.

The variables v are drawn from a dictionary formed by the Kleene closure over

the alphabet, excluding the empty string. Figure 3.18 shows the five rules to

construct a tree from a λ expression, Troot = parse(e).

The parsing pattern matches from the right, rather than from the left. This

is because a LHS parsed expression will derive a right associative tree.

The resulting tree structure with the root Troot enables the recursive evaluation

of any given λ term. In the traditional semantics, a substitution is represented by

the notation M [x/F ]. Colloquially, we say that all free occurrences of the variable

x in the expression M are replaced by the expression F . If F is a variable itself,

we must ensure that the name is not bound in M prior to substitution. If F is

bound, then we first rename it before we substitute it in.

WE define a function E to evaluate from Troot. The function detects where a

reduction can be made, checks if there are any name conflicts with the variables,

renames if necessary, and substitutes the sub-expression on the right into the

sub-expression on the left.
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e =⇒ λv.e1
parse(e) =⇒ {ABS, parse(v)parse(e1)}

(a) Parsing an abstraction

e =⇒ v

parse(e) =⇒ {v, ∅, ∅}

(b) Parsing a variable

e =⇒ e1v

parse(e) =⇒ {APP, parse(e1), parse(v)}

(c) Applying an expression to a variable

e =⇒ (e1)

parse(e) =⇒ parse(e1)

(d) Stripping parentheses

e =⇒ e1(e2)

parse(e) =⇒ {APP, parse(e1), parse(e2)}

(e) Applying an expression to another

Figure 3.18: Rules for parsing a λ expression into a tree

Figure 3.19 shows the rules for β reducing an expression. The dot syntax (.)

denotes an indirection which references a an element of a tree node. For example

T.TL.z is a reference to the value of z in the left child of the node T .

Evaluation proceeds from the root. If a node T is an APP node and the

node directly to its left, TL is an ABS node then all occurrences of nodes named

with the variable T.TL.TL.z in the branch T.TL.TR are replaced with T.TR (Figure

3.23a).

The function S(a, b, c) is the substitution function. Given a branch of the

tree to substitute into a, an expression to substitute b, and the variable which we

want to be substituted c, we traverse the tree checking to see if the leaf nodes

have the same value for z as c. If they are, we replace that leaf node with a copy

of the expression b (Figure 3.23b). If the variable c is rebound at some point in

the tree (i.e. is to the left of an ABS node) then the substitution is terminated.

Once a substitution has finished, the new tree is re-evaluated from the root until

no more substitutions can be made.

If b is itself a variable, we have to check that the name of b is not bound

in the sub-expression. Consider the expression (λx.(λf.λx.f(fx))x). We reduce

this expression by substituting the rightmost x for the bound variable f in the

inner expression. If we do this without any renaming the expression will become

(λx.(λx.x(xx))). The two substituted xs are now bound by the inner abstraction.
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T.z = APP
T.TL.z = ABS

T.TR.z /∈ Bv(T.TL.TR)

E(T ) =⇒ S(T.TL.TR, T.TR, T.TL.TL.z);E(Troot)

(a) Applying a substitution where the name of the RHS is not bound on the LHS

T.z = APP
T.TL.z = ABS

BT = Bv(T.TL.TR)
T.TR.z ∈ BT

z′ /∈ BT

E(T ) =⇒ S(Rn(T.TL.TR, z′, T.TR.z), T.TR, T.TL.TL.z);E(Troot)

(b) Applying a substitution where the name of the RHS is bound on the LHS

E(T ) =⇒ {T.z, E(T.TL), E(T.TR)}

(c) Moving down the tree

T = ∅

E(T ) =⇒ ∅

(d) Terminating evaluation at the leaves

Figure 3.19: Determining where a substitution should be made

T.z = ABS

Bv(T ) =⇒ {T.TL.z} ∪ Bv(T.TR)

(a) Adding a bound variable to the set

T.z = APP

Bv(T ) =⇒ Bv(T.TL) ∪Bv(T.TR)

(b) Recursing down the tree

Bv(T ) =⇒ ∅

(c) Default rule terminating the function

Figure 3.20: The function to determine the bound variables of a sub-expression

This is called variable capture.

To avoid this, we obtain a list of the bound variables of the sub-expression

into which we are substituting (Figure 3.20). If b is not in this list, we substitute

as normal (Figure 3.19a). If it is, we rename the variables in the sub-expression

to something other than b (Figures 3.19b and 3.21) before substitution.

This method of evaluation aims for full evaluation via normal order reduction.

The term (λa.λb.ba)(λx.x) will reduce to the normal form (λb.b(λx.x)) where the

evaluation will halt.

It has been a conscious choice to reduce a term to full normal form rather

than weak head normal form (WHNF). Where normal form is an expression with
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T.z = k

Rn(T, v′, k) =⇒ {v′, ∅, ∅}

(a) Rule for renaming a variable

T = ∅

Rn(T, v′, k) =⇒ ∅

(b) Rule for terminating at the leaves

Rn(T, v′, k) =⇒ {T.z, Rn(T.L, v′, k), Rn(T.R, v′, k)}

(c) Default rule for moving down the tree

Figure 3.21: The renaming rules

S(T, TP , j) =⇒ {T.z, S(TL, TP , j), S(TL, TP , j)}

(a) Moving down the tree

T.z = j

S(T, TP , j) =⇒ TP

(b) Replacing the node T with TP

T = ∅

S(T, TP , j) =⇒ ∅

(c) Terminating substitution at the leaves

T.z = ABS
T.TL.z = j

S(T, TP , j) =⇒ T

(d) Terminating a substitution when encountering a re-binding of the variable j

Figure 3.22: The substitution rules to replace bound variables with another ex-
pression.

(a) Before substitution. Applying rule 3.19a (b) After substitution

Figure 3.23: Application and substitution
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no more reductions, an expression in WHNF is one with no reduction for the

leftmost abstraction. There may be redexes in sub-expressions, but the WHNF

strategy reduces only the leftmost outermost redex.

Adopting a WHNF strategy can reduce the number of semantic rules in the

semantics. If we take it as a convention that all bound and free variables have

unique names, we can reduce a term to WHNF [72] without the need for renam-

ing. Consider the expression (λt.tt)(λf.λx.fx) with all initially unique variables.

A single reduction step will produce (λf.λx.fx)(λf.λx.fx) and another will pro-

duce the WHNF (λx.(λf.λx.fx)x). At this point a variable name has been du-

plicated, but the term is still unambiguous as to which variables are bound by

each abstraction.

If we want a full normal form, we can continue to reduce the expression by

substituting the rightmost x bound by the leftmost abstraction into the sub-

expression for f producing (λx.(λx.xx)). This is variable capture, and shows

that enforcing unique variable names in the initial term is not sufficient enough

to prevent such variable capture. At the time of substitution, the machine has to

check if there are unique

These semantics which strictly reduce to normal form do not confer extra

computational power over WHNF, but the extra rules relax the convention of

variable uniqueness. This in turn means that we are not constricted to ≤ 26

unique single symbol bindings before needing to add more symbols to the variable

names.

The λ-calculus semantics are markedly different from the semantics of the

RASPs and TM. The semantics focus on evaluation in the form of graph reduc-

tion and eschew semantic rules for a particular expressions. The λ expressions

discussed thus far: ONE, PAIR, SUCC, etc. have no special rules as far as the se-

mantics are concerned. These semantics have no “language semantics” component

as the the RASPs do. The λ-calculus semantics are 515 characters in size.

3.4.4 SKI combinator calculus

The SKI formalism revolves around the three combinators S, K, and I. We can

represent any computable term in this formalism [18, 83]. Expressions are struc-
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e =⇒ (e1)

P (e) =⇒ P (e1)

(a) Stripping brackets

e =⇒ e1(e2)

P (e) =⇒ {A, (P (e1), P (e2)}

(b) Application of an expression to another
e =⇒ e1z

P (e) =⇒ {A,P (e1), P (z)}

(c) Application to a variable/combinator

e =⇒ z

P (e) =⇒ {z, ∅, ∅}

(d) Parsing a variable or combinator

Figure 3.24: The parsing rules for SKI

tured similarly to the λ-calculus, and can be therefore be parsed into a tree and

evaluated using graph reduction [102]. The evaluation of a SKI term is again via

normal order.

A SKI term E is generated from the grammar:

E := (EE)|z

z := S|K|I

where E is a non terminal symbol, and S, K, I are terminal symbols.

Like a λ-calculus expression, we parse E into a tree structure T similar to our

λ-calculus tree structure above:

T = {z, TL, TR}

z = S|K|I|A

The parsing proceeds similarly to the λ-calculus minus the rules for parsing

an abstraction. Figure 3.24 shows these rules.

The parsing of the SKI expression S(KI)I(KII) is shown in Figure 3.25. As

with the λ semantics, application is matched from the right hand side of the

expression. Each leaf node in a SKI tree is a combinator or variable.

Evaluation of SKI terms requires that we look ahead for combinators and

expressions because a combinator will not evaluate if it does not have enough

arguments (e.g SII ≡ SII). Figure 3.26 shows the reduction rules for S, K and

I.

To evaluate the identity function from a node T , we check to see that the left

branch is an I (Figure 3.27). The reduction returns the right branch of T . As

with the λ semantics, we re-evaluate from the root of the tree Troot after each
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Figure 3.25: The tree of a parsed SKI expression

substitution.

The evaluation of K requires that the leftmost branch terminates with a K.

The K combinator ignores its second argument and returns the first (Figure 3.28).

The S combinator requires 3 arguments. The leftmost branch three levels

down should be an S and it should have 3 expressions to the right of each appli-

cation node on each level. The result of this reduction is a tree which applies e1

to e3 (j), e2 to e3 (g), and j to g.

As a form of hybrid between the singular focus on graph reduction (λ-calculus)

and semantic rules for particular instructions (RASPs). The SKI semantics eval-

uate expressions in a graph reduction manner, but the particular reduction is

informed by the combinator read. The semantics for the SKI are the smallest at

291 characters.

3.5 Semantic Sizes

Measuring the semantics of our models yields Table 3.2. The Turing machine

is the simplest imperative model, and an abstract machine to interpret and run

a TM is consequently small. The RASP Figures are split into model+language

semantics so that the difference in their instruction sets can be quickly seen.

RASP RASP2 RASP3 TM SKI λ-calculus

228+328 228+357 228+359 335 291 515

Table 3.2: The semantic sizes for the models
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T.v = A

R(T ) =⇒ {A,R(TL), R(TR)}

(a) Moving down the tree

T.z = A
T.TL.z = I

R(T ) =⇒ T.TR;R(Troot)

(b) The I rule

T.z = A
T.TL.TL.z = K

R(T ) =⇒ T.TL.TR;R(Troot)

(c) The K rule

T = ∅

R(T ) =⇒ T

(d) The terminating rule

T.z = A
T.TL.TL.TL.v = S
T.TL.TL.TR = e1
T.TL.TR = e2
T.TR = e3

R(T ) =⇒ {A, {A, e1, e3}, {A, e2, e3}};R(Troot)

(e) The S rule

Figure 3.26: SKI reduction rules

Figure 3.27: I reduction

Figure 3.28: K reduction

Figure 3.29: S reduction
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Interestingly, the semantics for the λ-calculus are more comparable in size to

the RASP rather than the traditional comparison to the Turing machine. In the

next chapter we shall see what effect this has on program size and Chapter 6

will discuss how the comparative sizes of these semantics relate to the sizes of

programs.
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Arithmetic, List and Universal

Programs

This chapter covers the implementation and measurement of programs which have

been selected to benchmark the models. The concepts of primitive and partial

recursion are introduced, the functions listed, and realisations of these functions

explained in each model.

To strive for an equitable comparison, the programs featured to compute

these function are both succinct and operate over natural encodings of the func-

tion input. There are programs which compute a function using less program

information, but use sparser input encodings. Section 6.6 gives an example of

such a machine, and Section 6.5 details the growth rates of natural inputs for

each program and model.

For the sake of brevity, not all all functions are explained in depth for each

individual model – the RASPs and λ-calculus/SKI are often grouped as they use

the same algorithm. The full programs for each model and function are presented

in Appendix B.

4.1 Primitive and Partial Recursion

The definition of the primitive recursive (PR) functions starts with the natural

number 0, the successor function, the projection function and induction [67].

The successor function adds 1 to a natural number n, thus obtaining the next
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number in the sequence:

s(n) = n+ 1

From that we can obtain the predecessor function, which given n+ 1 returns

n:

p(n) =







0 : n = 0

x : n = (s(x))

The predecessor function requires a test for zero z:

z(n) =







1 : n = 0

0 : n > 0

The composition and projection functions pack and unpack tuples of variables.

The base form of the PR functions has a restriction on the number of variables

which a function can operate over. While a function can operate over any number

of constants, PR induction can only be performed on a single variable. So if T is

a PR function then the definition of T (1, f) is permissible, but T (x, f) is not.

However it seems appropriate that if variable x of T is the result of another

PR function L, then the inductive definition of x is ‘handled’ by the definition

of L. Intuitively, the composition of PR functions should also result in a PR

function. Kleene [49] treats this matter in a formal manner, explaining the role

of composition and projection. In the function definitions which follow, we shall

be using standard mathematical notation rather than ‘strict PR’ formulations

which make use of composition and projection.

All primitive recursive functions are total. That is they are defined on all

inputs in their domain. There exists total functions which are not primitive

recursive however [6].

The partial recursive functions are defined with the inclusion of the µ operator.

Also known as the minimisation, or unbounded search operator, µ is used to search

for the smallest natural number which satisfies some function. Where the PR

functions recurses downwards towards zero, µ recurses upwards and may never

return a result. Say there was a TM R, and we want to find out the number

of steps R will make before halting: n = µ(R). The minimisation operator µ is

paired with a UTM and runs R a step at a time until R reaches some defined
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halting state. However R could loop forever in which case µ will never return a

value [67, 21, 49].

The functions which form the comparison set are a mixture of primitive and

partial recursive function. The set of primitive recursive functions include arith-

metic operations: addition, subtraction, equality, multiplication, division, and

exponentiation. And operations on lists: list membership, linear search, reversal

via constructing a new list, reversal via swapping elements in place, and bubble

sorting. The partial recursive functions are the universal Turing and universal

RASP machines.

This function set aims to represent a reasonable spread of operations such that

a wide range of arbitrary programs makes use of one or more of these functions.

The arithmetic functions are hierarchical in nature where the functions on level

n make use of the functions on level n− 1.

These arithmetic functions operate over pairs of data, while the list functions

operate over a finite list of contiguous data and demonstrate several common

functions like search and sort. The two reversal functions highlight how differences

in the intensionality of two programs to compute the same function affects the

program information.

4.2 The Arithmetic Functions

The arithmetic functions are a hierarchy defined over the natural numbers. The

base functions are the successor and predecessor functions which are defined

above. Each subsequent level in the hierarchy is defined by multiple application

of the functions in the levels below. Addition is iterated successor, multiplication

is iterated addition, and so on. These functions are all primitive recursive and

are therefore guaranteed to halt.

Each function here is detailed and the programs/expressions in all of the

models are described. Many of the RASPs and SKI calculus programs behave

similarly to other RASPs or λ-calculus expressions and so may not be detailed

to avoid needless repetition.
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01(R) 2(R)
1->0 0->1

1

Figure 4.1: The state diagram for the addition TM

4.2.1 Addition

The definition of the function add is:

add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

4.2.1.1 Turing Machine

Figure 4.1 shows a state diagram of the machine. The TM starts in state 1,

and follows the edges of the transitions. If a transition is labelled with a single

symbol, the TM will write that symbol back. Transitions of the form x→ y will

overwrite x with y. The direction that the machine will shift is annotated as ‘L’

or ‘R’ on the states.

The initial tape for the addition Turing machine contains the numbers x and

y inscribed in unary with a single space between them. The head of the machine

begins over the far left symbol of x. It replaces this symbol with a blank and

shifts right until it reaches the space between x and y. Once this space has been

found, the TM fills it in and halts.

4.2.1.2 RASP

The RASP performs addition by looping over x, decrementing it and incrementing

y until x is zero before halting. Figure 4.2 adds the numbers 3 and 4 together to

produce 7, which is the largest natural number expressible by the machine.

4.2.1.3 RASP2/3

The RASP2 and RASP3 semantics have pre-defined ADD and SUB instructions

so all that they have to do is invoke these instructions. Tables 4.3 and 4.4 show
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Instr Data I Label D Label
LOAD 3 :addStart ;x
JGZ ’adding

HALT
DEC :adding
STO ’x

LOAD 4 ;y
INC
STO ’y

LOAD 1
JGZ ’addStart

Figure 4.2: The RASP program for addition.

Instr Data
LOAD x
ADD y

Figure 4.3: RASP2 adding x and y.

Instr Data I Label
LOAD x
ADD ’label

y :label

Figure 4.4: RASP3 adding x and y.

very concise programs to add two numbers together.

4.2.1.4 λ-calculus

Addition in the λ-calculus exploits the higher order functionality of the Church

numerals. Where SUCC ≡ (λn.λf.λx.f(nfx)), addition is λx.λy.x SUCC y. Fig-

ure 4.5 shows the reduction with the numbers 3 and 1.

ADD THREE ONE ⇒∗
β THREE SUCC ONE
≡ λf.λx.f(f(fx)) SUCC ONE
⇒∗

β SUCC(SUCC(SUCC ONE))
⇒β λf.λx.f(SUCC(SUCC ONE)fx)
⇒β λf.λx.f((λj.λh.j(SUCC ONE jh))fx)
⇒∗

β λf.λx.f(f(SUCC ONE fx))
⇒β λf.λx.f(f((λj.λh.j(ONE jh))fx))
⇒∗

β λf.λx.f(f(f(λa.λb.ab)fx))
⇒β λf.λx.f(f(f(fx)))
≡ FOUR

Figure 4.5: Addition of the Church numerals 3 and 1.
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4.2.1.5 SKI

The SKI expression for addition is very similar to the λ expression because the SKI

expression is derived from λ expression via bracket abstraction (Section 2.3.2.2).

The successor function is defined as S(S(KS)K) and prepends the expression to

any natural number to create the successor. The full expression for addition is

SI(K(S(S(KS)K))) which operates exactly as the above λ expression.

4.2.2 Subtraction

The “proper” form of subtraction returns x − y if x >= y; otherwise it returns

zero:

sub(x, y) =



















x : y = 0

0 : x = 0

sub(p(x), p(y)) : y 6= 0 ∧ x 6= 0

4.2.2.1 TM

The initial tape of the TM is arranged with x followed by y in unary, separated by

a single blank symbol. The TM traverses to the far right side of y and replaces

the rightmost ‘1’ with a blank. It then moves to the far left and replaces the

leftmost ‘1’ from x.

If the machine encounters two consecutive blanks when moving right, it halts

immediately since y has been depleted. If it encounters consecutive blanks when

moving left, x has been depleted, so it shifts right again and erases the rest of y

before halting.

4.2.2.2 RASP

Subtracting y from x in the RASP involves repeatedly decrementing both values

until one of them reaches zero. The program to do this is almost exactly the same

as the subtraction program in Figure 4.6, with the exception that the “SUB 1”

instructions are replaced with “DEC”.
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Instr Data I Label D Label
LOAD y :subStart ;y
JGZ ’subbing

HALT
SUB 1 :subbing
STO ’y

LOAD x ;x
JGZ ’subbing2

HALT
SUB 1 :subbing2
STO ’x

LOAD 1
JGZ ’subStart

Figure 4.6: RASP2 properly subtracting x and y

4.2.2.3 RASP 2/3

The SUB functions for the RASP2 and 3 do not conform to the rules of proper

subtraction because they pay no heed to the underflow of registers. This means

that SUBbing y from x directly will not return 0 in the event of y > x, which

makes the SUB instruction unsuitable for the task of proper subtraction.

The basis of subtraction is to decrement x and y in turn until one of them

reaches zero. Figure 4.6 shows the RASP2 program to do this. It is not hard to

define an analogous machine in the RASP3. The lack of a DEC instruction for the

RASP2 and 3 means that the decrementing of x and y requires two instructions

rather than just one.

Before the decrement y, it is tested for zero. If y is zero the program halts,

otherwise it is decremented and x is tested for zero. If x is greater than zero,

the machine decrements it and loops to decrement y again. The result of the

subtraction is held in the register for x.

4.2.2.4 λ-calculus and SKI

The PRED function for the SKI and λ-calculus has the same definition as the

predecessor function p(). So any application of ZERO to PRED will result in

ZERO as a matter of course. This means that any y can be subtracted from

a smaller x using PRED and the result will be zero. The SUB expression is
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2(R)
1->0
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0

1

3(R)
0
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4(L)
0
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0
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0
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1->0
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1->0
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Figure 4.7: The TM to calculate equality of x and y.

therefore:

SUB ≡ (λa.λb.b PRED a)

which is evaluated much like the expression for addition above.

4.2.3 Equality

Equality on the naturals recursively decrements x and y until one or both reach

zero. A return value of 1 (true) is returned if they are both zero, and 0 (false) is

returned if they are not both zero:

eq(x, y) =



















1 : x = 0 ∧ y = 0

0 : (x = 0 ∧ y 6= 0) ∨ (x 6= 0 ∧ y = 0)

eq(p(x), p(y)) : otherwise

4.2.3.1 TM

The Turing Machine to compute equality begins with the numbers x and y in-

scribed on a tape in unary with a single blank space between them and the head

over the far left of x. The machine (Figure 4.7) begins by removing the far

left digits of x and the far right digits of y one at a time to preserve the space

in-between x and y.

If the machine removes a digit from x and finds there are no more digits in

y, it moves back over x eliminating the remaining digits before halting. If the

machine finds that there are no more digits in x, it moves across to y. If there are
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Instr Data I Label D Label
LOAD 6 ;num1
SUB 6 ;num2
JGZ ’out

HALT
LOAD 1 :out

(a) The RASP2 program for 6 =? 6

Instr Data I Label D Label
LOAD 6 ;num1
SUB ’num2
JGZ ’out

HALT
LOAD 1 :out
HALT

5 :num2

(b) The RASP3 program for 6 =? 5

Figure 4.8: RASP2/3 programs for equality

digits in y, it removes them and halts with a blank tape. If there are no digits in

x and y, it changes a 0 to a 1 and halts.

4.2.3.2 RASP Machines

In the above equation, two numbers are equal if they are both zero after the

same number of predecessor operations. The RASP repeatedly decrements x and

y until x is zero. At that point y is checked for zero. If it is, the two numbers

are equal, 1 is loaded into the ACC and the machine halts. If not, zero is loaded

and the machine halts.

The RASP2 and 3 just subtract y from x. If the answer is 0, the machines

halt with a 1 in the ACC. If not, they halt with zero (Figure 4.8).

4.2.3.3 λ-calculus and SKI

Rather than outputting the numerals 1 and 0, the λ-calculus and SKI use the

terms TRUE and FALSE (Section 2.3.2.1) respectively. The LEQ expression tests

if one number is less than or equal to another. The EQ expression is a conjunction

of LEQ x y and LEQ y x. It tests if m is less than or equal to n and then if n is

less than or equal to m. If both expressions are true, then m = n:

LEQ ≡ λm.λn.n PRED m(λx.FALSE)TRUE

EQ ≡ (λm.λn.AND(LEQ m n)(LEQ n m))
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4.2.4 Multiplication

Multiplication is iterated addition:

mul(x, y) =







0 : x = 0 ∨ y = 0

add(x,mul(x, p(y)) : x 6= 0 ∧ y 6= 0

4.2.4.1 TM

Multiplication in the TM uses a tape of x and y written in unary with a single

space between them like the other programs seen thus far. It first removes the

leftmost digit of x and makes a copy of y on the right hand side of the tape,

leaving a gap of a single blank between y and its copy.

Once a copy has been made, the TM removes another digit from x and copies

y again, placing it next to the previous copy. This continues until all of x is

depleted, at which point the machine moves right to erase y before halting with

x× y on the tape.

4.2.4.2 RASP Machines

Multiplication of two numbers in the RASP is repeated addition. The multiplier

(y) is initially tested for zero. If it is zero, the machine halts. The machine tests

the multiplicand (x) for zero and then decrements it, storing the new multiplicand.

A copy is made of the multiplier and the copy is added to a “runningTotal”

register which is initialised as zero. The program loops and and continues until the

value for x is 0. The result of the program is held in the “runningTotal” register

and holds the value of (x × y)%2n (Figure 4.9). The RASP2 and RASP3 use

the same looping mechanism, but use their respective ADD functions to increase

“runningTotal”.

4.2.4.3 λ-calculus

Unlike the RASP and TM, multiplication in the λ-calculus is not iterated addi-

tion. The expression (λm.λn.λf.m(n f)) combines two Church numerals m and

n by creating m copies of (n f). In these expressions, n is applied to the free

variable f and the resulting expressions are applied to each other.

112



Chapter 4. Arithmetic, List and Universal Programs

Instr Data I Label D Label
CPY ’multiplier
JGZ ’return

HALT
LOAD 5 :return ;multiplicand
JGZ ’mul_start

HALT
DEC :mul_start
STO ’multiplicand

LOAD 5 ;multiplier
STO ’tmp

LOAD 0 :loop ;tmp
JGZ ’add

LOAD 1
JGZ ’return
DEC :add
STO ’tmp

LOAD 0 ;runningTotal
INC
STO ’runningTotal

LOAD 1
JGZ ’loop

Figure 4.9: The RASP program to multiply 5 and 5

The intermediate step of applying the f ensures that the subsequent applica-

tions of the numerals to each other would be substituted for the second argument

MULT TWO TWO ≡ (λm.λn.λf.m(n f)) TWO TWO

⇒β (λn.λf.TWO(n f))TWO

⇒β λf.TWO(TWO f)

⇒∗
β λf.λx.(λa.λb.a(a b)f)((λa.λb.a(a b)f)x)

⇒β λf.λx.(λb.f(f b)((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f(λb.f(f b)x))

⇒β λf.λx.f(f(f(f x)))

≡ FOUR
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4.2.4.4 SKI

The SKI term for multiplication is striking in its simplicity and is the shortest

term of all the functions: S(KS)K. Multiplication works by creating a new

number through applying a multiplier to a multiplicand so that we get x copies

of y. The term prevents the application of x to y by means of the leading S and

K which hold the term in normal form until something can be applied to the new

number.

MULT TWO THREE ≡ S(KS)K(S(S(KS)K)I)(S(S(KS)K)(S(S(KS)K)I))

⇒S KS(S(S(KS)K)I)(K(S(S(KS)K)I))(S(S(KS)K)

(S(S(KS)K)I))

⇒K S(K(S(S(KS)K)I))(S(S(KS)K)(S(S(KS)K)I))

⇒S S(K TWO)THREE

This expression for six is shorter than the expression for six obtained by

repeatedly finding the successor of zero. This behaviour inspired the factorisation

method described in Section 3.3.5.

4.2.5 Division

Integer division returns a pair of a quotient and a remainder. The divisor is

repeatedly subtracted until x < y. The number of times this is accomplished is

counted, and the remainder is whatever is left of x after this repeated subtraction

of y:

div(x, y) = 〈quot(x, y), rem(x, y)〉

quot(x, y) =



















0 : x < y

0 : y = 0

s(quot(sub(x, y), y)) : otherwise

rem(x, y) =



















0 : y = 0

sub(y, x) : x < y

rem(sub(x, y), y) : otherwise
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Figure 4.10: The TM to divide x by y

4.2.5.1 TM

TM division starts with y followed by x on the tape separated by a blank (note

the swapping of the two numbers). The machine first tries to mark y symbols of

x. If it can do this (i.e y ≤ x) then it moves to the left of y and prints a ‘1’. It

then repeats the process until there are no more symbols left in x to mark.

If y divides x perfectly, then both x and y are eliminated from the list to leave

the quotient. If it does not, then the machine eliminates x and the remaining

unmarked y symbols to leave the quotient and remainder on the tape separated

by a ‘0’ (Figure 4.10).

4.2.5.2 RASP Machines

Figure 4.11 shows the RASP machine to perform integer division. The RASP first

checks that y isn’t zero. It then copies the value x to the remainder register and

attempts to subtract y from x. If it succeeds, the quotient value is incremented

and the program jumps back to the start. If it cannot fully subtract y from x,

the program halts immediately and the quotient and remainder can be found in

the memory at the labelled locations.

The RASP2 and 3 operate almost exactly as the RASP does. Since the SUB

instruction does not conform to the rules of proper subtraction, the machine can

not know if x < y through directly subtracting. Therefore the machines have to

use “SUB 1” and cannot take advantage of their potential
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Instr Data I Label D Label
LOAD y :start ;y
JGZ ’divStart

HALT
STO ’tmp :divStart

LOAD x ;x
STO ’remainder

LOAD 0 :loop ;tmp
JGZ ’sub

LOAD 1
JGZ ’return
DEC :sub
STO ’tmp
CPY ’x
JGZ ’nl

HALT
DEC :nl
STO ’x

LOAD 1
JGZ ’loop

LOAD 0 :return ;quotient
INC
STO ’quotient
JGZ ’start

0 :remainder

Figure 4.11: RASP2 dividing x by y.
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4.2.5.3 λ-calculus and SKI

Division in the λ-calculus and SKI is the first recursive function in the set of

arithmetic functions by means of the Y combinator:

Y(λg.λq.λa.λb.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))ZERO

The initial ZERO is the quotient of the division. If a (x) is less than b (y) this

quotient is returned paired with x.Each recursive call tests if x < y. If not, the

function is called again with an incremented quotient and x− y as the new value

for x.

4.2.6 Exponentiation

Exponentiation is repeated application of the multiplication function:

exp(x, y) =







1 : y = 0

mult(x, exp(x, p(y))) : y 6= 0

4.2.6.1 TM

The TM is initialised with a tape of y, x, and f which is a single 1. Each term is

separated by a single space. The TM checks off one of the digits of y and proceeds

to multiply x by f to create a new number to the right of f .

Once the multiplication has been completed, the current f is erased and the

result of the multiplication; x× f assumes the role of f . The machine continues

by erasing another digit of y and repeating the process with x and the new f .

This proceeds until there are no more digits in y at which time the machine halts.

The output tape contains x and f (which is the results of xy) with one or more

blank symbols between them.

4.2.6.2 RASP Machines

RASP exponentiation is a loop added to the multiplication program. The expo-

nent is initially checked for zero. If it is, the machine halts and the return value

defaults to 1. Otherwise, the power is decremented and the current total (f) is
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multiplied by x.

Once this is done, the program jumps to the start of the program, tests and

decrements the power, continuing until the power is 0. For the RASP2 and 3,

exponentiation is multiplication inside another loop and is written as expected.

4.2.6.3 λ-calculus and SKI

The λ-calculus and SKI again leverage the higher order functionality of the

Church numerals. Exponentiation applies one Church numeral to another. In

the case of xy, x is applied to y:

EXP x y ≡ (λa.λb.ba)TWO THREE

⇒∗
β THREE TWO

⇒β λx.TWO(TWO(TWO x))

⇒β λx.λf.TWO(TWO x(TWO(TWO x)f)

⇒β λx.λf.(λa.TWO x(TWO xa))((λa.TWO x(TWO xa))x)

⇒β λx.λf.TWO x(TWO x((λa.TWO x(TWO xa))x))

⇒β λx.λf.(λa.x(xa))((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x))

⇒β λx.λf.x(x((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x)))

⇒β λx.λf.x(x(x(x((λa.(λb.x(xb))((λb.x(xb))x))x))))

⇒β λx.λf.x(x(x(x((λa.x(xa))((λa.x(xa))x)))))

⇒β λx.λf.x(x(x(x(x(x((λa.x(xa))x))))))

⇒β λx.λf.x(x(x(x(x(x(x(xf)))))))

The EXP function could be defined as the identity and computed as (λx.x)yx.

However a function constructed in this manner only requires a single argument

and if two were supplied, both were Church numerals, and happened to be sup-

plied in the correct order, only then will the “correct answer” be calculated. This

behaviour is more an accidental side effect of the identity function and evaluation

method given the correct conditions than any kind of calculated construction.
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The SKI expression is very similar. Given two numerals A and B:

EXP A B ≡ S(K(SI))KAB

⇒S K(SI)A(KA)B

⇒K SI(KA)B

⇒S IB(KAB)

⇒I B(KAB)

⇒K BA

4.3 Functions on a List

As opposed to the arithmetic functions above which operate on two discrete

pieces of data, the list functions operate on a list structure. Unsurprisingly, that

structure is a list. For our purposes, a list is a structure of zero or more elements

which are connected in a linear fashion. Lists are often delimited to separate

elements (like in the TM) and may have end markers (SKI and λ-calculus; NIL).

Common recursive definitions making use of lists use four base functions. The

‘head’ function returns the first member of a list, the ‘tail’ function returns the list

without the first element, and ‘[]’ is the empty list. Like the arithmetic function,

the list functions are primitive recursive.

4.3.1 List Membership

The list membership function returns true if an element is in the list and false

otherwise. It can be defined thus:

mem(x, list) =



















true : eq(x, head(list))

false : mem(x, [])

mem(x, tail(list)) : otherwise

4.3.1.1 TM

The list on the tape for the membership TM is a sequence of binary numbers

separated ‘*’ symbols and bookended by the end list symbol ‘E’. The target to

be searched for is prepended by a ‘T’, and the symbol to the left of it is 0 if the
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Figure 4.12: The TM to find membership of a list.

target number has not been found and 1 if it has. An initial tape is of the from:

0T 〈x〉 ∗ 〈data1〉 ∗ 〈data2〉 ∗ . . . E

Figure 4.12 shows the state machine for the membership TM. The TM searches

for the target, x by marking off a character in the target, shifting to the current

data range being checked and attempting to mark off the same character in the

same position. If it can, the machine continues to try and mark off all the

characters in the target. If the current data doesn’t match the target, the machine

marks off all the data in the range, resets the target and tries again.

The ‘found value’ is at the far left of the tape, after the ‘T’. The machine

halts with 0 = false and 1 = true. If the machine does not find the target in the

list before reaching the end of the list it halts. If the machine matches all of the

symbols in the target with the symbols in one of the the data blocks, it moves

back to the start and overwrites the ‘found value’ with a 1 before halting.
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4.3.1.2 RASP Machines

A RASP list is defined at the end of the program memory and is a contiguous

array of elements with one element per address. Labels are defined on the start

and end addresses of the list so that the machine knows the size and bounds.

The RASP programs to determine membership start with the first element of

the list, comparing it to the target. If the element is equal to the target, it loads

a 1 into the ACC and halts. If not, the address to be compared is incremented

and tested against the end of the list.

If the current address is still a part of the list, the machine loops and tests

the element in the address against the target. If the address is past the end of

the list, a 0 is loaded into the accumulator and the machine halts.

The RASP2 and 3 use their subtraction instructions to work out if the target

is equal to the current element whereas the RASP has an equality function defined

in the memory which it uses repeatedly.

4.3.1.3 λ-calculus and SKI

Lists in the λ-calculus and SKI are expressions made of of nested pairs terminated

with the NIL expression:

(PAIR A(PAIR B(PAIR . . . (PAIR Z NIL) . . .)))

This function searches through a list of numbers for a specific one:

MEM ≡ Y(λa.λb.λc.NULL b FALSE(EQ(HEAD b)c TRUE(a(TAIL b)c)))

This function initially tests the list to see if it is NIL. If it is, the end of the list

has been reached and the target has not been found. FALSE is returned. If it is

not NIL, the head of the list (b) is tested to see if it is equal to the target (c). If

it is, then TRUE. If not, the function recurses to test the rest of the list.
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4.3.2 Linear Search

The linear search of a list for an element x returns either the position of an

element or the size of the list + 1:

search(x, list) =



















0 : x = head(list)

1 : list = []

s(search(x, tail(list))) : x 6= head(list) ∧ list 6= []

4.3.2.1 TM

The TM tape of a searchable list is a set of 〈address, data〉 pairs. Each pair is

structured as: #address ∗ data# where the ‘#’ separates the pairs and ‘∗’ is an

internal delimiter. The tape of this machine is structured as:

E〈ReturnAddress〉T 〈target〉#〈addr1〉 ∗ 〈data1〉# . . . E

Initially, the “ReturnAddress” portion of the tape is empty, and the “target”

portion contains the data which the list is to be searched for.

To locate the target, the TM searches the list as in the membership TM. If the

current in datax is the target, the machine copies the address of that location to

the “ReturnAddress” between the ‘E’ and ‘T’ symbols before halting. If the TM

reaches the far right of the list without finding the target, it returns to the return

address and replaces the symbols with asterisks (∗) to signify that the target is

not a member of the list.

4.3.2.2 RASP Machines

The linear search RASP machines operate as the membership RASPs except that

they halt with the address of the found element in the accumulator. If the list

does not contain the target, the RASP increments the final address of the list

and halts with it in the accumulator.
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Y (S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K(K(KI)))))(S(S(NULL) . . .
(K ONE)))))(S(S(K EQUAL))(HEAD))))ZERO)))) . . .
(S(K(S(K(SUCC)))))))(S(K(S(K(SS(K(TAIL))))K))))

Figure 4.13: The SKI term with only the abstraction combinators shown.

4.3.2.3 λ-calculus and SKI

The abstract λ-calculus/SKI term to search a list is:

SEARCH T L ≡ (NULL L ONE (EQ (HEAD L) T) ZERO

(SUCC SEARCH T (TAIL L)))

In the SKI, the recursive SEARCH call is afforded by the use of the Y combinator

which is SSK(S(K(SS(S(SSK))))K). For the copy of SEARCH, and those of

L and T, a series of S and K combinators draw the L and T arguments into the

body of the function.

Figure 4.13 shows the term with all of the combinators to move terms into

the expression. This overhead is typical of SKI terms that have been obtained

through bracket abstraction; a term can blowup in size through the number and

occurrences of abstracted values.

The expression first tests if it is the last element of the list – which is NIL.

If it is, the expression returns ONE. If the current element is the target, the

expression returns ZERO. If the current element in not NIL and is not the same

as the target, the expression returns the successor of a recursive call to itself. The

expression successively increments until it finds the target or end of the list to

either return the position of the target, or the size of the list+1.

4.3.3 Reversing a List

Functionally reversing a list involves building a new list from the old one. Each

recursive call adds a new outer element until the end of the input list is reached.

rev(l) = revh(l, []) =







revh(tail(l), pair(head(l), x)) : revh(l, x)

x : revh([], x)
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4.3.3.1 TM

The list structure for this TM consists of binary words separated by the symbol

‘∗’, bookended at the left with the ‘E’ symbol, and the right with ‘#’. The

machine starts at the far right side of the tape with the head positioned over the

‘#’ symbol.

It operates by moving left until it reaches an asterisk. The number to the

right of the asterisk is copied to the left hand side of the ‘#’. Once the number

has been copied, it is delimited with a ‘$’ symbol and the process repeats. When

the TM encounters the ‘E’ at the far left of the list, it copies the number to the

far right of the new list and halts. The TM halts with the initial list to left of

the ‘#’, and the reversed list to the right (Figure 4.14).

4.3.3.2 RASP Machines

A RASP machine to reverse a list is initialised with the program at the beginning

of the memory, and the list to be reversed at the end. The machine will finish

with a new list appended to the end of the memory. In light of this, it is beneficial

to make sure that the machine is initialised with enough free memory to hold a

new list without overwriting previous data.

Figure 4.15 shows the RASP machine. The location to start writing the new

list is first obtained by loading the address of the end of the list and incrementing

twice as to create a gap between the new and old list. The program proceeds by

copying the value at the end of the old list to the first value in the new list.

After each copy the old list pointer is compared to the start of the list to see

if they are equal. If they are, the machine halts. If not, the new list pointer is

incremented, the old list pointer is decremented and another copy is made.

4.3.3.3 λ-calculus and SKI

Reversal of a list in the SKI and λ-calculus recurses through an input list and

builds an output list from those elements:

REV ≡ Y(λg.λa.λl.NULL l a(g(PAIR(HEAD l)a)(TAIL l)))NIL
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Figure 4.14: TM to reverse a list
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Instr Data I Label D Label
LOAD ’listEnd
STO ’cpyPointer
INC
INC
STO ’writePointer

LOAD 0 :main ;writePointer
STO ’writeSTO

LOAD 0 ;cpyPointer
STO ’cpyLOC
CPY 0 ;cpyLOC
STO 0 ;writeSTO
CPY ’writePointer
INC
STO ’writePointer
CPY ’cpyPointer
STO ’tmp1

LOAD ’listStart
STO ’tmp2

LOAD 0 :loop ;tmp1
DEC
STO ’tmp1

LOAD 0 ;tmp2
DEC
STO ’tmp2
JGZ ’loop
CPY ’tmp1
JGZ ’decWritePointer

HALT
CPY ’cpyPointer :decWritePointer
DEC
STO ’cpyPointer
JGZ ’main

0 :listStart
10 :listEnd

Figure 4.15: The RASP machine to reverse a list by creating a new list.
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If the input list in not NIL, the expression makes a recursive call with the

tail of the input list and a pair of the head of the input list with the current

construction of the output list. The NIL term at the end of the expression is

the initial output list which gets paired up with the elements of the input list.

Once the expression finds the NIL term at the end of the input list, it returns the

currently constructed output list.

4.3.4 Statefully Reversing a List

Statefully reversing a list mutates the input list by swapping the elements, rather

than recursively traversing the input list to create a new one as above.

stateRev(list) = stateRevh(list, 0, p(length(list)))

stateRevh(list, x, y) =







stateRevh(swap(tail(list), xy), s(x), p(y)) : x < y

list : x ≥ y

length(l) =







0 : length([])

s(length(tail(l)) : otherwise

nth(x, l) =







head(l) : nth(0, l)

nth(p(x), l) : otherwise

swap(x, y, l) = substitute(x, nth(i, l); substitute(i, nth(x, l), l))

substitute(x, i, l) =







pair(i, tail(l)) : x = 0

pair(head(l), substitute(p(x), i, tail(l))) : otherwise

4.3.4.1 TM

The TM tape to reverse a list statefully is an ‘E’ bounded, ‘∗’ delimited list of

binary numbers:

E ∗ 〈data1〉 ∗ 〈data2 ∗ data3 ∗ . . . E

The machine operates by copying the first element to empty space at the far

right of the tape. The head then moves to the right hand side and finds the first

number which has not been moved. It copies this number into the previously

vacated space and then moves the first number into the newly vacated space.

If there are an odd number of elements in the list, upon encountering the final

element it copies the contents to the far right. It will then detect that there is
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no matching element to replace the first element with, and so it copies the value

back to its original place before halting.

4.3.4.2 RASP Machines

The RASP machine to statefully reverse a list maintains two pointers. One is

initialised to the first element of the list, and the other is initialised to the last

element. The program proceeds by switching the two elements, incrementing the

first pointer, and decrementing the second one.

After this, the machine compares the two pointers. If the front pointer is

a memory address lower than the rear, it loops again to swap the next pair of

elements. If the value of the front pointer is greater than or equal to the rear,

then the two pointers are either pointing at the same element, or have crossed.

In either of these cases, the machine halts.

4.3.4.3 λ-calculus and SKI

The stateful reverse is a complicated operation which the λ-calculus and SKI are

not at all suited to:

λx.(Y (λa.λb.λc.λd.LT b c(a(SUCC b)(PRED c)(SWAP b c d))d))

ZERO(PRED (LENGTH x))x

where LENGTH obtains the length of a list and SWAP switches the positions of

two elements in a list. The expression operates on the list by maintaining pointers

to the beginning and end of the list to swap the elements in a pairwise fashion.

It first obtains the length of the list, tests to see if the front pointer is lower

than the rear one, and swaps the values if this is the case. It recurses on the list

and increments the front pointer, while decrementing the rear one.

This proceeds until the front pointer is greater than or equal to the rear

pointer, signifying that they are either pointing to the same element (the list has

an odd number of elements) or that they have crossed each other (the list has

an even number of elements). The function halts with the list and its reversed

elements.

The complexity of the stateful reverse is mostly in the SWAP and SUBST
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Figure 4.16: Stateful reversal TM
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functions:

SWAP ≡ λa.λb.λc.SUBST a(NTH bc)(SUBST b(NTH bc)c)

SUBST ≡ Y (λa.λb.λc.λd.ISZERO b(PAIR c(TAIL d))

(PAIR(HEADd)(a(PRED b)c(TAIL d))))

SUBST recurses through the list until it finds the location it requires, it then

substitutes the current list member with the new list member. SWAP applies

SUBST twice to the list to swap both members of the list.

4.3.5 Bubble Sort

The bubble sort algorithm commences by comparing the value at the start of the

list v with its neighbour on the right n. If the value is greater than its neighbour,

the two values are swapped. It continues by comparing v to its new neighbour

n1, swapping as appropriate until it reaches the end of the list, or a neighbour is

greater than v.

Once a value has been ‘bubbled’ to its appropriate position, the algorithm

goes back to the start of the list and bubbles up another value. If the algorithm

compares each value to its neighbours without making a swap, the list is sorted

and the program terminates.

sort(list) = sorth(list, false, 0, 1)

sorth(l, f, x, y) =











































sorth(swap(l, x, y), T, s(x), s(y)) : y ≤ p(len(l))

∧nth(x, l) > nth(y, l)

sorth(l, f, s(x), s(y)) : y ≤ p(len(l))

sorth(l, F, 0, 1) : y > p(len(l)) ∧ f = T

l : y > p(len(l)) ∧ f = F

4.3.5.1 TM

The tape of the TM to perform the bubble sort is again a ‘∗’ delimited list of

binary numbers. The tape is bookended on the left and right using ‘#’ symbols.

The machine first marks the left hand delimiter of the element which is being

bubbled. It then compares the current numeral to the one on its right. If the
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current numeral is greater than its neighbour the machine swaps the numerals in

the style of the stateful reverse. The marker is moved one element to the right

and the cycle repeats.

If an element is not greater than its neighbour, it is in position and the machine

skips over the element to sort its neighbour to the right. If an element being

considered is at the far right of the list, the machine traverses to the far left of

the list to restart the process. A single symbol past the left hand marker of the

tape indicates whether a swap has been made in each left-to-right transversal. If

the machine completes a full left to right transversal without a swap being made,

the list is sorted and the machine halts.

4.3.5.2 RASP Machines

Instr Data I Label D Label

LOAD ’listStart :start

STO ’pointer1

ADD 1

STO ’pointer2

LOAD 0

STO ’flag

LOAD 0 :cmpPointers ;pointer1

STO ’p1ref

CPY 0 ;p1ref

STO ’cmp1

LOAD 0 ;pointer2

STO ’p2ref

CPY 0 ;p2ref

STO ’cmp2

LOAD ’incPointers

STO ’cmpOther

STO ’equal1

LOAD ’swap

STO ’cmp1Greater
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Instr Data I Label D Label

LOAD 0 :cmpStart ;cmp2

SUB 1

STO ’cmp2

JGZ ’cmp1dec

CPY ’cmp1

SUB 1

JGZ 0 ;cmp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :cmp1dec ;cmp1

SUB 1

STO ’cmp1

JGZ ’cmpStart

LOAD 1

JGZ 0 ;cmpOther

CPY ’pointer1 :incPointers

ADD 1

STO ’pointer1

CPY ’pointer2

STO ’p2sub

LOAD ’listend

SUB 0 ;p2sub

JGZ ’returnToInc

LOAD 0 ;flag

JGZ ’start

HALT

CPY ’pointer2 :returnToInc

ADD 1

STO ’pointer2

JGZ ’cmpPointers

CPY ’pointer2 :swap
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Instr Data I Label D Label

STO ’p2SwpRef

STO ’p2WriteRef

CPY 0 ;p2SwpRef

STO ’swp

CPY ’pointer1

STO ’p1SwpRef

STO ’p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO ’flag

JGZ ’incPointers

7 :listStart

3 :listend

Table 4.1: The RASP2 bubble sort

The RASP machines maintain two pointers: v and n = v + 1. The pointer

v is initialised to the start of the list, and n is the next element.The machine

compares the value in register v with the value in n. If M [v] is greater than

M [n], the machine swaps the values and switches a flag to indicate that a swap

has been made.

Both pointers are incremented, and the swaps continue until n is pointing to

the last element in the list. At this point the machine checks to see if a swap has

been made in this transversal. If a swap has not been made, the machine halts

with a sorted list.

If a swap has occurred, the machine resets v, n and the flag to their initial

values and loops until it can traverse the list without making a swap. Table 4.1

shows the RASP2 implementation.
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4.3.5.3 λ-calculus and SKI

The bubble sort expression in the λ-calculus and SKI is:

Y (λa.λb.λc.λd.λe.LEQ d(PRED(LEN e))(LT(NTH d e)(NTH c e)(a TRUE

(SUCC c)(SUCC d)((λa.λb.λc.SUBST a(NTH b c)(SUBST b(NTH a c)c))c d e))

(a b(SUCC c)(SUCC d)e))(b(a FALSE ZERO ONE e)e))FALSE ZERO ONE

The five parameters to this expression are: the expression itself for recursive

calls (a), the swap flag (b), the pointer v (c), the pointer n = v + 1 (d), and the

list to be sorted (e). If n is less than the predecessor of the length of the list

(recalling that these lists are terminated with a NIL element), the elements at

positions v and n are compared. If a swap is required, the elements are swapped

and a recursive call is made with incremented pointers and the swap variable as

TRUE.

If n points at the end of the list and there has been a swap (b ≡ TRUE), a

recursive call is made with the pointers reset and the swap variable as FALSE:

(b(a FALSE ZERO ONE e)e). Otherwise, the current (sorted) list is returned.

Elements are swapped via the SUBST expression explained previously.

4.4 Universal Machines

This thesis considers only the “direct simulation” machines. These are machines

that actually simulate machines in some suitable encoding. For example, there

are numerous choices for which UTM to use. Neary [69] has demonstrated direct

simulation machines of: (3,11) with 32 tuples, (6,6) with 32 tuples, (5,7) with

33 tuples, (7,5) with 33 tuples, (8,4) with 30 tuples. The obvious choice for a

concise UTM is the (8,4) machine, but the encoding of the input is very convoluted

(Section 6.6), thus the intentionality of Neary’s machine does not match well with

the intentionality of the UTM realisations in the RASPs, λ-calculus and SKI. So

another machine is considered which is both a direct simulation UTM, and has a

more natural input encoding.
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4.4.1 Universal Turing Machines

4.4.1.1 TM

The UTM adopted is the direct simulation TM from Minsky [67]. The ini-

tial tape of the UTM is arranged as [w][st1][sy][M ] which is a right unbounded

tape, with the current state, the current symbol under the head, and the sym-

bol table following respectively. The symbol table is arranged in quintuples of

stx, syx, sty, syy, D.The states are binary numbers, symbols are either 1 or 0, and

the direction D is either 0 or 1 to indicate a left or right shift.

The symbol table is terminated with the symbol Y , and the tape is of the

form:

. . . 00000M000Y 〈st1〉〈sy under M〉X〈st1, sy1, stp, syp, D〉X . . .X . . . Y 0

The symbol M on the tape is the simulated head of the machine. The space

between the first Y and the first X from the left contains the current state and

symbol pair which is used to search the symbol table for the correct tuple. The

algorithm of the machine operates by searching the start of each tuple in the

symbol table for the state and symbol combination held between the first ‘Y’ and

‘X’ from the left. This is a search to find the tuple which corresponds to the

current state and current symbol. If a tuple matching these is not found, then

the machine halts.

Once a matching tuple has been found, the new state is copied into the space

between ‘Y’ and ‘X’, the simulated tape head is replaced by the new symbol, the

head is moved left or right, and the new current symbol is printed next to the

new current state. Figure 4.17 shows the TM.

4.4.1.2 RASPs

The TM simulator in RASP simulates an arbitrary (m,n) Turing machine, subject

to the limitations of the size of the RASP memory. The machine is organised

with the program at the start of the memory, followed by the symbol table of

the machine, and finally a right-infinite tape structure at the end. The machine

maintains variables such as the current head position and current state. The
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Figure 4.17: Minsky’s UTM
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initial head position is defined as the far left of the tape and the initial state is 1.

The symbol table format for the RASP is of the form:

. . . , 〈So〉, 〈Syo〉, 〈Sn〉, 〈Syn〉, 〈D〉, 〈Si〉, . . . , 0 . . .

which is the state and symbol read, followed by the new state, new symbol and

direction. The final tuple in the table is followed by a single zero. The tape of

the TM then extends from the end of the symbol table to the end of the memory.

The machines maintains a label to the start of the tape, and a variable of where

the read/write head is.

Evaluation of a TM symbol table and tape, copies the current state and symbol

under the head to a searching routine. This routine traverses the symbol table

linearly until either both the symbol and state are found, of the end of the table

is reached.

If the end of the table is reached, the machine halts, otherwise it replaces

the current state with the new state, writes the new symbol to the tape over the

old symbol, and either increases the head position variable for a right shift, or

decreases it for a left shift.

Searching for the correct tuple in the symbol table involves using an equality

function to test that the current state and current symbol are equal to the tuple

state and symbol. If they are, variables for the new state, new symbol, direction,

and search success are written to and the search jumps back to the main loop.

If the state or symbol do not match the current tuple, the machine either adds

5 or 4 respectively to find the next tuple in the table. If the machine tries to

compare the current state to zero then it has reached the end of the symbol table

and halts.

The machine executes the simulated TM until its current state and symbol

pair is not in the symbol table, or it transits to state 0.

4.4.1.3 λ-calculus and SKI

The TM tape is a list of numbers, each number represents a symbol. The symbol

table is a list of 5-tuples in the form stx, syx, sty, syy, D. This is a list of 5 element
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lists:

TAPE ≡ (PAIR ONE(PAIR ONE(PAIR ZERO(PAIR ONE(. . .NIL)))))

SYTABLE ≡ PAIR(PAIR ONE(PAIR ZERO(PAIR ONE(PAIR ONE

(PAIR ONE NIL)))))(. . .NIL)(PAIR(PAIR . . .NIL)))

The term to evaluate a TM symbol table and tape requires four parameter;

the current state, the current head position, the symbol table and the tape:

Y(λa.λs.λh.λta.λtp.NULL(TABLES s(NTH h tp)ta)tp

(a(HEAD(TABLES s(NTH h tp)ta))(ISZERO(HEAD(TAIL(TAIL

(TABLES s(NTH h tp)ta))))(PRED h)(SUCC h))ta(SUBST h(HEAD

(TAIL(TABLES s(NTH h tp)ta)))tp)))

A search is performed on the symbol table for the current state and current

symbol (extracted from the element at the head position of the tape) pair. Failure

to find this pair results in the return of the tape as evaluation ends.

Once the tuple to match the current state and symbol have been found, a

recursive call is made where the current state is replaced, the tape at element h

is replaced with the new symbol, and the head position is either decremented if

the fifth element of the tuple is ZERO, and incremented otherwise. The function

to search through the table is:

TABLES ≡ Y(λa.λst.λsy.λtab.NOT(NULL tab)(AND

(EQ st(HEAD(HEAD tab)))(EQ sy(HEAD(TAIL(HEAD tab))))

(TAIL(TAIL(HEAD tab)))(a st sy(tailtab)))NIL)

This expression searches the table by testing the passed in state and symbol

against the first two elements of the current tuple. If these match, a triple of the

next state, symbol and direction is returned. No match prompts a recursive call

with the tail of the table. If the function does not find a matching tuple in the

table, it returns NIL which prompts the expression to halt.
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Figure 4.18: A 3 bit RASP arranged on a TM tape.

4.4.2 Universal RASP Machines

The Universal RASP (URASP) can simulate an arbitrary RASP machine. As

with the UTM, all of the universal RASPs are direct simulation machines.

4.4.2.1 URASP in TM

Consider a 3 bit RASP machine. The machine is initially expressed on a TM tape

as depicted in figure 4.18. The memory of the machine is bounded by the PC

marker (#P) at the far left and the end marker (E#) at the far right. There are

also four letters which mark the three usual registers (P,I, and X) in the machine

and the one secondary IR (S).

With the exception of the P and S registers, the memory of the machine is

laid in (address, data) pairs: #〈address〉 ∗ 〈data〉#. For the IR and ACC, there

are the characters ‘I’ and ‘X’ which act as markers to reduce the required number

of states in the machine. Both address and data are expressed as little endian

binary numbers.

Algorithm 2 shows the how the TM operates the fetch-execute cycle. The

machine starts with the head positioned on the second # from the left (bold in

the above diagram). From there, it attempts to pattern match the value in the

PC (011) with the addresses in the machine. If it succeeds, the corresponding

data value is copied into the first and second ‘I’ and ‘S’ instruction registers. If

the pattern matching fails, then the PC must be pointing at itself and therefore

the ‘P block’ is copied to the ‘S’ and ‘I’ blocks.

Once the copy has been made, the RHS bit of ‘S’ is tested. There are four

instructions which take a parameter and four that do not.
• 000: OUT

• 010: HALT

• 100: INC

• 110: DEC

• 001: LOAD

• 011: STO

• 101: JGZ

• 111: CPY

If the least significant bit is a 0, the rest of the instruction is decoded and
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while not halted do
Find address in P;
if address not found then

Copy P to S;
end
else

Copy data in P’s address to S;
end
Copy data in S to I;
if Least significant bit of S is 1 then

Increment P;
Find address in P;
if address not found then

Copy P to I;
end
else

Copy data in P’s address to I;
end

end
Decode and Execute S;

end
Algorithm 2: The Fetch Execute cycle of the RASP in TM

executed. If the first bit is a 1, the PC is incremented and another search happens.

Once this is done, the data is copied to the ‘I block’ only. The instruction is

decoded from the value in ‘S’ and executed. These instructions affect the memory

layout of the machine to the degrees described in Section 2.3.1.2.

There are several repeated functions in the operation of the fetch execute cycle.

Finding addresses, copying data from one register to another, and housekeeping

operations like resetting the tape can be performed more than once per cycle. To

facilitate reuse of such functions, each time the TM performs a task in Algorithm

2 it enters a switching state which prints or reads a symbol immediately to the

left of ‘#P’. The symbol informs the machine which task it is to complete next

in the fetch-execute cycle.

All of the RASP instructions, except for OUT make changes which affect only

the machine. The TM executes an occurrence of OUT by copying the contents

of the ‘X’ block (ACC) to the far right hand side of the tape, past the ‘E#’,

separating occurrences with a ‘*’.
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Instr Data I Label
DEC :IncrementInstruction
JGZ ’DecrementInstruction
CPY ’ACC_P
INC
STO ’x
. . . . . . . . .

DEC :DecrementInstruction
JGZ ’LoadInstruction
CPY ’ACC_P
JGZ ’dc
. . . . . . . . .

Figure 4.19: Decoder of the universal RASP

4.4.2.2 RASPs

The universal RASP machine simulates the execution of another RASP via per-

forming the fetch-execute cycle. The URASP keeps track of the locations of the

simulated PC, IR, and ACC as well as the size of the the machine and an ‘offset’

which is the memory address of the PC of the simulated machine.

Execution of the fetch execute cycle involves adding the offset to the contents

of the PC and using that to copy the contents of the addressed register to the

IR. The IR is decoded by repeatedly decrementing the number contained in the

simulated IR until it equals zero. After each decrement a test is made for zero

and if the number is zero, the corresponding instruction is executed (Figure 4.19).

Otherwise the machine decrements and retests. If the IR instruction is zero, or

the instruction in the simulated IR is not in the range 0–7, then the machine

halts.

Once the correct instruction has been found, the machine uses the offset to

enact the effects of the instruction against the memory of the simulated machine

as described in Section 2.3.1.2. If the executed instruction is not a HALT, the

simulator increments the PC of the simulated machine and jumps back to fetch

and execute the next instruction.

The total size of the machine is known to the simulator. When any increments

or decrements take place, the simulator checks that the change in the register will

not over- or underflow. If it will, the register is set to either zero or the maximum

permissible value.
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4.4.2.3 λ-calculus and SKI

RASP machines are represented in the λ-calculus and SKI as a pair of; a list of

2n elements to represent the machine, and an initially empty list to represent the

output vector. The element at position x of the machine list holds the contents

of register x.

The expression to evaluate the RASP machine is of the form:

Y(λa.λm.λo.〈INC〉(〈DEC〉(〈LOAD〉(〈STO〉(. . . (〈HALT〉) . . .)))))

The sub-expressions compare the numeral in the fetched machine to ONE to

SEVEN and execute the relevant instruction according to the numeral in memory.

The sub-expressions for the INC, DEC, and LOAD instruction are as follows:

INC ≡ EQ(NTH ONE(FET m))ONE(a(INCA ZERO(INCA TWO(FET m)))o)

DEC ≡ EQ(NTH ONE(FET m))TWO(a(INCA ZERO(DEC(FET m)))o)

LOAD ≡ EQ(NTH ONE(FET m))THREE(a(INCA ZERO(LOAD(FET m)))o)

These are all structurally similar. The FET expression copies the value in the

register pointed to by the contents of register zero into register one. It is this value

which is decoded via comparison with a suitable numeral. If the numerals are not

equal, the simulator compares it with the next numeral in the list, up to seven.

A numeral larger than that is not a non-halting instruction, so the simulator will

halt by returning a pair of the current machine and the OUT vector.

Once it has been determined which instruction to execute, a recursive call (via

the Y combinator and the variable a) is made with the machine which has had

a fetch, the instruction, and a PC increment applied to it. The INCA function

increments the value of the specified address modulo the machine size. The
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specific functions for fetching, incrementing and executing rasp instructions are:

FET ≡ λm.SUBST ONE(NTH(NTH ZERO m)m)m

INCA ≡ λa.λm.(EQ(PRED(LENGTH m))(NTH a m))

(SUBST a ZERO m)(SUBST a(SUCC(NTH a m))m)

DEC ≡ λa.λm.(EQ(NTH a m)ZERO)(SUBST a

(PRED(LENGTH m))m)(SUBST a(PRED(NTH a m))m)

LOAD ≡ λm.SUBST TWO(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m))

STO ≡ λm.SUBST(NTH ONE(FET(INCA ZERO m)))

(NTH TWO m)(FET(INCA ZERO m))

CPY ≡ λm.SUBST TWO(NTH(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m)))(FET(INCA ZERO m))

OUT ≡ λm.λo.(PAIR(NTH TWO m)o)

JGZ ≡ λm.(EQ(NTH TWO(FET(INCA ZERO m))))ZERO)

(FET(INCA ZERO m))(DEC ZERO(SUBST ZERO

(NTH ONE(FET(INCA ZERO m)))(FET(INCA ZERO m))))

The INCA function increments the value of the specified address modulo the

machine size. Passing the expression ZERO as a parameter increments the PC

of the machine, and passing TWO increments the ACC.

4.5 Results

Table 4.2 presents the number of characters required to implement the above

functions in each model. On first glance, the RASP2 and RASP3 appear to re-

quire less characters than the RASP, which requires less than the TM on average.

Figure 4.20 plots the information amounts.

The character counts for the imperative models follow a somewhat smooth

curve (the equality function notwithstanding) as the perceived complexity of mea-

sured functions increases. In contrast, the λ-calculus and SKI character counts

exhibit no such curve. Additive functions, where the input numerals are com-

bined together, are much smaller in comparison to the subtractive functions:
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Figure 4.20: Program information to implement the functions

subtraction, equality, and division.

This is due to the higher order functionality of the Church numerals. As

functions, the numerals (or parts thereof) can be applied to each other directly

to create larger numbers, which is exhibited by the multiplication and expo-

nentiation functions. Subtractive functions operate by recursively decrementing

numerals, much like the RASPs. However, decrementing a numeral in the λ-

calculus and SKI is a much more program information costly operation than in

the RASPs which have defined semantics and this causes a schism between the

measurements of the additive functions and those of the subtractive ones.

4.6 Conclusion

This chapter has presented the technical details of the programs which are mea-

sured in each of the models. The functions which the programs are written for can

be separated into three classes: Arithmetic (Section 4.2), List (Section 4.3), and

Universal (Section 4.4). The arithmetic and list functions are primitive recursive

and the universal functions are partial recursive (Section 4.1).
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RASP RASP2 RASP3 TM SKI λ-Calculus
Addition 58 9 25 29 16 27

Subtraction 59 59 61 149 113 46
Equality 57 26 27 179 208 117

Multiplication 126 59 60 223 8 15
Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9
List Membership 271 129 131 379 362 208

Linear Search 281 132 135 779 385 236
List Reversal 140 135 137 499 190 134

Stateful List Rev 273 273 277 1049 1397 460
Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584
Universal RASP 1239 1209 1231 14414 9554 1084
Semantics Size 556 585 587 335 291 515

Table 4.2: Number of characters to implement each program

Most of these explanations of the programs in this chapter have been fairly

abstract to facilitate understanding. The measurements in Table 4.2 taken of the

programs in the format described in Section 3.3. The full collection of programs

in the formats measured above are presented in Appendix B. Chapter 6 analyses

the measurements to confirm or contradict the hypotheses stated in Chapter 3.

One aspect of the programs in this investigation which has not been hitherto

discussed is that of functional equivalence. With the exception of the λ-calculus

and SKI, assuming that the bracket abstraction algorithm is correct, we cannot

be currently assured that the different realisations of each function are all exten-

sionally equivalent. This equivalence is important for any formal assertion of the

nature of the relationships.

Such formal statements are not provided in this thesis, and there is no as-

sertion that these programs are equivalent. Deriving such equivalences are high

on the list of further work and essential to any effort which seeks to generalise

these results. Section 7.3.2 considers how equivalences can be drawn between the

programs here via induction over encoding functions.
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Circuit Information

In this chapter, we detail the design and implementation of the RASP and TM on

a Field Programmable Gate Array (FPGA). Where the SOS is a “mathematical

baseline”, the FPGA implementations act as a physical baseline and we can equate

the required information by measuring the circuit sizes.

5.1 Infinite Regress

Using operational semantics as a baseline from which to measure the information

in our models is an approximation.

When we think of the total information in a system, we consider some ax-

iomatic ideal from from which we build the theorems used to construct models of

computation. We can view operational semantics as a baseline axiomatic system.

Taking such a baseline makes the assumption that all of the axioms in (the

natural numbers, sets, universal and existential quantifiers) are required by every

model to some degree. This assumption effectively sets the information content

of each model to a +m, where a is the information of the axioms and m is the

information of the model definition. However, not all of our models use the same

axioms.

We implicitly use the natural numbers, set membership, set indirection and

logical connectives among others. Some of these are used by all of the models,

such as set membership, but some are not. The TM and RASP models implicitly

use the natural numbers, but the SKI and λ calculi do not require them. Similarly,
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the TM and RASP do not use indirection of subsets, whereas SKI and λ calculus

make heavy use of it to graph reduce expressions.

In this thesis, we largely accept that these inaccuracies are inherent in our

implementation (much in the same way that we accept that we cannot obtain

elegant programs). But we can explore how to mitigate or even eliminate these

inaccuracies.

First, we could keep SOS as a baseline and use it to formalise itself. SOS can

be thought of as a highly abstract Turing complete programming language, so we

could use it to write a universal machine for SOS.

On the surface, this is an attractive proposition. It defines those SOS struc-

tures and operations (as mentioned above) which we use implicitly. And we can

attribute some value for their information content. This value can be added to

the information figures for the models depending on how the models use the

operations.

Implementing our SOS baseline in SOS still requires implied information

though. It is impossible to use a model of computation A to implement an-

other model B without using some implicit information from A. Adding another

model C to implement A merely changes the origin of the implied and undefined

information. Rather than it coming from A, it now stems from C.

Using other models to implement C leads to a spiralling infinite regress of

implementation where we keep on reimplementing our baseline formalism in the

hope that we reduce the amount of implied information. In reality, we are just

pushing the origin of the implied information back to the ‘first’ formalism in the

chain.

Gödel built his meta mathematical constructs from pure mathematics [30, 68].

Elgot and Robinson initially specified the RASP using first order logic [24]. We

could follow in these examples by building own formalism, constructed from the

basic axioms of set theory and logic, to describe our models.

Starting from these axioms, we could systematically define the underlying

concepts for each model such as natural numbers and therefore determine the

information content of concept. A formalism constructed as such gives us finer

control over what information is implied in the definitions of our models. This
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then gives us a more accurate account of the total information. Implementing

this is high on the list of future work, and is explored further in Section 7.3.5.

This rest of this chapter deals with implementation through reducing the

models to a physical baseline. We describe the semantics of our models in the

language of FPGA components and connections. These components are subse-

quently defined by transistors, clocks and small sections of RAM.

5.2 Background

VHSIC Hardware Description Language (VHDL) is a strongly typed hardware

description language developed in the 1980s in collaboration with the US De-

partment of Defence as a method of documenting the behaviour of Application

Specific Integrated Circuits (ASICs). The language was specified, implemented,

and standardised in the period of 1986 to 1988 [1]. As with most languages, it has

been expanded and re-standardised over the years, resulting in 5 other versions

of the language up to 2008 with VHDL 4.0 [2].

Though originally designed to describe ASICs, VHDL, along with other hard-

ware description languages like Verilog HDL [14], has been adopted as one of

the primary tools for specifying the behaviour of FPGAs. Indeed, any language

which can accurately encapsulate the operations of a given piece of circuitry can

be used for either purpose.

Programmable logic is a small section of the semiconductor market and ad-

dresses the need for integrated circuits (ICs) that can be reprogrammed as a

requirement or for application where a small number of ICs are needed. Pro-

grammable logic is faster than software running on a general purpose machine,

but is also much cheaper than designing and fabricating ASICs which often require

clean rooms and so forth for production. An FPGA board treads the line between

speed and affordability, providing a programmable fabric and often external IO,

sometimes with a supplementary general purpose CPU to provide a hardware/-

software interconnect. Such devices are known as System on a Chip [109].
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5.2.1 Architecture and Components

An FPGA is essentially a ‘configurable chip’. Rather than converting an HDL

specification into something akin to assembly code – as how a regular PC pro-

cessor would operate – the specification is “synthesised” into a Register Transfer

Logic (RTL, [35]) diagram. This diagram expresses the high level HDL logic as

an electronics diagram, with components like gates, flip-flops, multiplexers and

so forth.

An FPGA is split into blocks and slices (depending on the terminology of the

manufacturer). These blocks/slices have transistors arranged in discrete struc-

tures (such as the above gates, flip-flops etc). At configuration time, the con-

figuration tool for the board “maps” the RTL gates to a component or set of

components in a slice or block, and activates routes between them so that signals

can be transferred between these mapped components.

This results in a chip that physically performs the task specified by the HDL

and RTL, though it may not necessarily have any resemblance to the schematic, as

the components in the FPGA may need to be constructed as the lowest common

denominator in order to provide the most usability. For instance a RAM ‘block’

may be constructed by many flip-flops across multiple blocks/slices rather than

having all of the flip-flops physically close together.

5.2.1.1 Zedboard

In this thesis, we use the Zedboard1, an FPGA board aimed at hobbyists and

education. It features the Xilinx Zynq-7000 SoC which sports a Xilinx series 7

programmable logic fabric along with an ARM cortex-A9 processor [109].

The series 7 PL fabric [108] consists of Configurable Logic Blocks (CLBs).

Each CLB is split into two slices, where each slice contains 4 look up tables

(LUTs), 8 flip flops (FF), 3 multiplexers (MUX), and a 4 bit carry chain which

can be combined with other chains to implement arithmetic.

Each LUT in a slice can accept up to six bits to implement arbitrary functions.

The LUTs in a slice can be combined using MUXs to produce functions up to 7

and 8 bits wide. LUTs can also be chained with LUTs in other slices to implement

1http://www.zedboard.org
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Figure 5.1: A diagrammatic view of two mapped slices (red and blue boxes). The
Cyan connections are those which will be used by the FPGA when it executes.
Grey are not mapped and green connections are component I/O.

functions with more than 8 bits.

For storage, each slice has 8 elements (collectively known as “slice registers”),

The registers can be paired with an LUT to create up to 4 flip flops, with each

flip flop able to be either edge or level sensitive. These flip flops can be chained

with those in other slices to create larger volatile memories.

A specialised slice type: SLICEM, contains components for distributed mem-

ories and shift registers. The distributed memory elements can be combined with

LUTs to form a 256 bit RAM element, which can naturally be combined with

other slices. The majority of slices on the FPGA are SLICEL, which do not have

these types of memory elements.

The FPGA also contains a number of 36K block RAMs. The RAMs can be

decomposed into 2×18K, 4×9K, 9×4K and so on down to 72×512B. The Zynq-

7020 contains 106,400 slice registers, 53,200 LUTs, and 140 36K block RAMs for

a total of 13,300 slices and 6650 CLBs.

5.3 Implementations

Broadly, the TM and RASP in VDHL are both composed of 3 components:

• Control – The state machine and tape read/write/shift mechanics for the

TM, and fetch-decode-execute mechanics for the RASP.
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Figure 5.2: The top level RTL schematic of the RASP machine.

• Memory – The tape for the TM, and the RAM for the RASP.

• Machine – Links both the memory and control modules together.

Figures 5.2 and 5.3 are top level RTL diagrams of the RASP and Turing

machines. The components are clocked by an oscillator present on the board

which coordinates the memory and control components. The control performs

some action when the clock ticks up to 1 (also known as rising edge) and the

memory does something when the clock ticks to 0 (falling edge).

The memories for the machines operate in the same manner. They are binary

arrays of a fixed size which are written to and read from depending on the flag

and access values in the control state. Figure 5.4 shows the RTL schematic,

here utilising a block RAM, for the memory component. The TM flavour of the

component is very much the same.

Each block in both machines also contain output signals. The memory com-

ponent has a read/write signal which goes high if the memory is being written

to and low if it is read from. The control component both has an output signal

(for the OUT command) and a halted signal which goes high once the machine

is deemed to have halted. In practice, these signals are wired up to LEDs on the

Zedboard.
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Figure 5.3: The top level RTL schematic of the Turing machine.

Figure 5.4: The RTL schematic of the RASP memory.
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i f r i s ing_edge ( c l k ) then
case f e tchCounter i s −−S ta r t outer f e t c h

. . .
when "010" => −−Write S(S(PC)) to S(IR)

address <= "001" ;
data in <= dataout ;
wFlag <= ’ 1 ’ ;
c u r r e n t I n s t r <= dataout ;
fetchCounter := fetchCounter +1;

when "011" =>
case cu r r e n t I n s t r i s

when "000" => −− HALT code
case executeCounter i s

. . .
end case

when "001" => −− INC code
case executeCounter i s

. . .
end case

. . .
end case

when "101" =>
. . . −− Increment PC

f e tchCounter := "000" ; −− r e s e t to "000"
end case

end i f

Figure 5.5: The VHDL skeleton for the RASP control

5.3.1 RASP

It is in the control component where we see a distinction between models. The

control is written as a finite state machine. In the RASP, there is a fetch counter

and an execute counter. Recalling the FE cycle, the fetch counter steps the

machine through the reads and writes which move the current instruction in the

pointed to memory into the IR. After the execute counter decodes and executes

the instruction, the fetch counter increments the PC and resets itself to 0, so that

the process can start over in the next clock cycle.

Once an instruction has been fetched into the IR, the execute counter takes

over and steps the machine though the actions required to successfully execute

the current instruction. Once the instruction has been executed, the execute

counter increments the instruction counter and resets itself.
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Figure 5.5 shows the truncated code of the state machine of the RASP and

Figure 5.6 depicts the gates of the RASP control in their entirety.

5.3.2 TM

In contrast with the RASP, the Turing machine uses a single counter to read the

tape, search the symbol table, and write the new symbol to the tape. As with

the RASP simulation of the TM, the symbol table search is more information

intensive than the TM SOS would suggest. Figure 5.7 shows the controlling state

machine for the TM. There exists VHDL primitives for looping over finite data

structures which are used in the search function.

Figure 5.8 shows the RTL diagram for the addition TM. The area surrounded

by the dark blue square is mainly state information which informs the control

what should be done. Additionally the controller for the block outputs are con-

tained here. The cyan lines are the output of the flip flop which holds the counter.

The symbol table for the TM is packed into the control component as ROM.

This is reflected in the RTL by the pattern and connections of AND gates, XOR

gates and MUXes (yellow box in Figure 5.8). These pathways are activated when

the control needs to read from the symbol table.

Since AND and XOR gates do not actually exist on the FPGA, there is a

disconnect between the logical (RTL) mapping and the physical (technological)

mapping performed by the VHDL compiler. Since we desire that the minimal

amount of area is used, the FPGA mapping algorithm endeavours to reduce the

number of utilised LUTs as much as possible. It therefore packs the symbol table

into another RAM block configured for read only behaviour.

The rest of the logic in the technology schematic is implemented by LUT+FF

pairings. Figure 5.9 shows a small section of the technology schematic for the

addition TM. Both RAM18 blocks for the tape and symbol table are present and

we can see a handful of the LUT and FFs utilised in the implementation.
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Figure 5.6: The RTL schematic of the RASP control. The memory schematic is in the top left for scale.
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i f r i s ing_edge ( c l k ) then
case counter i s

when "000" =>
. . . −− Retr i eve Symbol

when "001" =>
. . . −− I f the s t a t e i s 0 , s top

when "010" =>
for i in symbolTable ’RANGE loop

i f symbolTable ( i ) . stateR = cur r en tS ta t e and
symbolTable ( i ) . symbolR = symbolOut then

. . . −− Loop over symbol t a b l e

. . . −− f o r s t a t e / symbol pa i r
end i f ;

end loop ;
counter <= counter +1;

when "011" =>
i f found = ’1 ’ then

. . . −− Write new symbol to tape
else

. . . −− Set s t a t e to 0
end i f ;

when "100" =>
wFlag <= ’ 0 ’ ;
i f ( symbolTable ( var ) . d i r = ’1 ’ ) then

hPos <= hPos + 1 ; −− Right
else

hPos <= hPos − 1 ; −− Le f t
end i f ;

counter <= "000" ;
when others =>

end case ;

Figure 5.7: The VHDL skeleton for the TM control.
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Figure 5.8: The RTL schematic of the TM control. The dark blue square contains the typically constant structures of the TM. The cyan
connections are the output of the counter flip flop.
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Figure 5.9: A part of the technology schematic of the addition TM with an input tape.
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Slice Reg LUTs FFs RAMB18
Addition 28 66 28 3

Subtraction 28 66 28 3
Equality 28 66 28 3

Multiplication 32 74 32 3
Division 32 74 32 3

Exponentiation 32 74 32 3
List Membership 37 81 37 2

Linear Search 37 81 37 2
Reverse List 32 74 32 3

Stateful Rev List 37 81 37 2
Bubble Sort 41 90 41 2

Universal TM 41 89 41 2
Universal RASP 46 92 45 2

Table 5.1: Components for RASP implementations

5.4 Results

Each program for the RASPs and TM were translated into VHDL, compiled and

mapped to the Zedboard. The compiler option specified a minimal area strategy,

with maximal logic optimisation and compression. This strategy attempts to

minimise the amount of LUTs required to implement the logic of the machines,

sometimes preferring to pack logic into block RAMs.

This compilation was made from a ‘program only’ perspective, therefore the

tape for the TM was minimal in size (1 cell). Complicated inputs for the RASP

(lists) were also truncated and the number of bits selected so that the entirety of

the program fits in memory, excluding any inputs. The VHDL programs described

in this chapter which produce the data here are shown in full in Appendix C.

Tables 5.1, 5.2, 5.3, and 5.4 show the raw figures and geometric means of the

mapping results. We analyse this data with respect to the SOS and program

counts in Chapter 6, but we briefly comment on the data here.

We first notice that the figures for the RASP machines are ‘stepped’. Which

is to say that if two separate programs require the same number of bits, then the

recorded FPGA utilisation figures are exactly the same.

The RAMB18 numbers for the RASP machines are initially puzzling. Our

intuition is that we would only require the one block of RAM, to hold our program,

but for some machines three blocks are utilised and some other have two. One of
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Slice Reg LUTs FFs RAMB18
Addition 21 51 21 3

Subtraction 28 70 28 3
Equality 24 60 24 3

Multiplication 28 70 28 3
Division 32 79 32 3

Exponentiation 32 79 32 3
List Membership 32 79 32 3

Linear Search 32 79 32 3
Reverse List 32 79 32 3

Stateful Rev List 37 86 37 2
Bubble Sort 41 96 41 2

Universal TM 41 96 41 2
Universal RASP 45 108 45 2

Table 5.2: Components for RASP2 implementation

Slice Reg LUTs FFs RAMB18
Addition 25 70 25 3

Subtraction 29 78 29 3
Equality 25 70 25 3

Multiplication 29 78 29 3
Division 33 91 33 3

Exponentiation 33 91 33 3
List Membership 33 91 33 3

Linear Search 33 91 33 3
Reverse List 33 91 33 3

Stateful Rev List 38 102 38 2
Bubble Sort 38 102 38 2

Universal TM 42 112 42 2
Universal RASP 46 123 46 2

Table 5.3: Components for RASP3 implementations
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Slice Reg LUTs FFs RAMB18 Tuples
Addition 14 13 14 1 3

Subtraction 15 13 15 1 15
Equality 16 16 16 1 18

Multiplication 19 20 19 1 22
Division 19 22 19 1 27

Exponentiation 20 30 20 1 41
List Membership 22 44 22 1 38

Linear Search 22 49 22 1 73
Reverse List 23 32 23 1 50

Stateful Rev List 23 80 23 1 94
Bubble Sort 24 150 24 1 140

Universal TM 23 195 23 1 113
Universal RASP 19 1019 18 1 1111

Table 5.4: Components for TM implementations

the extra block RAMs is to hold state information for the control, but what of

the third one?

On inspection of the technological schematics, machines with a third RAM

wire the output of the RAM directly to the controlOut signal which is triggered by

the OUT command. We are not entirely sure why this happens, but hypothesise

that it is an artifact resulting from the heavy optimisation options. The TM also

has at least one case where the optimiser provides a undesirable result which can

be improved by relaxing the options.

Because the symbol table for the TM is part of the control, utilisation results

for the TM programs vary from one to the next. With the exception of the list

membership program, the utilisation figures tend to follow the number of tuples

involved in the program. This is not a smooth trend though, as the gap of ten

tuples between the Addition and Subtraction yields less of a difference than the

gap between the equality and multiplication programs which is only four tuples.

Further experimentation has revealed that the optimiser attempts to combine

tuples and even trims away ones that are deemed ‘constant’. The optimiser was

given a symbol table of two states, both of which did the exact same thing. The

optimiser threw a warning and said that the second state would be trimmed.

It stands to reason then that the optimiser algorithm tries to combine as many

signals as possible into common LUTs and FF pairs to reduce space. However

the optimiser can lock itself into a non-optimal route and can cause problems
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as in the case of the Universal RASP. A strict area optimisation strategy vastly

exaggerates the required number of LUTs (> 2000) required by the universal

RASP, whereas a more balanced one yields 1025. Since we are unfortunately not

privy to the optimisation algorithms inner workings, we cannot entirely be sure

what it does to inflate the LUT requirement.

Without the work of constructing individual gates themselves, we are reliant

on the optimiser to deliver us a near-optimal circuit. However the above examples

highlight that the results may not be perfect, and so we should take these FPGA

numbers as estimates much like the figures from the previous chapter.

That said, a hardware realisation at this level is a time effective solution to

the infinite regress problem, and it provides another set of results with which to

compare against our hand constructed semantics and programs as a sanity check.
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Analysis

This chapter collates the data from the previous three chapters and provides an

analysis. It analyses and then compares the models. This analysis is performed

to collect evidence which either supports or contradicts the revised hypotheses

postulated at the beginning of Chapter 3.

Section 6.1 overviews the trends in the program and semantic size measure-

ments from Table 4.2 in Chapter 4. It reviews the data in discrete sets of the

arithmetic, list, and universal functions.

Section 6.2 groups the models into pairs and examines how the relative infor-

mation contents of the semantics and programs for those models conform to the

hypotheses.

Section 6.2.8 uses the comparisons made in Section 6.2 to resolve the Semantic

Information (SI), and Total Information (TI) hypotheses (Section 3.1.2).

The FPGA measurements from Tables 5.1–5.4 in Chapter 5 are analysed in

Section 6.3. These analyses are used to evaluate the veracity of the Semantic

Circuit (SC) and Total Circuit (TC) hypotheses (Section 3.1.3).

Section 6.4 in the second half of this chapter makes further observations on

the data which do not influence the outcome of the hypothesis evaluation. Section

6.5 compares the input encodings for the programs in each model. It also gives

a concrete example of how the size of a program can change in relation to the

density of the encoding system as introduced in Sections 3.1.1 and 3.1.2.
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(b) Calculating the Geometric mean G

Figure 6.1: The formulae for calculating the arithmetic and geometric means

RASP RASP2 RASP3 TM SKI λ-Calculus
Addition 58 9 25 29 16 27

Subtraction 59 59 61 149 113 46
Equality 57 26 27 179 208 117

Multiplication 126 59 60 223 8 15
Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9
Semantics Size 556 585 587 335 291 515
AR PI Mean 93.83 68.83 73 218.50 153.83 73.83
AR TI Mean 649.83 653.83 660 553.50 444.83 588.83

AR PI Geo Mean 86.71 48.95 59.27 167.15 51.52 40.62
AR TI Geo Mean 648.84 652.18 658.53 538.68 410.48 584.09

Table 6.1: The program and semantic sizes of the AR functions for each model.

6.1 Overall Trends

This section provides general comments on how the information contents of the

programs relate to one another. The programs are grouped into sets and their Pro-

gram Information (PI), and Total Information (TI PI + Semantics size) amounts

are compared across models. The sets include the arithmetic (AR) functions,

the List (L) functions, arithmetic and list (AR+L), and the arithmetic, list, and

universal functions (All).

We compute the arithmetic and geometric means for the PI and TI of each

grouping by using the standard formulae in Figure 6.1. The difference between

two arithmetic means is an indicator of the absolute difference of characters be-

tween the sets of data. The difference in geometric means is more of an indicator

of the percentage difference between datasets.

6.1.1 Arithmetic

Table 6.1 shows all of the program, semantics, and mean sizes for the arith-

metic functions. The imperative models (the RASPs and TM) steadily grow in
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the amount of information required to express the addition function up to the

exponentiation function. This growth is expected as the functions increase in

complexity and involve more nested loops.

On the other hand the functional models (SKI and λ-calculus) have large sub-

tractive functions (subtraction, division, and equality), but comparatively small

combinative functions (addition, multiplication, exponentiation). The reason for

this is to do with how the λ-calculus and SKI represent numerals. The higher

order functionality of the Church numerals enables very succinct combinative

functions. For example, the exponentiation function directly applies one numeral

to another.

RASP numerals are defined as naturals and the INC and DEC instructions

are defined to operate over these in the semantics. The SKI and λ-calculus so

not have such defined structures and operators in their semantics, which results

in the numerals and operations such as decrementation needing to be defined in

each expression which wants to use them.

Section 2.3.2.1 describes why the λ-calculus PRED function is larger than

SUCC. In requiring a “program level” definition for PRED, expressions which use

it are inflated in size compared to expressions which do not. If numerals and

SUCC/PRED were defined in the semantics of the λ-calculus and SKI, it would

be expected that the (PI) of the functions would normalise to look something

more like the RASP figures.

The means show that the PI for the expressive models (RASPs and the λ-

calculus) is lower than for the less expressive models. However TI of the less

expressive models is overall lower than that of the more expressive ones. For

these arithmetic functions, it appears that the extra information in the semantics

of the RASPs and λ-calculus outweighs the average information saving for their

programs. The implementations of the division and exponentiation functions in

the TM require more TI than their RASP and λ-calculus contemporaries. This

is also true for the SKI division TI.
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RASP RASP2 RASP3 TM SKI λ-Calculus
List Membership 271 129 131 379 362 208

Linear Search 281 132 135 779 385 236
Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460
Bubble Sort 557 549 297 1611 1903 550

Semantics Size 556 585 587 335 291 515
L PI Mean 304.4 243.6 195.4 863.4 847.4 317.6
L TI Mean 860.4 828.6 782.4 1198.4 1138.4 832.6

L PI Geo Mean 276.67 202.98 181.93 757.23 588.18 278.13
L TI Geo Mean 850.31 814.57 778.72 1123.07 953.07 817.85

Table 6.2: Program and semantic sizes of the list functions for each model

RASP RASP2 RASP3 TM SKI λ-Calculus
Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084
Semantics Size 556 585 587 335 291 515

Table 6.3: Program sizes of the universal functions for each model

6.1.2 List

Table 6.2 shows the sizes and means of the programs and semantics for the list

functions. The data for this function set is more homogeneous across the models

in comparison to the arithmetic function sizes. Here the difference in size from

one function to the next is roughly correlative across all models.

Sections 4.3.3 and 4.3.4 imply that reversal of a list by building a new list

is a simpler function than reversal by swapping elements in place. The PIs here

support that implication as there is a jump in the required amount of information

for all of the models.

The means for these functions show that the more expressive models have now

have a lower PI and TI amounts than the less expressive models. The RASP3 has

the lowest PI and TI of all of the models and has the largest semantics. The TM

has the highest PI and TI despite having larger semantics than the SKI calculus.

6.1.3 Universal

Table 6.3 shows the sizes of the universal RASP and Turing machines for each

model and their semantics. The data shows that models with larger semantics (>

500) require roughly double the amount of information to represent the URASP
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compared with representing the UTM. In contrast, less expressive models require

significantly more information. This is evidence that there is a fundamental

difference between the expressive models and less expressive models in how they

manage the memory structures of the TM and RASP. This topic is covered in

further detail in Section 6.4.

6.2 Grouped Analysis

This section groups the models so that relations between them can be observed

and evidence can be gathered to confirm or refute the SI and TI hypotheses. The

SI and TI hypotheses are defined in Section 3.1.2 and are recapped here.

The Semantic Information (SI) hypothesis states that: “For two Turing Com-

plete models; if model A has more semantic information (larger semantics) than

model B, the average size of succinct programs (where at least one program

utilises the extra semantic information) written for model A will be lower than

the average for model B.” (Section 3.1.2). This ‘strong’ hypothesis is broken

down into three sub-hypotheses which state the above relation for models for the

same family, models in the same paradigm, and models in different paradigms.

The Total Information (TI) hypothesis states that: “For two Turing Complete

models X and Y , where X has more semantic information than Y ; As the size

and complexity of a program increases, the average total information (TI) of a

succinct implementation in X will decrease relative to the total information of

a succinct implementation in Y .” (Section 3.1.2). Again, there are set of sub-

hypotheses to cover the paradigmal possibilities. Figure 6.2 presents the hierarchy

of hypotheses and the predicted nature of the relationships. Section 3.1.2 gives

the exact wordings of the sub-hypotheses and predictions.

Tables 6.4, 6.5, and 6.6 show: all of the size measurements for the programs

and semantics of all the models, the arithmetic means of the groupings, and the

geometric means of the groupings. These tables shall all be referred to throughout

the analysis.
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1 Strong Semantic Information hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) prediction.

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM prediction
1.3. λ-calculus vs SKI prediction

1c. SI across paradigms hypothesis.

1.4. Across paradigms prediction

2. Strong Total Information hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM
2.3. TI λ-calculus vs SKI

2c. TI across paradigms hypothesis

2.4. TI across paradigms prediction

Figure 6.2: Breakdown of the Strong SI and TI hypotheses

RASP RASP2 RASP3 TM SKI λ-Calculus
Addition 58 9 25 29 16 27

Subtraction 59 59 61 149 113 46
Equality 57 26 27 179 208 117

Multiplication 126 59 60 223 8 15
Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9
List Membership 271 129 131 379 362 208

Linear Search 281 132 135 779 385 236
Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460
Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584
Universal RASP 1239 1209 1231 14414 9554 1084
Semantics Size 556 585 587 335 291 515

Table 6.4: The combined program and semantic sizes for each model
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RASP RASP2 RASP3 TM SKI λ-Calculus
AR PI 93.83 68.83 73 218.50 153.83 73.83
AR TI 649.83 653.83 660 553.50 444.83 588.83
L PI 304.4 243.6 195.4 863.4 847.4 317.6
L TI 860.4 828.6 782.4 1198.4 1138.4 832.6

AR + L PI 189.55 148.27 128.64 511.64 468.91 184.64
AR + L TI 745.55 733.27 715.64 846.64 759.91 699.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54
All TI 858.85 847.38 834.69 1974.38 1622.15 799.54

Table 6.5: The arithmetic means of the program groupings

RASP RASP2 RASP3 TM SKI λ-Calculus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62
AR TI 648.84 652.18 658.53 538.68 410.48 584.09
L PI 276.67 202.98 181.93 757.23 588.18 278.13
L TI 850.31 814.57 778.72 1123.07 953.07 817.85

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39
AR+L TI 733.70 721.54 710.74 752.26 601.98 680.66

All PI 193.22 130.78 137.21 492.16 265.52 134.54
All TI 814.65 802.48 793.38 1002.53 841.93 754.17

Table 6.6: The geometric means of the program groupings

6.2.1 RASP Machines

The RASP machines are a family of models. They have a common core of model

semantics which share a number of functions. They each differ in how they modify

the value in their accumulator: RASP uses INC and DEC, RASP2 has a direct

ADD x and SUB x, and RASP3 has an indirect ADD x and SUB x.

The RASP machines are relevant in the resolution of SI/TI within family

sub-hypotheses. The vanilla RASP machine has the smallest semantics, followed

by the RASP2, and then the RASP3 (Table 6.4). By the SI and TI within

family hypotheses, it is therefore expected that the instruction counts (Table

6.7), character counts (Table 6.4), and means (Tables 6.5–6.6) follow the trend

where the RASP3 counts grow slower than the RASP2, which in turn grow slower

than the RASP counts.

RASP machine sizes grow according to the value 2n, where n is the number of

bits that the machine can hold in each register. The size of the machines memory

and maximum natural number which can be represented is therefore 2n for an

n-bit machine. A program fits into the memory if there is at least one register
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Program RASP RASP2 RASP3
Addition 17 4 6

Subtraction 18 22 22
Equality 19 9 11

Multiplication 32 24 24
Division 42 45 45

Exponentiation 51 43 40
List Membership 71 34 31

Linear Search 87 36 35
New List Rev 57 45 43
In Place Rev 73 78 77
Bubble Sort 131 127 123

Universal TM 200 148 137
Universal RASP 313 292 283
Arithmetic Mean 85.46 69.76 67.56
Geometric Mean 57.99 40.79 41.47

Table 6.7: Registers used by the various RASP programs

available to fit each instruction/datum in the program starting from register

3. Unused registers are padded with the HALT instruction (0) and can be, in

principle, utilised by the program for storage, but the program at initialisation

does not directly write to or read from the registers.

Table 6.7 shows the number of utilised registers for each program in each

RASP machine. For the arithmetic functions, the RASP2 uses fewer registers on

average than the RASP3 and RASP. However for the list functions, the RASP3

requires fewer registers on average than the RASP2. This trend continues for

the universal functions. On average, the RASP3 requires less registers than the

RASP2, which requires less registers than the RASP. This data fits Prediction

1.1 (Figure 6.2) where the model with the most SI requires the least number of

registers/instructions.

Referencing the RASP columns of Table 6.5. The arithmetic means of the

program groupings show the RASP2 with the overall lowest PI for the arithmetic

functions, the RASP with the overall lowest TI of the arithmetic functions, and

the RASP3 with the overall lowest PIs and TI for every other group. The RASP3

rankings for L, AR+L, and All is closely followed by RASP2, and then followed

by the RASP.

The geometric means (RASP columns, Table 6.6) show the PI of the RASP2
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as the lowest for all sets excluding the L set. The RASP3 PI is the overall lowest

for the L set and the TI is the overall lowest for every set except the AR TI set.

The RASP has the lowest AR TI for the arithmetic and geometric means.

The arithmetic and geometric mean data fits Predictions 1.1 and 2.1. These

state that the RASP3 will eventually have the lowest average PI and TI respec-

tively. The TI of the RASP is the lowest of the three models for the arithmetic

function grouping, but as the set of tested functions grows, the RASP3 becomes

the model with the lowest TI.

With the exception of the PI geometric means for each category (PI rows,

Table 6.6), which show the RASP2 using less PI than the RASP3, these expec-

tations have been met and the data is in favour of confirming sub-hypotheses 1a

and 2a (Figure 6.2).

With the exception of the above geometric PI measure, Prediction 1.1 has

been fulfilled by the “All PI” row of Table 6.5 showing RASP3 with the lowest

PI of the RASPs. The utilised register average of Table 6.7 also substantiates

this. The contrary geometric mean figures show the RASP2 as having the least

utilised registers in Table 6.7, and lowest PI in Table 6.6. This carries less weight

in our minds as the geometric mean is weighted very heavily towards the shorter

arithmetic functions. The RASP3 requires fewer characters to implement the

functions of Table 6.4 than the RASP2, (3249 vs 3439).

Prediction 2.1 has also been fulfilled by as the average TI of the RASP3 is

the lowest of all of the RASPs, and the TI of the RASP is the greatest. This

relationship holds for both the arithmetic and geometric means.

This analysis concludes that the data is consistent with predictions 1.1 and

2.1, and therefore we confirm sub-hypotheses 1a and 2a; SI/TI within family.

6.2.2 RASP vs TM

Comparisons of the RASP and TM models seeks evidence for the SI/TI within

paradigm sub-hypotheses (hypotheses 1b and 2b) fully stated in Section 3.1.2.

To paraphrase; the SI within paradigm hypothesis predicts that there is an in-

verse size relationship between semantics size and program size for models of the

same paradigm. The TI within paradigm hypothesis states that as a program or
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programs grows in size and complexity, the average TI (SI+PI) of an expressive

model implementing these programs reduces relative to the average TI of a less

expressive model in the same paradigm.

This section compares the RASPs and TM to gather evidence for the imper-

ative paradigm. Section 6.2.3 also gathers evidence for these hypotheses, but in

the functional paradigm using the SKI and λ-calculus.

The Turing machine semantics are smaller than the semantics of the RASP

machines. We therefore expect to see (Predictions 1.2, 2.2) that the TM produces

larger program on average than the RASP. We also expect that for some of the

simpler programs, the TI of the TM is lower than that of the RASPs, but as the

set of programs grows the TI of the RASPs drops to below that of the TM.

The program sizes (RASP and TM columns, Table 6.4 show that the average

program size for the TM is larger than those for the RASP. The only exception

to this is the addition program. The means in Tables 6.5 and 6.6 substantiate

this with the PI rows. The average PI of the TM in every category is higher than

that of the RASPs. This data supports the SI within paradigm sub-hypothesis

(1b).

Turning attention to the TI within paradigm sub-hypothesis, we consider the

TI means of Tables 6.5 and 6.6. The TI means for the TM implementing the AR

functions is lower than the TI means of the RASPs. However as more functions

are introduced: L, AR+L, and All; the TIs of the RASPs end up lower than

the TIs of the TMs. This is substantiating evidence for the TI within paradigm

sub-hypothesis as it satisfies Prediction 2.2.

This analysis is consistent with our Predictions 1.2 and 2.2, which support

the SI/TI within paradigm sub-hypotheses. The SI/TI within paradigm sub-

hypotheses appear to be confirmed with respect to the RASP and TM.

6.2.3 SKI vs λ-calculus

Like the RASP vs TM comparison above in Section 6.2.2, this analysis aims to find

evidence supporting, or contradicting, the SI/TI within family sub-hypotheses

(Section 3.1.2, hypotheses 1b and 2b. If these hypotheses are correct, the rela-

tionship between the SKI and λ-calculus information sizes will broadly mirror the
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observed relationship between the TM and RASP.

The SKI semantics are smaller than those of the λ-calculus so it is expected

that the average size of SKI programs is larger than that of the λ-calculus (by the

SI within paradigm hypothesis). It is also expected that for some of the simpler

programs, the TI of the SKI is lower than that of the λ-calculus, but as the set

of programs grows the TI of the λ-calculus drops to below that of the SKI.

Like the resolution of the SI hypothesis with the RASP and TMs, the mean

program sizes from Tables 6.5 and 6.6 (SKI and λ-calculus columns) show the

PI means of the λ-calculus to be lower than that of the SKI. The measurements

from Table 6.4 substantiate this, with the exponentiation function as the only

exception to the trend. The SI within paradigm sub-hypothesis (1b) is therefore

supported by this data.

Evidence for the TI within paradigm sub-hypothesis can be found in the mean

Tables 6.5 and 6.6. For the arithmetic means (Table 6.5), the TI figures for the

AR set shows that the SKI is lower than that of the λ-calculus, but as other sets

get introduced, the TI of the λ-calculus returns to below that of the SKI.

This is almost a mirroring of the results of the RASP and TM comparisons.

However, the geometric TI means of Table 6.6 show the mean SKI TI diverging

from the λ-calculus at a slower rate. The RASP and TM diverged after the AR

set, but the SKI and λ-calculus diverge after the AR+L set of functions.

The SKI and λ-calculus program sizes are highly correlated, especially con-

sidering that the SKI programs are derived from the λ-calculus via bracket ab-

straction (Section 2.3.2.2). Therefore it makes sense that it takes more programs

to show a separation in program size for the SKI/λ-calculus than for the RASP

and TM which are not derived from one another.

The arithmetic and geometric means therefore support the TI within paradigm

sub-hypothesis (hypothesis 2b, Section 3.1.2). Along with the analysis of the

program size means, both the SI and TI sub-hypotheses are supported by the

data of the SKI and λ-calculus. Both the evidence for this analysis, and the

RASP/TM analysis (Section 6.2.2) are briefly reiterated in Section 6.2.8 where

the SI/TI within paradigm hypotheses are resolved.
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6.2.4 RASP vs SKI

The RASP vs SKI analysis produces evidence for the SI/TI across paradigms

sub-hypothesis (hypotheses 1c and 2c). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semantics and the average size of

programs which holds when two models from different paradigms are compared

(Section 3.1.2).

Table 6.4 (RASP and SKI columns) shows that the SKI calculus has a smaller

set of semantics than any of the RASP machines. It also shows that the SKI

programs for the combinative AR functions (addition, multiplication, exponenti-

ation) are smaller than any of the RASP programs. The higher-order functionality

of the Church numerals allows the SKI (and λ-calculus) to produce very concise

combinative AR functions.

As a result of this, the geometric “AR PI” mean (Table 6.6) favours the SKI

over the RASPs. The “L PI” geometric mean for the SKI is much larger than

that of the RASP, and this extra information pushes the means in favour of

the RASP machines. The “AR+L PI” geometric means for the RASP is lower

than the corresponding mean for the SKI. The gap widens when the universal

machines are introduced to the test set. The arithmetic means (Table 6.6) are

not as influence by the small combinative functions as the geometric mean, so

they show the RASPs have less PI than the SKI in all program sets.

This evidence conforms to the SI within paradigm hypothesis, and is in line

with prediction 1.4 (Section 3.1.2) because the larger RASP semantics result in

smaller programs on average compared to the SKI.

The TI across paradigms sub-hypothesis (2c) states that as a program or

programs grows in size and complexity, the average TI (SI+PI) of an expressive

model implementing these programs reduces relative to the average TI of a less

expressive model in a different paradigm (Section 3.1.2).

The arithmetic TI means in Table 6.5 show that the SKI has a lower TI than

the RASPs for the AR functions. As more functions are introduced however,

the TI of the RASPs drops to below the TI of the SKI. It takes longer for the

geometric means to diverge (RASP and SKI columns, Table 6.6). The “AR TI”

and “AR+L TI” means show that the SKI requires less TI on average than the
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RASPs. Including the universal machines also

The data from this analysis supports the SI/TI across paradigms hypotheses.

For these hypotheses to be confirmed though, analysis has to be made of the

RASP vs λ-calculus (Section 6.2.5), TM vs SKI (Section 6.2.6), and TM vs λ-

calculus (Section 6.2.7).

6.2.5 RASP vs λ-calculus

The RASP vs λ-calculus analysis produces evidence for the SI/TI across paradigms

sub-hypothesis (hypotheses 1c and 2c). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semantics and the average size of

programs which holds when two models from different paradigms are compared

(Section 3.1.2).

The RASP machines all have larger semantics than the λ-calculus (Table 6.4)

so if the SI hypothesis were to hold, it is expected that the programs in the RASPs

are smaller on average compared to those in the λ-calculus. As with the SKI,

the λ-calculus has small combinative arithmetic functions, and large subtractive

functions.

The RASP and λ-calculus columns of Table 6.5 show that the λ-calculus uses

less PI for the AR functions, than the RASP and RASP3 but more than the

RASP2. For the “AR + L PI” function set, the RASP2 and RASP3 sets use less

PI than the λ-calculus. Adding the universal functions ranks the RASPs and

λ-calculus in terms of required PI as: RASP3 < RASP2 < λ-calculus < RASP.

This analysis contradicts the SI across paradigms hypothesis. The vanilla

RASP has more semantic information than the λ-calculus, so by Prediction 1.4

(Section 3.1.2) we expect to see that the λ-calculus requires more PI than the

RASP. This is not the case. And from Table 6.8 we can see that the gap between

the PIs shrinks from AR to AR+L, but widens when the universal functions are

included. The relationship between the PIs of the RASP and λ-calculus are too

complex to be simply characterised by the SI within paradigms hypothesis.

The TI across paradigms sub-hypothesis (2c) states that as a program or

programs grows in size and complexity, the average TI (SI+PI) of an expressive

model implementing these programs reduces relative to the average TI of a less
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RASP λ-calculus Difference
AR PI 93.83 73.83 20

AR+L PI 189.55 184.64 4.9
All PI 302.85 284.54 18.30

Table 6.8: Difference between RASP PI arithmetic means and the λ-calculus
means

expressive model in a different paradigm (Section 3.1.2).

Because the λ-calculus has smaller semantics, Prediction 2.4 (Section 3.1.2)

sets out the expectation of the RASPs requiring less TI to represent all of the

functions. From Tables 6.5 and 6.6, this is not the case at all. The TI measure-

ments of the λ-calculus implementations are consistently lower than any of the

RASP measurements. We conclude that the SI and TI across paradigms hypothe-

ses (1c and 2c) with respect to the RASPs and λ-calculus cannot be confirmed.

The data here does not conform to the prediction that the λ-calculus will have a

higher mean PI and TI than the RASPs. Indeed, the difference between the PI

and TI of the models fluctuates as more sets of programs are compared, with no

clear relationship which can be explained to fit the hypothesis.

6.2.6 TM vs SKI

The TM vs SKI analysis produces evidence for the SI/TI across paradigms sub-

hypothesis (hypotheses 1c and 2c). The SI sub-hypothesis states that there is

an inverse relationship between the size of the semantics and the average size of

programs which holds when two models from different paradigms are compared

(Section 3.1.2).

The TM has more semantic information than the SKI, (Table 6.4) so it is

expected that the TM will require less PI on average than the SKI to compute

the functions.

Tables 6.5 and 6.6 show that the mean PI measurements for the SKI are

exclusively lower than the PI measurements of the TM. These measurements lend

no evidence to the SI across paradigms hypotheses. Indeed, this data contradicts

the hypothesis, much like the data from the RASP and λ-calculus comparison in

Section 6.2.5.

The TI across paradigms sub-hypothesis (2c) states that as a program or
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programs grows in size and complexity, the average TI (SI+PI) of an expressive

model implementing these programs reduces relative to the average TI of a less

expressive model in a different paradigm (Section 3.1.2).

Again, Tables 6.5 and 6.6 demonstrate that the TI of the SKI is lower than the

TI of the TM for both arithmetic and geometric means in all program sets. The

analysis here of the SKI measurements against the TM measurements contradict

the SI/TI across paradigms hypotheses (1c and 2c). This is very similar to the

examination of the λ-calculus and RASP in Section 6.2.5

6.2.7 TM vs λ-calculus

The final comparison which we draw in this part of the analysis is between the

TM and λ-calculus. This analysis serves to find evidence for the SI/TI across

paradigms hypothesis (hypotheses 1c and 2c).

The TM semantics are smaller than the λ-calculus semantics (Table 6.4), so

it is expected, by the SI across paradigms hypothesis, that the average size of

programs in the λ-calculus is lower than the average size of programs in the TM.

The means in Tables 6.5 and 6.6 show that the PIs of the λ-calculus functions

are lower than the PIs of the TMs in all function sets. This behaviour fits with

prediction 1.4, much like the RASP and TM comparison in Section 6.2.2.

The TI across paradigms sub-hypothesis (2c) states that as a program or

programs grows in size and complexity, the average TI (SI+PI) of an expressive

model implementing these programs reduces relative to the average TI of a less

expressive model in a different paradigm (Section 3.1.2).

The λ-calculus has larger semantics of than the TM, so the TI arithmetic and

geometric means (Tables 6.5 and 6.6) of the AR function set show that the TM

requires less TI than the λ-calculus. As the function sets expand, the TI required

for the λ-calculus reduces relative to the TI required for the TM.

Prediction 2.4 is also satisfied by this behaviour. The λ-calculus and TM

comparison produces evidence with supports both of the SI/TI across paradigms

hypotheses.
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1 Strong Semantic Information hypothesis

1a. SI within family. For: 6.2.1
1b. SI within paradigm. For: 6.2.2, 6.2.3
1c. SI across paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

2. Strong Total Information hypothesis

2a. TI within family. For: 6.2.1
2b. TI within paradigm. For: 6.2.2, 6.2.3
2c. TI across paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

Figure 6.3: Hypotheses and evidence for each

6.2.8 The SI and TI Hypotheses

Figure 6.3 lists the evidence gathered for each sub-hypothesis and the section

where that evidence is found. The semantic information (SI) hypothesis predicts

that if two models have differing semantic sizes, the model with more semantic

information will require less information to implement succinct programs on av-

erage compared to the model with less semantic information. At least one of the

programs should utilise the extra operators afforded by the larger semantics in

order to see the benefit (Section 3.1.2).

Sub-hypotheses 1a (family) and 1b (within paradigm) are confirmed with this

set of PI data. The RASP data shows that over the whole set of compared

functions, the RASP3 uses less information on average than the RASP2 and

RASP. The RASP3 has the largest semantics, while the RASP has the smallest

(Section 6.2.1).

The within paradigm hypothesis is supported by the comparison of the size

of λ-calculus expressions versus the size of SKI expressions (Section 6.2.3). In

the imperative paradigm, the average TM PI versus the average RASP PI shows

that the TM programs are typically larger than the RASP ones (Section 6.2.2).

The third sub-hypothesis, hypothesis 1c requires that four comparisons are

made: RASP and SKI, RASP and λ-calculus, TM and SKI, and TM and λ-

calculus. Unlike the other two sub-hypotheses, the comparison across paradigms

reveals evidence contrary to the hypothesis.

Over this test set, an imperative model compared with a functional one with

approximately the same amount of Semantic Information will show that the func-
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tional model has a lower average PI than the imperative model.

The RASP and λ-calculus comparisons show that the λ-calculus requires less

PI than the RASPs, despite the fact that the RASPs have more SI (Section

6.2.5). Similarly, the TM has more SI than the SKI, but the SKI still has smaller

programs on average (Section 6.2.6).

The Strong Semantic Information hypothesis is not confirmed. The within

family and within paradigm hypotheses have evidence enough to confirm them.

The across paradigms hypothesis has evidence for it, but more importantly, has

strong evidence against it.

The Total Information (TI) hypothesis predicts that as the size and complexity

of a program, or programs, increases; the TI (SI + PI) of succinct implementations

of the programs in a model which is more expressive will reduce relative to the

TI of the implementations in a model which is less expressive (Section 3.1.2).

Much like the SI hypothesis, the TI hypothesis has support from the within

family, and within paradigm hypotheses (2a and 2b). The RASP semantic sizes

are ordered as RASP<RASP2<RASP3. When the entirety of the program set

is considered, the TI sizes of the RASPs are RASP3<RASP2<RASP which fits

the prediction and confirms the within family hypothesis (Section 6.2.1).

The within paradigm hypothesis is supported by the evidence of the TM vs

RASP and λ-calculus vs SKI comparisons. While the smaller models had a lower

TI for the AR set of functions, as the set was augmented with the list, and then

universal, functions, the TI shifted in favour of the larger models. Section 6.2.2

compared the RASP with the TM while Section 6.2.3 compared the λ-calculus

and SKI.

Generalising TI to across paradigms appears to fall into the same trouble as

the SI corresponding hypothesis. Comparing two models of differing paradigms

with roughly the same amount of SI will favour the functional model as the

comparisons of the RASP and λ-calculus (Section 6.2.5), and SKI vs TM (Section

6.2.6) suggest.

Like the SI hypothesis, sub-hypotheses 2a and 2b are confirmed, while sub-

hypothesis 2c is not. The strong TI hypothesis in this case cannot be confirmed.
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3. Semantic Circuit hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs.

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Total Circuit hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs.

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

Figure 6.4: Breakdown of the FPGA hypotheses

6.3 FPGA Analysis

This section provides an analysis of the FPGA measurements with respect to

evaluating the Semantic Circuit (SC) size and Total Circuit (TC) size hypothe-

ses. This section provides an overview of the measurements. Section 6.3.1 covers

comparisons of the RASP machines to find evidence for the SC and TC hypothe-

ses. Section 6.3.2 compares the RASP implementation to the TM implementation

for more evidence. Section 6.3.3 uses the evidence of the aforementioned sections

to evaluate the hypotheses.

Figure 6.4 breaks down the SC and TC hypotheses. Like the SI and TI hy-

potheses, there are sub-hypotheses defined. Because only the RASPs and TMs are

defined in the FPGA, there are no “across paradigms” hypotheses. The Semantic

Circuit hypothesis states that there is a direct relationship between the SI and

the size of the circuit to represent the semantics. Simply put, SI is proportional

to SC.

The Total Circuit hypothesis is analogous to the TI hypothesis. It states that

for two models A and B, where A has a larger semantic circuit than B. As the set

of tested programs grows in size and complexity, the average total implementation

size (number of FPGA components required to implement the semantics and

program) for A will decrease relative to the average total implementation size for

B.

In Chapter 5, the RASP and TM models were realised in VHDL and synthe-
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Figure 6.5: RASP and TM Total Information contents

sised down to registers, flip-flops (FFs) and look up tables (LUTs). Synthesis of

VHDL to FPGA components not only converts programs to electronic compo-

nents, but also the semantics of the model. In essence, an instance of the machine

is constructed and loaded with the program and data ready to be executed.

If the number of required FPGA components can be used to predict the TI of

programs in models, then it is expected that the component counts correlate with

the TI figures of the programs/models. Figure 6.5 plots the TIs for the RASPs

and TM from the figures presented previously in this chapter.

The Slice Registers (Table 6.9, Figure 6.6) are individual memory locations

used by the models. Both the RASP and TM use registers (which are configured

to be flip-flops) to store state information of the model. Various counters within

the model keep track of which instructions are to be executed in each clock cycle,

and these counters are stored in slice registers.

Furthermore, the RASPs store their programs in slice registers, the number

of which depend on the memory size of the particular machine. The RASP plots

in Figure 6.6 exhibits similarities in shape with the TI RASP plots of Figure

6.5. These similarities can be interpreted as; the number of slice registers used
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RASP RASP2 RASP3 TM
Addition 28 21 25 14

Subtraction 28 28 29 15
Equality 28 24 25 16

Multiplication 32 28 29 19
Division 32 32 33 19

Exponentiation 32 32 33 20
List Membership 37 32 33 22

Linear Search 37 32 33 22
Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23
Bubble Sort 41 41 38 24

Universal TM 41 41 42 23
Universal RASP 46 45 46 19

Table 6.9: Slice registers for programs and models on FPGAs

 0

 10

 20

 30

 40

 50

Add Sub Eq Mult Div Exp Mem Search RL SRL Bsort UTM URASP

R
eg

is
te

rs

Program

Slice Registers to Implement Programs + Semantics on an FPGA

RASP
RASP2
RASP3

TM

Figure 6.6: Slice registers for RASPs and TM
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RASP RASP2 RASP3 TM
Addition 66 51 70 13

Subtraction 66 70 78 13
Equality 66 60 70 16

Multiplication 74 70 78 20
Division 74 79 91 22

Exponentiation 74 79 91 30
List Membership 81 79 91 44

Linear Search 81 79 91 49
Reverse List 74 79 91 32

Stateful Rev List 81 86 102 80
Bubble Sort 90 96 102 150

Universal TM 89 96 112 195
Universal RASP 92 108 123 1019

Table 6.10: LUTs for programs and models on FPGAs

RASP RASP2 RASP3 TM
Slice Registers 0.795 0.754 0.808 0.00

LUTs 0.706 0.742 0.807 0.980
Flip-Flops 0.776 0.754 0.808 -0.076

Table 6.11: The Pearson correlation coefficient of the TI vs the components

to implement a RASP program on an FPGA is an indicator of the amount of TI

required to implement the program against the semantics. There is no similarities

which can be observed between the TI of the TM and the number of slice registers

used.

The number of LUTs required to implement the RASP and TM programs in

the FPGA is presented in Table 6.10 and plotted in Figure 6.7. These figures

correlate with the TI levels of the TM. This suggests to that, like the slice registers

for RASPs, the number of LUTs is an indicator of the TI of a program written

for a TM.

Table 6.11 shows the Pearson correlation coefficient between the TI figures

and the various component counts. As we have noted above, the number of slice

registers do not correlate at all with the TI counts of the TMs. However, the

correlation coefficient of the number of LUTs in the TM implementation is 0.984

which is a very high correlation and suggests a causal link.

There is also a correlation between the TI of the RASP and the number of

slice registers. This correlation decreases slightly for the RASP2, and increases
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Figure 6.7: LUTs for RASPs and TM

again for the RASP3.

LUTs strongly correlate with the TI of TMs, but are not a perfect indicator.

The TM to find the membership of a list is 38 tuples in size and 379 characters

long. The list reversal TM is 50 tuples in size and 499 characters long. The bubble

sort is 140 tuples/1611 characters and the universal machine is 113 tuples/1270

characters. The number of LUTs to implement the membership TM is 44, as

opposed to 32 for the reversal TM. Similarly, it takes 150 LUTs to implement the

bubble sort and 195 for the UTM. The number of components for each pairing

is at odds with the number of tuples and characters required. If there were a

direct correlation between the number of LUTs and number of tuples, then these

relations would be switched.

The unknown variable in the FPGA compilation process is the optimisation

stage. The optimiser is set up for a much compression as possible, and it is

conceivable that the tuples for the bubble sort and reversal can be combined into

a smaller overall package. New work focused on this question would bring insight

as to why.

Despite the inconsistencies regarding the membership, reversal, bubble sort,
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RASP RASP2 RASP3 TM
Addition 28 21 25 14

Subtraction 28 28 29 15
Equality 28 24 25 16

Multiplication 32 28 29 19
Division 32 32 33 19

Exponentiation 32 32 33 20
List Membership 37 32 33 22

Linear Search 37 32 33 22
Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23
Bubble Sort 41 41 38 24

Universal TM 41 41 42 23
Universal RASP 46 45 46 18

Table 6.12: FFs for programs and models on FPGAs

and the UTM; we can be reasonably certain that the TI of a TM implementation

affects the corresponding LUT count of that implementation in a FPGA.

The number of LUTs in an implementation does not appear to directly link

the RASP machines to their TI, but is useful when the RASPs are compared

against each other later in this section.

The slice registers on the FPGA are versatile. They can be configured as

and/or logics, latches, latch-thrus, or D-type flip-flops [108, 13]. With the excep-

tion of the universal RASP in the TM, slice registers in these implementations

have been exclusively used to implement flip-flops. The table and plot for the

flip-flops are very similar to the table and plot for the slice registers, so what

has been said about the slice registers applies here. The FF counts are not an

indicator of the TI of TM implementations, and have a correlation coefficient on

par with the slice registers for the RASPs.

For this data set, the slice registers (Table 6.9) and flip-flop counts (Table

6.12) are almost identical. But if there was more variety in the configurations

for the slice registers, then the number of flip-flops could be a better indicator of

RASP program information as it corresponds to the size of the RASP memory

and state memories. The absolute slice register count would be a better indicator

of TI as it covers not only the program size and state memories, but also the

ancillary logics and latches that a slice register can be used for.

To properly evaluate the Semantic Circuit (SC) hypothesis, the components
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to implement the programs and data are required to be separated from the control

units of the RASP and TM implementations. The RASP FPGA implementations

have highly coupled control units and memory; each semantic rule holds numerous

pre- and post-conditions on the state of the memory. Since the state machine for

the RASPs also performs switches on the data in memory, the memory has to

be able to hold at least eight values for the eight instructions of the machine.

Furthermore, any value in the memory could be an address, so the memory must

be addressable by eight distinct values.

This inherent dependency between data and memory size restricts us to a

lower bound on memory size for RASPs at eight. Any lower and the machine

either cannot address memory locations, or the synthesis tool optimises out parts

of the RASP state machine that cannot be run because the required instruction

cannot be held in memory.

The compromise is a flat comparison of the three RASP machines with mem-

ories of size eight. The FPGA FPGA utilisation report provided by the compiler

shows the number of components to implement the control module of the models.

Table 6.13 displays the number of components required to implement the
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Slice Registers LUTs FFs
RASP 21 48 21
RASP2 21 50 21
RASP3 22 63 22

TM 10 7 10

Table 6.13: Components to implement semantics

minimal state machines (and memories) of the models. The compiler and/opti-

miser gives a breakdown of the components required to implement the control

and memory blocks of the circuit individually. The RASPs were all measured

with an empty memory of size 8, and the TM had a single tape cell and a single

tuple in the symbol table.

6.3.1 RASPs on FPGAs

The SC hypothesis states: “Consider two models A and B. If model A has larger

semantics than model B, the FPGA circuit which realises the semantics of A

will be larger than the FPGA circuit for B.” (Section 3.1.3). In essence, as

the semantics get more expressive, more LUTs, flip-flops, and slice registers are

required to represent the semantics in hardware.

The semantics of the vanilla RASP are smaller than the semantics of the

RASP2, which in turn are smaller than those of the RASP3. The data in Tables

6.9 – 6.12 is consistent with prediction 3.2, and supports sub-hypotheses with

respect to the SC within family (3a), and SC within paradigm (3b).

The slice registers/flip-flop counts (Tables 6.9 and 6.12) show that the RASP

and RASP2 are equal in size, with the RASP3 only requiring one extra slice

register.

The LUT counts in Table 6.10 show that the RASP2 semantics are larger

than the RASP semantics while the RASP3 semantics are larger than the other

two. This falls into line with what would be expected given the relationship of

the SOS sizes. Because the LUTs primarily implement random logic and slice

registers are typically purposed for state variables/memories, there is more of an

inclination to weigh the LUT count over the register count with respect to the

rules of the semantics. Prediction 3.2 is therefore satisfied, and sub-hypothesis

SC within family (3a) is confirmed.
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RASP RASP2 RASP3
Slice R LUTs Slice R LUTs Slice R LUTs

Arith Mean Arithmetic 30 70 27.5 68.17 29 79.67
Geo Mean Arithmetic 29.93 69.89 27.2 67.38 28.81 79.2

Arith Mean List 36.80 81.40 34.8 83.80 35 95.4
Geo Mean List 36.69 81.24 34.62 83.55 34.92 95.25

Arith Mean Arithmetic + List 33.09 75.18 30.82 75.27 31.73 86.82
Geo Mean Arithmetic + List 32.83 74.84 30.35 74.30 31.44 86.13

Arith Mean All 34.69 77.54 32.69 79.38 33.62 91.54
Geo Mean All 34.28 77.06 32.01 77.99 33.11 90.33

Table 6.14: Arithmetic and geometric means of RASPs on FPGA

The Total Circuit Size hypothesis (TC, hypothesis 4) states: “For two models

A and B, where the circuit implementation of the semantics of A is larger than

the circuit for the semantics of B. As a function grows in complexity, the average

total implementation size of a succinct realisation of the function in model A will

reduce relative to the average for model B.” (Section 3.1.3). The RASP specific

hypothesis is the TC within family hypothesis 4a and prediction 4.1 sets out what

we expect to observe.

Table 6.14 shows the arithmetic and geometric means of the RASP programs.

Unlike the TI Tables 6.5 and 6.6, there is no trend in number of LUTs or slice regis-

ters which shows the RASP3 requiring less components on average than the RASP

or RASP2. Where considering all functions, the TI of the RASPs conformed to

the relation: RASP3<RASP2<RASP, the TC of the FPGA realisations for all

functions is: RASP<RASP2<RASP3 for the LUTs, and RASP2<RASP3<RASP

for the slice registers. This evidence contravenes the TC within family sub-

hypothesis. The reduction in average slice registers provides an indication of

smaller programs for the RASP2 and RASP3 relative to the RASP, but the LUT

relationship remains consistent.

The plots of slice registers and LUTs shed some light on why this is the case.

The slice registers for the programs in Figure 6.6 show the RASP3 and RASP2

following roughly the same plot. The exceptions are the addition function, where

RASP2 uses less memory than the RASP3, and the bubble sort, where RASP3

uses less. The RASP2/3 plots are below the RASP plot when the RASP2/3 use

less memory than the RASP, otherwise they use slightly more.
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The LUTs for the machines (Figure 6.7) also show the RASP2 and 3 following

the same plot, again where the RASP3 has an overhead on top of the RASP2.

The bubble sort, where the RASP3 has a smaller program than the other RASPs,

is slightly reduced but not to the extent where the hypothesis would be considered

confirmed.

The RASP data here is strong evidence for the confirmation of the SC hy-

pothesis (Hypothesis 3) via the within family sub-hypothesis. The analysis also

finds evidence which contradicts the TC hypothesis. The RASP3 having a larger

semantic circuit does not imply that the total number of components required for

programs will be lower than the components required for the RASP2 and RASP

implementations. This evidence contravenes both the within family and within

paradigm hypotheses (4a and 4b).

6.3.2 RASP vs TM

Contrasting the data of the TM against that of the RASPs. If the SC hypothesis

were to hold, we would expect that can find evidence which is predicted by 3.2,

which states that since the TM semantics are smaller than the RASP semantics,

the TM semantic circuit will be smaller also. Table 6.13 shows that the TM

uses less slice registers, LUTs, and FFs to represent the semantics. This satisfies

prediction 3.2 and supports the SC within paradigm sub-hypothesis.

The implementations and character-wise measurements of the various pro-

grams in TM with respect to the RASP measurements (Table 6.4) show that,

excepting addition, the TM programs are larger than any of the RASPS. If the

TC hypothesis holds, then it is expected that the mean number of components

to implement the

The abstract implementations the models in SOS and their associated pro-

grams show the TI of the TM growing rapidly relative to the RASP machines.

With the exception of the addition function, the TI of the TM is greater than

that of the RASPs.

In contrast, the number of components to implement the TMs on the FPGA is

much lower than than of the RASPs. With the exception of the number of LUTs

required to implement the bubble sort, UTM, and URASP, the TM values are

189



Chapter 6. Analysis

3. Strong Semantic Circuit hypothesis

3a. SC within family hypothesis For: 6.3.1
3b. SC within paradigm hypothesis For: 6.3.2

4. Strong Total Circuit hypothesis

4a. TC within family hypothesis Against: 6.3.1
4b. TC within paradigm hypothesis Against: 6.3.2

Figure 6.9: FPGA hypotheses and evidence for each

always lower than the RASP component numbers. The TC within paradigm sub-

hypothesis 4b, like the TC within family sub-hypothesis 4a, cannot be confirmed

by this data.

6.3.3 The SC and TC Hypotheses

Figure 6.9 lists the evidence gathered for each sub-hypothesis and the section

where that evidence is found. The Semantic Circuit (SC) Hypothesis is concerned

with the FPGA realisations of the semantics and programs of the RASP and

TMs. The hypothesis states that if model A has more semantic information (as

measured by the size of the SOS implementation) than model B, then the FPGA

circuit which implements the semantics of model A will be larger than the circuit

to implement the semantics of model B.

This hypothesis is verifiable using the semantics sizes taken from Table 6.13.

For the RASP and Turing machines, the SOS sizes of the semantics follow the

relation: TM<RASP<RASP2<RASP3 (Table 6.4), and this relation is mirrored

in the semantic circuit sizes. The LUTs largely implement the state machines

of the control units, while slice registers are dedicated to state information and

the memories of the machines. From examining the table, the number of slice

registers and LUTs show that the TM has the smallest circuit size (Section 6.3.2),

followed by the RASP, RASP2, and then RASP3 with the largest (Section 6.3.1).

These observations satisfy the within family (3a) and within paradigm (3b)

sub-hypotheses in order to confirm the SC hypothesis.

The TC hypothesis is analogous to the TI hypothesis. The Total Circuit

hypothesis predicts that as the size and complexity of a program, or programs,

increases the total circuit size of a succinct implementation of the program(s) in
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an expressive model will reduce relative to the implementations in a less expressive

model.

This hypothesis is not confirmed at all. Within the RASP family (Section

6.3.1), there is no indication of the average number of LUTs or slice registers re-

ducing relative to the RASP2. The RASP relation sits at RASP<RASP2<RASP3

for average number of LUTs, and RASP2<RASP<RASP3 for slice registers (Ta-

ble 6.14).

Comparing the TM TC size to the RASP TC size (Section 6.3.2) shows that

the total circuit sizes for the RASP tend to be much lower than the total circuit

sizes for the RASPs. Only the bubble sort and universal RASP programs in the

TM require more LUTs than the corresponding RASP programs. As a result, the

TC hypothesis cannot be confirmed.

It should be considered why the TC hypothesis cannot be confirmed for two

models in the same paradigm as the TI hypothesis. The abstract realisations

of the semantics of the models are isolated relative to the programs which are

measured. Once the author of a semantics is satisfied that the semantics are

correct, they are bundled with programs of all sizes to measure and obtain the

TI.

It is clearly practical to do so. A semantics has no regard for size bounds.

If size were to be regarded, a different semantics would be required for each

program unless the programs happened to be the same size as some other. Rather,

structures in the semantics are defined via types – which are sets which can be

bounded or unbounded in size. For instance, the memory of a RASP is defined

as a size 2n list of numbers, with each number between 0 and 2n− 1. The type of

the memory structure is N which denotes the natural numbers. The exponent n

is also a natural number, so the RASP model permits memories of size 20 up to

an arbitrarily large value of n without the need to change the semantics because

set theory permits infinite sets.

The real world is unfortunately not as flexible. The semantics for the FPGAs

are defined with fixed sizes for the RASP memory, TM symbol table, or TM tape

so that the compiler can allocate the appropriate level of resources to represent

these memories or structures. Furthermore, the rules have a less ‘functional’ im-
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RASP RASP2 RASP3 TM
Slice R LUTs Slice R LUTs Slice R LUTs Slice R LUTs

Addition 7 18 0 1 3 7 4 6
Subtraction 7 18 7 20 7 15 5 6

Equality 7 18 3 10 3 7 6 9
Multiplication 11 26 7 20 7 15 9 13

Division 11 26 11 29 11 28 9 15
Exponentiation 11 26 11 29 11 28 10 23

List Membership 16 33 11 29 11 28 12 37
Linear Search 16 33 11 29 11 28 12 42
Reverse List 11 26 11 29 11 28 13 25

Stateful Rev List 16 33 16 36 16 39 13 73
Bubble Sort 20 42 20 46 16 39 14 143

Universal TM 20 41 20 46 20 49 13 188
Universal RASP 25 44 24 58 24 60 9 1012

Table 6.15: Components for programs only on FPGAs

plementation in the FPGA semantics and therefore require the use of temporary

variables which also have to grow in size to correctly store intermediate values of

the execution.

This creates an overhead in the FPGA realisations where the size of the seman-

tics increases proportionally to the size of the program being executed. Assuming

that the semantics sizes in the FPGA realisations are fixed according to Table

6.13, the number of semantic components can be subtracted from the TC compo-

nent values to obtain the program information analogue for the FPGAs in Table

6.15.

The overhead of the semantic growth is rolled into the FPGA program infor-

mations. The list functions in this table show that the program information for

the TM is often higher than that of the RASPs with respect to the number of

LUTs, and very close to the RASPs when considering the slice registers. From

this perspective, if the complexity of the functions were to smoothly grow, the

eventual average TC of the TMs would become lower than that of the RASPs.

The RASP3 has a smaller implementation of the bubble sort than the other

models and this is reflected in the LUT and slice register counts. This shows that

the reduction in the number of required components for the RASP3 implemen-

tation can conceivably outweigh the extra components required for the semantic

overhead. It is hypothesised that given more complex functions, if the RASP3
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implementations were to keep reducing in size relative to the other RASPs as in-

dicated in Section 6.2.1, then the TC size with respect to the RASP2 and RASP

implementations will drop as evidenced by the TI figures.

In conclusion, this analysis finds that the number of a specific component

(LUTS for TM and slice registers for RASPs) is an indicator of the TI relative

to the TI of other programs implemented in that model. Conversely, using said

component counts to analyse TI measurements across models does not work.

A reason for this is the growing overhead of the semantics implemented on the

hardware. In the abstract semantics an infinite set can be designated for all

programs to use, but in these concrete realisations, the sets must be bounded

and have to grow according to the size of the program implemented.

6.4 Further Observations

This section discusses the apparent phase transition of information between the

TM/SKI and RASP/λ-calculus. It also considers how the use of parsing semantics

affects the information measurements made.

6.4.1 Phase Transitions

Figures 6.10 and 6.11 show plots of the geometric and arithmetic means respec-

tively. The geometric plot shows the normalising effect of the geometric mean

process and bunches the models together.

The arithmetic mean plot is more interesting. The RASP machines are

bunched together much like in the geometric mean graph, which is not surprising

due to their operational similarity. But the λ-calculus is also grouped with the

RASP machines. Furthermore, the SKI and TM figures are separated from the

RASP and λ grouping, and are correlated together.

The SKI expressions are derived from the λ-calculus expressions via bracket

abstraction (Section 2.3.2.2). The TM programs are not derived from, nor have

any direct translation to the corresponding RASP program. Despite this, the

RASP and TM figures show the same separation as from the SKI and λ-calculus,

and the TM and SKI numbers correlate strongly.

193



Chapter 6. Analysis

 0

 200

 400

 600

 800

 1000

 1200

AR PI AR TI L PI L TI AR+L PI AR+L TI ALL PI ALL TI

C
ha

ra
ct

er
s 

P
er

 P
ro

gr
am

Category

Geometric Mean of Characters Per Program in Each Model and Category

RASP
RASP2
RASP3

TM
SKI

Lambda

Figure 6.10: The geometric means in Table 6.6
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Figure 6.11: The arithmetic means in Table 6.5
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RASP RASP2 RASP3 TM SKI λ-Calc
Parsing Semantics 71 71 71 203 101 162

Evaluation Semantics 484 513 515 146 190 381
Ratio Parsing:Eval 0.15 0.14 0.14 1.39 0.53 0.43

Table 6.16: The ratio of parsing semantics to evaluation semantics for each model.

Phase transitions are a known phenomenon in instances of mathematical prob-

lems [110, 10]. An instance of a ‘hard’ problem, like a member of the NP(-

complete) [47] problems, can be generated algorithmically. The generation pro-

cess involves multiple variables which can be ‘tuned’ to produce easier or harder

instances of the problem. Researchers have noticed though systematically tuning

the variables, that at a certain point the instances of the problem became much

harder (i.e more CPU time for brute force) to solve.

The datapoints separately correlated datapoints in Figure 6.11 could be from

either side of a phase transition. The RASPs and λ-calculus both have some form

of random access. The RASPs have random access memory and the λ-calculus

has variables which can be substituted using β reduction. TM and SKI do not.

The TM has to sequentially shift the tape and the SKI has to repeatedly evaluate

combinators at the far left hand side to move applied expressions into each other

which the λ-calculus achieves though abstraction and substitution alone.

Adding more semantic operators for TMs or SKI which enable random access,

such as a TM search which returns the first occurrence of a particular symbol to

the right or left of the head position, is hypothesised to adjust the mean values

such that they converge to those of the RASPs and λ-calculus. Section 7.3.4

presents a hypothesis to guide investigation into the observed phase transition

and discusses the possibility of other phase transitions centered around other

language attributes.

6.4.2 Interpretation vs Evaluation Semantics

The comparisons which have been explained thus far have been made relative

to the entirety of the semantics for each model. A program has been written in

some external representation, converted into the internal representation using the

parsing semantics, and evaluated with the evaluation semantics.
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The parsing semantics do not add any computational power to the models.

A different perspective could be gain through comparing only the size of the

evaluation semantics of the models with the size of programs. Table 6.16 compares

the size of the parsing semantics with the evaluation semantics. Note that the

sum of the parsing and evaluation semantics is often greater than the presented

sizes in Table 6.4 and in the rest of this thesis. This is because both the parsing

and evaluation parts may share a function or definition which has to be defined

for both when the semantics are split.

The external and internal representations of the RASP machines are very sim-

ilar, so there is little overhead in parsing programs. The parser pattern matches

natural numbers from the left hand side adding them to the mapping which makes

up the initial memory of the program.

The SKI and λ-calculus have a more complicated parsing procedure which con-

verts the linear external representation into the tree-like internal representation.

The conversion procedure for both models is similar. The expression is pattern

matched from the right hand side and the tree is recursively constructed from the

root. In SKI, internal tree nodes denote applications with combinators as leaves.

The λ-calculus parses both applications and abstractions as internal nodes and

uses variables for the leaves. As mentioned in Chapter 3, this transformation is to

facilitate graph reduction where nodes are swapped when sub-expressions move

around the term.

The TM parsing semantics presented here are larger than the evaluation se-

mantics. In contrast to the RASPs and functional models, a TM definition is in

two parts; a symbol table and a tape. Both of these have to be parsed and they

are both done in a different manner. The symbol table is pattern matched for the

discrete elements of the tuples which are combined into a mapping to create the

symbol table. If the tape contains a caret (^) the symbol to the left is mapped

to zero in the tape function and the rest of the function is filled in recursively

left and right, which are mappings to negative and positive integers respectively.

This necessitates the creating of multiple rules with specific functionalities which

are difficult to generalise. If the ability for the TM to start at an arbitrary point

on the tape were to be removed, three of the parsing rules could be removed.
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RASP RASP2 RASP3 TM SKI λ-Calculus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62
AR TI 576.72 579.98 586.35 341.12 301.19 448.82
L PI 276.67 202.98 181.93 757.23 588.18 278.13
L TI 777.44 741.38 706.54 919.60 832.81 681.07

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39
AR+L TI 660.57 648.46 638.21 535.40 478.20 542.50

All PI 193.22 130.78 137.21 492.16 265.52 134.54
All TI 739.42 727.23 718.52 743.90 690.48 612.10

Table 6.17: Geometric means of the program sets using evaluation semantics

RASP RASP2 RASP3 TM SKI λ-Calculus
AR PI 93.83 68.83 73 218.5 153.50 73.83
AR TI 577.83 581.83 588 364.5 343.50 454.83
L PI 304.4 243.6 195.4 863.4 847.4 317.6
L TI 788.4 756.6 710.4 1009.4 1037.4 698.6

AR+L PI 189.55 148.27 128.64 511.64 468.91 184.64
AR+L TI 672.82 661.27 643.64 657.64 658.91 565.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54
All TI 786.85 775.38 762.69 1785.38 1521.15 665.54

Table 6.18: Arithmetic means of the program sets using evaluation semantics

Tables 6.17 and 6.18 show the means of the the program sets when parsers

are discounted. Removing the parsing semantics from consideration results in

less homogeneity in the means between the models. Figures 6.13 and 6.12 show

the plots of these means.

Comparing these plots to the arithmetic and geometric mean plots of the full

semantics, there is not a dramatic difference. The arithmetic plot shows the TM

and SKI closer together and the λ-calculus TI means trending downwards, further

from the means of the RASPs. The apparent phase transition between SKI/TM

and RASPs/λ-calculus is still observable which is encouraging in that it is not

simply an artifact of the inclusion of parsers.

The geometric plot notably shows the smoothing of the TM curve and the

eventual lowering of the geometric mean of all TM programs to below those of

of the RASPs. The λ-calculus and SKI have the most and second most minimal

information contents of all of the models under the geometric mean. This data

further reinforces our assertion that hypothesis 2c is incorrect as the semantics

of the functional models are now much smaller than the RASP and still maintain
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Figure 6.12: Plot of Geometric means from Table 6.17.

 0

 500

 1000

 1500

 2000

AR PI AR TI L PI L TI AR+L PI AR+L TI ALL PI ALL TI

C
ha

ra
ct

er
s 

P
er

 P
ro

gr
am

Category

Arithmetic Mean of Characters Per Program in Each Model using Evaluation Semantics Only

RASP
RASP2
RASP3

TM
SKI

Lambda

Figure 6.13: Plot of Arithmetic means from Table 6.18.

198



Chapter 6. Analysis

an overall lower TI.

6.5 Inputs

The measurements made and hypotheses evaluated thus far have considered only

the size of the semantics and programs. Section 3.4 has made the case for the

‘parsing semantics’ to be included in the overall semantic sizes comparisons. In

essence, the programs for these models are all commonly expressed in a linear

fashion, while the structure of λ-calculus and SKI expressions which are actually

evaluated may be very different. These expressions are linear, but their linearity

belies their tree structure which is directly manipulated to evaluate the expres-

sions via graph reduction (Section 3.4.3). Therefore there has to be some semantic

rules to convert the linear external representation into the tree-like internal rep-

resentation.

In a similar way, expressions and programs written for a model parse inputs

from the external, into internal representations and evaluate them. Information

for computation is hierarchical and regressive. Programs are bespoke semantics

and models to compute specific functions. The most general of these functions

are universal which have their own language/encoding for their inputs.

It is these program specific languages which are focused on now. The programs

presented in Chapter 4 assumed natural encodings for the inputs and these encod-

ings are measured directly in characters and asymptotic notation, Big O [90, 34],

will be supplied for these.

6.5.1 RASPs

The floored logarithm to base x of n: ⌊logx(n) + 1⌋ is a measure of the number

of characters required to represent the base 10 number n in the base x numeral

system. While the PI of the RASPs includes registers to hold the inputs for

the program, the registers measured only hold single digits and are the minimal

number of registers required to constitute an input (only two element lists for

example).

The RASPs represent all of their inputs in base 10. Inputs are either discrete
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digits x and y, or a list of k elements with t as the largest number in the list.

Furthermore, the PI of the RASPs grow as any of these variable grow in size.

Recall that a 2n length RASP can only hold a numeral from 0 to 2n − 1.

Assuming that all inputs for a 2n RASP are numerals between 0 and 2n − 1,

the arithmetic functions have two inputs x and y. The number of characters for

these inputs is determined by the log rule:

⌊log10(x)⌋+ ⌊log10(y)⌋+ 2 = ⌊log10(xy)⌋+ 2

In big-O this is shortened to O(log10(xy)) because the input size is dependent

on both of the mutually independent variables x and y.

Lists in the RASP are a contiguous array of k registers. At least one register

holds the numeral t, where t is the largest numeral in l. The list size is therefore

bounded via the function:

k × (⌊log10(t)⌋+ 1) ∈ O(k log10(t))

The list membership and linear search functions also require a target value as

input which could possibly be as large as t, which adds another ⌊log10(t)⌋ + 1

characters.

The UTM is arranged as an encoded symbol table followed by a tape of

symbols. The UTM in RASP can simulate a TM with s states and t symbols.

A tape of k symbols requires k × (⌊log10(t)⌋+ 1) ∈ O(klog10(t)) characters. The

symbol table is a list of 〈So〉〈Syo〉〈Sn〉〈Syn〉〈D〉 quintuples terminated with a 0

value (Section 4.4.1).

s× t(⌊log10(s)⌋+ ⌊log10(s)⌋+ ⌊log10(t)⌋+ ⌊log10(t)⌋+ 4 + 1) + 1

= s× t(⌊log10(s
2t2)⌋+ 5) + 1

∈ O(s× t log10(s
2t2))

Pairing the symbol table with the tape expression gives:

O(k log10(t)) +O(s× t) ∈ O(k log10(t) + s× t× log10(s
2t2))
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Figure 6.14: A 3 bit RASP arranged on a TM tape.

Which is the final growth rate upper bound of TM expressions in the RASP

UTM.

A RASP to be simulated by the universal machine is a list and grows according

to the number of bits n for that machine. Again, there is a value t which is the

largest figure in the simulated machine. The specific equation is similar to the

list growth equation above, however k is replaced by the growth expression of 2n:

2n × (⌊log10(2
n − 1)⌋+ 1) ∈ O(2n log10(2n − 1))

6.5.2 TM

The arithmetic functions of the UTM take unary inputs on their tape. Thereby,

the number x requires x symbols to represent. For two variables, the growth rate

is bounded by the sizes of both: O(x+ y).

Lists are a delimited array of binary numbers which come in two variants;

#〈addr∗data〉 . . . and 〈data1〉∗〈data2〉 . . . These lists hold binary numbers where

t is the largest number in the list, and k is the number of elements. Both lists

are terminated with a single symbol.

#〈addr ∗ data〉 . . . = k(log2(k) + log2(t) + 4) + 1 ∈ O(k log2(k × t))

∗〈data1〉 . . . = k(log2(t) + 2) + 1 ∈ O(k log2(t))

The linear search requires address/data pairs so the input size growth is

bounded by O(k log2(k × t)). The other list functions require data only lists,

so their input size growth is bounded by O(k log2(t))

The UTM is covered in detail in Section 6.6. The universal RASP is repre-

sented on the tape as a list of 2n − 1 〈addr〉 ∗ 〈data〉 pairs. The data for the

PC has no address, and there is an additional IR which is used in the case of an

instruction requiring a parameter (Figure 6.14).

For a size 2n machine, each register is represented by two n-bit numbers. Each
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pair of numbers is prefixed and separated by a single symbol (#,*), two symbols

end the memory and four of the n-bit numbers use a special symbol to indicate

that they are registers used in the F-E cycle. Thus the number of characters to

represent an n-bit RASP is:

2n(2(log2(2
n) + 1) + 2) + 6 = 2n(2(n+ 1) + 2) + 6

= 2n(2n+ 4) + 6

∈ O(2n)

6.5.3 λ-Calculus

The magnitude of a Church numeral in the λ-calculus is the number of times

the first argument is applied to the second. Aside from the numeral for zero, the

number of characters to represent the Church numeral (n) is: 3n+8. The numeral

for 0 is 9 characters in size. For proper application, the numerals are externally

bracketed. The numeral 3 is (λf.λx.f(f(fx))). Arithmetic functions all have two

numerals x and y as inputs, so the number of characters is (3x+ 8) + (3y + 8) ∈

O(x+ y).

Lists in the λ calculus are lists of Church numerals. Each element of the list is

a Church numeral paired with another list, or with the NIL expression. The NIL

expression is 12 characters long and PAIR is 16, not counting the two external

brackets which enclose the expression (PAIR p q). If k is the list length of the

list and t is the size of the largest numeral, then the expression for the size of a

list is bound by the expression:

18n+ kt+ 12 ∈ O(k × t)

The membership and linear search expressions also require a single numeral, which

could possibly be of size t, to search for; O(t).

The UTM in the λ-calculus is a list of quintuples (5 element lists without a

NIL terminator) for the symbol table, and a list of Church numerals for the tape.

A quintuple consists of two numerals for states, two numerals for symbols and

a numeral for direction. The largest state is s, largest symbol is t, and largest

direction is ONE (11 characters). With s states and t symbols, the number of
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quintuples in the table is s× t, and the size equation for the symbol table is:

s t(2(3s+ 3t+ 16) + 11 + 5(16 + 2)) + 12 = s t(2(3s+ 3t+ 16) + 11 + 5× 18) + 12

= s× t× (2s+ 2t+ 101) + 12

∈ O(s2 × t+ s× t2)

The tape is a list, so it conforms to the size equation for lists O(k × t), where k

is the length of the tape, and t is as above. The upper bound of the entire input

to the UTM in λ-calculus is O(t(s2 + t+ k)).

The universal RASP takes two inputs: a list of numerals of size 2n, and an

output vector which is to be populated by occurrences of the OUT instruction;

which defaults to NIL. The numerals in the list can be have a maximum size

of 2n − 1, so the numeral size is bounded by 3(2n − 1) + 8. Each RASP has a

memory of 2n, so there are 2n occurrences of PAIR and a numeral, which one

NIL to terminate the list. A RASP machine is bounded in terms of bits with the

equation:

2n(18 + 3(2n − 1) + 8) + 2× 12 + 2

= 2n(24 + 3(2n − 1)) + 26

∈ O(2n)

6.5.4 SKI

As has been the convention throughout the thesis, the SKI expression have been

derived from the λ expression via bracket abstraction. It is therefore expected

that the asymptotic growth of SKI inputs mirrors that of the λ-calculus. The

specific size equations will be different however.

The number of characters required to represent a numeral f > 2 in SKI can

be calculated as: 11f − 1. The numeral for 0 is KI, 1 is I, and 2 is S(S(KS)K)I.

Arithmetic operations over numerals x and y are thus 11(x+ y)− 2 ∈ O(x+ y)

Lists are constructed pairwise and terminated with the SKI NIL expression.

PAIR is 37 characters long, not counting the enclosing brackets. NIL is two

characters in length. If k is the number of elements in a list, and t is the largest
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RASPs TM SKI λ-Calculus
Arithmetic O(log10(xy)) O(x+ y) O(x+ y)

List Membership

O(k log10(t))

O(k log2(t))

O(kt)
Linear Search O(k log2(kt))
List Reversal O(k log2(t))

Stateful List Rev O(k log2(t))
Bubble Sort O(k log2(t))

Universal TM O(k log10(t) + stlog10(s
2t2)) O(s(log2(s))

2 + k) O(t(s2 + st+ k))
Universal RASP O(2n) O(2n) O(2n)

Table 6.19: Big O notation of input size growth rates

numeral, then an input for the list function is:

k(11t− 1 + 39) + 2 ∈ O(k × t)

As with the other models, the SKI requires a further numeral as input for the list

membership and linear search functions.

The UTM is a list of quintuples and a list of numerals for the symbol table and

tape respectively. As with the λ-calculus, symbol table entries are tuples with five

elements and no NIL terminator. There are two numerals for state (possibly state

s), two numerals for symbols (possibly t), and a numeral for direction (either 0

or 1). Using s states, and t symbols the symbol table of a TM in SKI is sized as:

st(4× 39 + 2(11s− 1) + 2(11t− 1)) + 12

= st(152 + 22(s+ t)) + 12

∈ O(ts2 + s× t2)

The tape of the UTM is a list of k elements and up to t symbols: O(k × t). The

input size of the UTM is therefore bounded by O(t(s2 + t+ k)).

The RASP machine encoded for the SKI is a list to represent the memory of

the machine, and an initially empty vector for outputs. An n-bit machine has 2n

registers and each can hold a maximum number of 2n − 1:

2n(39 + (11(2n − 1)− 1)) + 4 ∈ O(2n)
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6.5.5 Comparison

Table 6.19 shows the big-O notations of the input growth rate. The variables x

and y are numbers, k is the length of a list, t is the largest element of a list or

number of symbols in a TM, s is the number of states in a TM, and n is the

number of bits in a RASP machine.

These rates indicate the how the size of the encoded input information changes

depending on the size of the unencoded inputs. It is useful to expose the advan-

tages inherent to the encoding system of a model.

For example, the RASP uses the set of natural numbers in its semantics to

evaluate machines because all of the RASP operations are defined over the set

of natural numbers. This in turn makes makes the natural numbers (and the

successor/predecessor operations) implicit information within the semantics of

the RASP (nowhere are the naturals defined in the semantics).

Because the RASP operators are defined over the natural numbers, there is an

injective mapping from the external representation to the internal representation.

And because arrays of natural numbers are versatile enough to represent many

different inputs, the encodings are consequently relatively succinct.

By virtue of the base 10 representation of natural numbers, the RASP has

overall the slowest growing inputs for the functions. The TM uses unary encod-

ing for the arithmetic functions, and binary encodings for the other functions.

Without another numerical base to use, the representations of the input Church

numerals is linear throughout the entire set of functions.

Encodings for the URASP input grows at the same rate for all models, but that

is not true for the UTM. The RASP and functional inputs grow in accordance

to the number of states, symbols and the tape length. The TM however, is

concerned only with the number of states and the length of the tape. While the

RASP and functional UTM incarnations can simulate any arbitrary (s,t) TM,

Minsky’s UTM can only simulate (s,2) TMs.

This does not affect the computational power of the Minsky’s UTM language

relative to the languages of the RASP and function model UTMs, but may make

it less expressive in that the TM to be simulated will have a more constricted

input language.
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As discussed earlier, the TI across paradigms sub-hypothesis (where TI = SI

+ PI) is contradicted by the fact that the λ-calculus and SKI have lower TIs

to calculate the functions on average than the RASP and TM do respectively.

Viewing the growth rates, it is possible that the definition of TI does not go far

enough, in that it does not take the input size of functions into account. The

input growth size indicates that after a sufficiently large input, the RASPs will

have the lowest TI + input size for all models. This is little more than conjecture

at this point but an interesting topic for future investigation.

The growth rates are for natural encodings, which are straightforward map-

pings from unencoded to encoded data. There exist programs which are strictly

more (Chaitin) elegant than the programs measured, but have more complex

encodings which grow faster. An example of this is the UTM by Neary.

6.6 The UTM

The contrast between two different universal machines is an informative example

of how the encoding and information content of the input to a program influences

the size of the program. Most notably for the TM, the elegance of the programs

can be influenced by the encoding scheme of their input. The intuition is that

natural encodings of inputs require more program information to decode, whereas

well constructed, larger, and more complex encoding schemes offload complexity

from the program to the input.

Recalling the proof of the undecidability of elegant functions in Section 3.1,

we are reminded that there exists at least one function where the amount of

information required to specify the program+input can be improved for infinitely

many inputs. The UTM may or may not be an example of such a function, but

this example shows the extent that input encodings can have on program size.

6.6.1 Neary’s UTM

Neary is the creator of the smallest currently known direct simulation UTM. His

8 state, 4 symbol machine is strongly universal, consists of 30 tuples, and can

simulate 2 symbol Turing Machines. Traditional direct simulation UTMs encode
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Figure 6.15: The tape of the UTM simulating a machine M . (From [69], pp 26)

Figure 6.16: The UTM finding the relevant ETR (From [69], pp 26)

a symbol table, and tape of a machine M . The simulator maintains pointers to

which state the machine is currently in, and which position the head is at on the

tape. This intuitive construction requires the head of the simulator to traverse

the whole tape regularly.

Neary’s machine stores the entire current state on the simulated tape, thereby

using the state as a positional marker for the head. From an initial configuration

with the symbol table represented as a collection of encoded transition rules

(ETRs), and the state/symbol pair on the simulated tape (Figure 6.15), the

machine operates in four cycles.

The first cycle scans the state and symbol pair on the tape. For each b in

the pair, the machine ticks off a corresponding λ on the left. It does this until

it reaches the word ba. In the example in Figure 6.16, the first three b symbols

from the encoded state have stricken off the first three λ’s from the right.

The second cycle, copies the relevant ETR over the current state and symbol

pair on the tape. In this example, the ETRs are 5 symbols long and made up

of a and b symbols. This cycle overwrites the ETR on the simulated tape with

the selected ETR in the symbol table and initiates cycle three, which restores the

tape of the UTM, unchecking the λ’s and the symbols of the ETR that have been

copied.
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The behaviour of cycle four is dependent on whether the UTM has processed

a left or right move. A right move executes a special ETR which incrementally

shifts the ETR to the right. The symbols 0 and 1 on the tape are represented as

the pairs aa and ba. A right shift would move the ETR from ETR ba to b ETR a,

to ba ETR.

Left shift ETRs are longer than the ETRs of the right shift. Since the copying

of the new ETR is performed from the right hand size of the old state and symbol

pair, the new left-shift ETR therefore protrudes over the space of the old ETR

by two symbols to the left. This in effect shifts the tape relative to the ETR head

and pushes the new head position to the right of the ETR where cycle 1 begins

again.

Neary’s machine has no specified halting state; rather it halts through the

simulated machine trying to run off the left hand side of the tape. The tech-

niques used in this UTM are simple in isolation. It exhibits simple searching for

and copying of ETRs. The encoding of the symbol table as ETRs, belies the

complexity of the simulation.

Neary has also produced a slightly larger (3,11) machine which operates, save

for very minor technical details, in the same manner as the (8,4) machine. These

two machines have similar, but different encoding schemes. The (3,11) machine

defines 31 tuples as opposed to the 30 of the (8,4) machine, so if the intuition

of more tuples implying concise encodings is correct then it is expected that the

expression for the TM in the (3,11) machine will be more concise than the (8,4)

machine. Also in this comparison is the UTM from Minsky. This (23,8) machine

uses many more tuples than Neary’s machines, but has a much more natural

expression of the tape and symbol table of the simulated TM.

6.6.2 Encodings

Consider the TM in Figure 6.17. This (3,2) machine will halt on Neary’s UTM by

running off the left hand side of the tape and is what shall be used for comparison

of three UTMs.

The tape of Neary’s UTM is initially arranged as a triple 〈M〉〈q1〉〈w〉 of the

encoding of the machine as Encoded Transition Rules (ETRs), an encoding of
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1,0,2,1,R
1,1,1,0,R
2,0,2,0,L
2,1,3,1,L
3,0,3,0,L
3,1,3,1,L

Figure 6.17: A (3,2) TM as the benchmark for testing input sizes

the initial state, and a right unbounded tape respectively. A tuple tst,sy is a

a quintuple t = 〈stx, syx, syy, D, sty〉, where stx is the original state, syx the

original symbol, D is either R or L, and syy/sty are the new symbol and state

respectively1. Here |Q| is the number of states and f is the symbol table itself.

The encoding of M is as follows:

〈M〉 = λε(t|Q|,1)λε(t|Q|,0)λε(t|Q|,0)λε(t|Q|,1)λε
′(f, t|Q|,0)

. . .

λε(t1,1)λε(t1,0)λε(t1,0)λε(t1,1)λε
′(f, t1,0)λe

The functions ε and ε′ encode the specific tuples and depend on the particular

UTM that the tuple is being encoded for. For the (3,11) UTM, the functions are:

ε3,11(t) =































ea(t)hb(t) If D = R, syy = 0

hea(t)hb(t) If D = R, syy = 1

ea(t)−1hb(t)eee If D = L, syy = 0

ea(t)−1hb(t)ehe If D = L, syy = 1

ε′3,11(f, t) =



















ea(t
R,x)−3hb(tR,x)+2 If ∃tR,x, stx 6= st1

(Nothing) If 6 ∃tR,x, stx 6= st1

e5|Q|−3h4 If stx = st1

where tR,x is any transition rule that shifts right and transits to the current state

from state x. The functions a(t) and b(t) are defined by the equations:

a(t) = 5|Q|+ 2− b(t)

1Note that this form for tuples is from Neary and is used to make the reconciliation of his
work easier. This notation will not be used in any other section.
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ETR T Rule tR,x b(t) a(t) ε or ε′ Size
ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 e12h4 16
ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 he10h7 18
ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 e15h2 17

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 e7h9 16
ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 e6h10eee 19
ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null (nothing) 0
ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 eh15eee 19
ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

Table 6.20: Converting the benchmark to the format for Neary’s (3,11) UTM
(from [69] pp 30)

b(t) = 2 +

y
∑

j=1

g(t, j, y)

where y is the state transitioned to by the tuple. Finally, the function g(t, j) is

defined:

g(t, j) =



















5 If j < y

3 If D = L, j = y

0 If D = R, j = y

Functions a(), b(), and g() are common to both of Neary’s machines. Only

the ε and ε′ functions are different. The relevant functions for the (8,4) machine

are as follows:

ε8,4(t) =































bba(ab)a(t)b
2(b(t))

aa If D = R, syy = 0

aabbb(ab)a(t)−1b2(b(t))aa If D = R, syy = 1

a(ab)a(t)−1b2(b(t))(ab)3aa If D = L, syy = 0

a(ab)a(t)−1b2(b(t))abbbabaa If D = L, syy = 1

ε′8,4(f, t) =



















bba(ab)a(t
R,x)−3b2(b(t

R,x)+2)aa If ∃tR,x, stx 6= st1

a If 6 ∃tR,x, stx 6= st1

bba(ab)5|Q|−3b8aa If stx = st1

These sets of equations encode the symbol table of the machine. Tables 6.20

and 6.21 present the working and results of encoding the test TM from Figure

6.17. The sixth column of the tables shows what will be on the tapes of the

UTMs. The superscribed numerals next to potentially bracketed symbols indicate
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ETR T Rule tR,x b(t) a(t) ε or ε′ Size
ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 bba(ab)12b8aa 37
ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 aabbb(ab)9b14aa 39
ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 bba(ab)15b4aa 39

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 bba(ab)7b18aa 37
ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 a(ab)6b10(ab)3aa 41
ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null a 1
ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 a(ab)1b30(ab)3aa 41
ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

Table 6.21: Converting the benchmark to the format for Neary’s (8,4) UTM

T Rule Expression Size
q1, 0, 1, R, q2 0101011 7
q1, 1, 0, R, q1 0110101 7
q2, 0, 0, L, q2 1001000 7
q2, 1, 1, L, q3 1011110 7
q3, 0, 0, L, q3 1101100 7
q3, 1, 1, L, q3 1111110 7

Table 6.22: Converting the benchmark to the format for Minsky’s (23,7) UTM

a repetition of those symbols. Each letter corresponds to a single symbol and the

size of each conversion is given in characters.

In contrast to the Neary TMs, the initial tape of the Minsky UTM (Section

4.4.1) is arranged as [w][st1][sy][M ]. The symbol table is arranged in quintuples

of stx, syx, sty, syy, D. The states are binary numbers, symbols are either 1 or 0,

and the direction D is either 0 or 1 to indicate a left or right shift.

A tuple encoded for Minsky’s simulation uses binary numbers for both states,

and single symbols for the old symbol, new symbol and direction. The current

state and symbol is stored elsewhere, necessitating another binary number and

single symbol. There are a number of delimiters to include too.

Table 6.22 shows the tuples converted to their respective tape expressions.

The conversion process of the Minsky UTM produces a tuple form which is much

more in keeping with the original quintuples. Neary’s conversion process leaves

almost no easily discernible aspects of the original tuples. Without the tables and

equations, it would be very difficult to derive the original tuples from this form.

The initial head position and state for Neary’s UTMs (〈q1〉) is an expression

of length (5|Q|)+2. For both UTMs this is a5|Q|b2. Each symbol on the simulated
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Machine Tuple size State Enc Other Overhead UTM size Prog + UTM
N(8,4) 559 17 17 299 892
N(3,11) 254 17 17 319 607
M(23,8) 40 4 9 1270 1323

Table 6.23: Information cost of setting up the test TM on the three UTMs

tape is a pair of symbols on the UTM tape where 0 = aa and 1 = ba. Each ETR

is separated by the λ symbol and terminated by the sequence λe.

The overhead of symbols for Minsky’s machine consists of the head position

symbol M , the current state and symbol area between the first Y and first X

from the left, the X symbol separating tuples, and the final Y 0 at the far right

which signifies the end of the symbol table. The simulated tape has a one to one

correspondence with the UTM tape.

All of the UTMs simulate arbitrary (n,2) TMs. The measurements made

measure the test TM implemented on the UTMs running with a blank tape.

Neary’s UTMs require that all tuples encoded via ε are represented twice in the

symbol table, and that the ε′ tuples terminate each state. Table 6.23 tallies up

the program information of a UTM set up to execute the test TM on a blank

tape. The tuple sizes are measured as the total of expressions returned from ε(′)

or the Minsky encoding to populate the symbol table. ‘Other Overhead’ symbols

are delimiters and such.

There are 30 tuples in the (8,4) machine, 32 in the (3,11), and 113 in the

(23,8) UTM. The data from the table shows that there is almost 1.5 times the

tape information required to represent the test machine on the (8,4) UTM as

opposed to the (3,11) UTM, which is two tuples larger. The (23,8) machine is

much larger than the other two machines, but the representation of the test TM

is very concise in comparison. For this example the TI (measured in this case as

the size of the TM tuples and the encoding of the benchmark machines) of the

Minsky machine is still larger than the TIs of the smaller machines.
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States Minsky (23,8) Neary (8,4)
2 37 318
3 53 626
4 86 1034
5 106 1542
6 126 2150

Table 6.24: Number of characters per symbol table

6.6.3 Input Growth

If s is the number of states in the machine, the characters required to implement

the symbol table for a Minsky-simulated machine is:

2s(2(⌊log2(s)⌋+ 1) + 4) + (⌊log2(s)⌋+ 1) + 3

The Minsky encoding is agnostic to the operations of the tuples. The Neary

encoding however changes depending on the shifts and state transitions which

take place. The encoding function ε′ changes the sizes of the encoding depending

on whether there is a right moving transition into the current state. If state x

does not have a right moving transition entering it, then ε′ for the (8,4) (like state

3 in Table 6.21) machine is a single character, rather than something larger.

The number of characters required to implement the benchmark machines in

the Neary (8,4) and Minsky (23,8) UTMs are shown in Table 6.24. The growth

of Nearys encoding here fits the recurrence relation: an+1 = an + 100(n+ 1) + 8.

Solving this relation gives an equation that indicates that the growth in encoding

size is quadratic in the number of states:

an = 50n2 + 58n+ 2

The encoding for Minsky’s machine grows slightly more than quasilineraly

(n log2(n)), but far less than quadratically (n2). A compromise is reached with the

function n (log2(n))
2 which grows faster than the formula for Minsky’s encoding.

Neary’s UTMs tape has two symbols per simulated symbol (2k), and Minsky’s

UTM uses only one (k).

Thus, the big O notations for the Minsky and Neary encoding functions are
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1 Strong Semantic Information hypothesis (NC)

1a. SI within family. For: 6.2.1 (C)
1b. SI within paradigm. For: 6.2.2, 6.2.3 (C)
1c. SI across paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

2. Strong Total Information hypothesis (NC)

2a. TI within family. For: 6.2.1
2b. TI within paradigm. For: 6.2.2, 6.2.3 (C)
2c. TI across paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

3. Strong Semantic Circuit hypothesis (C)

3a. SC within family hypothesis For: 6.3.1 (C)
3b. SC within paradigm hypothesis For: 6.3.2 (C)

4. Strong Total Circuit hypothesis (NC)

4a. TC within family hypothesis Against: 6.3.1 (NC)
4b. TC within paradigm hypothesis Against: 6.3.2 (NC)

Figure 6.18: Hypotheses with evidence and confirmation status

O(s(log2(s)
2) + k) and O(n2 + k) respectively. This data shows that although

Neary’s UTM is much smaller than the UTM of Minsky, the encoding function

grows at a much higher rate. Solving the formulae for the symbol table sizes and

adding in the TI of of Minsky’s machine at 1271 and Neary’s at 300 characters

shows that the breakpoint between encodings occurs at 5 states. At simulating a

5 state TM, it is more information efficient to use the UTM of Minsky.

6.7 Conclusions

This chapter has analysed the data from Chapters 4 and 5, to evaluate the hy-

potheses. Figure 6.18 summarises the hypotheses and sub-hypotheses, lists sec-

tions with analyses which are for and against the hypotheses and states (C) if

the hypothesis is confirmed, and (NC) if not.

What has been found is that the Strong Semantic Information and Strong

Total Information hypotheses (Section 3.1.2) cannot be fully confirmed. While

the number of characters as an information metric is predictive for the RASP

family and between models of the same paradigm, the metric appears to fail to

account for the differences between models of different paradigms.

The SI and TI hypotheses are consistent within the confines of model paradigms
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(Sections 6.2.1 – 6.2.3). What separates the paradigms is their internal represen-

tation and method of evaluation. The RASP and TM are primarily based on

arrays. The λ-calculus and SKI models have a graph based internal model and

evaluation system. It is conjectured here that this difference between the models

effects the data which is contrary to the SI and TI hypotheses. What is implied by

the current results is that the functional models are more ‘information efficient’

on average in comparison to the imperative models.

There appears to be a phase transition in the TI amounts (Section 6.4.1).

While the RASPs and λ-calculus have the concept of random access/variables

for the manipulation of data and structures, the TM and SKI access data in a

sequential fashion. The TI required to implement the universal TM and univer-

sal RASP programs in the TM and SKI are highly correlated; the information

amounts are much larger than the information amounts required for the RASP

and λ-calculus implementations.

The FPGA implementations, in defiance of the abstract TI implementations,

show that while there is a relationship between the number of times a particular

component is used and the abstract TI of a program in a model, that relationship

disappears when attempting to compare the TIs of different models (Section

6.3.3). In other words, if program A uses more LUTs on an FPGA than program

B for the TM, we can be reasonably confident that A has a higher TI than B.

However if A in the RASP uses more LUTs than B in the TM, we still cannot

deduce the relative TIs between programs A and B. Cross model comparisons

do not work.

Part of the reason for this is there is an overhead in the semantics incurred

proportionally to the size of the programs. While the abstract semantics can

easily define a number as a member of the natural numbers, the FPGA reali-

sations require a concrete range. As the number grows, so must the number of

components required to represent that number at the hardware level.

Despite the the TI being a poor indicator of relative circuit sizes, there exists

strong correlations between component counts and the information contents of

programs. Table 6.11 shows that there is a very strong correlation between LUTs

and the TI levels for TMs. The correlation for RASPs is not as strong, but shows
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a correlation of both LUTs and slice registers with the TIs.

Potential elegance has been sacrificed by the author in favour of natural ex-

pressions of program inputs (Section 3.1.1). Analysing the information growth

rates of the models (Section 6.5) indicates that the growth rate of the TIs of

RASP programs of this thesis, paired with the inputs is lower in the limit than

the other models (Table 6.19). The TM follows the RASP due to its binary en-

coding. The functional models with linear encodings are the largest. This holds

only for the specific models and programs in this thesis, but is worthy of further

investigation.

A comparison between the machines of Neary and of Minsky show just how

dramatic an effect input encoding schemes can have on the elegance of program

sizes (Section 6.6). The input size for Neary’s machines grows quadratically in

relation to the number of states, while the input size for the Minsky UTM grows

in an almost quasilinear fashion. Simulating a TM with 5 states requires less

information for the Minsky TM than for Neary’s (8,4) TM (Section 6.6.3, Table

6.23).
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Discussion and Conclusion

This section concludes the thesis. Section 7.1 recaps the aims, methodology,

results, and contributions of the work. Section 7.2 is a discussion ranging from

the role of type systems in programming languages to recreational programming.

Each of these topics touches on an aspect of this investigation and are discussed

in an informal manner. Finally, Section 7.3 covers possible further work arising

from this investigation.

7.1 This Work

7.1.1 Aims

This work has been an empirical exploration of the intuition underlying the ex-

pressivity of models of computation and languages. The intuition is that more

information, in the semantics of model implies that the model is more expressive

than a model with comparatively less information. That extra information in

turn precipitates smaller programs in general.

More formally, the work has been an investigation into the relationship be-

tween the information content of the semantics of a model of computation, and

the information content of programs written for that model. This is also known

as the “Conciseness Conjecture” (Section 2.5).

The investigation was directed at resolving four hypotheses (Section 3.1): the

Semantic Information (SI) hypothesis, the Total Information (TI) hypothesis, the

Semantic Circuit (SC) hypothesis, and the Total Circuit (TC) hypothesis.
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Consider two programs a and b which compute the same function and are

programmed in computational models A and B respectively. The SI hypothesis

states that if model A has larger semantics than B, then program a will be

smaller in size than b on average. In essence, this asserts that there is an inverse

relationship between semantic size and mean program size.

The TI hypothesis not only considers the size of the program, but also of

the semantics. Consider programs a1 and b1 which calculate a mathematically

trivial function such as addition, and programs a2 and b2 which calculate a more

complex function such as a universal machine. If model A has significantly larger

semantics than model B, then the Total Information (size of program + size

of semantics) to calculate addition in model A may be higher than the Total

Information to calculate addition in B: sem(A) + a1 > sem(B) + b1.

Considering the case of the more complicated function. The TI hypothesis

states that with B having much smaller semantics than A, the program b2 will

be much larger in size than a2. This difference in size of programs is larger than

the difference in size of semantics and therefore sem(A) + a2 < sem(B) + b2.

The SC and TC hypotheses (Section 3.1.3) are in reference to Field Pro-

grammable Gate Arrays (Chapter 5). The SC hypothesis states that there is a

direct relationship between the size of a models abstract semantics, and the size

of a circuit which realises those semantics.

The TC hypothesis is an analogue of the TI hypothesis above. Models which

larger semantic circuits will produce an overall smaller circuit implementing a

complex function than a model with a simpler semantic circuit.

7.1.2 Method

To resolve these hypotheses, 6 models of computation are chosen. Models of

computation can be separated into distinct groups based on their characteristics.

Two of these groups: imperative and functional (Section 2.3) are represented here.

The imperative models include the Turing Machine (Section 2.3.1.1) and a family

of three Random Access Stored Program (RASP, Section 2.3.1.2) machines. The

functional models include the λ-calculus (Section 2.3.2.1) and the SKI combinator

calculus (Section 2.3.2.2).
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These models have their methods of execution and internal data represen-

tations formalised in Structured Operational Semantics (SOS, Section 3.4) and

thirteen programs are written for each model (Chapter 4). The programs en-

compass functions in the set of arithmetic, those from list processing, and the

universal machines.

The sizes of the semantics and programs were measured by the number of

characters it takes to write them (Section 3.2) as is traditional in information

theory. As such, the programs were written to be as “elegant” (Section 2.2.2) as

possible while utilising what could be called a “natural” input/output encoding

(Section 3.1.2). As the most elegant program to calculate a function may not use

a natural encoding, the programs and semantics measured are termed “succinct”

(Section 3.1.2).

As we are interested in the total amount of information required to specify

the program to compute functions, there are issues inherent in the approach of

specifying the semantics of models in an unspecified formalism. Attempts to

specify that formalism perpetuate such issues (Section 5.1). Thus the RASP and

TM models are implemented in hardware using Field Programmable Gate Arrays

(FPGAs, Chapter 5). The semantics and programs written for these models

are compiled down to electronic components and the number of components are

counted.

7.1.3 Results

The SI and TI hypotheses make general statements about how the information

required to specify problems compares against models with different sizes of se-

mantics. Given the variance of computational models tested in this investigation,

the hypotheses were split into three sub-hypotheses each. These sub-hypotheses

are: SI/TI within family (comparing the three RASP models), SI/TI within

paradigm (comparing the TM with the RASPs, and the λ-calculus with SKI),

and SI/TI across paradigms (comparing the TM with the λ-calculus/SKI and

the RASPs with the λ-calculus/SKI). In doing this, an exhaustive comparison is

made of the programs sizes of one model with the program sizes of another.

Chapter 6 provides the primary analysis of the measurements made to resolve
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the four hypotheses (Section 6.7 and Figure 6.18):

• The SI/TI within family hypotheses are confirmed with respect to the data.

• The SI/TI within paradigm hypotheses are confirmed with respect to the

data.

• The SI/TI across paradigms hypotheses are rejected with respect to the

data.

• The Strong SI and TI hypotheses are not confirmed by the data.

• The SC hypothesis is confirmed by the data.

• The TI hypothesis is rejected by the data.

In general, there is evidence for Felleisen’s Conciseness Conjecture. However

the Total Information measure (semantics size + program size) used to gather

this evidence cannot extend the conjecture to comparing models of computation

across paradigms.

While TI seems suitable for comparing different models with the same eval-

uation methodology (i.e. imperative or graph reduction evaluation), it appears

to be insufficient for heterogeneous comparisons of models. There appears to be

subtle differences between the semantics which are not adequately conveyed by a

simple character count (Section 6.2.8).

One of these subtleties could be in the implicit definition of operators in the

semantics. Section 7.3.5 discusses this in detail, but it is seemingly an issue as to

what is measured in the semantics and what is implied. For instance, the RASPs

use the natural numbers without any definition of them, whereas the λ-calculus

and SKI use no such numerical constructs.

Another lies in the definition of program inputs. A function is computable if

there exists a program to solve an instance of that function. The program takes

the instance as input, churns, and returns the solution. For any one function, if

it is computable then there are an infinite number of programs to compute the

function. This spectra of programs may vary from clever to naïve, efficient to

wasteful, small to large, and many other opposing adjectives.

The FPGA hypotheses assert that there is indeed a relationship between the

size of the semantics represented in SOS, and the size of a circuit which represents

the semantics. This confirms the SC hypothesis (Section 6.3.3). The TC hypoth-
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esis cannot be confirmed however. Given that the TC is an FPGA analogue to

the TI hypothesis, we would expect that the Total Circuit size of some program

in models A and B would provide some insight into the relative expressiveness

of the two models. It turns out that this cannot happen. Part of the reason for

this is there is an overhead in the semantics incurred proportionally to the size

of the programs. While the abstract semantics can easily define a number as a

member of the natural numbers, the FPGA realisations require a concrete range.

As the number grows, so must the number of components required to represent

that number at the hardware level.

While the relative number of components in FPGA implementations of models

is a poor indicator of the TI relationships between those models; there exists a

correlation between the number of a specific component (the precise component

is depended on the model), and the TI of the program implemented. In other

words, given two FPGA programs a and a1 written for the same model, if a1 uses

more of some component than a, then there is a reasonable certainty that the the

abstract program a1 will also be larger than the abstract program a.

The logic optimiser of the FPGA compilation software is an unknown variable

in these comparisons. At compile time, the settings were tuned for maximum

compression and it is currently unknown quite how the compiler optimises and

packs the logic into registers and LUTs. Investigation into this could provide

insight into why there is a correlation between component counts and TIs, but

why the same component counts give no indication between the relative TIs of

models.

7.1.3.1 Other Results

Aside from resolving the hypotheses for the chosen functions in the chosen models,

the analysis has uncovered other results:

• There is evidence of a phase transition in TI arising from sequential vs

random access memories (Section 6.4.1).

• There is a relationship between the size of inputs and the TI of a program

in a model (Section 6.5.5).

Through contrasting the UTM of Minsky with the UTMs of Neary (Section
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6.6), it has been shown that two programs which compute the same function

can vary dramatically in size by virtue of their input encoding. Programs with

dense encoding systems of many symbols have relatively concise realisations of

the input data, whereas programs with sparse encodings have larger inputs.

The current evidence shows that programs which dense input encodings are

larger than programs with sparser encoding systems. It was shown that for up

to TMs of size (5,2), Neary’s (8,4) UTM has a lower TI + input encoding size

than the Minsky UTM. However, for inputs of greater size, the Minsky machine

requires less information for the TI + input. This suggests that over all inputs,

programs with denser input encodings require less overall information.

Input encodings are not something which is addressed by the Conciseness

Conjecture, or Chaitin’s elegance. Indeed, if one were to also count the size of

inputs as part of the total information, it would be found that there are functions

which cannot have an optimal implementation for almost all inputs. These find-

ings are consistent with Blum’s speedup theorem which addresses this specifically

(Section 3.1.1).

And, if one were to ignore input sizes and used Chaitin’s elegant finder process

to obtain a supposedly elegant program, it is only guaranteed that the found

program is elegant relative to a specific input encoding.

The TI of the TM and SKI is much larger than the TIs of the RASP machines

and λ-calculus (Section 6.4.1). The reason for this is suspected to be random

access memories. The RASP can modify data in arbitrary registers via direct

addressing. The λ-calculus abstraction mechanism reads and reorders inputs to

the expression, precisely placing them via substitution without unduly influencing

the structure of the rest of the expression not involved in the substitution.

In contrast, the sequential access of the TM tape requires that it uses at least

one transition to shift left or right to access and modify data. Likewise, the SKI

emulates the abstraction mechanism of the λ-calculus by using the S combinator

to ‘draw’ inputs into terms, and the K combinator to eliminate unrequired du-

plicate terms. These attributes of the SKI and TM bloat their expressions and

programs with ‘memory access’ terms which are not present in the RASP and

λ-calculus counterparts.
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7.2 Related Aspects

The effort of the investigation was directed towards being as broad and consistent

as possible in the collection of data to resolve the hypotheses. The collection re-

sulted in 6 models of computation and 13 programs. Furthermore, there were the

FPGA implementations of the RASPs and TMs. This is a lot of data, but leaves

the depth of the investigation, in particular the formalisation of the relationships,

other minimal systems, alternative semantic representations, and other language

features somewhat lacking.

Despite not being explicitly addressed in earlier chapters, there are arguments

to be made which place these features of models and programming languages in

the context of the SI, PI, and TI metrics explored.

7.2.1 Conservative Extensions

Felleisen’s expressiveness as described in Chapter 2 is based on the concept of

conservative extensions and restrictions. The idea is that a Turing Complete

formal system A is more expressive than a Turing Complete system B if it can

be shown that A is a conservative extension of B.

The RASP2 and 3 are not true conservative extensions of the original RASP.

Rather, the respective ADD and SUB instructions have been added to the se-

mantics, and the INC and DEC instructions removed. From Section 2.5:

Definition 2 (Conservative Extension/Restriction). A language L′ is a conser-

vative extension of L if:

• the functions of L are a proper subset of those of L′, with the difference

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′ coun-

terparts where there are no phrase or programs that contain the extra L′

functions {F1, F2, . . .};

• evalL is a proper subset of evalL′ and for all L-programs P , evalL(P ) holds

if and only if evalL′ holds.

The converse is a conservative restriction.
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The RASP2 and RASP3 do not fit this description. However by the data

gathered, they are more expressive in that they require less information on average

than the RASP to express programs. The author believes that for models with

a similar evaluation method, the amount of semantic information is an indicator

of relative expressiveness. Section 7.3 outlines work that can be done in this area

to confirm or deny such a notion.

With the framework constructed in previous chapters, it is not hard to man-

ufacture a RASP language that is a true conservative extension. The RASP2-1

and RASP3-1 are conservative extensions of both the vanilla RASP and their

respective RASPx machines. In essence, these machines have INC and DEC in-

structions as well as ADD and SUB, and can use INC place of “ADD 1” which is

sometimes necessary for RASP2/3 programs.

Predictions can be made as to the information levels of the two extensions.

The semantic information of the extensions will be greater than that of the RASP2

and RASP3 owing to the INC and DEC instructions. It is also hypothesised that

the program informations of the extensions will be the same, or less than the PI

of the RASP and RASP3. The TI of the extensions will be initially greater than

that of the RASP2 and RASP3; and, recalling the small amount of TI separating

the RASP2 and RASP3, is unlikely that the extensions will have a lower TI than

that of the smaller RASPs.

The RASP2-1 and RASP3-1 models have 10 instructions: the basic 8 from the

vanilla RASP, and the ADD and SUB instructions from the RASP2 and RASP3

models respectively. This adds an extra 54 characters to the language semantics.

The ADD and SUB instructions are mapped to the numbers 3 and 4, with the

other instructions following on afterwards as in the definition of the RASP in

Chapter 2.

Tables 7.1 and 7.2 show the characters of the implementations, and the number

of instructions required. As expected the extensions facilitate smaller programs

than the ordinary RASP2 and RASP3, but the difference is rather negligible.

The extension is really only useful for replacing instructions such as “ADD/SUB

1” with the relevant INC or DEC, so it saves one instruction.

Where the difference is not negligible is in the RASP2 vs the RASP2-1 figures
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RASP2 RASP3 RASP2-1 RASP3-1
Addition 9 25 9 25

Subtraction 59 61 59 59
Equality 26 27 26 27

Multiplication 59 60 59 59
Division 131 134 131 131

Exponentiation 129 131 129 129
List Membership 129 131 129 130

Linear Search 132 135 132 134
Reverse List 135 137 135 134

Stateful Rev List 273 277 273 273
Bubble Sort 549 297 292 290

Universal TM 571 574 572 571
Universal RASP 1209 1231 1208 1205
Semantics Size 585 587 639 641

Table 7.1: Program and semantic sizes

RASP2 RASP3 RASP2-1 RASP3-1
Addition 4 6 4 6

Subtraction 22 22 20 20
Equality 9 11 9 11

Multiplication 24 24 23 23
Division 45 45 42 42

Exponentiation 43 40 41 38
List Membership 34 31 33 30

Linear Search 36 35 35 33
New List Rev 45 43 43 39
In Place Rev 78 77 73 72
Bubble Sort 127 123 121 117

Universal TM 148 137 143 131
Universal RASP 292 283 280 270
Arithmetic Mean 69.76 67.56 66.69 64
Geometric Mean 40.79 41.47 39.11 39.43

Table 7.2: Registers used by the various RASP2/3 and their extensions
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RASP2 RASP3 RASP2-1 RASP3-1
Arith Mean All PI 262.38 247.69 242.62 243.62
Arith Mean All TI 847.38 834.69 881.62 884.62
Geo Mean All PI 130.78 137.21 124.59 135.21
Geo Mean All TI 802.48 793.38 842.69 846.30

Table 7.3: Means of the information levels of the implementations

for the bubble sort. The extension and relevant replacement of ADDs with INCs

dropped the number of instructions below the lower 2n−3 threshold which dictates

RASP size, allowing for a smaller overall memory size. Table 7.2 shows that the

RASP2-1 requires only 121 instructions, rather than 123 instructions like the

RASP2.

The arithmetic and geometric means for all of the functions are in Table 7.3.

As expected, the overall TIs of the extensions are larger than the non-extended

RASPs. The savings on PI over the set of functions is lower than added SI. But

as the set of tested functions increases in size, TIs of the RASP2-1 and 3-1 will

increase slower than that of the RASP2 and 3.

The TI of the RASP2-1 is lower than the TI of the RASP3-1. This is because

of the aforementioned drop in the size of the RASP2 machine for computing

the bubble sort. This data contravenes hypothesis 2a: TI within model family.

However Table 7.2 does show that the RASP3-1 requires less instructions than

the RASP2-1 for the list and universal functions and that the low number of

characters for the RASP2 implementing the addition function is largely the cause

of the imbalance. It is not unreasonable to project that this imbalance is corrected

as the set of tested functions grows.

The RASP2-1 and RASP3-1 are true conservative extensions of the RASP

and RASP2 or RASP3. Felleisen’s conciseness conjecture holds in this case as

programs implemented in the extended models are on average smaller than those

in the unextended models. This is also further evidence to the claim that SI =

expressiveness for models with similar evaluation methods.

While they are a greater distance apart than the RASPs, the λ-calculus and

SKI operate amongst similar principles. Indeed, recalling the mapping from SKI

combinators to λ terms from Chapter 2 (Figure 7.1), the SKI can be mapped

directly into the λ-calculus syntax.
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I ≡ (λx.x)
K ≡ (λx.λy.x)
S ≡ (λx.λy.λz.xz(yz))

Figure 7.1: Combinator λ terms

SKI λ-Calculus SKλ
Addition 16 27 16

Subtraction 113 46 46
Equality 208 117 177

Multiplication 8 15 8
Division 565 229 229

Exponentiation 11 9 9
List Membership 362 208 208

Linear Search 385 236 236
List Reversal 190 134 134

Stateful List Rev 1397 460 460
Bubble Sort 1903 550 550

Universal TM 2593 584 584
Universal RASP 9554 1084 1084
Semantics Size 291 515 600

Table 7.4: SKλ programs in comparison

The SKI language can be defined as a truncated version of the λ-calculus

without arbitrary variables and abstractions. The only permissible abstractions

are those within the S, K, and I combinators. As a result, the common language

universe for the SKI and λ-calculus is very similar to the λ-calculus semantics.

SKλ is a conservative extension of both the SKI and λ-calculus. Retaining

all of the abstraction, variable, and reduction rules of the λ-calculus, SKλ is

augmented with named expressions, S, K, and I. At parsing time, these named

expressions get transformed into their corresponding λ terms and parsed into the

reduction tree.

Considering how we make use of named terms to explain λ expressions all

throughout this thesis, especially in Chapter 4, we can immediately see how

advantageous such a mechanism would be. Considering only the abbreviations S,

K, and I, we can select the smaller of the SKI or λ-calculus as the SKλ program.

Doing this yields Table 7.4.

There are likely other optimisations which can result in smaller expressions,
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e =⇒ I(e1)

parse(e) =⇒ {APP, parse(λx.x)parse(e1)}

(a) Parsing an I

e =⇒ K(e1)

parse(e) =⇒ {APP, parse(λx.λy.x)parse(e1)}

(b) Parsing a K

e =⇒ S(e1)

parse(e) =⇒ {APP, parse(λx.λy.λz.x z(y z))parse(e1)}

(c) Parsing an S

Figure 7.2: Extra parsing rules for SKλ

but this simple selection of the most concise expression of the two models demon-

strates how the SKλ has lower averages than either the SKI or λ-calculus.

The semantics of SKλ primarily follow those of the λ-calculus, previously

presented in Section 3.4.3. These semantics are augmented by a series of rules

which substitute the correct expressions in for the combinators. Three new rules

are required which are shown in Figure 7.2. In addition, the combinators have to

be added to the syntax of the terms. The sizes of the new rules are added to the

λ-calculus semantics to derive the semantics size at the bottom of Table 7.4.

As a conservative extension of the SKI and λ calculi, the SKλ language has

larger semantics than either. It also produces smaller programs than either on

average. Again, Felleisen’s conciseness conjecture reinforced by this data.

7.2.2 Compilation

The focus of this thesis presents the models as interpreted languages. Essentially,

the program universal SOS machine “runs” the SOS evaluation function (E() in

the case of the RASPs) step by step. These interpreted semantics are a constant

size for all of the models. A RASP program which immediately halts has the

same SI as the universal RASP machine, despite not using 7/8 of the instruction

set.

More common in the programming language space is a compiler. A compiler
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combines a program in language A with the semantics of A to produce a self

contained package written in the language of the executing machine X, which is

also known as the target architecture.

Defining a compiler for the RASP machines would perform a semantic fold

where only the rules which correspond to instructions in the program would be

packaged. Using the immediately halting program above, the model semantics of

the RASP and rule for the HALT instruction would be all that was required to

execute the program correctly. Discarding rules that the program will not execute

results in a lower TI level than indicated in previous chapters.

In this way, compilers can reduce the TI of programs for models. Their effi-

cacy of TI reduction is based on the size of the original semantics. A semantics

containing many rules/instructions and a small program utilising only a hand-

ful of those rules has a large reduction in TI size. A model with comparatively

small or “fully utilised” (where every rule is used in the execution of a program)

semantics such as the TM or λ-calculus, would not achieve such a reduction in

size.

The RASPs of this thesis are not an ideal testbed for a compiler. If a compiler

includes only the rules where it is immediately evident that they will be executed,

the resulting semantics will only contain the rules for the initial instructions. If an

instruction is executed via self-modification which is not included in the bundle

of semantics then the machine will halt, even if it is a valid instruction in the

original semantics.

Future work addressing the compilation of programs to be run on the hy-

pothetical target architecture X should use models which produce “static” (non-

rewriting) programs. A convenient model to use would be the RAM model, which

is not unlike the RASP and executes static programs.

7.2.3 Types

A type system as is a restriction on the set of otherwise admissible programs.

These programs are syntactically correct, and all assignments and function calls

use either the correct types, or the incorrect types are properly casted into the

correct type beforehand.
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At a low level, programs and data are represented using very simple structures.

Most, if not all, machines store and process information as binary numbers. Say

that there was no type systems, and that each binary number referred uniquely

to a piece of information. If A to Z were the binary numbers 00001-11010, then

which binary numbers represent the numerals 1 to 26?

A type system provides context for how a particular piece of data should be

evaluated. While the data is represented homogeneously at the lowest level, it

should not be allowed that the letter “A” (ASCII value 01000001) can be added

to the number 65 (also 01000001).

Say that one decided to eschew the traditional definitions of NIL and NULL

(Section 2.3.2.1) for marking the end of and testing for the end of lists respec-

tively. A more concise expression for NIL is just FALSE = λx.λy.y, which saves

three characters per occurrence. A test for the new end of the list is NULL =

λp.p(λx.NOT). Reuse of this common Boolean function for a very specific pur-

pose breaks when a list of booleans is traversed. The test for NIL is a test for

FALSE, which may possibly be in multiple positions in the list.

What is more disheartening is that the expression for FALSE is also the ex-

pression for ZERO. So not even lists of numbers are safe from this poor choice of

representation. A typical type system is a pair of the term and a number which

indicates the type of the term. Upon application of a function to arguments, the

types of the arguments are compared to the expected types and if correct, the

function is computed with the input and if not, the running program terminates.

The implementation of a type system in this manner is excessive for the set

of functions examined here, but as the set grows and functions get more compli-

cated, a type system is a relatively concise method to extend the applicability of

expressions to multiple domains.

7.2.4 Semantic Schemes

The semantics of the models in this investigation were formalised as Structured

Operational Semantics (SOS). The SOS notation is flexible enough to specify

the semantics of the models in a reasonably concise and uniform fashion. The

ability to specify the fine details of model operation resulted in a set of small step
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operational semantics.

The SOS is also a model of computation. The elegance/succinctness of the

model semantics is an indication of just how expressive the SOS model is. Since

SOS is a model of computation, the semantics can be thought of as universal

machines. There is little assurance that the information content of the semantics

accurately reflects the expressivity of the models represented. While the infor-

mation content measures broadly align with the intuition of model expressivity,

corroborating measurements should be obtained by implementing universal ma-

chines of all models the model in every other model. Currently only the TM and

vanilla RASP are implemented.

It is worth remembering that the assertions of model expressivity, relation-

ships and the supporting measurements made by this thesis apply only to the

models and notations explored here. There are numerous alternate notations and

conservative extensions to models which may change the relationships.

DeBruijn indices are ostensibly a different notation for the λ-calculus [22].

Rather than variable names, λ abstractions are numbered starting from the in-

nermost terms to the outermost. Bound variables are numerals which occur in

the body of the expression. A numeral n is bound by the nth λ from the innermost

level. A variable n is bound if it is in the scope of at least n λ’s.

As an example, consider the term:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

In the term, z and k are unbound in their parent expressions. Since there are

three nested λ’s in the expression, z is represented as ‘4’ as to be out of scope.

Likewise, there is a single λ in the expression on the right which binds the v, so

the k is represented as ‘2’.

231



Chapter 7. Discussion and Conclusion

Reduction to normal form follows already established conventions:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

⇒β (λy.z((λv.v k)(λp.p(λv.v k)y))) ≡ (λ4((λ15)(λ1(λ15)2)))

⇒β (λy.z((λp.p(λv.v k)y)k)) ≡ (λ4((λ1(λ15)2)5))

⇒β (λy.z(k(λv.v k)y)) ≡ (λ3(4(λ14)2))

⇒β (λy.z(k(yk))) ≡ (λ2(3(13)))

Given this behaviour, DeBruijn indices are a model for the λ-calculus, however

the evaluation semantics are different. In the above reduction the variable z

does not move, but it is renamed twice as the reduction proceeds. Similarly the

variable k is renamed to be one above z. When a substitution is made under

DeBruijn indices, there is a global renaming effort for the entire term to rename

all variables according to the number of nested λs there are. This is as opposed

to the familiar λ-calculus where renaming is done at a local level.

Expressions using DeBruijn indices are typically shorter than expressions us-

ing the syntax of the λ-calculus defined in this thesis. However the semantics of

a DeBruijn model requires this global renaming and a notion of how to count in

order to name variables. Expressions using DeBruijn indices therefore have to be

evaluated on their own terms with their own semantic scheme. The semantics

of DeBruijn’s λ-calculus have not been made explicit and measured, but it is

theorised that this global renaming behaviour requires larger semantics than the

λ-calculus system exhibited throughout this investigation.

7.2.5 Related Minimalism

Elegance, or minimalism, in the size of programs is often a desirable property, in

so far as achieving elegance does not adversely affect other measures of how good

a program is; such as time/space efficiency or readability. This section briefly

discusses systems which embrace minimalism to the fullest and the community

of programmers which do the same.
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7.2.5.1 Another minimal system

A Turing tarpit is a model of computation which can do everything, but is very

hard to use. The term was coined by Perlis in [71]:

54. Beware of the Turing tar-pit in which everything is possible but nothing of

interest is easy.

The SKI and TM are small models of computation, both with reasonably

tarpitty qualities. Without judicious use of whitespace, it is near impossible to

determine the function of a suitably large SKI term. And without a sketch of a

state machine/sample tape to change it is difficult to determine the function of

a TM.

Iota is a single combinator universal system [93]. The combinator is i where:

i ≡ (λx.xSK)

where S and K are from the SKI combinator calculus. The system also uses an

application operator; ‘*’ such that ∗FF = (FF ) where F is an expression. The

SKI combinators can be defined in Iota to demonstrate Turing completeness:

∗i ∗ i ∗ i ∗ ii = (F (F (F (FF )))) = S

∗i ∗ i ∗ ii = (F (F (FF ))) = K

∗ii = (FF ) = I

Iota is a syntactically inflexible extension to the SK combinator calculus (with-

out the I). Though the syntax is small, the semantics are relatively large. The

definition of i above implies the use of λ abstractions. Because including the

semantics of the λ-calculus for a single occurrence of a λ abstraction is extremely

wasteful, it is more prudent to define a new combinator ix = xSK. This sidesteps

the requirement of λ abstractions in the semantic definition of the model.

What cannot be sidestepped is the requirement that the semantics of Iota use

the internal representation and evaluation semantics of the S and K combinators.

In addition, two new evaluation rules are required for the evaluation of ∗ii =

SK(SK) and ∗ix = xSK. The rule for I can be discarded from the original SKI

semantics, along with the original parsing rules.
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e =⇒ ∗e1e2
P (e) =⇒ {A, (P (e1), P (e2)}

(a) Application of an expression to another

e =⇒ i

P (e) =⇒ {i, ∅, ∅}

(b) Parsing an instruction

Figure 7.3: Parsing rules for Iota

T.z = A
T.L.z = T.R.z = i

R(T ) =⇒ {A, {A, {A, S,K}, {A, S,K}}};R(Troot)

Figure 7.4: Applying i to itself

The parsing semantics for Iota are therefore are shown in Figure 7.3. Figure

7.4 shows the extra rule required to evaluate the Iota instruction. The size of the

Iota semantics in the format described in Chapter 3 is 272 characters, which is

slightly smaller than the semantics of the SKI at 291 characters.

Expressions in Iota are also very large. At present, most Iota expressions are

derived from SKI, so large SKI combinations derived from λ-calculus expressions

are made even larger through conversion of individual S, K and I combinators to

their Iota counterparts.

A restricted syntax machine for the imperative paradigm also exists. The

Ultimate Reduced Instruction Set Computer (URISC) model is Turing Complete

using only a single instruction [62]. The exact nature of this instruction can

vary, but one of the more studied models Subleq [63] uses an instruction which

subtracts the contents of register A from the contents of register B, stores the

result in B, then jumps if the result is less than or equal to zero.

7.2.5.2 Golfing

Code Golf is a recreational programming activity where a problem is presented

and solutions are taken in either a specific language or a multitude of languages.

The solutions are not only evaluated on their extensionality, but also their size.

Golfers attempt to minimise their score by solving the problems with the fewest

keystrokes possible.

Naturally there has been the development of domain specific languages for
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code golf. A notable example is Golfscript, a stack language implemented in

Ruby where common operations are mapped to single characters and overloaded

such that function performed by an operator is dependent on the arguments

supplied.

A Golfscript program (say 1. + 2 + 3 ∗ 2+;) is a list of literals. Individual

numerals or characters are pushed onto the stack, operators like + and * pop the

top two elements of the stack, add or multiply them, and then push the result

onto the top. The (.) function duplicates the top element of a stack and pushes

it; the (;) operator pops the top element. The program 1.+2+3∗2+; is traversed

from left to right. The 1 is pushed then duplicated, 1 and 1 are added to make

2, another 2 is pushed then 2 and 2 are added for 4, a 3 is pushed, 3 and 4 are

multiplied to 12, 2 is pushed, 2 and 12 are added to make fourteen, finally the

fourteen is popped from the stack.

There are operators for lists which can be concatenated with + ([1 2 1 3][4

5]+ 7→ [1 2 1 3 4 5]), blocks of code ({. . .}) and if, while, do, fold statements.

Golfscript is Turing complete.

Golfscript can produce very concise programs, but the underlying semantics

are quite large. While the internal representation as a vector of input symbols

and a stack for processing is reasonably simple, in particular the overloading of

operators necessitates a type system so that expressions are evaluated correctly.

Golfscript would produce the smallest program for most, if not all, of the functions

studied in this thesis, but the semantics would be larger.

7.3 Further Investigations

There is a considerable amount of further work arising from this investigation,

from formalising what has been observed, to exploring the extent that input

encoding affects the TI, to more accurate measurements by defining the implicitly

used operators of the semantics all the way down to the axioms.
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7.3.1 Formalism

The thesis results could be generalised and formalised as follows. Felleisen’s

definitions of expressiveness and language extensions are a good starting point.

His notion of a common language universe is a conservative extension of two

languages which he wishes to compare. This common language universe is used

to define relative expressiveness.

Consider the languages L, L0, and L1 where L is a conservative extension

of both L0 and L1. The language L0 is said to be less expressive than L1 with

respect to L if L0 can (macro-)express a subset of the operators of L where L1 can

(macro-)express the operations which L0 can express as well as other operators

of L.

There are some caveats to the “is expressible” statement. Felleisen defines ex-

pressibility in terms of a homomorphic (program structure retaining) translation

φ. A language L is said to have the ability to express an operator F (e1, . . . , ea) if

there exists φ such that F (e1, . . . , ea) ≡ φ(F (e1, . . . , ea)) where ≡ is operational

equivalence.

While it is feasible for any Turing complete system to express the operations

of any other, Felleisen imposes this restriction of a homomorphic mapping. That

is, that the translation of a program using some operator does not require a global

reorganisation of the rest of the program. Removing the original operator F and

inserting the translation φ(F ) should involve little disruption to the rest of the

program.

Now consider the RASP2-1 with respect to the RASP and RASP2. RASP2-1

is L and the other two are L0 and L1 respectively. For the RASP2, the INC and

DEC instructions of the RASP2-1 are eliminable as they are trivially equivalent to

the instruction “ADD 1” and “SUB 1”. Likewise, the ADD and SUB instructions

of the RASP2-1 are eliminable with respect to the RASP as there exist RASP

programs which are equivalent in function to the ADD and SUB instructions.

This symmetry in operational equivalence and macro-expressibility opens up

an interesting edge case in Felleisen’s framework. According to the framework,

RASP2 and RASP have the same expressive power; despite the later conciseness

conjecture positing that more expressive languages produce smaller programs
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Figure 7.5: Conservative extensions of RASP machines by semantics size

relative to less expressive languages.

A notion of relative expressiveness could be defined to extend the notion of

Felleisen’s expressiveness paired with the size of the translation given by the

mapping θ:

Definition 3 (Relative Expressiveness). Let L be a language and L0, L1 be con-

servative restrictions of L, where the set {F1, . . . , Fn} is the set of operators not

in L0, and the set {A1, . . . , Ak} is the set of operators not in L1. If n = k (both

L0 and L1 do not define the same number of operators in L), then L0 is more

expressive than L1 if:

• The operators {F1, . . . , Fn} and {A1, . . . , Ak} are (macro-)eliminable with

respect to L0 and L1.

• The size of mapping φ0 from {F1, . . . , Fn} to L0-phrases is smaller than the

size of mapping φ1 from {A1, . . . , Ak} to L1-phrases.

This resolves the issue of apparent expressive equality of languages which have

the same number of undefined operators in the common language universe. It

may not be the correct approach however if RASP2 vs RASP3 is considered.

Suppose the RASP4 combines the addition and subtraction functions of both

RASPs for the functions ADDd/SUBd (direct) and ADDi/SUBi (indirect) in the

way suggested in Section 3.4.2 when the RASP instructions of Hartmanis were

discussed. The sets of eliminable functions: RASP4 \ RASP2 = {ADDi,SUBi}
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CPY ’yval
STO ’yreg

LOAD x
ADD 0 ;yreg

y :yval

(a) RASP2 ADDi

CPY ’yval
STO ’yreg

LOAD
SUB 0 ;yreg

y :yval

(b) RASP2 SUBi

LOAD y
STO ’tmp

LOAD x
ADD ’tmp

0 :tmp

(c) RASP3 ADDd

LOAD y
STO ’tmp

LOAD x
SUB ’tmp

0 :tmp

(d) RASP3 SUBd

Figure 7.6: Implementations of direct and indirect ADD/SUB

and RASP4 \ RASP3 = {ADDd,SUBd} are the same size, so it falls to the

mappings θR2 and θR3 to tiebreak.

Figure 7.6 shows realisations of indirect and direct versions of ADD/SUB in

the RASP2 and RASP3 respectively. The realisations are the same size. Each

one requires nine registers. This thesis has maintained that the RASP3 is more

expressive than the RASP2 by virtue of its larger semantics and conciser programs

on average. If the definition for relative expressiveness holds, then the RASP2

and RASP3 are of the same expressive power.

Integrating the general trends of these comparisons into Felleisens frame-

work would have to take these tiebreaker aspects into account, as well as why

information-based cross-paradigm comparisons do not behave in the same manner

as inter-paradigm comparisons.

7.3.2 Program Equivalences

Section 4.6 discusses the importance of establishing equivalence between two re-

alisations of the same function before formal assertions are made. The work

of this thesis has not shown that the implemented programs herein hold under

extensional equivalence.

Though equivalence of programs in general is undecidable, equivalence of pro-

grams which compute the primitive recursive functions, barring erroneous occur-

rences of the µ operator (Section 4.1) should be computable.
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There are multiple ways which extensional equivalence can be estimated, if

not proven [31, 54, 73]. One approach involves induction over encoding functions.

Consider a general problem statement: “5+8”, or “Search 5 in [1,2,4,5,3,6,7,10]”.

For each (program, model) pair there exists a pair of functions: an encoding func-

tion and a decoding function. The encoding function encx,y(s) encodes the general

statement s ∈ Sy into a form suitable for evaluation with respect to program y in

model x. Similarly, the decx,y(q) decodes the result of an execution q according

to the program y written in model x.

Suppose Y is the set of all functions, X is the set of all models, and Sy is

the set of all valid statements which are inputs to function y. Two programs in

models x and z which compute a given function y are extensionally equivalent if:

∀s ∈ Sy : decx,y(semx(progx,y(encx,y(s)))) = decz,y(semz(progz,y(encz,y(s))))

where semx are the semantics which execute a program written in x, and progx,y

is a program written in x which computes the function y.

The abstraction afforded by the existence of enc and dec places the inner

workings of the semantics and program into a black box, facilitating the use of

induction to show equivalence.

7.3.3 Input Sizes

Sections 3.1.1 and 6.5 have discussed the effect of input encoding on program

size. A renewed investigation would aim to fully explore the extent of how input

encoding effects the TI of a model and function.

The density of encodings has an influence on the size of the programs. For

example, returning to the UTMs of Section 6.5, a relatively natural encoding

of the external tuple of the TM (〈sto, syo, stn, syn, D〉) uses single symbols to

represent the read and written symbols of each tuple and a single symbol for the

direction. The nominally base 10 numerals denoting the states are encoded in

binary, and tuples are delimited with a single symbol. The machine to utilise this

encoding has a large number of state and symbols with many potential tuples:

(23,8) with 184.
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Reducing the size of the alphabet of the encoding results in a much smaller

machine of (8,4) with only 32 potential tuples, however the encoding of the input

is sparser and much more complex, increasing in size by nearly 14 times. The

(3,11) of 33 potential tuples results in a denser encoding of just under half of the

encoding for the (8,4) machine.

7.3.3.1 No Free Lunch and Invariants

It is suspected that a variant of the “No Free Lunch” (NFL, [106]) theorem applies

to the relationship of information between semantics programs and their inputs.

Both folklore and Felleisen hypothesise that small semantics beget large programs

and vice versa. The existence of Neary’s UTMs show that there can be concise

programs with concise semantics relative to other models. However inputs for

such programs are large. Similarly, a model with a very concise program and also

concise input should have a large set of semantics.

The NFL theorem states that any two search algorithms are equivalent when

their performance is averaged over all possible problems. If an algorithm is par-

ticularly good at searching over some arrangement of data, then it will be equally

bad at searching some other arrangement:

Conjecture 1 (NFL for Information). Let P be an elegant program such that

there exists no smaller program to calculate the function of P , which uses the

same encoding function e for the input.

Any reduction in the size of P would necessarily require an increase in the size

of the semantics for the model of P (i.e. more instructions), or a new encoding

function g such that:

∀x : e(x) < g(x)

Consider an elegant semantics and an elegant program. A reduction in the

semantics via elimination of some rule which is used by the program will increase

the size of the program. To further reduce an elegant program will precipitate

an increase in the semantics and maybe the input encoding. An elegant pro-

gram cannot decrease in size without the introduction of new operators via the

semantics.
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The formulation of the NFL hypothesis suggests that for every function there

exists some minimal amount of information which is distributed over the seman-

tics, program, and input encoding for some model.

Conjecture 2 (Information Invariance). For all model and computable function

pairs, there exists an information invariant i and overhead c. The value i + c is

distributed over the semantics, program, and encoding function. The program and

encoding function are optimal when c is minimised, and that any further reduction

of information in the semantics, program, or encoding function will correspond

to a rise in information in the other two.

7.3.4 Phase Transitions

The radical difference in internal representation (array vs graph) and in evalua-

tion method (sequential vs graph reduction) is believed to cause the disconnect

between the TIs of the imperative and functional paradigms. It may be that some

operators of the SOS formalism which are used in one paradigm but not the other

contribute a large amount of computational power. Section 7.3.5 discusses how

this could be accounted for.

Irrespective of the paradigm, there is a dramatic difference in the TI between

the models with large semantics and the models with small semantics. This occurs

most notably in the representations of the universal RASP and universal TM. The

TI for the SKI and TM representations increase drastically when implementing

these programs opposed to the RASP and λ-calculus implementations.

This is hypothesised to be a phase transition precipitated by the difference

in memory models between the less expressive models and the more expressive

ones. The less expressive models use sequential access/reduction while the more

expressive models have random access and arbitrary substitution:

Conjecture 3 (Phase Transition). The phase transition observed between the

information contents of the TM/SKI and RASPs/λ-calculus is caused by the ex-

istence (or lack thereof) of random access memory structures in the models.

There may exist more phase transitions. A non-deterministic model of com-

putation is a model which leverages probability in order to compute. Such a
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model has a valid program if there exists at least one valid computation path

which returns the correct output. Non-deterministic varieties of all models of

computation exist. There are non-deterministic TMs, reduction strategies, RAM

and RASP machines [90, 34].

Because the machine can make a choice as to which computation path to

execute, decisions which would ordinarily be highly specified need not be. This

leads to a saving in the number of instructions, and thus information, needed to

specify the decision paths of the machine.

Conjecture 4 (Other Phase Transition). There exist other phase transitions in

the space of models and programs, centered around some language feature where

the PIs of models with this feature is lower than the PI of models without this

feature.

7.3.5 Symbol Grounding

Those schooled in logic and mathematics are familiar with the meaning of symbols

like ‘+’, ‘∀’, ‘×’, and ‘∃’. They have been taught the functionality of what these

symbols represent and know how and when to apply these functions to situations,

and when not to.

Searle’s famous gedankenexperiment, The Chinese Room [85], was written as

an indictment against the proponents of Strong AI1. Searle asserted that the

manipulation of symbols by some fixed set of instructions could be mistaken as

consciousness when it is merely the following of instructions. The arguments for

and against this position here will not be discussed here, but Searle’s paper raises

the question: at what point in a computational system are meanings ascribed to

the symbols which make up the language of the system? This is known as the

symbol grounding problem [29, 95].

Chapter 5 discusses the problem of infinite regress. Attempting to ground the

functions of Structured Operational Semantics in some other expressive formalism

begs the question of how that formalism is grounded. In this thesis a solution

to the problem was formulated by grounding the models in FPGAs, but there is

1A philosophical position which states that there exists a computer program which embodies
the attributes of consciousness/cognition.
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another possible solution.

The semantics of the models in SOS presented herein are approximations.

The functions of SOS have been taken as a baseline, but some models may use

different aspects of SOS than others. The RASP and TM use numerals (natural

numbers for the RASP and integers for the TM) and the SKI and λ-calculus use

set indirection to reason about sub-trees.

The SKI and λ-calculus models do not require numerals for their operation;

similarly RASP and TM do not require set indirection. However, a flat baseline

like SOS would account for both. A semantic system could be devised where the

operations of the semantic system are derived from the base axioms of a formalism

such as First Order Logic, Zermelo-Frankel set theory, or Russell’s type theory.

Not all of these systems are self contained however. The existential and uni-

versal quantifiers are a part of First Order Logic, but required for set theory.

Furthermore, some operators cannot be defined in a lower system. The existen-

tial and universal quantifiers are axiomatic in their system. Such concepts will

be elementary definitions and axioms. If FOL and ZFC were to be used, a few of

these elementary definitions would include:

• Sets

• Variables

• Set Membership

• Existential/Universal Quantifiers (pick one)

• Zero

These definitions form the baseline, as concepts so basic such that there is no

mathematical expression to define them. The constrained notation for mathemat-

ics is inadequate to define such concepts so natural language must be employed.

A logic constructed as such allows the information content of each logical con-

struction built upon these axioms to be tracked. A semantic system as expressive

as SOS, based on this axiomatic foundation would have an information value for

its operators. Thereby any semantics which use an operator pays the information

“price”.

Formulating the semantics in this system would give a much higher resolution

view of the information content of the semantics. It may then be possible to
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perform experiments where a root semantics is modified multiple ways and the

effect of such changes are measured across the set of test programs. This would

also facilitate study of hybridised languages, for example which contain both im-

perative and functional subsets, and can judge if a ‘best of both worlds’ language

provides benefits to mean program size.

7.3.6 Other Work

Imperative/Functional Comparisons It is clear with the resolution of the

SI/TI across paradigms hypotheses that the relative expressivity of models across

paradigms cannot be determined by TI alone. It is suspected that this is due to

the vast difference in evaluation methodologies. This is not confirmed, so further

work into investigating the information link across paradigms may confirm it.

Alternate Semantics Section 7.2.4 argues the notion that the measurements

are relative only to the very specific representations and evaluation methodology

as defined in the semantics. What is not known is if the hypotheses hold true

for other models and semantic schemes. Further work here would be in the

implementation of the models described here for other semantic systems and

evaluating the hypotheses for these.

Real Applications While the FPGA realisations of the models do not provide

useful data on the relative TI of models, it does provide an indication of the TI of

programs in a singular model. This information could be generalised to the cross

compilation of language subsets (such as C) to FPGAs. Measuring the TI of a C

implementation may give an approximation of the size of the resulting circuit.
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Appendix A

The Busy Beaver Problem

The ‘Busy Beaver game’ was first formulated by Radó [77] in order to showcase
an example of a simple undecidable problem. The game is a competition amongst
Turing machine programmers to find the Turing machine of a certain number of
states which, when started on a blank tape, writes the most symbols to the tape
before halting.

More formally, Radó defined the game using n state, 2 symbol machines and
there was a different category for each n. A current ‘champion’ machine is a pair
(M, s) where M is the machine and s is number of steps before halting. Checking
the champion then became a trivial task of running M for s steps and counting
the number of 1’s on the tape to ensure correctness.

Brady generalised the game to include k symbols [66] which introduced a new
set of classes for machines to fall into. A busy beaver champion (M, s) fits into
the class Σ(n, k) when M has n states and k symbols.

There is a championship for the number of steps a machine will make as well as
for the number of non-blank symbols on the tape, because a champion of symbols
will not necessarily be a champion stepper and vice versa. The class analogous
to Σ(n, k), S(n, k) is the class for champion steppers.

A.1 Turing Machine Busy Beavers

Soon after the definition of the busy beaver game. Lin and Radó [57] performed
an exhaustive search of the classes (2,2) and (3,2). The size of the machine space
is as follows:

((n+ 1)× 2k)nk

where n and k are as defined above. This results in around 17 million machines for
the (3,2) class, but normalisation techniques filter out machines that, immediately
halt or do not print a 1 as their first action. This filtering reduces the number of
possible champions to 82,944, which were tested for halting behaviour.

Trivial non-halting machines were filtered out and the non-trivial ones were
executed by hand to determine their operation. As the authors note, there were
no machines so complicated as to make it impossible to assert halting behaviours
by hand. They concluded that S(2, 2) = 6, Σ(2, 2) = 4, S(3, 2) = 21, and
Σ(3, 2) = 6.

At this time, 4 classes of busy beaver machines have had confirmed S and Σ
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Date Discoverer(s) Bounds
1963 Radó, Lin S(2, 2) = 6, Σ(2, 2) = 4

S(3, 2) = 21, Σ(3, 2) = 6
1964 Brady S(4, 2) = 107, Σ(4, 2) = 13

February 1990 Marxen, Buntrock S(5, 2) ≥ 47, 176, 870, Σ(5, 2) ≥ 4098
February 2005 T. and S. Ligocki S(2, 4) ≥ 40, 737, Σ(2, 4) ≥ 3, 932, 964

November 2007 T. and S. Ligocki
S(3, 3) ≥ 119, 112, 334, 170, 342, 540,
Σ(3, 3) ≥ 374, 676, 383
S(2, 5) > 1.9× 10704 ,Σ(2, 5) > 1.7× 10352

December 2007 T. and S. Ligocki S(3, 4) > 5.2× 1013036,Σ(3, 4) > 3.7× 106518

January 2008 T. and S. Ligocki S(4, 3) > 1× 1014072,Σ(4, 3) > 1.3× 107936

S(2, 6) > 2.4× 109866,Σ(2, 6) > 1.9× 104933

June 2010 Kropitz S(6, 2) > 7.4×1036534,Σ(6, 2) > 3.4×1018267

Table A.1: Currently known lower bounds of the explored classes (2012 [66]).

scores with machines to match: BB(1,2), BB(2,2) BB(3,2) and BB(4,2). Marxen
and Buntrock [61] have established lower bounds for the class (5,2) at S(5, 2) ≥
47, 176, 870 and Σ(5, 2) ≥ 4098.

The father and son team of Terry and Shawn Ligocki have made progress in
exploring the space of machines with more than 2 symbols by using simulated
annealing techniques to obtain high scoring machines [66]. They currently hold
the record for many of these classes.

Table A.1, by way of Michel [66] shows the current records for a few of the
classes as of June 2012.

A.2 RASP Busy Beavers

A busy beaver variant for the RASP machine can be defined though the execution
of the ‘OUT’ instruction. For a class of n-bit machines Σ(n) is the competition
for the number of times the ‘OUT’ command is executed, while S(n) is the
competition for the number of fetch-execute cycles performed.

The mapping of instructions to naturals in all RASP definitions (including the
one presented earlier in Section 2.3.1.2) are arbitrary. There is no real reason for
INC to be mapped to 1 and CPY to be mapped to 7. This isn’t such a problem
in the literature concerned with runtimes [17, 38] but in the investigation of
machines with maximal output, we want to be thorough in considering all of the
possibilities.

To facilitate this, we extend the RASP model as to admit an arbitrary map-
ping of naturals to instructions. We constrain the range to 2n so that a machine
cannot map an instruction to a natural that the machine cannot represent. Sim-
ilarly, the mapping is injective. An entrant into the competition BBR(n) is thus
a pair R(p, i) of the program p (of size 2n) and the instruction set mapping i.

Unlike the BB problem for TMs, the RASP version is computable because the
halting problem for finite RASPs is computable.

Theorem 3 (Halting problem decidability). The Halting problem for the finite
RASP is decidable.
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Proof. Consider a finite n-bit RASP machine M . We define the state of M to be
the entire memory at a particular time, and each fetch-decode-execute cycle as a
transition from one state to another. Since there is only a finite range of values
for a finite number of memory locations, we can calculate the maximum number
of possible states for any given machine numStates(n) = nn.

Because each fetch-decode-execute cycle performs a transition between states
S → S ′ we can run the machine for at most numStates(n) cycles, storing each
visited state as it is encountered and checking the store for the new state after
every state transition. If we encounter the same state twice, a loop has occurred
and can conclude that for some state X which is entered during execution of the
machine, there exists a transitive closure over a relation R such that XR+X.
From which we can conclude that M will never halt.

A.3 Finding the Champions

Assuming the RASP has eight instructions, the number of unique instruction set
mapping for an n bit machine is:

PI(n) =
∏

n−8<i≤n

i

Each potential program is a sequence of 2n natural numbers. Of these, the PC,
IR and ACC are initialised at {3 0 0}. Each program is a base n number of length
2n − 3 so that that the formula to calculate the number of possible initial RASP
machines is PR(n) = (2n)2

n−3.

A.3.1 Brute Force Methods

For 3 bit RASP machines, PR(3) × PI(3) = 1, 321, 205, 760. This is a feasible
number to search through in a parallel brute force manner.

The parallel architecture was designed as a pseudo-task farm. Each node has
an unique identifying integer (id) and knows how many nodes are working on the
problem. The node with an id of zero was designated the master node.

Upon initialisation of the search, the nodes use their ids to work out which
block of instruction set mappings they should explore. They proceed to run each
of their assigned mappings against every n-bit RASP machine, recording the
highest shifter and highest ‘OUT’ executor. Once a node has searched though all
of the mappings and has its champion machines, it returns them to the master
node which finds the overall champions and outputs them. Non-halting behaviour
is detected by storing each state in a binary tree. If a state is already in the tree
when visited, the machine is forcibly halted and discarded.

This entire procedure takes around 6 minutes on 32 cores of a 256 core Beowulf
cluster consisting of 8 core Intel Xeon CPUs clocked at 2.13GHz. Figures A.1a and
A.1b show the top scoring machines for Σ(3) = 47 and S(3) = 112 respectively.
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Instr I Label
3 :PC
0 :IR
0 :ACC

INC :start
INC
OUT
OUT
INC

(a) The best 3-bit OUT machine

Instr I Label
3 :PC
0 :IR
0 :ACC

INC :start
OUT
DEC
INC
JGZ

(b) The best 3-bit steps machine

The instruction sets for these machines are:

A.1a {0 7→ OUT, 1 7→ LOAD, 2 7→ DEC, 3 7→ INC, 4 7→ CPY, 5 7→ STO,
6 7→ HALT, 7 7→ JGZ}

A.1b {0 7→ DEC, 1 7→ LOAD, 2 7→ STO, 3 7→ JGZ, 4 7→ OUT, 5 7→ HALT,
6 7→ INC, 7 7→ CPY }

The machine space PR(4) = 4, 503, 599, 627, 370, 496 is an infeasible number
of machines to search through in any reasonable time. So more advanced methods
must be employed.

A.3.2 Genetic Algorithms

A genetic algorithm is a problem solving strategy which models natural selec-
tion [32]. It begins with an initial pool of (often randomly generated) solutions to
some problem. Each potential solution is evaluated for fitness to determine how
effective they are at solving the problem.

A subset of solutions are selected and bred together by means of crossover
and mutation. Those not selected for reproduction are killed off and breeding
refills the pool of candidates. The fitness of a solution improves the chance of it
being selected for reproduction, but doesn’t guarantee it.

A.3.2.1 Selection and Breeding

A solution for the RASP busy beaver is a pair of the program and the instruction
set mapping. These are represented in memory as two arrays of length 2n−3 and
8 respectively. We refer to these two arrays as chromosomes and the individual
elements of the arrays as genes.

The fitness scores of a candidate is calculated as the number of steps/number
of ‘OUT’s (dependent on whether our search is for S(n) or Σ(n)) if the machine
halts, otherwise it is 1.

Selection is handled through roulette wheel selection [32]. Imagine a roulette
wheel sized such that it accommodates all candidates and each candidate has a
‘slice’ of the wheel proportional to its fitness (Figure A.2).

When selecting a candidate, we conceptually bounce a ball over the surface
of the wheel. The distance that the ball can bounce is calculated as a random
proportion of sums of all the fitnesses. As it moves round the wheel and passes
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C1

C1

C1

C2C3

C3

C4

C4

Figure A.2: A depiction of the roulette wheel we use to select candidates. C1
is the candidate with the highest fitness, so it gets the highest proportion of the
wheel. C2 has the lowest fitness. C3 and C4 are equal in fitness.

Bits Results Comments
3 S(3) = 112,Σ(3) = 47 Exact values found through

brute force searching.
4 S(4) ≥ 3413,Σ(4) ≥ 1483 Genetic, Pool: 100000,

Generations: 1000, Islands:
32

Table A.2: Current records for numbers of shifts and outputs.

over candidates, it uses up its allowable distance. Once all of the distance has been
used, it stops. The candidate that it stops on is then removed from the wheel,
the wheel is resized, and the process starts again until the breeding population
target has been met.

Crossing chromosomes involves picking two of the solutions and choosing a
random point on one of them. The new chromosome is created by taking the
genes of the first parent up to the random point, then taking the genes of the
second parent past that point. Mutation of the program picks a random gene in
a chromosome and changes it to some other gene. Mutation of the instruction
set swaps two genes to maintain an injective mapping.

Repopulating the pool picks two parents at random and selects a parent to be
‘dominant’. There is a 1/3 chance that the programs get crossed, a 1/3 chance
that the instruction sets get crossed (while still adhering to the injective rules for
the instruction sets) and a 1/3 chance that both get crossed. If a chromosome
isn’t to be crossed, the chromosome from the dominant parent is copied. There
is a small (5%) chance that the program or instruction set will be mutated.

A.3.2.2 Current Results

Table A.2 shows the current results of the investigation while Table A.3 demon-
strates the record holding instruction sets and programs.

The optimal strategy to evolve good machines seems to stem from repeatedly
seeding the current champion machine into the algorithm. What this does is seed
the initial pools with the current champion machine in the hope that it will be
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Record Held Instruction Set Program
S(3) = 112 {5,6,0,1,2,4,3,7} {6,4,0,6,3}
Σ(3) = 47 {6,3,2,1,5,0,7,4} {3,3,0,0,3}
S(4) ≥ 3413 {14,3,13,0,6,9,4,15} {9,3,6,3,4,12,9,13,6,9,3,4,7}
Σ(4) ≥ 1483 {2,6,7,5,1,3,4,0} {3,3,6,3,3,4,4,5,1,7,1,11,4}

Table A.3: Instruction sets and programs of record holding machines. Instruction
mapping is {HALT,INC,DEC,LOAD,STO,OUT,JGZ,CPY}.

improved upon. This is a manual version of the migration strategy laid out above
and the author has seen success with hand constructing a seed and letting the
algorithm evolve it into a better version.

A.4 Reflection

The investigation outlined was not as enlightening as one would hope. This
section reflects on how we structured our algorithm and hardware and what we
should do differently for a fresh investigation.

A.4.1 Landscape and Fitness

As with all informed search methods, there is the danger of local maxima. Ran-
domly generating and evolving solutions can achieve good results, but with a
search space as large as n > 3 we cannot hope to obtain a statistically benefi-
cial initial ‘spread’ of candidates across the solution landscape. Furthermore, the
landscape itself is exceptionally jagged. The fitness function is not nearly sophis-
ticated enough to effectively navigate the space. For example, changing any one
of the record machines instructions to a HALT (say {6, 4, 0, 6, 3} ↔ {6, 4, 0, 5, 3}
where 5 7→ HALT ) will ruin the fitness score of the machine.

We could apply filters to our machine generator so that it accepts a HALT or
unmapped natural number in the body of the machine only if it comes immedi-
ately after a LOAD, STO, JGZ, or CPY. This way, we would produce machines
that don’t instantly halt and that would need to compute, or specifically jump
to some halting numeral before it will stop.

Another approach we could try comes from the field of computer security.
Self modification is a typical obfuscation technique to disguise malicious code
and attempts to combat it had resulted in the development of semantic models
which decompose a self modifying binary into phases. These phases are statically
analysed for malicious behaviour as normal [23].

We could possibly adopt this approach for larger spaces (n > 6). However we
would have to experiment to ensure that this decomposition and analyses is faster
than, or provides considerably more information than, just running the machine.
Otherwise we will incur a greater time overhead per machine in a space where
speed of execution is arguably more important.

Advanced static analyses as described above coupled with (non)halting de-
tection could direct a genetic algorithm to target a specific neighbourhood of a
candidate. If an n-bit candidate doesn’t quite halt, but is otherwise a champion
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machine, the problem could perhaps be narrowed down to k registers which need
modification. A narrow number of registers can conceivably be brute forced for
larger n’s than what we’ve investigated so far. This very specific modification
method strays into the remit of Genetic Programming [51].

A.4.2 Architecture and Seeding

The genetic algorithm was parallelised as the brute force algorithm. Each process
contains its own pool, the best solutions are evolved from the pool. Once the
process has evolved a solution for n generations, it is sent back to the master
process which judges the best overall solution.

This ‘isolated island’ approach tends to exhibit speciation (local maxima)
across processes. A better approach may be to migrate the top solutions from
the pools every few generations [7]. This re-seeds the pool with the current best
solution to the problem, increasing the chances of evolving the current solution
into an even better one.
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Full Programs

This appendix presents the measured programs for each of the models investigated
in this thesis. The programs here are what is measured to obtain the character
counts exemplified in Table 4.2 et al. and are analysed in Chapter 6.

B.1 RASP

The RASP programs are presented in two ways: the “programming language
form” as seen all throughout this thesis, and the “array form” which is what is
actually measured.

B.1.1 Addition

Instr Data I Label D Label
LOAD 3 :addStart ;x
JGZ ’adding

HALT
DEC :adding
STO ’x

LOAD 4 ;y
INC
STO ’y

LOAD 1
JGZ ’addStart

3,5,6,8,0,2,4,4,3,8,1,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0,0,0,0
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B.1.2 Subtraction

Instr Data I Label D Label
LOAD 4 :sub_start ;sub_2
JGZ ’subbing

HALT
DEC :subbing
STO ’sub_2

LOAD 7 ;sub_1
JGZ ’subbing2

HALT
DEC :subbing2
STO ’sub_1
JGZ ’sub_start

3,4,6,8,0,2,4,4,3,7,6,16,0,2,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0

B.1.3 Equality

Instr Data I Label D Label
LOAD 6 :dec1 ;cmp1
DEC
STO ’cmp1

LOAD 5 ;cmp2
DEC
STO ’cmp2
JGZ ’dec1
CPY ’cmp1
JGZ 0

LOAD 1
HALT

3,6,2,4,4,3,5,2,4,9,6,3,7,4,6,0,3,1,0,0,0,0,0,0,0,0,0,0,0
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B.1.4 Multiplication

Instr Data I Label D Label
CPY ’multiplier
JGZ ’return

HALT
LOAD 5 :return ;multiplicand
JGZ ’mul_start

HALT
DEC :mul_start
STO ’multiplicand

LOAD 5 ;multiplier
STO ’tmp

LOAD 0 :loop ;tmp
JGZ ’add

LOAD 1
JGZ ’return
DEC :add
STO ’tmp

LOAD 0 ;runningTotal
INC
STO ’runningTotal

LOAD 1
JGZ ’loop

7,17,6,8,0,3,5,6,13,0,2,4,9,3,5,4,21,3,0,6,28,3,1,6,8,2,4,21,

3,0,1,4,32,3,1,6,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0
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B.1.5 Division

Instr Data I Label D Label
LOAD 3 :start ;divisor
JGZ ’div_start

HALT
STO ’tmp :div_start

LOAD 7 ;num
STO ’remainder

LOAD 0 :loop ;tmp
JGZ ’sub

LOAD 1
JGZ ’return
DEC :sub
STO ’tmp
CPY ’num
JGZ ’nl

HALT
DEC :nl
STO ’num

LOAD 1
JGZ ’loop

LOAD 0 :return ;quotient
INC
STO ’quotient
JGZ ’start

0 :remainder

3,3,6,8,0,4,15,3,7,4,44,3,0,6,22,3,1,6,37,2,4,15,7,11,6,30,0,

2,4,11,3,1,6,14,3,0,1,4,38,6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0
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B.1.6 Exponentiation

Instr Data I Label D Label
LOAD 1 :start ;power
JGZ ’continue

HALT
DEC :continue
STO ’power

LOAD 1 ;runningTotal
STO ’multiplicand

LOAD 0
STO ’runningTotal

LOAD 0 :return ;multiplicand
JGZ ’mulStart

LOAD 1
JGZ ’start
DEC :mulStart
STO ’multiplicand

LOAD 1 ;multiplier
STO ’tmp

LOAD 0 :loop ;tmp
JGZ ’add

LOAD 1
JGZ ’return
DEC :add
STO ’tmp
CPY ’runningTotal
INC
STO ’runningTotal

LOAD 1
JGZ ’loop

3,1,6,8,0,2,4,4,3,1,4,20,3,0,4,12,3,0,6,27,3,1,6,3,2,4,20,3,

1,4,35,3,0,6,42,3,1,6,19,2,4,35,7,12,1,4,12,3,1,6,34,0,0,0,

0,0,0,0,0,0,0
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B.1.7 List Membership

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer :cmp_pointer_target
STO ’indir_pointer
CPY 0 ;indir_pointer
STO ’cmp_1

LOAD 0 ;target
STO ’cmp_2

LOAD ’end_test
STO ’cmp_return_1

LOAD ’equal
STO ’cmp_return_2

LOAD 0 :cmp_start ;cmp_1
DEC
STO ’cmp_1

LOAD 0 ;cmp_2
DEC
STO ’cmp_2
JGZ ’cmp_start
CPY ’cmp_1
JGZ 0 ;cmp_return_1

LOAD 1
JGZ 0 ;cmp_return_2

LOAD 0 :end_test ;pointer
STO ’cmp_1

LOAD ’listend
STO ’cmp_2

LOAD ’inc_pointer
STO ’cmp_return_1

LOAD ’list_ended
STO ’cmp_return_2
JGZ ’cmp_start

LOAD 1 :equal
HALT
CPY ’pointer :inc_pointer
INC
JGZ ’cmp_pointer_target

LOAD 0 :list_ended
HALT

:listStart
:listend

3,73,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,72,4,31,3,66,4,

40,3,71,4,44,6,25,3,1,0,7,46,1,6,5,3,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.8 Linear Search

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer :cmp_pointer_target
STO ’indir_pointer
CPY 0 ;indir_pointer
STO ’cmp_1

LOAD 0 ;target
STO ’cmp_2

LOAD ’end_test
STO ’cmp_return_1

LOAD ’equal
STO ’cmp_return_2

LOAD 0 :cmp_start ;cmp_1
DEC
STO ’cmp_1

LOAD 0 ;cmp_2
DEC
STO ’cmp_2
JGZ ’cmp_start
CPY ’cmp_1
JGZ 0 ;cmp_return_1

LOAD 1
JGZ 0 ;cmp_return_2

LOAD 0 :end_test ;pointer
STO ’cmp_1

LOAD ’listend
STO ’cmp_2

LOAD ’inc_pointer
STO ’cmp_return_1

LOAD ’list_ended
STO ’cmp_return_2
JGZ ’cmp_start
CPY ’pointer :equal
STO ’cmp_1

LOAD ’listStart
STO ’cmp_2

LOAD ’finish
STO ’cmp_return_1
STO ’cmp_return_2
JGZ ’cmp_start
CPY ’cmp_1 :finish
HALT
CPY ’pointer :inc_pointer
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Instr Data I Label D Label
INC
JGZ ’cmp_pointer_target

LOAD ’listend :list_ended
HALT

:listStart
:listend

3,89,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,88,4,31,3,82,

4,40,3,87,4,44,6,25,7,46,4,26,3,89,4,31,3,79,4,40,4,44,6,25,

7,26,0,7,46,1,6,5,3,88,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.9 List Reversal

Instr Data I Label D Label
LOAD ’listEnd
STO ’cpyPointer
INC
INC
STO ’writePointer

LOAD 0 :main ;writePointer
STO ’writeSTO

LOAD 0 ;cpyPointer
STO ’cpyLOC
CPY 0 ;cpyLOC
STO 0 ;writeSTO
CPY ’writePointer
INC
STO ’writePointer
CPY ’cpyPointer
STO ’tmp1

LOAD ’listStart
STO ’tmp2

LOAD 0 :loop ;tmp1
DEC
STO ’tmp1

LOAD 0 ;tmp2
DEC
STO ’tmp2
JGZ ’loop
CPY ’tmp1
JGZ ’decWritePointer

HALT
CPY ’cpyPointer :decWritePointer
DEC
STO ’cpyPointer
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Instr Data I Label D Label
JGZ ’main

:listStart
:listEnd

3,59,4,16,1,1,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,4,

12,7,16,4,37,3,58,4,42,3,0,2,4,37,3,0,2,4,42,6,36,7,37

,6,53,0,7,16,2,4,16,6,11,0,0,0,0

B.1.10 Stateful List Reversal

Instr Data I Label D Label
LOAD ’listStart
STO ’pointer1

LOAD ’listEnd
STO ’pointer2

LOAD 0 :main ;pointer1
STO ’cmp1

LOAD 0 ;pointer2
STO ’cmp2

LOAD 0 :loop ;cmp1
DEC
STO ’cmp1
JGZ ’compare2

LOAD 0 ;cmp2
DEC
JGZ ’swap

HALT
CPY ’cmp2 :compare2
DEC
STO ’cmp2
JGZ ’loop

HALT
CPY ’pointer1 :swap
STO ’swpref1
STO ’writeref1
CPY 0 ;swpref1
STO ’swp
CPY ’pointer2
STO ’swpref2
STO ’writeref2
CPY 0 ;swpref2
STO 0 ;writeref1

LOAD 0 ;swp
STO 0 ;writeref2
CPY ’pointer1
INC
STO ’pointer1
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Instr Data I Label D Label
CPY ’pointer2
DEC
STO ’pointer2
JGZ ’main

:listStart
:listEnd

3,74,4,12,3,75,4,16,3,0,4,20,3,0,4,27,3,0,2,4,20,6,32,3,

0,2,6,40,0,7,27,2,4,27,6,19,0,7,12,4,47,4,59,7,0,4,61,7,

16,4,57,4,63,7,0,4,0,3,0,4,0,7,12,1,4,12,7,16,2,4,16,6,

11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.11 Bubble Sort

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer1
INC
STO ’pointer2

LOAD 0
STO ’flag

LOAD 0 :cmp_pointers ;pointer1
STO ’p1ref
CPY 0 ;p1ref
STO ’cmp1

LOAD 0 ;pointer2
STO ’p2ref
CPY 0 ;p2ref
STO ’cmp2

LOAD ’inc_pointers
STO ’cmpOther
STO ’equal1

LOAD ’swap
STO ’cmp1Greater

LOAD 0 :cmp_start ;cmp2
DEC
STO ’cmp2
JGZ ’cmp1dec
CPY ’cmp1
DEC
JGZ 0 ;cmp1Greater

LOAD 1
JGZ 0 ;equal1

LOAD 0 :cmp1dec ;cmp1
DEC
STO ’cmp1
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Instr Data I Label D Label
JGZ ’cmp_start

LOAD 1
JGZ 0 ;cmpOther
CPY ’pointer1 :inc_pointers
INC
STO ’pointer1
CPY ’pointer2
STO ’cmp2

LOAD ’listend
STO ’cmp1

LOAD ’return_to_inc
STO ’cmp1Greater

LOAD ’foundEnd
STO ’equal1
STO ’cmpOther
JGZ ’cmp_start
CPY ’pointer2 :return_to_inc
INC
STO ’pointer2
JGZ ’cmp_pointers

LOAD 0 :foundEnd ;flag
JGZ ’start

HALT
CPY ’pointer2 :swap
STO ’p2SwpRef
STO ’p2WriteRef
CPY 0 ;p2SwpRef
STO ’swp
CPY ’pointer1
STO ’p1SwpRef
STO ’p1WriteRef
CPY 0 ;p1SwpRef
STO 0 ;p2WriteRef

LOAD 0 ;swp
STO 0 ;p1WriteRef

LOAD 1
STO ’flag
JGZ ’inc_pointers

:listStart
:listend

3,130,4,15,1,4,23,3,0,4,100,3,0,4,19,7,0,4,57,3,0,4,27,7,0,

4,41,3,67,4,66,4,55,3,104,4,51,3,0,2,4,41,6,56,7,57,2,6,0,

3,1,6,0,3,0,2,4,57,6,40,3,1,6,0,7,15,1,4,15,7,23,4,41,3,132,

4,57,3,92,4,51,3,99,4,55,4,66,6,40,7,23,1,4,23,6,14,3,0,6,3,

0,7,23,4,111,4,123,7,0,4,125,7,15,4,121,4,127,7,0,4,0,3,0,4,

0,3,1,4,100,6,67,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0

B.1.12 Universal TM

Instr Data I Label D Label
CPY ’CURR_ST :PStart
STO ’SE_ST
CPY ’CHP
STO ’SYMBOL_READ
CPY 5 ;SYMBOL_READ
STO ’SE_SY

LOAD ’MSearchRET
STO ’SeRetLoc
JGZ ’SEStart

LOAD 0 :MSearchRET ;SeResLoc
JGZ ’Vsearch

HALT
INC :Vsearch
INC
STO ’NST_Read
INC
STO ’NSY_Read
INC
STO ’NDIR_READ
CPY 0 ;NST_Read
STO ’CURR_ST
CPY ’CHP
STO ’HP
CPY 0 ;NSY_Read
STO 0 ;HP
CPY 0 ;NDIR_READ
DEC
JGZ ’DIR_RIGHT
CPY ’CHP
DEC
STO ’CHP
JGZ ’CONTINUE
CPY ’CHP :DIR_RIGHT
INC
STO ’CHP
CPY ’CURR_ST :CONTINUE
JGZ ’PStart

HALT
LOAD ’SYT_START :SEStart
STO ’currentLoc
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Instr Data I Label D Label
LOAD 0 :search_loop ;currentLoc
STO ’lc
CPY 3 ;lc
JGZ ’Valid_Tuple

LOAD 1
JGZ ’Not_Found

LOAD 0 :Valid_Tuple ;SE_ST
STO ’CMP1
CPY ’currentLoc
STO ’tabcomp1
CPY 5 ;tabcomp1
STO ’CMP2

LOAD ’cmp1_return
STO ’CMP_RET_LOC
JGZ ’CMP_START
CPY ’CMP_RET :cmp1_return
JGZ ’nTupleSt
CPY ’currentLoc
INC
STO ’currentLoc
STO ’tabcomp2
CPY 5 ;tabcomp2
STO ’CMP1

LOAD 0 ;SE_SY
STO ’CMP2

LOAD ’cmp2_return
STO ’CMP_RET_LOC
JGZ ’CMP_START
CPY ’CMP_RET :cmp2_return
JGZ ’nTupleSy
CPY ’currentLoc
DEC
STO ’SeResLoc

LOAD 1
JGZ ’searchExit
CPY ’currentLoc :nTupleSt
INC
STO ’currentLoc
CPY ’currentLoc :nTupleSy
INC
INC
INC
INC
STO ’currentLoc
JGZ ’search_loop

LOAD 0 :Not_Found
STO ’SeResLoc
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Instr Data I Label D Label
LOAD 1 :searchExit
JGZ 5 ;SeRetLoc

LOAD 0 :CMP_START ;CMP1
DEC
STO ’CMP1

LOAD 0 ;CMP2
DEC
STO ’CMP2
JGZ ’CMP_START
CPY ’CMP1
JGZ ’NotEqual
STO ’CMP_RET :Equal

LOAD 1
JGZ ’CMP_EXIT

LOAD 1 :NotEqual
STO ’CMP_RET
JGZ 0 :CMP_EXIT ;CMP_RET_LOC

0 :CMP_RET
’TAPE_START :CHP

1 :CURR_ST
:SYT_START

:TAPE_START

7,202,4,87,7,201,4,12,7,5,4,120,3,21,4,171,6,70,3,0,6,26,0,1,

1,4,37,1,4,45,1,4,49,7,0,4,202,7,201,4,47,7,0,4,0,7,0,2,6,60,

7,201,2,4,201,6,65,7,201,1,4,201,7,202,6,3,0,3,194,4,75,3,0,4,

79,7,3,6,86,3,1,6,164,3,0,4,173,7,75,4,95,7,5,4,178,3,104,4,

199,6,172,7,200,6,142,7,75,1,4,75,4,116,7,5,4,173,3,0,4,178,3,

129,4,199,6,172,7,200,6,142,7,75,2,4,22,3,1,6,168,7,75,1,4,75,

4,150,7,2,6,142,7,75,1,4,75,4,161,7,0,6,74,3,0,4,22,3,1,6,5,3,

0,2,4,173,3,0,2,4,178,6,172,7,173,6,194,4,200,3,1,6,198,3,1,4,

200,6,0,0,196,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.13 Universal RASP

Instr Data I Label D Label
LOAD ’PC_P
INC
INC
INC
STO ’OFF_PC
CPY ’OFF_PC :SIM_START
STO ’INSLOC
CPY 4 ;INSLOC
STO ’IR_P
STO ’Decoder_Ins

274



Appendix B. Full Programs

Instr Data I Label D Label
JGZ ’dec1

HALT :none
DEC :dec1
JGZ ’dec2
CPY ’ACC_P
INC
STO ’x
STO ’ACC_P
CPY ’MAX_INT
STO ’y

LOAD ’ACC_P
STO ’sto_location

LOAD ’done
STO ’return_location
JGZ ’TEST_LOOP
DEC :dec2
JGZ ’dec3
CPY ’ACC_P
JGZ ’dc
CPY ’MAX_INT
STO ’ACC_P
JGZ ’decST
DEC :dc
STO ’ACC_P :decST

LOAD 1
JGZ ’done
DEC :dec3
JGZ ’dec4

LOAD ’LOAD_RETURN
STO ’FETCH_RETURN
JGZ ’FETCH
CPY ’IR_P :LOAD_RETURN
STO ’ACC_P

LOAD 1
JGZ ’done
DEC :dec4
JGZ ’dec5

LOAD ’STO_RETURN
STO ’FETCH_RETURN
JGZ ’FETCH
CPY ’IR_P :STO_RETURN
STO ’OINT

LOAD ’STO_O_RETURN
STO ’OFFSET_RETURN
JGZ ’OFFSET
CPY ’OINT :STO_O_RETURN
STO ’sloc
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Instr Data I Label D Label
CPY ’ACC_P
STO 0 ;sloc

LOAD 1
JGZ ’done
DEC :dec5
JGZ ’dec6
OUT
JGZ ’done
DEC :dec6
JGZ ’dec7

LOAD ’JGZ_RETURN
STO ’FETCH_RETURN
JGZ ’FETCH
CPY ’ACC_P :JGZ_RETURN
JGZ ’JGZ_JUMP

LOAD 1
JGZ ’done
CPY ’IR_P :JGZ_JUMP
STO ’PC_P
STO ’OINT

LOAD ’JGZ_O_RETURN
STO ’OFFSET_RETURN
JGZ ’OFFSET
CPY ’OINT :JGZ_O_RETURN
STO ’OFF_PC
JGZ ’SIM_START
DEC :dec7
JGZ ’none

LOAD ’CPY_RET
STO ’FETCH_RETURN
JGZ ’FETCH
CPY ’IR_P :CPY_RET
STO ’OINT

LOAD ’CPY_O_RET
STO ’OFFSET_RETURN
JGZ ’OFFSET
CPY ’OINT :CPY_O_RET
STO ’cpyloc
CPY 0 ;cpyloc
STO ’ACC_P

LOAD 1
JGZ ’done

LOAD ’SIM_START :done
STO ’INC_FR
CPY ’PC_P :INC_PC
INC
STO ’PC_P
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Instr Data I Label D Label
STO ’x
CPY ’MAX_INT
STO ’y

LOAD ’PC_P
STO ’sto_location

LOAD ’T_INC_RET
STO ’return_location

LOAD 1
JGZ ’TEST_LOOP
CPY ’PC_P :T_INC_RET
JGZ ’INC_OFFSET

LOAD ’PC_P
STO ’OFF_PC

LOAD 1
JGZ ’INC_EXIT
CPY ’OFF_PC :INC_OFFSET
INC
STO ’OFF_PC

LOAD 1 :INC_EXIT
JGZ 0 ;INC_FR

LOAD ’PC_P :OFFSET
STO ’f

LOAD 0 :OFFSET_LOOP ;OINT
INC
STO ’OINT

LOAD 0 ;f
DEC
STO ’f
JGZ ’OFFSET_LOOP

LOAD 1
JGZ 0 ;OFFSET_RETURN

LOAD ’fetch_r :FETCH
STO ’INC_FR
JGZ ’INC_PC
CPY ’OFF_PC :fetch_r
STO ’FETCH_VAR
CPY 0 ;FETCH_VAR
STO ’IR_P

LOAD 1
JGZ 0 ;FETCH_RETURN

LOAD 0 ;x :TEST_LOOP
DEC
STO ’x

LOAD 0 ;y
DEC
STO ’y
JGZ ’xtest
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Instr Data I Label D Label
LOAD 1
JGZ ’xtest2
CPY ’x :xtest
JGZ ’TEST_LOOP

LOAD 1
JGZ ’RETURN
CPY ’x :xtest2
JGZ ’INVALID

LOAD 1
JGZ ’RETURN

LOAD 0 :INVALID
STO 5 ;sto_location

LOAD 1 :RETURN
JGZ 0 ;return_location

0 :Decoder_Ins
0 :OFF_PC
4 :MAX_INT

:PC_P
:IR_P

:ACC_P

3,306,1,1,1,4,314,7,314,4,15,7,4,4,308,4,313,6,23,0,2,6,47,7,

310,1,4,274,4,310,7,315,4,279,3,310,4,308,3,187,4,312,6,273,2,

6,67,7,310,6,60,7,315,4,310,6,61,2,4,310,3,1,6,187,2,6,84,3,76,

4,272,6,255,7,308,4,310,3,1,6,187,2,6,115,3,93,4,272,6,255,7,

308,4,240,3,103,4,254,6,235,7,240,4,110,7,310,4,0,3,1,6,187,2,

6,121,5,6,187,2,6,156,3,130,4,272,6,255,7,310,6,138,3,1,6,187,

7,308,4,306,4,240,3,150,4,254,6,235,7,240,4,314,6,10,2,6,22,3,

165,4,272,6,255,7,308,4,240,3,175,4,254,6,235,7,240,4,180,7,0,

4,310,3,1,6,187,3,10,4,234,7,306,1,4,306,4,274,7,315,4,279,3,

306,4,308,3,214,4,312,3,1,6,273,7,306,6,226,3,306,4,314,3,1,6,

231,7,314,1,4,314,3,1,6,0,3,306,4,245,3,0,1,4,240,3,0,2,4,245,

6,239,3,1,6,0,3,261,4,234,6,191,7,314,4,266,7,0,4,308,3,1,6,0,

3,0,2,4,274,3,0,2,4,279,6,289,3,1,6,297,7,274,6,273,3,1,6,309,

7,274,6,305,3,1,6,309,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2 RASP2

The RASP2 programs are presented in two ways: the “programming language
form” as seen all throughout this thesis, and the “array form” which is what is
actually measured.
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B.2.1 Addition

Instr Data
LOAD x
ADD y

3,5,1,8,0

B.2.2 Subtraction

Instr Data I Label D Label
LOAD y :subStart ;y
JGZ ’subbing

HALT
SUB 1 :subbing
STO ’y

LOAD x ;x
JGZ ’subbing2

HALT
SUB 1 :subbing2
STO ’x

LOAD 1
JGZ ’subStart

3,4,6,8,0,2,1,4,4,3,7,6,17,0,2,1,4,13,3,1,6,3,0,0,0,0,0,0,0

B.2.3 Equality

Instr Data I Label D Label
LOAD 6 ;num1
SUB 6 ;num2
JGZ ’out

HALT
LOAD 1 :out

3,6,2,6,6,10,0,3,1,0,0,0,0
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B.2.4 Multiplication

Instr Data I Label D Label
LOAD 5 ;multiplier
JGZ ’return

HALT
LOAD 5 :return ;multiplicand
JGZ ’start

HALT
SUB 1 :start
STO ’multiplicand
CPY ’multiplier
ADD 0 ;runningTotal
STO ’runningTotal

LOAD 1
JGZ ’return

3,5,6,8,0,3,5,6,13,0,2,1,4,9,7,4,1,0,4,20,3,1,6,8,0,0,0,0,0

B.2.5 Division

Instr Data I Label D Label
LOAD y :start ;y
JGZ ’divStart

HALT
STO ’tmp :divStart

LOAD x ;x
STO ’remainder

LOAD 0 :loop ;tmp
JGZ ’sub

LOAD 1
JGZ ’return
DEC :sub
STO ’tmp
CPY ’x
JGZ ’nl

HALT
DEC :nl
STO ’x

LOAD 1
JGZ ’loop

LOAD 0 :return ;quotient
INC
STO ’quotient
JGZ ’start

0 :remainder
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3,0,6,8,0,4,15,3,7,4,47,3,0,6,22,3,1,6,39,2,1,4,15,7,11,6,

31,0,2,1,4,11,3,1,6,14,3,0,1,1,4,40,6,3,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0

B.2.6 Exponentiation

Instr Data I Label D Label
LOAD 1 :start ;power
JGZ ’continue

HALT
SUB 1 :continue
STO ’power

LOAD 1 ;runningTotal
STO ’multiplicand

LOAD 0
STO ’runningTotal

LOAD 0 :return ;multiplicand
JGZ ’mulStart

LOAD 1
JGZ ’start
SUB 1 :mulStart
STO ’multiplicand

LOAD 1 ;multiplier
STO ’addition
CPY ’runningTotal
ADD 0 ;addition
STO ’runningTotal

LOAD 1
JGZ ’return

3,1,6,8,0,2,1,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,1,

4,21,3,1,4,39,7,13,1,0,4,13,3,1,6,20,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.7 List Membership

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer :cmp_pointer_target
STO ’indir_pointer
CPY 0 ;indir_pointer
STO ’cmp_1

LOAD 4 ;target
SUB 0 ;cmp_1
JGZ ’end_test

LOAD 1
HALT
LOAD 0 :end_test ;pointer
SUB ’listend
JGZ ’inc_pointer

LOAD 0
HALT
CPY ’pointer :inc_pointer
ADD 1
JGZ ’cmp_pointer_target

:listStart
:listend

3,35,4,23,4,10,7,0,4,16,3,4,2,0,6,22,3,1,0,3,0,2,36,6,31,

3,0,0,7,23,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.8 Linear Search

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer :cmp_pointer_target
STO ’indir_pointer
CPY 0 ;indir_pointer
STO ’cmp_1

LOAD 4 ;target
SUB 0 ;cmp_1
JGZ ’end_test
CPY ’pointer
SUB ’listStart

HALT
LOAD 0 :end_test ;pointer
SUB ’listend
JGZ ’inc_pointer

LOAD ’listend
HALT
CPY ’pointer :inc_pointer
ADD 1
JGZ ’cmp_pointer_target

:listStart
:listend

3,37,4,25,4,10,7,0,4,16,3,4,2,0,6,24,7,25,2,37,0,3,0,2,

38,6,33,3,38,0,7,25,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0
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B.2.9 List Reversal

Instr Data I Label D Label
LOAD ’listEnd
STO ’cpyPointer
ADD 2
STO ’writePointer

LOAD 0 :main ;writePointer
STO ’writeSTO

LOAD 0 ;cpyPointer
STO ’cpyLOC
CPY 0 ;cpyLOC
STO 0 ;writeSTO
CPY ’writePointer
ADD 1
STO ’writePointer

LOAD ’listStart
STO ’lsSub
CPY ’cpyPointer
SUB 0 ;lsSub
JGZ ’decWritePointer

HALT
CPY ’cpyPointer :decWritePointer
SUB 1
STO ’cpyPointer
JGZ ’main

:listStart
:listEnd

3,47,4,16,1,2,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,1,4,

12,3,46,4,36,7,16,2,0,6,40,0,7,16,2,1,4,16,6,11,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

B.2.10 Stateful List Reversal

Instr Data I Label D Label
LOAD ’listStart
STO ’pointer1

LOAD ’listEnd
STO ’pointer2

LOAD 0 :main ;pointer1
STO ’cmp1

LOAD 0 ;pointer2
STO ’cmp2

LOAD 0 :loop ;cmp1
SUB 1
STO ’cmp1
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Instr Data I Label D Label
JGZ ’compare2

LOAD 0 ;cmp2
SUB 1
JGZ ’swap

HALT
CPY ’cmp2 :compare2
SUB 1
STO ’cmp2
JGZ ’loop

HALT
CPY ’pointer1 :swap
STO ’swpref1
STO ’writeref1
CPY 0 ;swpref1
STO ’swp
CPY ’pointer2
STO ’swpref2
STO ’writeref2
CPY 0 ;swpref2
STO 0 ;writeref1

LOAD 0 ;swp
STO 0 ;writeref2
CPY ’pointer1
ADD 1
STO ’pointer1
CPY ’pointer2
SUB 1
STO ’pointer2
JGZ ’main

:listStart
:listEnd

3,79,4,12,3,80,4,16,3,0,4,20,3,0,4,28,3,0,2,1,4,20,6,34,3,

0,2,1,6,43,0,7,28,2,1,4,28,6,19,0,7,12,4,50,4,62,7,0,4,64,

7,16,4,60,4,66,7,0,4,0,3,0,4,0,7,12,1,1,4,12,7,16,2,1,4,16,

6,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.11 Bubble Sort

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer1

ADD 1
STO ’pointer2

LOAD 0
STO ’flag
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Instr Data I Label D Label
LOAD 0 :cmpPointers ;pointer1
STO ’p1ref
CPY 0 ;p1ref
STO ’cmp1

LOAD 0 ;pointer2
STO ’p2ref
CPY 0 ;p2ref
STO ’cmp2

LOAD ’incPointers
STO ’cmpOther
STO ’equal1

LOAD ’swap
STO ’cmp1Greater

LOAD 0 :cmpStart ;cmp2
SUB 1
STO ’cmp2
JGZ ’cmp1dec
CPY ’cmp1
SUB 1
JGZ 0 ;cmp1Greater

LOAD 1
JGZ 0 ;equal1

LOAD 0 :cmp1dec ;cmp1
SUB 1
STO ’cmp1
JGZ ’cmpStart

LOAD 1
JGZ 0 ;cmpOther
CPY ’pointer1 :incPointers
ADD 1
STO ’pointer1
CPY ’pointer2
STO ’p2sub

LOAD ’listend
SUB 0 ;p2sub
JGZ ’returnToInc

LOAD 0 ;flag
JGZ ’start

HALT
CPY ’pointer2 :returnToInc
ADD 1
STO ’pointer2
JGZ ’cmpPointers
CPY ’pointer2 :swap
STO ’p2SwpRef
STO ’p2WriteRef
CPY 0 ;p2SwpRef
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Instr Data I Label D Label
STO ’swp
CPY ’pointer1
STO ’p1SwpRef
STO ’p1WriteRef
CPY 0 ;p1SwpRef
STO 0 ;p2WriteRef

LOAD 0 ;swp
STO 0 ;p1WriteRef

LOAD 1
STO ’flag
JGZ ’incPointers

:listStart
:listend

3,128,4,16,1,1,4,24,3,0,4,88,3,0,4,20,7,0,4,60,3,0,4,28,

7,0,4,42,3,71,4,70,4,58,3,100,4,54,3,0,2,1,4,42,6,59,7,

60,2,1,6,0,3,1,6,0,3,0,2,1,4,60,6,41,3,1,6,0,7,16,1,1,4,

16,7,24,4,84,3,129,2,0,6,92,3,0,6,3,0,7,24,1,1,4,24,6,15,

7,24,4,107,4,119,7,0,4,121,7,16,4,117,4,123,7,0,4,0,3,0,

4,0,3,1,4,88,6,71,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.12 Universal TM

Instr Data I Label D Label
CPY ’C_STATE :PStart
STO ’SE_ST
CPY ’CHP
STO ’SY_R
CPY 5 ;SY_R
STO ’SE_SY

LOAD ’M_SE_RET
STO ’SE_R_LOC
JGZ ’SE_ST

LOAD 0 :M_SE_RET ;SRL
JGZ ’V_SE

HALT
ADD 2 :V_SE
STO ’N_STR
CPY 4 ;N_STR
STO ’C_STATE
CPY ’SRL
ADD 3
STO ’N_SYR
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Instr Data I Label D Label
CPY ’CHP
STO ’HP
CPY 5 ;N_SYR
STO 4 ;HP
CPY ’SRL
ADD 4
STO ’N_DIRR
CPY 1 ;N_DIRR
SUB 1
JGZ ’DIR_RIGHT
CPY ’CHP
SUB 1
STO ’CHP
JGZ ’CONTINUE
CPY ’CHP :DIR_RIGHT
ADD 1
STO ’CHP
CPY ’C_STATE :CONTINUE
JGZ ’PStart

HALT
LOAD ’SY_TABLE :SE_ST
STO ’currentLoc

LOAD 0 :search_loop ;SE_ST
STO ’CMPState

LOAD 0 ;currentLoc
STO ’tabcomp1
CPY 5 ;tabcomp1
SUB 0 ;CMPState
JGZ ’nTupState
CPY ’currentLoc
ADD 1
STO ’currentLoc
STO ’tabcomp2
CPY 5 ;tabcomp2
STO ’CMPSymbol

LOAD 0 ;SE_SY
SUB 0 ;CMPSymbol
JGZ ’nTupSym

LOAD 1
JGZ ’found
CPY ’currentLoc :nTupState
ADD 1
STO ’currentLoc
CPY ’currentLoc :nTupSym
ADD 4
JGZ ’nextTuple
CPY ’currentLoc :found

288



Appendix B. Full Programs

Instr Data I Label D Label
SUB 1
STO ’SRL
JGZ ’searchExit
STO ’currentLoc :nextTuple
JGZ ’search_loop
STO ’SRL :Not_Found

LOAD 1 :searchExit
JGZ 0 ;SE_R_LOC

’TAPE_START :CHP
1 :C_STATE

:SY_TABLE
:TAPE_START

7,150,4,84,7,149,4,12,7,5,4,110,3,21,4,148,6,79,3,0,6,

26,0,1,2,4,31,7,4,4,150,7,22,1,3,4,45,7,149,4,47,7,5,4,

4,7,22,1,4,4,55,7,1,2,1,6,68,7,149,2,1,4,149,6,74,7,149,

1,1,4,149,7,150,6,3,0,3,147,4,88,3,0,4,94,3,0,4,92,7,5,

2,0,6,119,7,88,1,1,4,88,4,106,7,5,4,112,3,0,2,0,6,125,3

,1,6,131,7,88,1,1,4,88,7,88,1,4,6,139,7,88,2,1,4,22,6,

145,4,88,6,83,4,22,3,1,6,5,146,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0

B.2.13 Universal RASP

Instr Data I Label D Label
LOAD ’PC_P
ADD 3
STO ’OFF_PC
CPY ’OFF_PC :SIM_ST
STO ’INSLOC
CPY 4 ;INSLOC
STO ’IR_P
STO ’Decoder_Ins
JGZ ’dec1

HALT :none
SUB 1 :dec1
JGZ ’dec2
CPY ’ACC_P
ADD 1
STO ’x
STO ’ACC_P
CPY ’MAX_INT
STO ’y

LOAD ’ACC_P
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Instr Data I Label D Label
STO ’sto_location

LOAD ’done
STO ’return_location
JGZ ’TEST_LOOP
SUB 1 :dec2
JGZ ’dec3
CPY ’ACC_P
JGZ ’dc
CPY ’MAX_INT
STO ’ACC_P
JGZ ’decST
SUB 1 :dc
STO ’ACC_P :decST

LOAD 1
JGZ ’done
SUB 1 :dec3
JGZ ’dec4

LOAD ’L_RET
STO ’FE_RET
JGZ ’FETCH
CPY ’IR_P :L_RET
STO ’ACC_P

LOAD 1
JGZ ’done
SUB 1 :dec4
JGZ ’dec5

LOAD ’S_RET
STO ’FE_RET
JGZ ’FETCH
CPY ’IR_P :S_RET
STO ’stoadd

LOAD ’PC_P
ADD 0 ;stoadd
STO ’sloc
CPY ’ACC_P
STO 0 ;sloc

LOAD 1
JGZ ’done
SUB 1 :dec5
JGZ ’dec6
OUT
JGZ ’done
SUB 1 :dec6
JGZ ’dec7

LOAD ’J_RET
STO ’FE_RET
JGZ ’FETCH
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Instr Data I Label D Label
CPY ’ACC_P :J_RET
JGZ ’JGZ_JUMP

LOAD 1
JGZ ’done
CPY ’IR_P :JGZ_JUMP
STO ’PC_P
STO ’jgzadd

LOAD ’PC_P
ADD 0 ;jgzadd
STO ’OFF_PC
JGZ ’SIM_ST
SUB 1 :dec7
JGZ ’none

LOAD ’C_RET
STO ’FE_RET
JGZ ’FETCH
CPY ’IR_P :C_RET
STO ’cpyadd

LOAD ’PC_P
ADD 0 ;cpyadd
STO ’cpyloc
CPY 0 ;cpyloc
STO ’ACC_P

LOAD 1
JGZ ’done

LOAD ’SIM_ST :done
STO ’I_FRET
CPY ’PC_P :INCREMENT_PC
ADD 1
STO ’PC_P
STO ’x
CPY ’MAX_INT
STO ’y

LOAD ’PC_P
STO ’sto_location

LOAD ’TI_RET
STO ’return_location

LOAD 1
JGZ ’TEST_LOOP
CPY ’PC_P :TI_RET
JGZ ’I_OFF

LOAD ’PC_P
STO ’OFF_PC

LOAD 1
JGZ ’INC_EXIT
CPY ’OFF_PC :I_OFF
ADD 1
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Instr Data I Label D Label
STO ’OFF_PC

LOAD 1 :INC_EXIT
JGZ 0 ;I_FRET

LOAD ’fetch_r :FETCH
STO ’I_FRET
JGZ ’INCREMENT_PC
CPY ’OFF_PC :fetch_r
STO ’FETCH_VAR
CPY 0 ;FETCH_VAR
STO ’IR_P

LOAD 1
JGZ 0 ;FE_RET

LOAD 0 :TEST_LOOP ;x
SUB 1
STO ’x

LOAD 0 ;y
SUB 1
STO ’y
JGZ ’xtest

LOAD 1
JGZ ’xtest2
CPY ’x :xtest
JGZ ’TEST_LOOP

LOAD 1
JGZ ’RETURN
CPY ’x :xtest2
JGZ ’INVALID

LOAD 1
JGZ ’RETURN

LOAD 0 :INVALID
STO 5 ;sto_location

LOAD 1 :RETURN
JGZ 0 ;return_location

0 :Decoder_Ins
0 :OFF_PC
15 :MAX_INT

:PC_P
:IR_P

:ACC_P

3,286,1,3,4,293,7,293,4,14,7,4,4,286,4,292,6,22,0,2,1,6,48,7,

286,1,1,4,251,4,286,7,294,4,257,3,286,4,287,3,183,4,291,6,250,

2,1,6,70,7,286,6,62,7,294,4,286,6,64,2,1,4,286,3,1,6,183,2,1,

6,88,3,80,4,249,6,232,7,286,4,286,3,1,6,183,2,1,6,116,3,98,4,

249,6,232,7,286,4,105,3,286,1,0,4,111,7,286,4,0,3,1,6,183,2,1,

6,123,5,6,183,2,1,6,155,3,133,4,249,6,232,7,286,6,141,3,1,6,

183,7,286,4,286,4,150,3,286,1,0,4,293,6,9,2,1,6,21,3,165,4,249,
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6,232,7,286,4,172,3,286,1,0,4,176,7,0,4,286,3,1,6,183,3,9,4,231,

7,286,1,1,4,286,4,251,7,294,4,257,3,286,4,287,3,211,4,291,3,1,6,

250,7,286,6,223,3,286,4,293,3,1,6,228,7,293,1,4,293,3,1,6,0,3,238,

4,231,6,187,7,293,4,243,7,0,4,286,3,1,6,0,3,0,2,1,4,251,3,0,2,1,4,

257,6,268,3,1,6,276,7,251,6,250,3,1,6,288,7,251,6,284,3,1,6,288,3,

0,4,5,3,1,6,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3 RASP3

The RASP3 programs are presented in two ways: the “programming language
form” as seen all throughout this thesis, and the “array form” which is what is
actually measured.

B.3.1 Addition

Instr Data I Label
LOAD x
ADD ’label

y :label

3,5,1,8,0,8,0,0,0,0,0,0,0

B.3.2 Subtraction

Instr Data I Label D Label
LOAD 4 :sub_start ;sub_2
JGZ ’subbing

HALT
SUB ’subTarget :subbing
STO ’sub_2

LOAD 7 ;sub_1
JGZ ’subbing2

HALT
SUB ’subTarget :subbing2
STO ’sub_1

LOAD 1 ;subTarget
JGZ ’sub_start

3,4,6,8,0,2,22,4,4,3,7,6,17,0,2,22,4,13,3,1,6,3,0,0,0,0,0,0,0
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B.3.3 Equality

Instr Data I Label D Label
LOAD 6 ;num1
SUB ’num2
JGZ ’out

HALT
LOAD 1 :out
HALT

5 :num2

3,6,2,13,6,10,0,3,1,0,6,0,0

B.3.4 Multiplication

Instr Data I Label D Label
LOAD 5 ;multiplier
JGZ ’return

HALT
LOAD 5 :return ;multiplicand
JGZ ’start

HALT
SUB ’one :start
STO ’multiplicand

LOAD 0 ;runningTotal
ADD ’multiplier
STO ’runningTotal

LOAD 1 ;one
JGZ ’return

3,5,6,8,0,3,5,6,13,0,2,24,4,9,3,0,1,4,4,18,3,1,6,8,0,0,0,0,0

294



Appendix B. Full Programs

B.3.5 Division

Instr Data I Label D Label
LOAD 0 :start ;divisor
JGZ ’div_start

HALT
STO ’tmp :div_start

LOAD 7 ;num
STO ’remainder

LOAD 0 :loop ;tmp
JGZ ’sub

LOAD 1
JGZ ’return
SUB ’one :sub
STO ’tmp
CPY ’num
JGZ ’nl

HALT
SUB ’one :nl
STO ’num

LOAD 1 ;one
JGZ ’loop

LOAD 0 :return ;quotient
ADD ’one
STO ’quotient
JGZ ’start

0 :remainder

7,9,6,8,0,3,3,4,17,3,7,4,49,3,0,6,24,3,1,6,41,2,38,4,17,7,13,

6,33,0,2,38,4,13,3,1,6,16,3,0,1,38,4,42,6,8,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0
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B.3.6 Exponentiation

Instr Data I Label D Label
LOAD 1 :start ;power
JGZ ’continue

HALT
SUB ’one :continue
STO ’power

LOAD 1 ;runningTotal
STO ’multiplicand

LOAD 0
STO ’runningTotal

LOAD 0 :return ;multiplicand
JGZ ’mulStart

LOAD 1
JGZ ’start
SUB ’one :mulStart
STO ’multiplicand
CPY ’runningTotal
ADD ’multiplier
STO ’runningTotal

LOAD 1 ;one
JGZ ’return

1 :multiplier

3,1,6,8,0,2,39,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,39,4

,21,7,13,1,42,4,13,3,1,6,20,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.7 List Membership

Instr Data I Label D Label
LOAD ’ls :start
STO ’pointer :cmp_pointer_target
STO ’cmp_1

LOAD 2 ;target
SUB ’pointer ;cmp_1
JGZ ’end_test

LOAD 1 ;one
HALT
LOAD 0 :end_test ;pointer
SUB ’listend ;inc_sub
JGZ ’inc_pointer

LOAD 0
HALT
CPY ’pointer :inc_pointer
ADD ’one
JGZ ’cmp_pointer_target
’le :listend

:ls
:le

3,29,4,19,4,12,3,2,2,19,6,18,3,1,0,3,0,2,33,6,27,3,0,0,7,19,

1,16,6,5,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.8 Linear Search

Instr Data I Label D Label
CPY ’listStart :start
STO ’pointer :cmp_pointer_target
STO ’cmp_1

LOAD 2 ;target
SUB ’pointer ;cmp_1
JGZ ’end_test
CPY ’pointer
SUB ’listStart

HALT
LOAD 0 :end_test ;pointer
SUB ’listend ;inc_sub
JGZ ’inc_pointer

LOAD ’listend
HALT
CPY ’pointer :inc_pointer
ADD ’one
JGZ ’cmp_pointer_target

1 :one
’ls :listStart
’le :listend

:ls
:le

7,36,4,21,4,12,3,2,2,21,6,20,7,21,2,36,0,3,0,2,37,6,29,3,37,0,

7,21,1,35,6,5,1,33,34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.9 List Reversal

Instr Data I Label D Label
LOAD ’listEnd
STO ’cpyPointer
ADD ’two :one
STO ’writePointer

LOAD 0 :main ;writePointer
STO ’writeSTO

LOAD 0 ;cpyPointer
STO ’cpyLOC
CPY 0 ;cpyLOC
STO 0 ;writeSTO
CPY ’writePointer
ADD ’one
STO ’writePointer

LOAD ’listStart
SUB ’cpyPointer :two
JGZ ’decWritePointer

HALT
CPY ’cpyPointer :decWritePointer
SUB ’one
STO ’cpyPointer
JGZ ’main :listStart ;listEnd

3,43,4,16,1,45,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,44,4,12,3,

42,2,16,6,36,0,7,16,2,44,4,16,6,11,1,2,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0

B.3.10 Stateful List Reversal

Instr Data I Label D Label
LOAD ’listStart
STO ’pointer1

LOAD ’listEnd
STO ’pointer2

LOAD ’listEnd
SUB ’ls
ADD ’one
STO ’listsize

LOAD 0 :main ;pointer1
SUB ’pointer2
JGZ ’continue

HALT
LOAD 0 :continue ;listsize
SUB ’swaps
JGZ ’swap
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Instr Data I Label D Label
HALT
CPY ’pointer1 :swap
STO ’swpref1
STO ’writeref1
CPY 0 ;swpref1
STO ’swp

LOAD 0 ;pointer2
STO ’swpref2
STO ’writeref2
CPY 0 ;swpref2
STO 0 ;writeref1

LOAD 0 ;swp
STO 0 ;writeref2
CPY ’pointer1
ADD ’one :one
STO ’pointer1
CPY ’pointer2
SUB ’one :two
STO ’pointer2

LOAD 0 ;swaps
ADD ’two
STO ’swaps
JGZ ’main

’listStart :ls
:listStart
:listEnd

3,75,4,20,3,76,4,44,3,76,2,79,1,77,4,27,3,0,2,44,6,26,0,3,0,2,70,

6,33,0,7,20,4,40,4,52,7,0,4,54,3,0,4,50,4,56,7,0,4,0,3,0,4,0,7,20,

1,77,4,20,7,44,2,77,4,44,3,0,1,78,4,70,6,19,1,2,75,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0

B.3.11 Bubble Sort

Instr Data I Label D Label
LOAD ’listStart :start
STO ’pointer1
ADD ’one
STO ’pointer2

LOAD 0
STO ’flag

LOAD 0 :cmp_pointers ;pointer1
STO ’p1ref
CPY 0 ;p1ref
STO ’cmp1

LOAD 0 ;pointer2
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Instr Data I Label D Label
STO ’p2ref
CPY 0 ;p2ref
STO ’cmp2

LOAD ’inc_pointers
STO ’cmpOther
STO ’equal1

LOAD ’swap
STO ’cmp1Greater

LOAD 0 :cmp_start ;cmp2
SUB ’one
STO ’cmp2
JGZ ’cmp1dec
CPY ’cmp1
SUB ’one
JGZ 0 ;cmp1Greater

LOAD 1 ;one
JGZ 0 ;equal1

LOAD 0 :cmp1dec ;cmp1
SUB ’one
STO ’cmp1
JGZ ’cmp_start

LOAD 1
JGZ 0 ;cmpOther
CPY ’pointer1 :inc_pointers
ADD ’one
STO ’pointer1

LOAD ’listend
SUB ’pointer2
JGZ ’return_to_inc

LOAD 0 ;flag
JGZ ’start

HALT
CPY ’pointer2 :return_to_inc
ADD ’one
STO ’pointer2
JGZ ’cmp_pointers
CPY ’pointer2 :swap
STO ’p2SwpRef
STO ’p2WriteRef
CPY 0 ;p2SwpRef
STO ’swp
CPY ’pointer1
STO ’p1SwpRef
STO ’p1WriteRef
CPY 0 ;p1SwpRef
STO 0 ;p2WriteRef

LOAD 0 ;swp
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Instr Data I Label D Label
STO 0 ;p1WriteRef

LOAD 1
STO ’flag
JGZ ’inc_pointers

:listStart
:listend

3,124,4,16,1,56,4,24,3,0,4,84,3,0,4,20,7,0,4,60,3,0,4,28,7,0,4,

42,3,71,4,70,4,58,3,96,4,54,3,0,2,56,4,42,6,59,7,60,2,56,6,0,3,

1,6,0,3,0,2,56,4,60,6,41,3,1,6,0,7,16,1,56,4,16,3,125,2,24,6,88,

3,0,6,3,0,7,24,1,56,4,24,6,15,7,24,4,103,4,115,7,0,4,117,7,16,4,

113,4,119,7,0,4,0,3,0,4,0,3,1,4,84,6,71,0,0

B.3.12 Universal TM

Instr Data I Label D Label
CPY ’CS :P_START
STO ’SS :four
CPY ’CHP
STO ’SY_READ
CPY 5 ;SY_READ
STO ’S_SY

LOAD ’MSR :three
STO ’STL
JGZ ’SE_ST :six

LOAD 0 :MSR ;SRL
JGZ ’VS

HALT
ADD ’two :VS
STO ’N_ST_R
CPY 4 ;N_ST_R
STO ’CS
CPY ’SRL
ADD ’three :one
STO ’NEW_SY_READ
CPY ’CHP
STO ’HP
CPY 5 ;NEW_SY_READ
STO 4 ;HP
CPY ’SRL
ADD ’four
STO ’N_D_R
CPY 1 ;N_D_R
SUB ’one :two
JGZ ’DIR_RIGHT
CPY ’CHP
SUB ’one
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Instr Data I Label D Label
STO ’CHP
JGZ ’CONTINUE
CPY ’CHP :DIR_RIGHT
ADD ’one
STO ’CHP
CPY ’CS :CONTINUE
JGZ ’P_START

HALT
LOAD ’SYTABST :SE_ST
STO ’currentLoc

LOAD 0 :search_loop ;SS
SUB 0 ;currentLoc
JGZ ’nTupSt
CPY ’currentLoc
ADD ’one
STO ’currentLoc
STO ’CMPSymbol

LOAD 0 ;S_SY
SUB 0 ;CMPSymbol
JGZ ’nTupSy

LOAD 1
JGZ ’found
CPY ’currentLoc :nTupSt
ADD ’one
STO ’currentLoc
CPY ’currentLoc :nTupSy
ADD ’four
JGZ ’nextTuple
CPY ’currentLoc :found
SUB ’one
STO ’SRL
JGZ ’searchExit
STO ’currentLoc :nextTuple
JGZ ’search_loop
STO ’SRL :Not_Found

LOAD 1 :searchExit
JGZ 5 ;STL

’T_ST :CHP
1 :CS

:SYTABST
:T_ST

7,138,4,84,7,137,4,12,7,5,4,98,3,21,4,136,6,79,3,0,6,26,0,1,56,

4,31,7,4,4,138,7,22,1,15,4,45,7,137,4,47,7,5,4,4,7,22,1,5,4,55,

7,1,2,26,6,68,7,137,2,26,4,137,6,74,7,137,1,26,4,137,7,138,6,3,

0,3,138,4,86,3,0,2,0,6,107,7,86,1,26,4,86,4,100,3,0,2,0,6,113,3,

1,6,119,7,86,1,26,4,86,7,86,1,5,6,127,7,86,2,26,4,22,6,133,4,86,
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6,83,4,22,3,1,6,5,138,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3.13 Universal RASP

Instr Data I Label D Label
LOAD ’PC_P :three
ADD ’three
STO ’OFF_PC
CPY ’OFF_PC :SIM_ST
STO ’INSLOC
CPY 4 ;INSLOC
STO ’IR_P
STO ’Decoder_Ins
JGZ ’dec1

HALT :none
SUB ’one :dec1
JGZ ’dec2
CPY ’ACC_P
ADD ’one
STO ’x
STO ’ACC_P
CPY ’MAX_INT
STO ’y

LOAD ’ACC_P
STO ’sto_location

LOAD ’done
STO ’return_location
JGZ ’TEST_LOOP
SUB ’one :dec2
JGZ ’dec3
CPY ’ACC_P
JGZ ’dc
CPY ’MAX_INT
STO ’ACC_P
JGZ ’decST
SUB ’one :dc
STO ’ACC_P :decST

LOAD 1
JGZ ’done
SUB ’one :dec3
JGZ ’dec4

LOAD ’L_RET
STO ’F_RET
JGZ ’FETCH
CPY ’IR_P :L_RET
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Instr Data I Label D Label
STO ’ACC_P

LOAD 1
JGZ ’done
SUB ’one :dec4
JGZ ’dec5

LOAD ’S_RET
STO ’F_RET
JGZ ’FETCH

LOAD ’PC_P :S_RET
ADD ’IR_P
STO ’sloc
CPY ’ACC_P
STO 0 ;sloc

LOAD 1
JGZ ’done
SUB ’one :dec5
JGZ ’dec6
OUT
JGZ ’done
SUB ’one :dec6
JGZ ’dec7

LOAD ’J_RET
STO ’F_RET
JGZ ’FETCH
CPY ’ACC_P :J_RET
JGZ ’JGZ_JUMP

LOAD 1
JGZ ’done
CPY ’IR_P :JGZ_JUMP
STO ’PC_P

LOAD ’PC_P
ADD ’IR_P
STO ’OFF_PC
JGZ ’SIM_ST
SUB ’one :dec7
JGZ ’none

LOAD ’C_RET
STO ’F_RET
JGZ ’FETCH

LOAD ’PC_P :C_RET
CPY ’IR_P
STO ’cpyloc
CPY 0 ;cpyloc
STO ’ACC_P

LOAD 1
JGZ ’done

LOAD ’SIM_ST :done
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Instr Data I Label D Label
STO ’I_FRET
CPY ’PC_P :INCREMENT_PC
ADD ’one
STO ’PC_P
STO ’x
CPY ’MAX_INT
STO ’y

LOAD ’PC_P
STO ’sto_location

LOAD ’TI_RET
STO ’return_location

LOAD 1
JGZ ’TEST_LOOP
CPY ’PC_P :TI_RET
JGZ ’INC_OFFSET

LOAD ’PC_P
STO ’OFF_PC

LOAD 1
JGZ ’INC_EXIT
CPY ’OFF_PC :INC_OFFSET
ADD ’one
STO ’OFF_PC

LOAD 1 :INC_EXIT
JGZ 0 ;I_FRET

LOAD ’fetch_r :FETCH
STO ’I_FRET
JGZ ’INCREMENT_PC
CPY ’OFF_PC :fetch_r
STO ’FETCH_VAR
CPY 0 ;FETCH_VAR
STO ’IR_P

LOAD 1
JGZ 0 ;F_RET

LOAD 0 :TEST_LOOP ;x
SUB ’one
STO ’x

LOAD 0 ;y
SUB ’one
STO ’y
JGZ ’xtest

LOAD 1
JGZ ’xtest2
CPY ’x :xtest
JGZ ’TEST_LOOP

LOAD 1
JGZ ’RETURN
CPY ’x :xtest2
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Instr Data I Label D Label
JGZ ’INVALID

LOAD 1
JGZ ’RETURN

LOAD 0 :INVALID
STO 5 ;sto_location

LOAD 1 :RETURN ;one
JGZ 0 ;return_location

0 :Decoder_Ins
0 :OFF_PC
4 :MAX_INT

:PC_P
:IR_P

:ACC_P

3,281,1,3,4,284,7,284,4,14,7,4,4,281,4,283,6,22,0,2,280,6,48,

7,281,1,280,4,242,4,281,7,285,4,248,3,281,4,278,3,173,4,282,

6,241,2,280,6,70,7,281,6,62,7,285,4,281,6,64,2,280,4,281,3,1,

6,173,2,280,6,88,3,80,4,240,6,223,7,281,4,281,3,1,6,173,2,280,

6,112,3,98,4,240,6,223,3,281,1,281,4,107,7,281,4,0,3,1,6,173,2,

280,6,119,5,6,173,2,280,6,149,3,129,4,240,6,223,7,281,6,137,3,

1,6,173,7,281,4,281,3,281,1,281,4,284,6,9,2,280,6,21,3,159,4,

240,6,223,3,281,7,281,4,166,7,0,4,281,3,1,6,173,3,9,4,222,7,281,

1,280,4,281,4,242,7,285,4,248,3,281,4,278,3,201,4,282,3,1,6,241,

7,281,6,213,3,281,4,284,3,1,6,219,7,284,1,280,4,284,3,1,6,0,3,

229,4,222,6,177,7,284,4,234,7,0,4,281,3,1,6,0,3,0,2,280,4,242,

3,0,2,280,4,248,6,259,3,1,6,267,7,242,6,241,3,1,6,279,7,242,6,

275,3,1,6,279,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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B.4 TM

B.4.1 Addition/Subtraction/Equality

1,1,2,0,R
2,1,2,1,R
2,0,0,1,L

(a) Addition

1,1,1,1,R
1,0,2,0,R
2,1,2,1,R
2,0,3,0,L
3,1,4,0,L
3,0,0,0,R
4,1,4,1,L
4,0,5,0,L
5,1,5,1,L
5,0,6,0,R
6,1,1,0,R
6,0,7,0,R
7,0,8,0,R
7,1,7,0,R
8,0,0,0,R

(b) Subtraction

1,0,7,0,R
2,1,2,1,R
2,0,3,0,R
3,1,3,1,R
3,0,4,0,L
4,1,5,0,L
4,0,9,0,L
5,1,5,1,L
5,0,6,0,L
6,1,6,1,L
6,0,1,0,R
7,0,0,0,R
7,1,8,0,R
8,1,8,0,R
8,0,0,1,R
9,0,0,0,L
9,1,10,0,L
10,1,10,0,L
10,0,0,1,L

(c) Equality
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B.4.2 Multiplication/Division

1,0,10,0,R
1,1,2,0,R
2,1,2,1,R
2,0,3,0,R
3,#,3,#,R
3,1,4,#,R
3,0,8,0,L
4,1,4,1,R
4,0,5,0,R
5,1,5,1,R
5,0,6,1,L
6,1,6,1,L
6,0,7,0,L
7,#,7,#,L
7,1,7,1,L
7,0,3,0,R
8,#,8,1,L
8,0,9,0,L
9,1,9,1,L
9,0,1,0,R
10,1,10,0,R
10,0,0,0,R

(a) Multiplication

1,1,2,#,R
1,#,1,#,R
1,0,6,0,L
2,1,2,1,R
2,0,3,0,R
3,#,3,#,R
3,1,4,#,L
3,0,9,0,L
4,#,4,#,L
4,0,5,0,L
5,#,5,#,L
5,1,5,1,L
5,0,1,0,R
6,#,6,1,L
6,0,7,0,L
7,1,7,1,L
7,0,8,1,R
8,1,8,1,R
8,0,1,0,R
9,#,9,0,L
9,0,10,0,L
10,#,12,0,L
10,1,11,0,L
11,1,11,0,L
11,#,12,0,L
12,#,12,1,L
12,0,0,0,L

(b) Division
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B.4.3 Exponentiation

1,0,0,0,R
1,1,2,0,R
2,1,2,1,R
2,0,3,0,R
3,#,3,#,R
3,0,14,0,R
3,1,4,#,R
4,1,4,1,R
4,0,5,0,R
5,0,5,0,R
5,1,6,#,R
6,1,6,1,R
6,0,7,0,R
7,1,7,1,R
7,0,8,1,L
8,1,8,1,L
8,0,9,0,L
9,#,9,#,L
9,1,9,1,L
9,0,10,0,R

10,1,6,#,R
10,#,10,#,R
10,0,11,0,L
11,#,11,1,L
11,0,12,0,L
12,0,12,0,L
12,#,13,#,L
12,1,13,1,L
13,1,13,1,L
13,#,13,#,L
13,0,3,0,R
14,0,14,0,R
14,1,15,0,R
15,1,15,0,R
15,0,16,0,L
16,0,16,0,L
16,#,17,1,L
17,#,17,1,L
17,0,18,0,L
18,1,18,1,L
18,0,1,0,R

B.4.4 List Membership

1,1,1,B,R
1,0,1,A,R
1,*,2,*,L
2,1,2,B,L
2,0,2,A,L
2,*,2,*,L
2,A,2,A,L
2,B,2,B,L
2,T,3,T,R
3,0,3,0,R
3,1,3,1,R
3,B,4,1,R
3,A,7,0,R
3,*,8,*,L
4,A,4,A,R
4,B,4,B,R
4,*,4,*,R
4,1,5,B,L
4,0,6,A,R

5,A,5,A,L
5,B,5,B,L
5,1,5,1,L
5,0,5,0,L
5,*,5,*,L
5,T,3,T,R
6,0,6,0,R
6,1,6,1,R
6,*,2,*,L
6,E,0,E,R
7,A,7,A,R
7,B,7,B,R
7,*,7,*,R
7,0,5,A,L
7,1,6,B,R
8,0,8,0,L
8,1,8,1,L
8,T,9,T,L
9,0,0,1,L
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B.4.5 Linear Search

1,1,1,B,R
1,0,1,A,R
1,#,2,#,L
2,A,2,A,L
2,B,2,B,L
2,0,2,A,L
2,1,2,B,L
2,#,2,#,L
2,*,2,*,L
2,T,3,T,R
3,1,3,1,R
3,0,3,0,R
3,B,4,1,R
3,A,9,0,R
3,#,10,#,L
4,A,4,A,R
4,B,4,B,R
4,#,4,#,R
4,*,4,*,R
4,1,5,B,L
4,0,6,A,R
5,A,5,A,L
5,B,5,B,L
5,1,5,1,L

5,0,5,0,L
5,#,5,#,L
5,*,5,*,L
5,T,3,T,R
6,0,6,0,R
6,1,6,1,R
6,*,6,*,R
6,#,2,#,L
6,E,7,E,L
7,0,7,0,L
7,1,7,1,L
7,A,7,A,L
7,B,7,B,L
7,*,7,*,L
7,#,7,#,L
7,T,8,T,L
8,0,8,*,L
8,E,0,E,R
9,A,9,A,R
9,B,9,B,R
9,#,9,#,R
9,*,9,*,R
9,1,6,B,R
9,0,5,A,L
10,0,10,A,L

10,1,10,B,L
10,T,10,T,L
10,E,11,E,R
11,A,12,0,R
11,T,0,T,R
12,A,12,A,R
12,B,12,B,R
12,*,12,*,R
12,#,12,#,R
12,T,12,T,R
12,0,13,A,L
12,1,14,B,L
13,A,13,A,L
13,B,13,B,L
13,*,13,*,L
13,#,13,#,L
13,T,13,T,L
13,0,11,0,R
14,A,14,A,L
14,B,14,B,L
14,*,14,*,L
14,#,14,#,L
14,T,14,T,L
14,0,11,1,R
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B.4.6 List Reversal

1,#,1,#,L
1,A,1,A,L
1,B,1,B,L
1,$,1,$,L
1,0,9,0,L
1,1,9,1,L
1,*,2,*,R
1,E,0,0,R
2,A,2,A,R
2,B,2,B,R
2,1,7,B,R
2,0,5,A,R
2,#,3,#,R
2,$,3,$,R
3,A,3,A,R
3,B,3,B,R
3,#,3,#,R
3,$,3,$,R
3,0,4,$,L
4,A,4,A,L
4,B,4,B,L
4,#,4,#,L
4,$,4,$,L
4,*,1,$,L
5,A,5,A,R

5,B,5,B,R
5,0,5,0,R
5,1,5,1,R
5,$,5,$,R
5,#,6,#,R
6,A,6,A,R
6,B,6,B,R
6,$,6,$,R
6,0,1,A,L
7,A,7,A,R
7,B,7,B,R
7,0,7,0,R
7,1,7,1,R
7,$,7,$,R
7,#,8,#,R
8,A,8,A,R
8,B,8,B,R
8,$,8,$,R
8,0,1,B,L
9,1,9,1,L
9,0,9,0,L
9,A,9,A,L
9,B,9,B,L
9,*,2,*,R
9,E,2,E,R
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B.4.7 Stateful List Reversal

1,0,2,Z,R
1,1,5,Z,R
1,*,7,*,R
2,0,2,0,R
2,1,2,1,R
2,A,2,A,R
2,B,2,B,R
2,*,2,*,R
2,E,3,E,R
3,A,3,A,R
3,B,3,B,R
3,0,4,A,L
4,A,4,A,L
4,B,4,B,L
4,0,4,0,L
4,1,4,1,L
4,*,4,*,L
4,E,4,E,L
4,Z,1,Z,R
5,0,5,0,R
5,1,5,1,R
5,A,5,A,R
5,B,5,B,R

5,*,5,*,R
5,E,6,E,R
6,A,6,A,R
6,B,6,B,R
6,0,4,B,L
7,A,7,A,R
7,B,7,B,R
7,0,7,0,R
7,1,7,1,R
7,*,7,*,R
7,E,8,E,L
8,A,8,A,L
8,B,8,B,L
8,*,8,*,L
8,1,9,1,R
8,0,9,0,R
8,Z,14,Z,R
9,*,10,*,L
9,E,10,E,L
10,0,11,Z,L
10,1,13,Z,L
10,*,14,*,R
11,A,11,A,L
11,B,11,B,L

11,0,11,0,L
11,1,11,1,L
11,*,11,*,L
11,Z,12,A,R
12,A,12,A,R
12,B,12,B,R
12,0,12,0,R
12,1,12,1,R
12,*,12,*,R
12,Z,10,Z,L
13,A,13,A,L
13,B,13,B,L
13,0,13,0,L
13,1,13,1,L
13,*,13,*,L
13,Z,12,B,R
14,Z,14,Z,R
14,A,14,A,R
14,B,14,B,R
14,*,14,*,R
14,E,14,E,R
14,0,15,0,L
15,A,16,0,L
15,B,17,0,L

15,E,18,E,L
16,E,16,E,L
16,A,16,A,L
16,B,16,B,L
16,*,16,*,L
16,Z,14,A,R
17,E,17,E,L
17,A,17,A,L
17,B,17,B,L
17,*,17,*,L
17,Z,14,B,R
18,A,18,A,L
18,B,18,B,L
18,*,18,*,L
18,0,19,0,L
18,1,19,1,L
18,E,0,E,R
19,0,19,0,L
19,1,19,1,L
19,*,19,*,L
19,A,20,A,R
19,B,20,B,R
20,*,1,*,R
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B.4.8 Bubble Sort

1,*,2,$,R
1,1,1,1,R
1,0,1,0,R
2,0,2,0,R
2,1,2,1,R
2,*,3,$,L
2,#,13,#,L
3,0,3,0,L
3,1,3,1,L
3,A,3,A,L
3,B,3,B,L
3,$,4,$,R
4,1,5,B,R
4,0,8,A,R
4,A,4,A,R
4,B,4,B,R
4,$,12,$,R
5,0,5,0,R
5,1,5,1,R
5,$,6,$,R
6,1,7,B,L
6,0,15,0,L
6,A,6,A,R
6,B,6,B,R
7,A,7,A,L
7,B,7,B,L
7,$,3,$,L
8,0,8,0,R
8,1,8,1,R
8,$,9,$,R
9,1,10,1,L
9,0,7,A,L
9,A,9,A,R
9,B,9,B,R
10,A,10,0,L

10,B,10,1,L
10,$,11,*,L
11,A,11,0,L
11,0,11,0,L
11,B,11,1,L
11,1,11,1,L
11,$,1,*,R
12,A,12,A,R
12,B,12,B,R
12,*,10,*,L
13,0,13,0,L
13,1,13,1,L
13,*,13,*,L
13,$,13,*,L
13,#,14,#,L
14,0,0,0,R
14,1,14,0,R
14,#,1,#,R
15,A,15,0,L
15,B,15,1,L
15,$,16,$,R
16,Z,16,Z,R
16,0,17,Z,R
16,1,20,Z,R
16,*,22,*,L
16,#,22,#,L
17,0,17,0,R
17,1,17,1,R
17,*,17,*,R
17,#,18,#,R
18,A,18,A,R
18,B,18,B,R
18,0,19,A,L
19,Z,19,Z,L
19,0,19,0,L

19,1,19,1,L
19,A,19,A,L
19,B,19,B,L
19,*,19,*,L
19,#,19,#,L
19,$,16,$,R
20,0,20,0,R
20,1,20,1,R
20,*,20,*,R
20,#,21,#,R
21,A,21,A,R
21,B,21,B,R
21,0,19,B,L
22,Z,22,Z,L
22,$,23,*,L
23,A,23,0,L
23,B,23,1,L
23,0,23,0,L
23,1,23,1,L
23,*,23,*,L
23,Z,23,Z,L
23,$,24,$,R
24,Z,24,Z,R
24,0,25,Z,R
24,1,26,Z,R
24,*,27,*,R
25,0,25,0,R
25,1,25,1,R
25,*,25,*,R
25,Z,23,0,L
26,0,26,0,R
26,1,26,1,R
26,*,26,*,R
26,Z,23,1,L
27,0,27,0,R

27,1,27,1,R
27,*,27,*,R
27,#,28,#,R
28,A,28,A,R
28,B,28,B,R
28,0,29,0,L
29,A,30,0,L
29,B,31,0,L
29,#,32,#,L
30,A,30,A,L
30,B,30,B,L
30,0,30,0,L
30,1,30,1,L
30,*,30,*,L
30,#,30,#,L
30,Z,27,0,R
31,A,31,A,L
31,B,31,B,L
31,0,31,0,L
31,1,31,1,L
31,*,31,*,L
31,#,31,#,L
31,Z,27,1,R
32,0,32,0,L
32,1,32,1,L
32,*,32,*,L
32,$,32,$,L
32,#,33,#,L
33,0,34,1,R
33,1,34,1,R
34,#,34,#,R
34,0,34,0,R
34,1,34,1,R
34,*,34,*,R
34,$,1,*,R
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B.4.9 Universal TM

1,0,1,A,L
1,1,1,B,L
1,Y,5,Y,R
1,X,1,X,L
1,B,1,B,L
1,A,1,A,L
2,Y,0,Y,R
2,X,1,X,L
2,1,2,1,R
2,0,2,0,R
3,1,2,B,R
3,0,4,A,L
3,B,3,B,R
3,A,3,A,R
3,X,3,X,R
4,Y,5,Y,R
4,X,4,X,L
4,A,4,A,L
4,B,4,B,L
4,1,4,1,L
4,0,4,0,L
5,A,3,0,R
5,B,6,1,R
5,X,23,X,R
5,0,5,0,R
5,1,5,1,R
6,1,4,B,L
6,0,2,A,R
6,A,6,A,R
6,B,6,B,R
6,X,6,X,R
7,S,1,A,L
7,0,7,0,R
7,1,7,1,R
7,Y,7,Y,R
8,S,1,B,L
8,0,8,0,R

8,1,8,1,R
8,Y,8,Y,R
9,0,7,M,R
9,1,8,M,R
10,0,7,M,R
10,1,8,M,R
11,B,9,0,R
11,A,10,0,L
11,0,11,0,L
11,1,11,1,L
11,Y,11,Y,L
12,B,9,1,R
12,A,10,1,L
12,0,12,0,L
12,1,12,1,L
12,Y,12,Y,L
13,0,11,S,L
13,1,12,S,L
13,B,13,1,L
13,A,13,0,L
13,X,13,X,L
13,Y,13,Y,L
14,0,13,0,L
14,1,13,1,L
14,A,14,A,R
14,B,14,B,R
14,X,14,X,R
14,Y,14,Y,R
15,B,15,1,R
15,A,15,0,R
15,X,14,X,R
15,0,15,0,R
15,1,15,1,R
15,Y,15,Y,R
16,M,15,A,R
16,A,16,A,L
16,B,16,B,L
16,Y,16,Y,L
16,0,16,0,L

16,1,16,1,L
17,M,15,B,R
17,A,17,A,L
17,B,17,B,L
17,Y,17,Y,L
17,0,17,0,L
17,1,17,1,L
18,X,17,X,L
18,0,19,B,R
18,1,19,B,R
18,A,18,A,R
18,B,18,B,R
19,X,23,X,R
19,1,19,1,R
19,0,19,0,R
20,0,19,A,R
20,1,19,A,R
20,X,16,X,L
20,A,20,A,R
20,B,20,B,R
21,Y,20,Y,R
21,B,21,B,L
21,A,21,A,L
21,X,21,X,L
21,1,21,1,L
21,0,21,0,L
22,Y,18,Y,R
22,A,22,A,L
22,B,22,B,L
22,X,22,X,L
22,1,22,1,L
22,0,22,0,L
23,1,22,B,L
23,0,21,A,L
23,A,23,A,R
23,B,23,B,R
23,X,23,X,R
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B.4.10 Universal RASP

1,0,1,A,R
1,1,1,B,R
1,#,53,#,L
1,S,1,S,R
53,A,53,A,L
53,B,53,B,L
53,1,53,1,L
53,0.253,0,L
53,S,53,S,L
53,#,53,#,L
53,P,2,P,R
2,1,2,1,R
2,0,2,0,R
2,#,3,#,L
3,0,3,A,L
3,1,3,B,L
3,A,3,A,L
3,B,3,B,L
3,P,4,P,R
3,*,3,*,L
3,#,3,#,L
3,S,3,S,L
3,I,3,I,L
3,X,3,X,L
4,0,4,0,R
4,1,4,1,R
4,A,5,0,R
4,B,12,1,R
4,#,15,#,R
5,A,5,A,R
5,B,5,B,R
5,#,6,#,R
6,S,6,S,R
6,A,6,A,R

6,B,6,B,R
6,1,6,1,R
6,0,6,0,R
6,#,7,#,R
7,I,7,I,R
7,#,7,#,R
7,*,7,*,R
7,A,7,A,R
7,B,7,B,R
7,X,7,X,R
7,0,9,A,L
7,1,8,B,R
8,I,8,I,R
8,X,8,X,R
8,*,8,*,R
8,1,8,1,R
8,0,8,0,R
8,E,13,E,L
8,#,3,#,L
9,S,9,S,L
9,I,9,I,L
9,X,9,X,L
9,*,9,*,L
9,#,9,#,L
9,1,9,1,L
9,0,9,0,L
9,A,9,A,L
9,B,9,B,L
9,P,4,P,R
10,I,10,I,R
10,#,10,#,R
10,*,10,*,R
10,A,10,A,R
10,B,10,B,R

10,X,10,X,R
10,1,9,B,L
10,0,8,A,R
11,S,11,S,R
11,A,11,A,R
11,B,11,B,R
11,1,11,1,R
11,0,11,0,R
11,#,10,#,R
12,A,12,A,R
12,B,12,B,R
12,#,11,#,R
13,1,13,1,L
13,0,13,0,L
13,A,13,A,L
13,B,13,B,L
13,S,13,S,L
13,I,13,I,L
13,X,13,X,L
13,I,13,I,L
13,#,13,#,L
13,*,13,*,L
13,P,14,P,L
14,#,14,#,L
14,0,23,P,L
15,S,15,S,R
15,B,16,1,R
15,A,16,0,R
15,#,21,#,R
16,#,16,#,R
16,*,16,*,R
16,A,16,A,R
16,B,16,B,R
16,I,16,I,R

16,X,16,X,R
16,0,17,A,L
16,1,19,B,L
17,#,17,#,L
17,*,17,*,L
17,A,17,A,L
17,B,17,B,L
17,X,17,X,L
17,I,17,I,L
17,0,17,0,L
17,1,17,1,L
17,S,18,S,R
18,A,18,A,R
18,B,18,B,R
18,#,21,#,R
18,1,15,A,R
18,0,15,A,R
19,#,19,#,L
19,*,19,*,L
19,A,19,A,L
19,B,19,B,L
19,X,19,X,L
19,I,19,I,L
19,0,19,0,L
19,1,19,1,L
19,S,20,S,R
20,A,20,A,R
20,B,20,B,R
20,#,21,#,R
20,0,15,B,R
20,1,15,B,R
21,0,21,0,L
21,1,21,1,L
21,A,21,A,L
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21,B,21,B,L
21,*,21,*,L
21,#,21,#,L
21,X,21,X,L
21,I,21,I,L
21,S,21,S,L
21,P,22,P,L
22,#,22,#,L
22,0,23,B,L
23,E,24,E,R
24,P,24,P,R
24,#,24,#,R
24,*,24,*,R
24,0,24,0,R
24,1,24,1,R
24,A,24,A,R
24,B,24,B,R
24,S,24,S,R
24,I,24,I,R
24,X,24,X,R
24,E,25,E,L
25,P,26,P,L
25,#,25,#,L
25,*,25,*,L
25,0,25,0,L
25,1,25,1,L
25,A,25,0,L
25,B,25,1,L
25,S,25,S,L
25,I,25,I,L
25,X,25,X,L
26,P,26,P,L
26,#,26,#,L
26,*,26,*,L

26,0,26,0,L
26,1,26,1,L
26,A,26,A,L
26,B,26,B,L
26,S,26,S,L
26,I,26,I,L
26,X,26,X,L
26,E,27,E,R
27,1,54,0,R
27,A,46,0,R
27,B,28,0,R
27,P,38,0,R
27,S,86,0,R
27,#,208,0,R
28,P,28,P,R
28,0,28,0,R
28,1,28,1,R
28,#,28,#,R
28,*,28,*,R
28,A,28,A,R
28,B,28,B,R
28,S,29,S,R
29,A,29,A,R
29,B,29,B,R
29,0,30,A,R
29,1,33,B,R
29,#,36,#,R
30,0,30,0,R
30,1,30,1,R
30,A,30,A,R
30,B,30,B,R
30,*,30,*,R
30,#,30,#,R
30,I,31,I,R

31,0,32,A,L
31,1,32,A,L
31,A,31,A,R
31,B,31,B,R
32,0,32,0,L
32,1,32,1,L
32,A,32,A,L
32,B,32,B,L
32,*,32,*,L
32,#,32,#,L
32,I,32,I,L
32,S,29,S,R
33,0,33,0,R
33,1,33,1,R
33,A,33,A,R
33,B,33,B,R
33,*,33,*,R
33,#,33,#,R
33,I,34,I,R
34,0,35,B,L
34,1,35,B,L
34,A,34,A,R
34,B,34,B,R
35,0,35,0,L
35,1,35,1,L
35,A,35,A,L
35,B,35,B,L
35,*,35,*,L
35,#,35,#,L
35,I,35,I,L
35,S,29,S,R
36,0,36,0,L
36,1,36,1,L
36,A,36,A,L

36,B,36,B,L
36,#,36,#,L
36,S,36,S,L
36,P,37,P,L
37,#,37,#,L
37,0,23,A,L
38,P,39,P,R
38,#,38,#,R
39,#,45,#,L
39,A,39,A,R
39,B,39,B,R
39,0,40,A,R
39,1,43,B,R
40,1,40,1,R
40,0,40,0,R
40,#,40,#,R
40,S,41,S,R
41,A,41,A,R
41,B,41,B,R
41,0,42,A,L
41,1,42,A,L
42,0,42,0,L
42,1,42,1,L
42,B,42,B,L
42,A,42,A,L
42,S,42,S,L
42,#,42,#,L
42,P,39,P,R
43,1,43,1,R
43,0,43,0,R
43,#,43,#,R
43,S,44,S,R
44,A,44,A,R
44,B,44,B,R
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44,0,42,B,L
44,1,42,B,L
45,#,45,#,L
45,A,45,A,L
45,B,45,B,L
45,P,45,P,L
45,0,23,B,L
46,#,46,#,R
46,P,46,P,R
46,0,46,0,R
46,1,46,1,R
46,P,46,P,R
46,S,47,S,R
47,1,47,1,R
47,0,47,0,R
47,#,48,#,L
48,1,51,1,L
48,0,49,0,L
49,0,49,0,L
49,1,49,1,L
49,S,49,S,L
49,#,49,#,L
49,P,50,P,L
50,#,50,#,L
50,0,23,S,L
51,0.251,0,L
51,1,51,1,L
51,S,51,S,L
51,#,51,#,L
51,P,52,P,L
52,#,52,#,L
52,0,23,1,L
54,#,54,#,R
54,P,55,P,R

55,1,55,1,R
55,0.255,0,R
55,#,56,#,L
56,1,56,1,L
56,P,57,P,R
56,0.257,1,R
57,1,57,0,R
57,#,58,#,R
58,0.258,A,L
58,1,58,B,L
58,#,71,#,L
58,S,59,S,R
59,1,59,1,R
59,0.259,0,R
59,#,60,#,L
60,0,60,A,L
60,1,60,B,L
60,A,60,A,L
60,B,60,B,L
60,P,61,P,R
60,*,60,*,L
60,#,60,#,L
60,S,60,S,L
60,I,60,I,L
60,X,60,X,L
61,#,72,#,R
61,0,61,0,R
61,1,61,1,R
61,A,62,0,R
61,B,69,1,R
62,A,62,A,R
62,B,62,B,R
62,#,63,#,R
63,S,63,S,R

63,A,63,A,R
63,B,63,B,R
63,1,63,1,R
63,0,63,0,R
63,#,64,#,R
64,I,64,I,R
64,#,64,#,R
64,*,64,*,R
64,A,64,A,R
64,B,64,B,R
64,X,64,X,R
64,0,66,A,L
64,1,65,B,R
65,I,65,I,R
65,X,65,X,R
65,*,65,*,R
65,1,65,1,R
65,0,65,0,R
65,E,70,E,L
65,#,60,#,L
66,S,66,S,L
66,I,66,I,L
66,X,66,X,L
66,*,66,*,L
66,#,66,#,L
66,1,66,1,L
66,0,66,0,L
66,A,66,A,L
66,B,66,B,L
66,P,61,P,R
67,I,67,I,R
67,#,67,#,R
67,*,67,*,R
67,A,67,A,R

67,B,67,B,R
67,X,67,X,R
67,1,66,B,L
67,0,65,A,R
68,S,68,S,R
68,A,68,A,R
68,B,68,B,R
68,1,68,1,R
68,0,68,0,R
68,#,67,#,R
69,B,69,B,R
69,#,68,#,R
70,1,70,1,L
70,0,70,0,L
70,A,70,A,L
70,B,70,B,L
70,I,70,I,L
70,X,70,X,L
70,I,70,I,L
70,#,70,#,L
70,*,70,*,L
70,S,82,S,R
71,A,71,A,L
71,B,71,B,L
71,1,71,1,L
71,0,71,0,L
71,S,71,S,L
71,#,71,#,L
71,P,59,P,R
72,S,72,S,R
72,B,72,B,R
72,A,72,A,R
72,#,72,#,R
72,*,72,*,R
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72,I,73,I,R
73,0,73,0,R
73,1,73,1,R
73,A,73,A,R
73,B,73,B,R
73,#,74,#,R
74,0,80,0,L
74,1,80,1,L
74,A,75,A,L
74,B,75,B,L
75,A,75,A,L
75,B,75,B,L
75,I,76,I,R
75,0,75,0,L
75,1,75,1,L
75,#,75,#,L
76,1,76,1,R
76,0,76,0,R
76,A,77,0,R
76,B,77,0,R
76,#,80,#,L
77,A,77,A,R
77,B,77,B,R
77,X,77,X,R
77,#,77,#,R
77,*,77,*,R
77,0,78,A,L
77,1,79,B,L
78,A,78,A,L
78,B,78,B,L
78,#,78,#,L
78,*,78,*,L
78,X,78,X,L
78,0,75,0,L

78,1,75,0,L
79,A,79,A,L
79,B,79,B,L
79,#,79,#,L
79,*,79,*,L
79,X,79,X,L
79,0,75,1,L
79,1,75,1,L
80,A,80,A,L
80,B,80,B,L
80,1,80,1,L
80,0,80,0,L
80,#,80,#,L
80,*,80,*,L
80,S,80,S,L
80,X,80,X,L
80,I,80,I,L
80,P,81,P,L
81,#,81,#,L
81,0,23,S,L
82,A,82,A,R
82,B,82,B,R
82,#,82,#,R
82,*,82,*,R
82,I,83,I,R
83,A,83,0,R
83,B,83,0,R
83,#,84,#,L
84,A,84,A,L
84,B,84,B,L
84,1,84,1,L
84,0,84,0,L
84,*,84,*,L
84,#,84,#,L

84,S,84,S,L
84,I,84,I,L
84,P,85,P,L
85,#,85,#,L
85,0,23,S,L
86,#,86,#,R
86,P,86,P,R
86,0,86,0,R
86,1,86,1,R
86,S,87,S,R
87,1,87,1,R
87,0,87,0,R
87,#,88,#,L
88,1,89,1,L
88,0,90,0,L
89,1,91,1,L
89,0,94,0,L
90,1,93,1,L
90,0,92,0,L
91,1,96,1,L
91,0,95,0,L
92,1,101,1,L
92,0,102,0,L
93,1,99,1,L
93,0,100,0,L
94,1,97,1,L
94,0,98,0,L
95,0,95,0,L
95,S,174,S,R
95,1,100,1,L
96,0,96,0,L
96,1,100,1,L
96,S,143,S,R
97,0,97,0,L

97,1,100,1,L
97,S,131,S,R
98,0,98,0,L
98,1,100,1,L
98,S,123,S,R
99,0,99,0,L
99,1,100,1,L
99,S,108,S,R
100,0,100,0,L
100,1,100,1,L
100,S,0,S,R
101,0,101,0,L
101,1,100,1,L
101,S,103,S,R
102,S,113,S,R
102,0,102,0,L
102,1,100,1,L
103,1,103,1,R
103,0,103,0,R
103,#,103,#,R
103,*,103,*,R
103,I,103,I,R
103,X,104,X,R
104,0,104,0,R
104,1,104,1,R
104,#,105,#,L
105,1,105,1,L
105,X,106,X,R
105,0,106,1,R
106,1,106,0,R
106,#,107,#,L
107,1,107,1,L
107,0,107,0,L
107,X,107,X,L
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107,#,107,#,L
107,*,107,*,L
107,I,107,I,L
107,S,107,S,L
107,P,203,P,R
108,1,108,1,R
108,0,108,0,R
108,#,108,#,R
108,*,108,*,R
108,I,108,I,R
108,X,109,X,R
109,1,109,1,R
109,0,109,0,R
109,#,110,#,L
110,0,110,0,L
110,X,111,X,R
110,1,111,0,R
111,0,111,1,R
111,#,112,#,L
112,1,112,1,L
112,0,112,0,L
112,#,112,#,L
112,*,112,*,L
112,X,112,X,L
112,I,112,I,L
112,S,112,S,L
112,P,203,P,R
113,1,113,1,R
113,0,113,0,R
113,*,113,*,R
113,#,113,#,R
113,I,113,I,R
113,X,114,X,R
114,A,114,A,R

114,B,114,B,R
114,0,115,A,R
114,1,118,B,R
114,#,120,#,R
115,1,115,1,R
115,0,115,0,R
115,#,115,#,R
115,*,115,*,R
115,E,116,E,R
116,A,116,A,R
116,B,116,B,R
116,*,116,*,R
116,0,117,A,L
117,A,117,A,L
117,B,117,B,L
117,0,117,0,L
117,1,117,1,L
117,#,117,#,L
117,*,117,*,L
117,E,117,E,L
117,X,114,X,R
118,1,118,1,R
118,0,118,0,R
118,#,118,#,R
118,*,118,*,R
118,E,119,E,R
119,A,119,A,R
119,B,119,B,R
119,*,119,*,R
119,0,117,B,L
120,1,120,1,R
120,0,120,0,R
120,#,120,#,R
120,*,120,*,R

120,E,121,E,R
121,A,121,A,R
121,B,121,B,R
121,*,121,*,R
121,0,122,*,L
122,A,122,A,L
122,B,122,B,L
122,0,122,0,L
122,1,122,1,L
122,X,122,X,L
122,I,122,I,L
122,S,122,S,L
122,#,122,#,L
122,*,122,*,L
122,E,122,E,L
122,P,203,P,R
123,1,123,1,R
123,0,123,0,R
123,#,123,#,R
123,*,123,*,R
123,I,124,I,R
124,A,124,A,R
124,B,124,B,R
124,1,125,B,R
124,0,129,A,R
124,#,130,#,R
125,1,125,1,R
125,0,125,0,R
125,#,125,#,R
125,*,125,*,R
125,X,126,X,R
126,A,126,A,R
126,B,126,B,R
126,0,127,B,L

126,1,127,B,L
127,0,127,0,L
127,1,127,1,L
127,A,127,A,L
127,B,127,B,L
127,#,127,#,L
127,*,127,*,L
127,X,127,X,L
127,I,124,I,R
128,A,128,A,R
128,B,128,B,R
128,0,127,A,L
128,1,127,A,L
129,0,129,0,R
129,1,129,1,R
129,#,129,#,R
129,*,129,*,R
129,X,128,X,R
130,0,130,0,L
130,1,130,1,L
130,A,130,A,L
130,B,130,B,L
130,#,130,#,L
130,*,130,*,L
130,I,130,I,L
130,S,130,S,L
130,P,203,P,R
131,1,131,1,R
131,0,131,0,R
131,I,131,I,R
131,#,131,#,R
131,*,131,*,R
131,X,132,X,R
132,0,132,0,R
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132,1,133,1,L
132,#,142,#,R
133,#,133,#,L
133,*,133,*,L
133,1,133,1,L
133,0,133,0,L
133,X,133,X,L
133,I,134,I,R
134,A,134,A,R
134,B,134,B,R
134,1,136,B,L
134,0,135,A,L
134,#,140,#,L
135,0,135,0,L
135,1,135,1,L
135,I,135,I,L
135,S,135,S,L
135,*,135,*,L
135,#,135,#,L
135,A,135,A,L
135,B,135,B,L
135,P,137,P,R
136,0,136,0,L
136,1,136,1,L
136,I,136,I,L
136,S,136,S,L
136,*,136,*,L
136,#,136,#,L
136,A,136,A,L
136,B,136,B,L
136,P,138,P,R
137,A,137,A,R
137,B,137,B,R
137,0,139,A,R

137,1,139,A,R
138,A,138,A,R
138,B,138,B,R
138,1,139,B,R
138,0,139,B,R
139,0,139,0,R
139,1,139,1,R
139,S,139,S,R
139,#,139,#,R
139,*,139,*,R
139,I,134,I,R
140,A,140,A,L
140,B,140,B,L
140,0,140,0,L
140,1,140,1,L
140,#,140,#,L
140,*,140,*,L
140,S,140,S,L
140,I,140,I,L
140,P,141,P,L
141,#,141,#,L
141,0,23,#,L
142,0,142,0,L
142,1,142,1,L
142,I,142,I,L
142,X,142,X,L
142,*,142,*,L
142,#,142,#,L
142,S,142,#,L
142,P,203,P,R
143,0,143,0,R
143,1,143,1,R
143,*,143,*,R
143,#,143,#,R

143,I,144,I,R
144,0,144,0,R
144,#,158,#,L
144,1,145,1,R
145,1,145,1,R
145,0,145,0,R
145,#,146,#,L
146,0,146,A,L
146,1,146,B,L
146,A,146,A,L
146,B,146,B,L
146,*,146,*,L
146,#,146,#,L
146,X,146,X,L
146,I,147,I,R
147,1,147,1,R
147,0,147,0,R
147,A,148,0,R
147,B,150,1,R
147,#,152,#,R
148,A,148,A,R
148,B,148,B,R
148,#,148,#,R
148,*,148,*,R
148,X,148,X,R
148,0,149,A,L
148,1,151,B,R
149,0,149,0,L
149,1,149,1,L
149,A,149,A,L
149,B,149,B,L
149,#,149,#,L
149,*,149,*,L
149,X,149,X,L

149,I,147,I,R
150,A,150,A,R
150,B,150,B,R
150,#,150,#,R
150,*,150,*,R
150,X,150,X,R
150,1,149,B,L
150,0,151,A,R
151,0,151,0,R
151,1,151,1,R
151,*,151,*,R
151,X,151,X,R
151,E,165,E,L
151,#,146,#,L
152,A,152,A,R
152,B,152,B,R
152,*,152,*,R
152,X,153,X,R
153,A,154,0,R
153,B,154,0,R
153,#,164,#,L
154,A,154,A,R
154,B,154,B,R
154,*,154,*,R
154,#,154,#,R
154,1,155,B,L
154,0,156,A,L
155,A,155,A,L
155,B,155,B,L
155,#,155,#,L
155,*,155,*,L
155,0,153,B,R
156,A,156,A,L
156,B,156,B,L
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156,#,156,#,L
156,*,156,*,L
156,0,153,A,R
158,0,158,0,L
158,1,158,1,L
158,A,158,A,L
158,B,158,B,L
158,*,158,*,L
158,#,158,#,L
158,I,158,I,L
158,S,158,S,L
158,X,158,X,L
158,P,159,P,R
159,A,159,A,R
159,B,159,B,R
159,#,164,#,L
159,0,160,A,R
159,1,162,B,R
160,0,160,0,R
160,1,160,1,R
160,S,160,S,R
160,#,160,#,R
160,*,160,*,R
160,I,160,I,R
160,X,161,X,R
161,A,161,A,R
161,B,161,B,R
161,1,158,A,L
161,0,158,A,L
162,0,162,0,R
162,1,162,1,R
162,S,162,S,R
162,#,162,#,R
162,*,162,*,R

162,I,162,I,R
162,X,163,X,R
163,A,163,A,R
163,B,163,B,R
163,0,158,B,L
163,1,158,B,L
164,A,164,0,L
164,B,164,1,L
164,0,164,0,L
164,1,164,1,L
164,X,164,X,L
164,I,164,I,L
164,S,164,S,L
164,*,164,*,L
164,#,164,#,L
164,P,203,P,R
165,1,165,1,L
165,0,165,0,L
165,A,165,A,L
165,B,165,B,L
165,X,165,X,L
165,*,165,*,L
165,#,165,#,L
165,I,166,I,R
166,A,166,0,R
166,B,166,1,R
166,1,166,1,R
166,0,166,0,R
166,#,167,#,L
167,0,167,0,L
167,1,167,1,L
167,I,168,I,R
168,A,168,A,R
168,B,168,B,R

168,#,164,#,L
168,0,169,A,R
168,1,172,B,R
169,0,169,0,R
169,1,169,1,R
169,A,169,A,R
169,B,169,B,R
169,#,169,#,R
169,*,169,*,R
169,X,170,X,R
170,A,171,0,L
170,B,171,0,L
170,0,170,0,R
170,1,170,1,R
171,X,171,X,L
171,A,171,A,L
171,0,171,0,L
171,1,171,1,L
171,B,171,B,L
171,#,171,#,L
171,*,171,*,L
171,I,168,I,R
172,0,172,0,R
172,1,172,1,R
172,A,172,A,R
172,B,172,B,R
172,#,172,#,R
172,*,172,*,R
172,X,173,X,R
173,0,173,0,R
173,1,173,1,R
173,A,171,1,L
173,B,171,1,L
174,1,174,1,R

174,0,174,0,R
174,#,174,#,R
174,*,174,*,R
174,I,175,I,R
175,0,175,0,R
175,#,196,#,R
175,1,176,1,R
176,0,176,0,R
176,1,176,1,R
176,#,177,#,L
177,0,177,A,L
177,1,177,B,L
177,A,177,A,L
177,B,177,B,L
177,#,177,#,L
177,*,177,*,L
177,X,177,X,L
177,I,178,I,R
178,1,178,1,R
178,0,178,0,R
178,A,179,0,R
178,B,182,1,R
178,#,183,#,R
179,A,179,A,R
179,B,179,B,R
179,#,179,#,R
179,*,179,*,R
179,X,179,X,R
179,0,181,A,L
179,1,180,1,R
180,1,180,1,R
180,0,180,0,R
180,*,180,*,R
180,X,180,X,R
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180,#,177,#,L
180,E,189,E,L
181,A,181,A,L
181,B,181,B,L
181,X,181,X,L
181,0,181,0,L
181,1,181,1,L
181,#,181,#,L
181,*,181,*,L
181,I,178,I,R
182,A,182,A,R
182,B,182,B,R
182,#,182,#,R
182,*,182,*,R
182,X,182,X,R
182,0,180,A,R
182,1,181,B,L
183,A,183,A,R
183,B,183,B,R
183,*,183,*,R
183,X,184,X,R
184,1,202,1,L
184,0,202,0,L
184,A,185,0,R
184,B,188,1,R
185,A,185,A,R
185,B,185,B,R
185,#,185,#,R
185,*,185,*,R
185,1,186,A,L
185,0,186,A,L
186,A,186,A,L
186,B,186,B,L
186,#,186,#,L

186,*,186,*,L
186,0,186,0,L
186,1,186,1,L
186,X,187,X,R
187,0,187,0,R
187,1,187,1,R
187,A,185,0,R
187,B,188,1,R
187,#,202,#,L
188,A,188,A,R
188,B,188,B,R
188,#,188,#,R
188,*,188,*,R
188,1,186,B,L
188,0,186,B,L
189,1,189,1,L
189,0,189,0,L
189,A,189,0,L
189,B,189,1,L
189,*,189,*,L
189,#,189,#,L
189,X,189,X,L
189,I,190,I,R
190,0,190,0,R
190,1,190,1,R
190,#,190,#,R
190,*,190,*,R
190,X,191,X,R
191,0,192,A,L
191,1,194,B,L
191,A,191,A,R
191,B,191,B,R
191,#,202,#,L
192,1,192,1,L

192,0,192,0,L
192,A,192,A,L
192,B,192,B,L
192,*,192,*,L
192,#,192,#,L
192,X,192,X,L
192,I,193,I,R
193,0,190,A,R
193,1,190,A,R
193,A,193,A,R
193,B,193,B,R
194,1,194,1,L
194,0,194,0,L
194,A,194,A,L
194,B,194,B,L
194,*,194,*,L
194,#,194,#,L
194,X,194,X,L
194,I,195,I,R
195,0,190,B,R
195,1,190,B,R
195,A,195,A,R
195,B,195,B,R
196,0,196,0,R
196,1,196,1,R
196,#,196,#,R
196,*,196,*,R
196,X,197,X,R
196,S,196,S,R
196,I,196,I,R
197,A,197,A,R
197,B,197,B,R
197,0,198,A,L
197,1,200,B,L

197,#,202,#,L
198,1,198,1,L
198,0,198,0,L
198,A,198,A,L
198,B,198,B,L
198,#,198,#,L
198,*,198,*,L
198,I,198,I,L
198,S,198,S,L
198,X,198,X,L
198,P,199,P,R
199,A,199,A,R
199,B,199,B,R
199,0,196,A,R
199,1,196,A,R
200,1,200,1,L
200,0,200,0,L
200,A,200,A,L
200,B,200,B,L
200,#,200,#,L
200,*,200,*,L
200,I,200,I,L
200,S,200,S,L
200,X,200,X,L
200,P,201,P,R
201,A,201,A,R
201,B,201,B,R
201,0,196,B,R
201,1,196,B,R
202,0,202,0,L
202,1,202,1,L
202,A,202,0,L
202,B,202,1,L
202,I,202,I,L
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202,S,202,S,L
202,X,202,X,L
202,#,202,#,L
202,*,202,*,L
202,P,203,P,R
203,1,203,1,R
203,0,203,0,R
203,#,204,#,L
204,1,204,1,L
204,P,205,P,R
204,0,205,1,R
205,1,205,0,R
205,#,206,#,L
206,1,206,1,L
206,0,206,0,L
206,P,207,P,L
207,#,207,#,L
207,0,23,#,L
208,#,208,#,R
208,P,209,P,R
209,0,209,0,R
209,1,209,1,R
209,#,1,#,R

B.5 λ-Calculus

B.5.1 Addition

λn.λm.λn.(λp.λf.λx.f(p f x))m

B.5.2 Subtraction

λm.λn.n(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u))m

B.5.3 Equality

(λz.(λq.(λa.λm.λn.n a m(λx.q)z(m a n(λx.q)z)(n a m(λx.q)z))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.4 Multiplication

λm.λn.λf.m(n f)

B.5.5 Division

(λu.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λg.λq.λa.λb.(λn.n(λx.u)z)
b u((λa.λb.λk.λj.a t b(λx.u)z j k)a b((λx.λy.λf.f x y)q a)
(g((λn.λf.λx.f(n f x))q)((λm.λn.n t m)a b)b)))u)
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.x))(λx.λy.y)
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B.5.6 Exponentiation

λe.λb.b e

B.5.7 List Membership

(λz.(λt.(λw.((λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))b z
((λm.λn.n w m(λx.z)t(m w n(λx.z)t)(n w m(λx.z)t))((λp.p t)b)
c t(a((λp.p z)b)c)))))(λn.λf.λx.n(λg.λh.h(g f))(λu.x)
(λu.u)))(λx.λy.x))(λx.λy.y)

B.5.8 Linear Search

(λv.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))c(λf.λx.f x)
((λm.λn.n t m(λx.z)v(m t n(λx.z)v)(n t m(λx.z)v))((λp.p v)c)b)z
((λn.λf.λx.f(n f x))(a b((λp.p z)c)))))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.9 List Reversal

(λj.(λz.(λg.(λx.g(x x))(λx.g(x x)))(λg.λa.λl.(λp.p(λx.λy.j))l
a(g((λx.λy.λf.f x y)((λp.p z)l)a)((λp.p j)l)))(λx.z))(λx.λy.x))(λx.λy.y)

B.5.10 Stateful List Reversal

(λj.(λm.(λk.(λq.(λs.(λv.(λi.(λr.(λz.(λa.(z(λa.λb.λc.λd.(λa.λb.λd.λc.a i b
(λx.j)m c d)b c(a(s b)(i c)((z(λa.λb.λc.λd.r b(v((λa.λb.a q b m)c d)
((z(λa.λb.λc.λd.r b(v c(q d))(v(k d)(a(i b)c(q d)))))(i c)(k d)(q d)))
(v(k d)(a(i b)(i c)(q d)))))b c d))d))j(i((z(λa.λb.λc.(λp.p(λx.λy.j))c
b(a(s b)(q c)))j)a))a))(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.j)m))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))
(λn.λf.λx.f(n f x)))(λp.p j))(λp.p m))(λx.λy.x))(λx.λy.y)

B.5.11 Bubble Sort

(λj.(λo.(λu.(λh.(λt.(λi.(λs.(λg.(λf.(λv.(λz.(z(λa.λb.λc.λd.λe.
(λm.λn.n f m(λx.o)j)d(f((z(λa.λb.λc.(λp.p(λx.λy.o))c b(a(g b)(t c)))o)e))
((λa.λb.λc.λd.a f b(λx.o)j d c)(s d e)(s c e)(a j(g c)(g d)
((z(λa.λb.λc.λd.v b(i(s c d)((z(λa.λb.λc.λd.v b(i c(t d))(i(h d)(a(f b)c(t d)))))
(f c)(h d)(t d)))(i(h d)(a(f b)(f c)(t d)))))c d e))(a b(g c)(g d)e))
(b(a o o u e)e)))o o u)(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.o)j))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λn.λf.λx.f(n f x)))(λa.λb.a t b j))
(λx.λy.λf.f x y))(λp.p o))(λp.p j))(λf.λx.f x))(λx.λy.y))(λx.λy.x)
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B.5.12 Universal TM

(λz.(λu.(λl.(λk.(λj.(λi.(λg.(λf.(λe.(λd.(λc.(λb.z(λa.λs.λh.λt.λp.d(c s(e h p)t)
p(a(g(c s(e h p)t))(b(g(i(i(c s(e h p)t))))(j h)((λn.λf.λx.f(n f x))h))
t((z(λa.λb.λc.λd.(λn.n(λx.l)u)b(k c(i d))(k(g d)(a(j b)c(i d)))))h
(g(i(c s(e h p)t)))p))))(λn.n(λx.l)u))((z(λa.λs.λy.λt.((λp.p l u)(d t))
(((λp.λq.p q p)(f s(g(g t)))(f y(g(i(g t)))))(i(i(g t)))(a s y(i t)))
(k l(k l(k l(λx.u))))))))(λp.p(λx.λy.l)))(λa.λb.a i b u))(λm.λn.n j m
(λx.l)u(m j n(λx.l)u)(n j m(λx.l)u)))(λp.p u))(λp.p l))(λn.λf.λx.n
(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))(λx.λy.y))(λx.λy.x))
(λg.(λx.g(x x))(λx.g(x x)))

B.5.13 Universal RASP

(λs.(λr.(λq.(λp.(λn.(λl.(λk.(λj.(λi.(λh.(λg.(λf.(λe.(λd.(λc.(λb.s
(λa.λm.λo.f(g n(d m))n(a(c r(c p(d m)))o)(f(g n(d m))p(a(c r(b p(d m)))o)
(f(g n(d m))(λf.λx.f(f(f x)))(a(c r((λm.e p(g n(d(c r m)))(d(c r m)))
(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f x))))(a(c r((λm.e(g n(d(c r m)))(g p m)
(d(c r m)))(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f(f x)))))(a(c r(d m))
((λm.λo.(i(g p m)o))m o))(f(g n(d m))(λf.λx.f(f(f(f(f(f x))))))(a(c r
((λm.(f(g p(d(c r m)))r)(d(c r m))(b r(e r(g n(d(c r m)))(d(c r m)))))
(d m)))o)(f(g n (d m))(λf.λx.f(f(f(f(f(f(f x)))))))(a(c r((λm.e p(g(g n
(d(c r m)))(d(c r m)))(d(c r m)))(d m)))o)(i(d m)o)))))))))(λd.λm.(f(g d m)r)
(e d(k(h m))m)(e d(k(g d m))m)))(λd.λm.(f(k(h m))(g d m))(e d r m)
(e d(l(g d m))m)))(λm.e n(g(g r m)m)m)))(s(λa.λb.λc.λd.(λn.n(λx.r)q)
b(i c(j d))(i((λp.p q)d)(a(k b)c(j d))))) (λm.λn.n k m(λx.r)q(m k n
(λx.r)q)(n k m(λx.r)q)))(λa.λb.a j b q))(s(λa.λb.λc.(λp.p(λx.λy.r))c
b(a(l b)(j c)))r))(λx.λy.λf.f x y))(λp.p r))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λn.λf.λx.f(n f x))) (λf.λx.f x))(λf.λx.f(f x)))(λx.λy.x))
(λx.λy.y))(λg.(λx.g(x x))(λx.g(x x)))

B.6 SKI

B.6.1 Addition

SI(K(S(S(KS)K)))

B.6.2 Subtraction

S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K

B.6.3 Equality

S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S
(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))
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B.6.4 Multiplication

S(KS)KII

B.6.5 Division

S(K(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(S
(S(SI(K(K(KI))))(KK))(K(KI))))))))))))(S(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K
(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K)))))K))S))(S(KS))))(S(K(S(K(S(SI(K(KI)))
(KK))))))))(S(K(S(K(S(K(SS(KK)))K))S))(S(K(S(K(S
(SI(K(K(KI))))(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))))(S(S(K(S(KS)(S(K(S(K(S(K(S
(KS)K))S))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))K))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)

B.6.6 Exponentiation

S(K(SI))KII

B.6.7 List Membership

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(K(S(S(SI(K(K(K(KI)))))
(K(KI)))))))(S(S(KS)(S(K(S(K(SS(K(KK))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K)))))
(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.8 Linear Search

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K
(K(KI)))))(S(S(SI(K(K(K(KI)))))(KI)))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K))))
(S(K(S(K(S(S(KS)K))))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.9 List Reversal

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(SS(K(SI(K(KI)))))))))
(S(K(S(K(S(K(SS(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K))(SI(KK)))))K))))K))S))K))(KK)
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B.6.10 Stateful List Reversal

S(S(K(SS(KI)))(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K(SI(K(KI))))))K)))))
(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))(S(K(S(K(S(K(S(K(S
(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(K(SS(KI)))))))
(S(S(K(S(KS)(S(K(S(KS)K)))))(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))
(S(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))K))))))))(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S
(K(SI))K))))(SI)))K))))K)))))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))
(S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(K
(SS(KI)))))))(S(K(S(K(S(K(SS(K(S(KK)(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI))))))))))K))S))(S(K(S(KS)K)))))))))(K(SSK(S
(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S
(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))
(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))))
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B.6.11 Bubble Sort

S(S(K(SS(K(K(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))
(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K)))))K))S))K))
(S(SI(K(K(KI))))(KK))))))(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K
(S(K(SS(KK)))K))S))(SI)))K))(SI(KK)))))))(S(K(S(K(SS
(K(SI(K(KI))))))K))))))))(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))))K)))))))(S(K(SS(K(KI))))(S(K(S(K(S(K(S(K(SS
(K(K(KI)))))(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI)))))))
(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))))(S(K(SS(KI))))))
(S(S(KS)K))))K))(S(S(SI(K(KI)))(K(KI)))(KI))))))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(S(KS)(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K
(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))
(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))))))))))))))))(S(K(S(K(SS
(K(S(K(S(K(S(K(S(K(SS(K(S(S(KS)K)))))K))))))(S(K(S(K(SS(K(S
(S(KS)K)))))K)))))))(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))(S(K(S(KS)(S(K
(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))(S(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))
K))))))K)))))K)))))))(S(KK))))(S(K(S(K(S(K(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(S(KS)K)))))
K)))))(S(K(S(K(SS(K(S(S(KS)K)))))K))(SI(KK))))))K))))
(S(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))
(S(S(KS)(S(K(S(K(S(K(S(KS)K))S))K)))))))K))K)(S(K(S(K(S
(K(S(K(S(K(S(K(SS(KI)))))))))(S(S(K(S(K(S(KS)K))S))(S(K
(S(KS)K)))))))K))(S(KK)))))))))(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))
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B.6.12 Universal TM

S(K(SSK(S(K(SS(S(SSK))))K)))(S(S(K(S(K(S(K(S(KS)K))S))
(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(K(S(K(SS(KI)))
(S(K(SI(K(K(K(KI)))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))(S(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)
(S(K(S(KS)(S(KS)))))))(S(K(S(K(SS(KK)))(S(KS)))))))))))))
(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))
K))S))K))S))K))))K))(S(K(S(K(S(K(S(K(S(K(SI(KK)))))))))
(S(K(S(K(S(K(SS(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(KK)
(S(K(S(K(SS(K(S(K(S(KK)K))(S(S(KS)K))))))(S(K(S(KS)
(S(KS))))))))))(S(K(S(K(S(K(SS(K(S(K(S(KK)K))(S(K(S(K(S(K
(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K
(S(K(SI))K))))(SI)))K))))K))))))(S(K(S(KS)(S(K(S(KS)
(S(K(S(K(S(K(S(K(S(SI(K(K(KI))))(KK)))(SI(KK))))(SI(K(KI)))))
(SI(K(KI))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))))(S(K(S(KK)(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))(S(S(K(S(K(S(K(S(KS)K))S))K))(SSK(S(K(SS
(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K
(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K)))))))(S(K(S
(K(S(K(S(K(SI(KK)))(SI(K(KI))))))))))))(S(K(S(K(S(K(SS
(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))))K))S))K))))))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(K(S(K(S(K(SS(K(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K(KI)(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(S(K
(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(KK))))))))(S(S(K(S
(SI(K(KI)))(KK)))(SI(K(K(K(KI)))))))))))))(S(S(K(S(K(S(KS)
(S(KS))))(S(K(SS(K(S(K(S(K(SI(K(KI))))(SI(K(KI)))))
(SI(KK)))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(S(K(S(K
(SI(KK)))(SI(K(KI)))))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)
(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K))))))K))))))))K))S))(S(K(SSK)))))(S(K(S(K(SS(K
(S(K(SI(KK)))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))
(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K))))))))))
(S(K(S(K(S(K(SS(K(SI(K(KI))))))K)))))))
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B.6.13 Universal RASP

S(S(K(S(K(SS(K(S(KK)(S(K(SS(KI)))(S(K(S(K(SS(K(S(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))(KI)))I))))K))(SI(KI))))))))(S(KS))))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(SSK(S(K(SS
(S(SSK))))K))))))))))))(S(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(K(S(KS)K))S))(S(KS)))))))))))))
(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(KS)K)))K))))
(S(S(K(S(KS)K))(SI(K(KI)))))))(S(S(K(S(KS)K))(SI(K(S(S
(KS)K)I)))))))K))))(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(KI)))))))(S(K(S(K(S(K(SS
(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))K))S))K)))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S
(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)I))))))))(S(K(S
(K(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))
I))))))K))S))K))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S
(S(K(S(K(S(KS)K))S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))
(SI(K(KI)))))))K))))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)I))))))))(S(K(S
(K(SS(K(S(K(S(K(SS(KK)))(S(KS))))(S(K(S(K(SS(K(S(K(S(K
(S(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))(S
(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))))K))S)))))
(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S
(K(SS(KK)))(S(KS))))(S(K(S(K(SS(K(S(K(S(KK)(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S
(K(S(K(S(K(SI))K))))(SI)))K))))K))))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K
(SS(K(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))
(KI))))))K))S)))))K))S))(S(KS))))(S(K(SS(K(K(KI))))))))
(S(K(S(K(S(K(SS(K(S(K(S(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI))))))))K))))K))S))K))))))(S(S(K(S(KS)(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)K))S))K)))K))))(S(S(K
(S(K(S(K(S(KS)K))S))K))(SI(K(KI)))))))))(S(K(S(K(S(K(SS
(K(S(KK)K))))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)K)))))))))))
(S(K(S(K(SS(K(S(K(S(K(S(S(K(SSK(S(K(SS(S(SSK))))K)(S(K
(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K
(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))(S(K(S(K
(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K
(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))I))
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(S(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI
(KK)))))(SI(K(SI(K(KI)))))(KI)))I))I))))(SI(K(KI)))))))
(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))(S(K(S(K(S(K
(SS(K(SI(K(KI))))))K))S))K)))))K))S))K))S))K))(SI(K(S(S
(KS)K)I)))))))))K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S
(KS)K))S))K))S))K))S))(S(K(S(KS)K))))))))(S(K(SS(K(K
(S(S(KS)K)(S(S(KS)K)I)))))))))(S(K(S(K(S(K(SS(K(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))K))S))K)))(S
(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K
(S(KS)(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K
(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(K
(S(K(S(KS)K))S))K)))K))))(S(S(K(S(K(S(K(S(KS)K))S))K))
(SI(K(KI)))))))))(S(K(S(K(SS(K(S(KK)K))))(S(K(S(KS)(S(K
(S(KS)(S(K(S(KS)K)))))))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS
(K(SI(K(KI))))))K))S))K))))(S(K(S(K(S(KS)(S(KS))))(S(K
(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))(S(S
(KS)K)I)))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K
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VHDL Code

This appendix presents the VHDL which specifies the coordination, control and
memory modules for the TM and RASP machines. For the sake of brevity, the
general form of the programs for each machine are also presented, rather than
every program represented in full VHDL.

C.1 RASP

The RASPs all share the same coordination module. This is the VHDL module
which ties the control and memory modules together. It defines and routes the
buses and signals between the two modules.

The VHDL code has set of variables which are adjusted for each particular
instance of a RASP, these variables are related to the number of bits per register
for a machine. For the sake of brevity, the coordination module and memory will
be displayed once with these variables uninstantiated.

C.1.1 All RASP Coordination

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;

entity RASPMachine i s
Port ( ha l t ed : out STD_LOGIC;

memrw : out s td_log i c ;
c l k : in s td_log i c ;
contro lOut : out s td_log i c ) ;

end RASPMachine ;
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architecture Behaviora l of RASPMachine i s

Component RASPControl i s
Port ( c l k : in s td_log i c ;

ha l t ed : out s td_log i c ;
address : out STD_LOGIC_vector( x downto 0 ) ;
data in : out s td_log ic_vector ( x downto 0 ) ;
dataout : in s td_log ic_vector ( x downto 0 ) ;
wFlag : out s td_log i c ;
contro lOut : out s td_log i c ) ;

end component ;

Component RASPmemory
Port ( address : IN s td_log ic_vector ( x downto 0 ) ;

data in : IN s td_log ic_vector ( x downto 0 ) ;
dataout : OUT s td_log ic_vector ( x downto 0 ) ;
wFlag : IN s td_log i c ;
c l k : IN s td_log i c ;
memrw : out s td_log i c ) ;

END Component ;

signal address : s td_log ic_vector ( x downto 0 ) ;
signal data in : s td_log ic_vector ( x downto 0 ) ;
signal dataout : s td_log ic_vector ( x downto 0 ) ;
signal wFlag : s td_log i c ;

begin
c on t r o l : RASPControl port map ( c lk , halted , address , datain ,

dataout , wFlag , contro lOut ) ;
memory : RASPmemory port map ( address , datain , dataout ,

wFlag , c lk , memrw) ;
end Behaviora l ;
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C.1.2 All RASP Memory

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .NUMERIC_STD.ALL;
use std . t e x t i o . a l l ;

entity RASPMemory i s
Port ( address : in STD_LOGIC_VECTOR (x downto 0 ) ;

data in : in STD_LOGIC_VECTOR (x downto 0 ) ;
dataout : out STD_LOGIC_VECTOR (x downto 0 ) ;
wFlag : in STD_LOGIC;
c l k : in STD_LOGIC;
memrw : out s td_log i c ) ;

end RASPMemory ;

architecture Behaviora l of RASPMemory i s

type mem i s array (0 to n) of s td_log ic_vector ( x downto 0 ) ;
signal m : mem := ( ". . . " , . . . ) ;

begin
process ( c l k )

begin
i f f a l l i ng_edge ( c l k ) then

i f wFlag = ’1 ’ then
m( to_integer ( unsigned ( address ) ) ) <= data in ;
memrw <= ’ 0 ’ ;

else
dataout <= m( to_integer ( unsigned ( address ) ) ) ;
memrw <= ’ 1 ’ ;

end i f ;
end i f ;

end process ;

end Behaviora l ;
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C.1.3 RASP Control

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .NUMERIC_STD.ALL;

entity RASPControl i s
Port ( c l k : in s td_log i c ;

ha l t ed : out s td_log i c ;
address : out STD_LOGIC_vector( x downto 0 ) ;
data in : out s td_log ic_vector ( x downto 0 ) ;
dataout : in s td_log ic_vector ( x downto 0 ) ;
wFlag : out s td_log i c ;
contro lOut : out s td_log i c ) ;

end RASPControl ;

architecture Behaviora l of RASPControl i s
signal incF lag : s td_log i c := ’ 1 ’ ;
signal cu r r e n t I n s t r : s td_log ic_vector ( x downto 0) := "" ;
signal temp : std_log ic_vector ( x downto 0) := "" ;

begin
p : process ( c l k )

variable counterOuter : unsigned (2 downto 0) := "000" ;
variable counter Inner : unsigned (2 downto 0) := "000" ;
variable add i t i on : unsigned (x downto 0) := "" ;
begin

i f r i s ing_edge ( c l k ) then
controlOut <= ’ 0 ’ ;
case counterOuter i s

when "000" =>
wFlag <= ’ 0 ’ ;
incF lag <= ’ 1 ’ ;
address <= "" ;
counterOuter := counterOuter+1;

when "001" =>
address <= dataout ;
counterOuter := counterOuter+1;
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when "010" =>
address <= "" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
c u r r e n t I n s t r <= dataout ;
counterOuter := counterOuter+1;

when "011" =>
wFlag <= ’ 0 ’ ;
case cu r r e n t I n s t r i s

when "000" => −− HALT
ha l ted <= ’ 1 ’ ;
incF lag <= ’ 0 ’ ;

when "001" => −− INC
case counter Inner i s

when "000" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
wFlag <= ’ 0 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;

when "010" => −− DEC
case counter Inner i s

when "000" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on − 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
wFlag <= ’ 0 ’ ;
ha l t ed <= ’ 0 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;

when others => null ;
end case ;
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when "011" => −− LOAD
case counter Inner i s
when "000" =>

address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
wFlag <= ’ 0 ’ ;
address <= "000" ;
counter Inner := counter Inner +1;

when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "101" =>
address <= "010" ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "110" =>
wFlag <= ’ 0 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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when "100" => −− STO
case counter Inner i s

when "000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
address <= "000" ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "101" =>
temp <= dataout ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "110" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "111" =>
data in <= dataout ;
address <= temp ;
wFlag <= ’ 1 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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when "101" => −− OUT
ha l ted <= ’ 0 ’ ;
contro lOut <= ’ 1 ’ ;
counterOuter := counterOuter +1;

when "110" => −− JGZ
case counter Inner i s

when "000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
address <= "000" ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;
when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "101" =>
temp <= dataout ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "110" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "111" =>
i f ( dataout = "000" ) then

null ;
else

address <= "000" ;
data in <= temp ;
wFlag <= ’ 1 ’ ;
incF lag <= ’ 0 ’ ;

end i f ;
counter Inner := "000" ;
counterOuter := counterOuter + 1 ;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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when "111" => −− CPY
case counter Inner i s

when "000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
address <= "000" ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "101" =>
address <= dataout ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "110" =>
address <= "010" ;
data in <= dataout ;
wFlag <= ’ 1 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter + 1 ;
ha l t ed <= ’ 0 ’ ;

when others =>
hal ted <= ’ 1 ’ ;
incF lag <= ’ 0 ’ ;

end case ;
when others => null ;
end case ;
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when "100" =>
wFlag <= ’ 0 ’ ;
i f incF lag = ’1 ’ then

address <= "000" ;
end i f ;
counterOuter := counterOuter +1;

when "101" =>
i f incF lag = ’1 ’ then

add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;

end i f ;
counterOuter := "000" ;

when others => null ;
end case ;

end i f ;
end process ;

end Behaviora l ;
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C.1.4 RASP2 Control

The control module for the RASP2 is identical to that for the RASP save that
the INC and DEC instructions of the RAPS are replaced by the following ADD
and SUB instructions.

when "001" => −− ADD
case counter Inner i s

when "000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
address <= "000" ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
temp <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;
temp <= dataout ;

when "101" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "110" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + unsigned ( temp ) ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "111" =>
wFlag <= ’ 0 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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when "010" => −− SUB
case counter Inner i s

when "000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "010" =>
address <= "000" ;
wFlag <= ’ 0 ’ ;
counter Inner := counter Inner +1;

when "011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "100" =>
address <= "001" ;
data in <= dataout ;
temp <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;
temp <= dataout ;

when "101" =>
address <= "010" ;
counter Inner := counter Inner +1;

when "110" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on − unsigned ( temp ) ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "111" =>
wFlag <= ’ 0 ’ ;
counter Inner := "000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;

C.1.5 RASP3 Control

The control module for the RASP2 is identical to that for the RASP save that
the INC and DEC instructions of the RAPS are replaced by the following ADD
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and SUB instructions.

when "001" => −− ADD
case counter Inner i s

when "0000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "0001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "0010" =>
wFlag <= ’ 0 ’ ;
address <= "000" ;
counter Inner := counter Inner +1;

when "0011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "0100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "0101" =>
wFlag <= ’ 0 ’ ;
address <= dataout ;
counter Inner := counter Inner +1;

when "0110" =>
temp <= dataout ;
address <= "010" ;
counter Inner := counter Inner +1;

when "0111" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + unsigned ( temp ) ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "1000" =>
wFlag <= ’ 0 ’ ;
counter Inner := "0000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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when "010" => −− SUB
case counter Inner i s

when "0000" =>
address <= "000" ;
counter Inner := counter Inner +1;

when "0001" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on + 1 ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "0010" =>
wFlag <= ’ 0 ’ ;
address <= "000" ;
counter Inner := counter Inner +1;

when "0011" =>
address <= dataout ;
counter Inner := counter Inner +1;

when "0100" =>
address <= "001" ;
data in <= dataout ;
wFlag <= ’1 ’ ;
counter Inner := counter Inner +1;

when "0101" =>
wFlag <= ’ 0 ’ ;
address <= dataout ;
counter Inner := counter Inner +1;

when "0110" =>
temp <= dataout ;
address <= "010" ;
counter Inner := counter Inner +1;

when "0111" =>
add i t i on := unsigned ( dataout ) ;
add i t i on := add i t i on − unsigned ( temp ) ;
data in <= std_log ic_vector ( add i t i on ) ;
wFlag <= ’ 1 ’ ;
counter Inner := counter Inner +1;

when "1000" =>
wFlag <= ’ 0 ’ ;
counter Inner := "0000" ;
counterOuter := counterOuter +1;
ha l t ed <= ’ 0 ’ ;

when others => null ;
end case ;
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C.1.6 RASP Programs

The initial state of a program in the RASP is represented in the memory module.
The line:

signal m : mem := ( ". . . " , . . . ) ;

is filled with the entire contents of the RASP memory, including the initial states
of the PC, IR, and ACC. Each numeral is an n-bit binary number, where n is the
number of bits in the machine.

The programs are converted from the “array form” in Appendix B into bi-
nary and arranged after the register states. As an example, consider the RASP2
addition program from Appendix B.2.1:

3,5,1,8,0

This program converted to the VHDL form is:

signal m : mem := ( "011" , "000" , "000" , "011" , "101" , "001" ,
"000" , "000" ) ;

C.2 TM

As with the RASPs, the TM has the same coordination and memory modules for
each TM. The variable (x) in this case refers to the number of symbols which are
defined for use of on the tape of the machine.
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C.2.1 TM Coordination

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .NUMERIC_STD.ALL;

entity TuringMachine i s
Port ( c l k : in STD_LOGIC;

acc : out STD_LOGIC;
ha l t ed : out s td_log i c ) ;

end TuringMachine ;

architecture Behaviora l of TuringMachine i s

component TMControl i s
port (

c l k : in STD_LOGIC;
symbolOut : in i n t e g e r range 0 to x ;
headPos : out unsigned (0 to 0 ) ;
wFlag : out STD_LOGIC;
symbolIn : out i n t e g e r range 0 to x ;
ha l t ed : out s td_log i c ) ;

end component ;

component TMTape i s
Port (
headPos : in unsigned (0 to 0 ) ;
symbolIn : in i n t e g e r range 0 to x ;
symbolOut : out i n t e g e r range 0 to x ;
wFlag : in s td_log i c ;
acc : out s td_log i c ;
c l k : in s td_log i c ) ;

end component ;

signal symbolIn : i n t e g e r range 0 to x := 0 ;
signal symbolOut : i n t e g e r range 0 to x := 0 ;
signal wFlag : s td_log i c := ’ 0 ’ ;
signal headPos : unsigned (0 to 0 ) ;

begin
c on t r o l : TMControl port map ( c lk , symbolOut , headPos ,

wFlag , symbolIn , ha l t ed ) ;
tape : TMTape port map ( headPos , symbolIn , symbolOut ,

wFlag , acc , c l k ) ;

end Behaviora l ;
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C.2.2 TM Memory

The TM memory is a tape which contains a single symbol. The tape can accept
up to x symbols which are represented as integers.

l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .NUMERIC_STD.ALL;

entity TMTape i s
Port ( headPos : in unsigned (0 to 0 ) ;

symbolIn : in i n t e g e r range 0 to x ;
symbolOut : out i n t e g e r range 0 to x ;
wFlag : in s td_log i c ;
acc : out s td_log i c ;
c l k : in s td_log i c ) ;

end TMTape ;

architecture Behaviora l of TMTape i s
type mem i s array (0 to 1) of i n t e g e r range 0 to x ;
signal tape : mem := ( 0 , 1 ) ;

begin
process ( c l k )

begin
i f f a l l i ng_edge ( c l k ) then

i f wFlag = ’1 ’ then
tape ( to_integer ( headPos ) ) <= symbolIn ;

acc <= ’ 1 ’ ;
else

symbolOut <= tape ( to_integer ( headPos ) ) ;
acc <= ’ 0 ’ ;

end i f ;
end i f ;

end process ;
end Behaviora l ;

C.2.3 TM Control

The TM control houses the semantics of the TM and the symbol table. The
variable x is again the number of symbols required for the machine to function,
and the new variable n is number of bits required to represent the maximum
number of states of the machine. The variable t dictates the number of tuples in
the symbol table.

The symbol table st is what holds the specific symbol table of each TM. In
this example, the symbol table is left unfilled.
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l ibrary IEEE ;
use IEEE .STD_LOGIC_1164 .ALL;
use IEEE .NUMERIC_STD.ALL;

entity TMControl i s
Port ( c l k : in STD_LOGIC;

symbolIn : out i n t e g e r range 0 to x ;
headPos : out unsigned (0 to 0 ) ;
wFlag : out STD_LOGIC;
symbolOut : in i n t e g e r range 0 to x ;
ha l t ed : out s td_log i c ) ;

end TMControl ;

architecture Behaviora l of TMControl i s
type tup l e i s record

stateR : unsigned (n downto 0 ) ;
symbolR : i n t e g e r range 0 to x ;
stateW : unsigned (n downto 0 ) ;
symbolW : i n t e g e r range 0 to x ;
d i r : s td_log i c ;

end record ;

signal cu r r en tS ta t e : unsigned (n downto 0) := "01" ;
signal counter : unsigned (2 downto 0) := "000" ;
signal hPos : unsigned (0 to 0) := "1" ;

type s t i s array (0 to t ) of tup l e ;
constant symbolTable : s t :=(. . . , . . . ) ;
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begin

process ( c l k )
variable found : s td_log i c := ’ 0 ’ ;
variable var : i n t e g e r range 0 to t := 0 ;
begin

i f r i s ing_edge ( c l k ) then
case counter i s

when "000" =>
found := ’ 0 ’ ;
headPos <= hPos ;
counter <= counter + 1 ;

when "001" =>
i f cu r r en tS ta t e = "00" then

ha l ted <= ’ 1 ’ ;
else

ha l ted <= ’ 0 ’ ;
counter <= counter + 1 ;

end i f ;

when "010" =>
for i in symbolTable ’RANGE loop

i f symbolTable ( i ) . stateR = cur r en tS ta t e
and symbolTable ( i ) . symbolR = symbolOut then

found := ’ 1 ’ ;
var := i ;
exit ;

end i f ;
end loop ;
counter <= counter +1;

when "011" =>
i f found = ’1 ’ then

headPos <= hPos ;
wFlag <= ’ 1 ’ ;
symbolIn <= symbolTable ( var ) . symbolW ;
cur r en tS ta t e <= symbolTable ( var ) . stateW ;
counter <= counter +1;

else
counter <= "001" ;
cu r r en tS ta t e <= "00" ;

end i f ;

353



Appendix C. VHDL Code

when "100" =>
wFlag <= ’ 0 ’ ;
i f ( symbolTable ( var ) . d i r = ’1 ’ ) then

hPos <= hPos + 1 ;
else

hPos <= hPos − 1 ;
end i f ;
counter <= "000" ;

when others =>
end case ;

end i f ;
end process ;

end Behaviora l ;

C.2.4 TM Programs

Programs in the TM are specified in the control module as ROM. The line:

constant symbolTable : s t :=(. . . , . . . ) ;

in the control module specifies the symbol table in the “tuple” record which is
defined just above this line.

The format of the symbol table itself follows the previous conventions of the
thesis laid out in Sections 2.3.1.1 and 3.4.1. There is a straightforward encoding
of the TM tuples into the VHDL form. Consider the addition TM in Appendix
B.4.1:

1,1,2,0,R
2,1,2,1,R
2,0,0,1,L

This TM is converted to the following VHDL form:

constant symbolTable : s t := (
( "01" ,1 , "10" , 0 , ’ 1 ’ ) ,
( "10" ,0 , "00" , 1 , ’ 0 ’ ) ,
( "10" ,1 , "10" , 1 , ’ 1 ’ ) ) ;

Each symbol is an integer from 0 to x. The states are converted into binary
notation with n bits, where n is the number of bits required to represent the
largest state of the TM. Appendix B shows the full tuples for the TM which are
converted using the above method and mapped to an FPGA circuit to produce
the measurements of this thesis.
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Full Semantics

This appendix lists the Reverse Polish Notation [59] expressions of the semantics
of the computational models which are featured in this thesis (Section 3.3). These
expressions are measured and their sizes shows in Table 4.2 et al. and are analysed
in Chapter 6.

The notation used here is obtuse. When reading this Appendix, it is recom-
mended that the reader concurrently follow the appropriate sub-section in Section
3.4. Each RPN rule shown here corresponds to a semantic rule expressed in infix
notation in Section 3.4.

D.1 RASPs

D.1.1 RASP Model

S ,Y,T, J :NN 7→
X,F,L :N
G: { 0 . . 2 n^1−}
IG⊂
#:SN 7→
A:SX×SX× 7→
P:G{, }∪∗N×S 7→
E:SX×SX× 7→
SZ : 0 S1+S#%
J{03 7→, 10 7→, 20 7→}=
F∅=
e , k :G{, }∪∗
〈S ,X〉Je2P∪FE=

eg , k =⇒
gG∈
enP{ne 7→}kn1+P∪=

enP∅ =⇒

0SSI∈
0YSZ=
1Y0SS=
〈T,L〉YXA=
SXETLE =⇒

0SSI /∈
1Y0SS=
SXE〈Y,X〉 =⇒
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D.1.2 RASP Language

1S1=
2Y2S1+S#%=
SXA〈Y,X〉 =⇒

1S2=
Y2S1−S#%=
SXA〈Y,X〉 =⇒

1S3=
1Y2Y0SS==
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS=
1Y1>
0SSY2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS0==
0Y2S=
1T0=
0TYZ=
SXA〈T,X〉 =⇒

1S4=
0SS1=
1Y2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y=0SS
2S0=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y0Y0SS==
2S0>
SXA〈Y,X〉 =⇒

1S6=
FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=
1Y0SS=
2Y1YS=
0YSZ=
SXA〈Y,X〉 =⇒
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D.1.3 RASP2 Language

1S1=
1Y0SS=
2Y2S1Y+S#%=
0YSP=
SXA〈Y,X〉 =⇒

1S2=
1Y0SS=
2Y2S1Y−S#%=
0YSP=
SXA〈Y,X〉 =⇒

1S3=
1Y2Y0SS==
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS=
1Y1>
0SSY2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS0==
0Y2S=
1T0=
0TYZ=
SXA〈T,X〉 =⇒

1S4=
0SS1=
1Y2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y=0SS
2S0=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y0Y0SS==
2S0>
SXA〈Y,X〉 =⇒

1S6=
FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=
1Y0SS=
2Y1YS=
0YSZ=
SXA〈Y,X〉 =⇒
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D.1.4 RASP3 Language

S1=
1Y0SS=
2Y2S1YS+S#%=
0YSP=
SXA〈Y,X〉 =⇒

1S2=
1Y0SS=
2Y2S1YS−S#%=
0YSP=
SXA〈Y,X〉 =⇒

1S3=
1Y2Y0SS==
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS=
1Y1>
0SSY2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S4=
1Y0SS0==
0Y2S=
1T0=
0TYZ=
SXA〈T,X〉 =⇒

1S4=
0SS1=
1Y2S=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y=0SS
2S0=
0YSZ=
SXA〈Y,X〉 =⇒

1S5=
1Y0Y0SS==
2S0>
SXA〈Y,X〉 =⇒

1S6=
FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=
1Y0SS=
2Y1YS=
0YSZ=
SXA〈Y,X〉 =⇒
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D.2 TM

s , r :Q
y :Γ
h :Z
d : {L ,R}
T, J ,X:ZΓ 7→
δ :QΓ×QΓ×d× 7→
P: eδ 7→
U, I : Zf×T7→
e , a :ΓQ∪d∪{ ,}∪∗
f , k ,m:Γ∗{^}∪
E:Q(ZΓ 7→)×Z×(ZΓ 7→) 7→
δeP=
J1fU0E=

es , y , r , v , d a =⇒
eP{〈s , y\ rang l e 〈r , v , d\ rang l e 7→}aP∪ =⇒

eP∅ =⇒

fk^gm =⇒
gΓ ∈
f0Uk−1I {0g 7→}∪m1U∪=

fgm =⇒
gΓ ∈
fnU{ng 7→}mn1+U∪ =⇒

fnU∅ =⇒

f n I∅ =⇒

fmg =⇒
gΓ ∈
f n I {ng 7→}mn1−U∪=

shTδ〈r , hX,L〉=
sThEfXh1−E =⇒

shTδ〈r , hX,R〉=
sThErXh1+E =⇒

shTδ〈r , hX, d〉 6=
sThET =⇒
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D.3 λ-Calculus

F,T, J ,R,G,L={z ,L ,R}
e , f , g∈({λ ,{ a . . z } ∗ , ( , ) , . , ,}V∪)∗
v ,mV∈
V:{ a . . z }∗
z=B|A| v
P: eT 7→
E:TT7→
B:TV7→
Z :TV×V×T7→
S :TT×v×T7→
JeP=
FJE=

e =⇒ λv . f
eP{B, vP , fP} =⇒

e =⇒ f v
eP{A, fP , vP} =⇒

e =⇒ f ( g )
eP{A, fP , gP} =⇒

e =⇒ v
eP{v , ∅ ,∅} =⇒

e =⇒ ( f )
ePfP =⇒

T. zA=
T.L . zB=
T.R. zT .LB/∈
TET.L .RT.RT.L .L . zS =⇒ ; JE

T. zA=
T.L . zB=
HT.L .RB=
T.R. zH∈
mH/∈
TET.L .RmT.R. zZT .RT.L .L . zS =⇒ ; JE

TE{T. z ,T.LE,T.RE} =⇒

T∅=
TE∅ =⇒

TGjS{T. z ,T. LGjS ,T. LGjS} =⇒

T. z j=
TGjSG =⇒

T∅=
TGjS∅ =⇒

T. zB=
T.L . z j=
TGjST =⇒

T. zB=
TB{T.L . z}T.RB∪ =⇒

T. zA=
TB=⇒ T.LBT.RB∪

TB∅ =⇒

T. zv=
TmkZ{m, ∅ ,∅} =⇒

T∅=
TmkZ∅ =⇒
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e , f , g : ( Z{ ( , ) }∪{A}/)∗
E:TT7→
P: eT 7→
F,T,L ,R, J : { z , L ,R}
z∈Z
Z :{ S ,K, I ,A}
JeP=
FJR=

e =⇒ ( f )
ePfP =⇒

e =⇒ f ( g )
eP{A, fP , gP} =⇒

e =⇒ f z
eP{A, fP , zP} =⇒

e =⇒ z
eP{z , ∅ ,∅} =⇒

T. zA=
TE{A,LE,RE} =⇒

T. zA=
T.L . z I=
TE =⇒ T.R; JE

T. zA=
T.L .L . zK=
TE =⇒ T.L .R; JE

T. zA=
T.L .L .L . zS=
hT.R=
TE =⇒ {A,{A,T.L .L .R, h} ,{A,T.L .R, h }} ;JE

T∅=
TET=⇒
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