
Worst-Case Execution Time Analysis through Types

Steffen Jost∗, Hans-Wolfgang Loidl†, Norman Scaife‡, Kevin Hammond∗, Greg Michaelson‡ and Martin Hofmann†
∗ St Andrews University, St Andrews, UK. Email: {jost,kh}@cs.st-andrews.ac.uk

† Ludwig-Maximilians University, Munich, Germany. Email: {hwloidl,mhofmann}@tcs.ifi.lmu.de
‡ Heriot-Watt University, Edinburgh, Scotland. Email: G.Michaelson@hw.ac.uk

Abstract—We construct a fully automatic static WCET
analysis suitable for real-time embedded systems applica-
tions by combining a high-level static heap-space analysis
technique with a machine-level worst-case execution time
tool. We evaluate this approach by studying two typical
and realistic real-time control applications, using a readily
available commercial microcontroller.

Keywords-WCET; analysis; static; type system;

I. INTRODUCTION

Information about worst-case execution time (WCET)
is critically important for many real-time systems. For
example, we may require guarantees that a control loop
is always fast enough to respond to its inputs. While
testing a program might give some insight in its execution
time behaviour, it cannot provide a guaranteed bound on
execution time under all possible circumstances.

In this paper we present a source-level static analysis
that determines a guaranteed upper bound on WCET,
without running or altering the program. Determining
the WCET of a particular source construct is difficult,
since it may vary significantly depending on the overall
machine state. For example, the WCET of a conditional
expression depends on the branch that is taken. It is,
however, generally infeasible to exhaustively examine all
possible machine states at a given point within a program.
Even worse, the WCET of a construct such as a function
call can, in some cases, be arbitrarily large.

The only solution to this problem is to abstract all
possible states into a smaller, more manageable classes of
equivalent states, thereby trading precision for feasibility.
If we manage to ensure that this loss of precision only hap-
pens in a safe way, e.g. by occasionally over-estimating,
but never under-estimating costs, we can then establish a
safe upper bound on the WCET. The approach that we take
is especially radical, since we abstract the entire state and
represent it by a single, non-negative rational number, the
“potential” of the machine state. Note that we will never
actually compute this number for any actual machine state
other than the initial state. Instead, we examine the effect
of each operation on the overall potential and define the
amortised cost of an instruction I as a suitable constant
such that

amortised costI ≥
actual costI − potential beforeI + potential afterI

holds for all possible states (equality is preferred). The
benefit is that the amortised cost is constant and does not

depend on the machine state. The actual cost of an entire
sequence of instructions is then bounded by the sum of
the amortised costs plus the potential of the initial state.

In complexity theory this is termed “Amortised Anal-
ysis” [1]. A significant challenge of this technique is
designing the abstraction of the machine state. Hofmann
& Jost [2], [3] solved this problem for heap-space con-
sumption, and produced an automatic inference, at the
expense of restricting the potential to depend linearly
on the structure of objects within a machine’s memory.
In this paper, we extend this technique to cover WCET
analysis, covering two simple real-time control examples.
An interesting improvement in the way we apply the amor-
tised analysis technique is that the potential contributed
by each memory object is assigned on a per-reference
basis. Rather than counting references, we simply consider
the point where aliasing is introduced. This allows us
to assign differing potential to states which have many
memory objects in common, but which differ slightly.
The assignment of potential on a per-reference basis is
a major improvement over previous work, such as that by
Okasaki [4].

II. TOWARDS AN AUTOMATIC STATIC WCET ANALYSIS

We have adapted our previous amortised analysis for
space usage to produce an automatic WCET analysis. We
first construct a standard typing derivation, that assigns
simple types to each source expression/function definition.
Next, we define the amount of potential credited by each
data object by annotating the type of each object with
variables ranging over the non-negative rational numbers.
We then generate a set of constraints over those variables,
according to the dataflow and the actual cost occurring in
each possible path of computation. This constraint set is
then solved by a standard linear programming (LP-)solver,
yielding concrete values for the type annotations. The
annotated types then yield a linear closed-form expression
depending on the input sizes, which represents an upper
bound on the WCET. Since we have used a formal type-
based approach, we could formally prove that the result of
our analysis is guaranteed upper bound on WCET.

It is important to note this potential can be easily
computed for large classes of the input data at once, since
it amounts to calculating a linear closed-form expression
over sizes. Hence it unnecessary to exhaustively consider
all concrete inputs. For example, the analysis might tell



us that the WCET of a program depends only on the size
of a specific input data structure, regardless of its content,
and ignoring other inputs.

This analysis scales very well for two reasons. Firstly,
it is syntax-driven: each instruction of the source program
is examined precisely once. Loops in the source program
are dealt with by identifying some variables contained
in the constraint set. Secondly, the generated constraint
sets are well-behaved and can easily be solved using
a standard linear-programming (LP-)solver (we use lp-
solve – http://lpsolve.sourceforge.net/5.5). Our constraint
sets are several orders of magnitude below the size of
problems that a standard LP-solver can be expected to
handle nowadays.

Hume: While our static analysis approach is, of
course, generally applicable, we need to concretise our
approach in terms of some suitable language framework.
We have therefore produced an implementation of our
analysis for our experimental Hume language [5]. Hume
fits our requirements for a testbed language well, since it
has been designed to achieve principled and predictable
functionality and behaviour, allowing us to focus on issues
of cost modelling and analysis. Hume is a contemporary
domain-specific programming language for real-time em-
bedded systems targeting applications that require strong
guarantees on resource bounds. The Hume design achieves
this by separating an impoverished coordination layer,
based on concurrent finite-state automata, from a rich
control layer, based on a polymorphic functional language.
The Hume programming model is based on the deploy-
ment of different Hume levels with different expressive
properties. As discussed above, by augmenting a standard
static type system with amortisation, it is possible to stat-
ically analyse the time and space requirements of Hume
programs to different degrees of precision depending on
the expressiveness of the Hume language level.

Experimental Setup: We use a simple Renesas
M32C/85U microcontroller test board with an on-board
USB interface. The system is programmed through an
FoUSB debugger module which controls the board via the
Flash programming socket. Several on-board switches are
wired to the interrupt inputs and eight LEDs are connected
to one of the generalised IO ports. The Hume compiler
generates ANSI-compliant C code which is then compiled
into machine code for the board using Renesas’ M32C/80
C compiler (http://www.renesas.com, product ref. M3T-
NC308WA). We obtain our basic instruction-level
WCET information using AbsInt’s aiT tool (http://www.
absint.com). aiT uses abstract interpretation to provide a
guaranteed, and tight, upper bound on actual run-times
for C/machine-code fragments with known data inputs.
Where relevant, it includes precise models of cache [6]
and pipeline behaviours [7].

We exploit this low-level information for specific data
inputs to give a high-level amortised analysis covering
arbitrary inputs. As part of the compilation process, the
Hume compiler produces an intermediate bytecode form.
By applying aiT to the C code for each bytecode, we

can obtain the corresponding WCET on the Renesas
M32C/85U (or other processors). The amortised analysis
technique is then applied to each Hume language con-
struct, using WCET information for each bytecode block
as its basic cost metric. The benefit of this approach is
that the high-level analysis, using amortisation to track a
highly abstracted state, can then relate WCET to source-
level datatypes and language constructs, thereby dealing
with complex programs and system states, including loops,
conditionals and other information.

III. EXPERIMENTS

A. PID Controller

Our first example is a simple 2-degree-of-freedom PID
controller for controlling a classic “ball and beam” ex-
periment, as shown in Figure 1. The experiment itself
was simulated using the open-source dynamics engine
“OpenODE” (http://www.ode.org) with a minimal envi-
ronment based on openGL. This simulation is a fully-
featured physical simulation of a ball and beam with
actuator control and direct measurement of the beam angle
and ball position.

Pk = Kp ∗ (ek − ek−1)
Ik = Ki ∗ T ∗ ek

Dk = (Kd/T ) ∗ (ek − 2 ∗ ek−1 + ek−2)
CVk = CVk−1 + Pk + Ik +Dk

ek = SPk − PVk

Figure 1. Equations for a 2 degree-of-freedom PID controller with
rectangular integration

Our Hume code (Figure 2) is a direct implementation
of the recursive equations for a 2-DOF controller with
rectangular integration, see Figure 1, with two additional
actions for initialisation and resetting if the ball comes off
the beam. The main control loop performs the integration
using previous instances of loop variables to implement
unit delays.

match
(c,(false,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,onbeam)) ->
((’x’,vCVk1),*,(true,0.0,0.0,c))
|(c,(true,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,0)) ->
((’2’,vCVk1),(vSPk,vCVk1,vPVk,phi,0,c),(true,0.0,0.0,c))
|(c,(true,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,1)) ->
let vT = c -. lc in
let ek = vPVk -. vSPk in
let vPk = vKp *. (ek -. ek1) in
let vIk = vKi *. vT *. ek in
let vDk = ((vKd/.vT) *. (ek -. 2.0*.ek1 +. ek2)) in
let vCVk = vCVk1 +. limitPID(vPk +. vIk +. vDk) in
((’x’,vCVk),(vSPk,vCVk1,vPVk,phi,1,vT),(true,ek,ek1,c))

Figure 2. Hume code for the 2-DOF PID controller

We have measured the runtime of this code on the Renesas
M32C/85U micro-controller board for one thousand iter-
ations. We found the runtime for the controlling loop to
be within 27473 and 28406 clock cycles, with the average
being 27742 clock cycles.

http://lpsolve.sourceforge.net/5.5
http://www.renesas.com
http://www.absint.com
http://www.absint.com
http://www.ode.org


Our WCET analysis generates 459 constraints over 793
variables for this program. This is easily solved by any
standard LP-solver, which can usually handle problems
described by several hundred thousand constraints. The
analysis gives an upper bound for the WCET of 36682
clock cycles. This is 29.1% above the worst runtime that
we measured (this is, of course, not necessarily the actual
WCET, since we may not have covered the actual worst
case in our testing).

An interesting detail in the analysis’ result is that we ob-
tain an arbitrarily large weight for the value False in the
first element of the third tuple of the result. An arbitrary
potential occuring in the output of a program indicates
that this case cannot occur at all, since it would allow us
to justify an impossible WCET of zero. Examination of
the code confirms this, since all three branches have the
constant True at this position, so the value False cannot
indeed occur. This init-flag is only used to signal the start
(or resetting) of the PID controller, causing it to initialise
itself. It follows that it is always set to True, once the
controller has completed its first loop, and our analysis
can detect this. It thus goes beyond what is possible for a
typical basic WCET analysis.

B. Inverted Pendulum Example

Our next example is an inverted pendulum controller.
This implements a simple, real-time control engineering
problem. A pendulum is hinged upright at the end of a
rotating arm. Both rotary joints are equipped with angular
sensors, which are the inputs for the controller (arm angle
θ and pendulum angle α). The controller should produce
as its output the electric potential for the motor that rotates
the arm in such a way that the pendulum remains in an
upright position.

For this example we used real hardware, rather than
the simulation approach we used for the previous ex-
ample. The sensor outputs and the input to the motor
may range in voltage between -10V and +10V. Since the
Renesas M32C/85U only accepts voltages between 0V and
5V, three simple operational amplifier (op-amp) voltage-
scaling circuits were used to interface the pendulum to the
development board.

For control, we generate a state-space representation of
the system:

Ẋ = AcX + Bcνm

y = CcX

by starting from the Lagrangian dynamics of the sys-
tem followed by linearisation. The state vector is
X = (θ, α, θ̇, α̇)T and the state matrix (Ac) and
input/output (Bc/Cc) matrices can be computed from the
known physical properties of the system such as the
length and weight of the arm and constants which relate
motor current to torque (νm is the voltage applied to the
motor). The form of these continuous-time matrices is not
interesting but we can enter them into Matlab or Octave
and use the c2d function to discretise the representation

for a predefined sample rate using standard techniques.
Given suitable covariance matrices (experimental values)
we can compute the optimal feedback gain K using the
function dlqr from Matlab or Octave’s control toolbox.

In order to implement the control loop. we choose the
simple option of setting θ̇ and α̇ to zero and using optimal
gain without any estimates of the angular velocities. Note
that we actually use as output matrix Cc = (0, 1, 0, 0)
so we are only controlling α, not θ. This means that
our implementation is prone to arm drifting despite the
pendulum being controlled in the vertical position.

The Hume code comprises about 180 lines of code,
which are translated into about eight hundred lines of
intermediate code to be analysed. The automated analy-
sis generates 1115 linear constraints over 2214 different
variables. The overall runtime of the analysis itself was
less than second (∼0.67s) on a standard laptop (1.73Ghz
Intel Pentium M processor with 2MB cache and 1GB of
memory). This includes the time for solving the generated
linear programming problem (∼0.26s).

We have measured the best-case (36118), worst-case
(47635). and average number of clock cycles (42222)
required to process the controlling loop over 6000 itera-
tions during an actual run, where the Renesas M32C/85U
actually controlled the inverted pendulum. Compared to
the WCET bound given by our automated analysis (63678)
we have a margin of 33.7% between the predicted WCET
and the worst measured run. The pendulum controller can
only be made stable with a sample rate of less than about
10ms. The measured loop time is 1.488ms, while our
predicted loop time would be 1.989ms, showing that our
controller is guaranteed to be fast enough to successfully
control the pendulum under all circumstances.

We note that the analysis performed poorly on the
branches dealing with starting and stopping the exper-
iment, for example the setup calibration using button
presses. This happens because our prototype implemen-
tation of the analysis over-estimates the time required
for processing matches on multiple patterns by applying
an overly-pessimistic (but safe) assumption about match
failure (essentially we ignore that some patterns may
be irrefutable). Small computational branches that are
dominated by the initial large pattern match thus produce
a fairly high over-estimation of the WCET. The worst
of these branches had a measured maximum runtime of
2669 clock cycles, where our analysis guaranteed a WCET
of 7702 clock cycles. However, manually rearranging the
order of the pattern matches could reduce the guaranteed
WCET down to a very reasonable 2711 clock cycles for
that branch.

IV. RELATED WORK

Our WCET analysis builds on previous work by Hof-
mann and Jost for a functional programming language [2]
and a comprehensive subset of Java [3]. This work has
been extended to stack-space analysis [8]. However, none
of these approaches deals with worst-case execution time.



A system that combines a type-based approach with
the automatic generation of checkable certificates for time
bounded computation is described in [9], but this lacks
any inference of the bounds.

Other functional notations with ad-hoc techniques for
analysing resource consumption are GeHB and RT-
FRP [10], with a two-level staged notation that also builds
on the technique used by Hofmann and Jost.

Another important type-based approach to infer size
bounds is that of sized types [11]. Several analyses on heap
or stack space usage build on this concept (e.g. [12], [13],
[14], [15]), but again none considers worst-case execution
time. Vasconcelos’ PhD thesis does claim, however, that
WCET should be within reach of these methods.

Finally, a variety of academic and commercial tools
exist for calculating guaranteed bounds on worst-case
execution time (WCET) [16], including aiT[17], bound-
T[18], SWEET[19]. However, all the tools of which we
are aware suffer from the same restrictions as the aiT tool,
namely intensive manual guidance by the programmer, and
restriction to specific input values.

V. CONCLUSION

In summary, our results clearly show that our amortised
analysis technique is capable of inferring good bounds for
real-time applications. The bounds obtained by our proto-
type implementation for realistic embedded systems con-
trol applications, such as the ball-and-beam and inverted
pendulum controllers, show a general over-prediction by
about one-third over the maximum runtimes that we have
observed for a range of data inputs. We deem this to
be an acceptable margin for automatically-generated and
formally-guaranteed WCET bounds.

REFERENCES

[1] R. E. Tarjan, “Amortized computational complexity,” SIAM
Journal on Algebraic and Discrete Methods, vol. 6, no. 2,
pp. 306–318, April 1985.

[2] M. Hofmann and S. Jost, “Static Prediction of Heap Space
Usage for First-Order Functional Programs,” in Proc. POPL
2003: ACM Symp. on Principles of Programming Lan-
guages. ACM, 2003, pp. 185–197.

[3] ——, “Type-based amortised heap-space analysis (for an
object-oriented language),” in Proc. ESOP 2006: European
Symp. on Programming, P. Sestoft, Ed. Springer LNCS
3924, 2006, pp. 22–37.

[4] C. Okasaki, Purely Functional Data Structures. Cam-
bridge University Press, 1998.

[5] K. Hammond and G. Michaelson, “Hume: a Domain-
Specific Language for Real-Time Embedded Systems,” in
Proc. GPCE 2003: Intl. Conf. on Generative Prog. and
Component Eng., Erfurt, Germany. Springer-Verlag LNCS
2830, Sep. 2003, pp. 37–56.

[6] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt, “Cache
behavior prediction by abstract interpretation,” Science of
Computer Programming, vol. 35, no. 2, pp. 163–189, 1999.

[7] M. Langenbach, S. Thesing, and R. Heckmann, “Pipeline
modeling for timing analysis,” in SAS, ser. Lecture Notes
in Computer Science, vol. 2477. Springer-Verlag, 2002,
pp. 294–309.

[8] B. Campbell, “Stack Usage Analysis,” Ph.D. dissertation,
Edinburgh University, 2008.

[9] K. Crary and S. Weirich, “Resource Bound Certification,”
in Proc. ACM Symp. on Principles of Prog. Langs., 2000,
pp. 184–198.

[10] Z. Wan, W. Taha, and P. Hudak, “Real-time FRP,” in Intl.
Conf. on Functional Programming (ICFP ’01). ACM, Sep.
2001.

[11] R. Hughes, L. Pareto, and A. Sabry, “Proving the Correct-
ness of Reactive Systems Using Sized Types,” in Proc.
POPL ’96: ACM Symp. on Principles of Programming
Languages. St. Petersburg Beach, Florida: ACM, January
1996.

[12] R. Pena and C. Segura, “A First-Order Functl. Lang. for
Reasoning about Heap Consumption,” in Draft Proc. Intl.
Workshop on Impl. and Appl. of Functl. Langs. (IFL ’04),
2004, pp. 64–80.

[13] W.-N. Chin and S.-C. Khoo, “Calculating Sized Types,”
Higher-Order and Symbolic Computing, vol. 14, no. 2,3,
pp. 261–300, 2001.

[14] P. Vasconcelos and K. Hammond, “Inferring Costs for
Recursive, Polymorphic and Higher-Order Functional Pro-
grams,” in Proc. IFL ’03: International Workshop on Im-
plementation of Functional Languages. Springer-Verlag
LNCS, 2004, pp. 86–101.

[15] B. Grobauer, “Cost recurrences for DML programs,” in
Proc. ICFP ’01: Sixth ACM SIGPLAN International Con-
ference on Functional Programming. New York, NY,
USA: ACM Press, 2001, pp. 253–264.

[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström, “The Determination of Worst-Case Execution
Times—Overview of the Methods and Survey of Tools,”
2008, Accepted for TECS.

[17] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm,
“Reliable and precise WCET determination for a real-life
processor,” in EMSOFT. Springer-Verlag LNCS 2211,
2001, pp. 469–485.

[18] N. Holsti and S. Saarinen, “Status of the Bound-T WCET
tool,” in Proc. WCET ’02: Int’l Workshop on Worst-Case
Execution Time Analysis, June 19-21 2002.

[19] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and
S. Wiegratz, “Static WCET Analysis of Real-Time Task-
Oriented Code in Vehicle Control Systems,” in Proc.
ISOLA ’06: Int’l Symp. on Leveraging Applications of
Formal Methods, Paphos, Cyprus, November 2006.


	I Introduction
	II Towards an automatic static WCET analysis
	III Experiments
	III-A PID Controller
	III-B Inverted Pendulum Example

	IV Related work
	V Conclusion
	References

