
Chapter 1

Translating Hume to Java
Chunxu Liu1, and Greg Michaelson2

Abstract Progress towards the compilation of Hume to Java is presented.

1.1 INTRODUCTION

Hume[MHJ04] is a formally motivated language intended for application domains
with strong bounds on resource consumption and response. A Hume program
consists of concurrent boxes connected by wires between their inputs and outputs.
Boxes, which never terminate, repeatedly apply patterns to match inputs and gen-
erate outputs. Boxes are defined in the Hume coordination language. Output
generation is expressed in a functional style in the strict Hume expression lan-
guage. Both coordination and expression languages share a common type system
and may employ auxiliary data and function definitions.

Hume has been designed as a layered language where the types permitted on
wires and the expressiveness of output generation determine the layer’s decid-
ability properties. Full Hume, has rich polymorphic types and general recursion.
PR-Hume restricts expressions to primitive recursion (i.e. bounded minimisa-
tion). HO-Hume only has higher-order functions for repetition. FSM-Hume has
finite types (fixed size integers, floats; fixed length vectors) and no recursion.
HW-Hume has only bits and tuples.

We are exploring the translation of Hume into the contemporary object ori-
ented language Java. While Java has many design and implementation infelicities,
it has a number of pragmatic attractions as a target language. First of all, core Java
has very wide cross platform and cross system support through the implementa-
tion independent Java Virtual Machine (JVM). Thus, core Java enjoys a very high
degree of portability. Secondly, there are very substantial class libraries for Java.
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In principle, compilation to Java should ease exploitation of such libraries from
Hume.

The following sections present our current progress. Following an overview
of Hume and the introduction of an illustrative Hume example, we discuss the
representation of Hume types, expressions and boxes in Java. We then briefly
survey the status of our Hume to Java compiler, and consider related and future
work.

1.2 HUME LANGUAGE OVERVIEW

Hume provides the following core types:

� fixed precision characters, integers, reals and words, and booleans;

� fixed width tuples of mixed type;

� fixed width vectors of single type;

� variable length lists of single type;

� user defined constructed types.

with associated operators.
Hume also provides the following expression constructs:

� arithmetic and boolean expressions;

� conditional expressions;

� case expression with pattern matching;

� local definitions;

� recursive functions defined by case;

� exceptions;

� timeouts.

Hume boxes specify:

� box name;

� names and types of inputs and outputs;

� input match patterns with associated outputs expressions;

� exception handling;

� timeout handling.

Finally, Hume wires specify:

� connections between boxes;
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� connections from boxes to input/outputs streams and ports;

� initial values for wires;

The macro notation enables the compile-time generalisation and repeated in-
stantiation of boxes and wiring.

1.3 EXAMPLE: FULL ADDER

We will present our approach to translating Hume to Java through the example of
a single bit full adder shown in Figure 1.1.

Note that the half adder is actually written in HW-Hume, the Hume layers
oriented to hardware modelling. In HW-Hume, types, patterns and values are
restricted to possibly nested tuples of bits. However, this example is adequate for
explaining the central features of our translation approach.

The full adder is composed of two virtual half adders, which are each formed
from a fanout box:

type Bit = word 1;

template fanout
in (x,y::Bit)
out (x1,y1,x2,y2::Bit)
match
(x,y) -> (x,y,x,y);

an xor box:

template xor
in (x,y::Bit)
out (z::Bit)
match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

and an and box:

template and
in (x,y::Bit)
out (z::Bit)
match
(0,0) -> 0 |
(0,1) -> 0 |
(1,0) -> 0 |
(1,1) -> 1;

As two copies of each are required, they are defined as templates for replication:
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instantiate fanout as f*2;
instantiate xor as x*2;
instantiate and as a*2;

To test the adder, the box gen successively generates all possible three bit binary
combinations on its outputs c, x and y:

type Next = (Bit,Bit,Bit);

box gen
in (t::Next)
out (t’::Next,x,y,c::Bit)
match
(0,0,0) -> ((0,0,1),0,0,0) |
(0,0,1) -> ((0,1,0),0,1,0) |
(0,1,0) -> ((0,1,1),1,0,0) |
(0,1,1) -> ((1,0,0),1,1,0) |
(1,0,0) -> ((1,0,1),0,0,1) |
(1,0,1) -> ((1,1,0),0,1,1) |
(1,1,0) -> ((1,1,1),1,0,1) |
(1,1,1) -> ((0,0,0),1,1,1);

Note that feedback between t and t’ is used to control the box’s state.
First of all, gen’s x and y outputs are fed to a virtual half adder. The fanout

box f1 duplicates its inputs as x1/y1 and x2/y2s. x1/y1 are x-ored by box
x1 to give the sum and and-ed by box a1 to give the carry. The sum from x1’s
output is wired with the carry from gen to another virtual half adder. The second
fanout box f2 duplicates these values. One pair are x-ored by box x2 to give the
final sum. The other pair are and-ed by box a2, and the result is or-ed with the
carry from a1 by box o to give the final carry:

box or
in (x,y::Bit)
out (z::Bit)
match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

The final sum and carry are then fed to box show which is wired to the stream
output which is associated with standard output:

box show
in (s,c::Bit)
out (sc::(Bit,Bit,char))
match
(s,c) -> (s,c,’\n’);
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stream output to "std_out";

The adder’s components are wired together by position:

wire gen (gen.t’ initially (0,0,0)) (gen.t,f1.x,f1.y,f2.x);
wire f1 (gen.x,gen.y) (x1.x,x1.y,a1.x,a1.y);
wire x1(f1.x1,f1.y1)(f2.y);
wire a1 (f1.x2,f1.y2)(or.x);
wire f2 (gen.c,x1.z) (x2.x,x2.y,a2.x,a2.y);
wire x2(f2.x1,f2.y1)(show.s);
wire a2 (f2.x2,f2.y2)(or.y);
wire or (a1.z,a2.z) (show.c);
wire show (x2.z,or.z) (output);

Note that gen’s t input is initialised to (0,0,0).

1.4 TRANSLATING HUME TO JAVA

1.4.1 Hume Types in Java

All Hume types in Java are sub-classes of the root HT class. Thus, all types effec-
tively have boxed representations. Base Hume types are represented by common
classes with values from the corresponding base Java types. Hume tuples are rep-
resented by type-specific classes with fields of HT for the elements. Similarly, a
Hume vector is represented by a type-specific class with an array of HT. Hume
constructed types are represented by type-specific classes which are sub-typed for
the constructor values. Every class has methods to return required fields and to
convert an instance to a string, as well as a constructor method.

For example, in the adder, we represent type Bit = word 1; by:

public final class HTBit extends HT
{ private boolean contents;
public HTBit(boolean contents) {...}
public String toString() {...}
public boolean getContents() {...}

}

and type Next = (Bit,Bit,Bit) by:

public class HTTupleNext extends HT
{ private HT contents1;
private HT contents2;
private HT contents3;
public HTTupleNext(HT contents1, HT contents2, HT contents3){...}
public String toString() {...}
public HT getContents1() {...}
public HT getContents2() {...}
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public HT getContents3() {...}
}

Constants are instances of the corresponding classes, for example:

public abstract class Constant
{ public static HTBit BIT0 = new HTBit(false);

public static HTBit BIT1 = new HTBit(true);
public static HTTupleNext BIT000 = new HTTupleNext(BIT0,BIT0,BIT0);
public static HTTupleNext BIT001 = new HTTupleNext(BIT0,BIT0,BIT1);
...

}

Note that Constant is declared as abstract: it is a global class that is never
instantiated.

1.4.2 Hume Expression Language in Java

Every class for a Hume base type has methods corresponding to the associated
type operations. Simple and conditional expression translation follows the obvi-
ous naive correspondence with the equivalent Java constructs. Case expressions
with pattern matches are translated into the equivalent nested branching Java con-
ditional constructs. However, no Java variables are created for local variables
introduced by patterns: such local variables are aliases for the associated values
which are manipulated directly through appropriate fields of the equivalent Java
HT values.

The adder example only contains trivial expressions so we illustrate expres-
sion translation with the insert function from the Hume ‘people sort’ example,
designed to expose a large number of language features in a small program for
development purposes:

type Record = (vector 1 .. 3 of char, int 64);

insert n [] = [n];
insert n (h: t) = if n<h

then n:h:t
else h:insert n t;

Note that comparison is overloaded in Hume so if (h:t) is a list of Record
then � will perform element wise comparison on the Records n and h.

Given appropriate classes a Record and list of Record, insert translates
to:

public static HT insert(HTTupleRecord n, HTTupleRecordList l)
{ HTTupleRecordList list;

if (l.equals(Constant.HTTupleRecordListNULL))
list = new HTTupleRecordList(n, l);

else
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if (n.compareTo(l.getHead()) < 0)
list = new HTTupleRecordList(n, l);

else
{ list = l;

list.setTail((HTTupleRecordList) insert(n, l.getTail()));
}
return list;

}

1.4.3 Hume Coordination Language in Java

The Hume execution model is based on non-terminating, round-robin, one-shot
scheduling of boxes. Execution proceeds in a series of cycles as follows:

for each box
state � RUNNABLE

forever
for each box

if state!=BLOCKED then
copy values from input wires
if some pattern matches input values then

generate associated output values
consume values from input wires
state � SUCCESS

else
state � MATCHFAIL

if state!=MATCHFAIL then
if previous values on output wires not consumed then

state � BLOCKED
else

put output values on output wires
state � RUNNABLE

Wires are based on a common class:

public class Wire
{ private HT value;

public HT look() {...}
public void reset() {...}
public void put(HT value) {...}
public boolean isFull() {...}

}

Boxes are based on a general class:

public abstract class HBox
{ protected abstract void getInput();
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protected abstract void putOutput();
protected abstract boolean checkOutput();
protected abstract boolean match(int currentNo);

private final int RUNNABLE = 1,MATCHFAIL = 2,BLOCKED = 3;
private int matchState = RUNNABLE;
private int matchFirst = 0;
private int matchMaxNo;
private boolean matchFair;

protected void setMatchMaxNo(int matchMaxNo) {...}
protected void setMatchFair(boolean matchFair) {...}
private boolean establish() {...}

The match method performs fair or unfair matching:

private boolean match()
{ int current = matchFirst;

boolean matchSuccess = false;
this.getInput();
do
{ if(matchSuccess = this.match(current)) break;

current++;
if(current > this.matchMaxNo) current = 0;

} while(current != this.matchFirst);
if(this.matchFair && matchSuccess) {
{ this.matchFirst = current + 1;

if(this.matchFirst > this.matchMaxNo) this.matchFirst = 0;
}
return matchSuccess;

}

The method run corresponds closely to the inner loops of the execution model
schema above:

public void run()
{ if(this.matchState!=BLOCKED)

if(this.match()) this.matchState = RUNNABLE;
else this.matchState = MATCHFAIL;

if (this.matchState != MATCHFAIL)
if (this.establish()) this.matchState = RUNNABLE;
else this.matchState = BLOCKED;

}
}

Here, the specific box’s match finds a matching pattern and generates outputs,
and its establish checks that old outputs have been consumed, consumes in-
puts and asserts new outputs.
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Individual boxes are then formed by sub-classing HBox. For example, the
gen box is as follows. First the wires and associated local buffers are declared:

public class HBoxgen extends HBox
{ private HT t; private Wire tWire;
private HT t1; private Wire t1Wire;
private HT x; private Wire xWire;
private HT y; private Wire yWire;
private HT c; private Wire cWire;

Next, the constructor is defined to establish the wires and other initial values:

public HBoxgen(Wire tWire, Wire t1Wire, Wire xWire, Wire yWire,
Wire cWire, int matchMaxNo,boolean matchFair)

{ this.tWire = tWire;
this.t1Wire = t1Wire;
this.xWire = xWire;
this.yWire = yWire;
this.cWire = cWire;
this.setMatchMaxNo(matchMaxNo);
this.setMatchFair(matchFair);

}

The HBox wire I/O methods are implemented for the box’s specific wires:

protected void getInput()
{ this.t = tWire.look(); }

protected void putOutput()
{ if (this.t1 != null) this.t1Wire.put(this.t1);

if (this.x != null) this.xWire.put(this.x);
if (this.y != null) this.yWire.put(this.y);
if (this.c != null) this.cWire.put(this.c);

}

protected boolean checkOutput()
{ if (this.t1 != null && this.t1Wire.isFull()) return false;

if (this.x != null && this.xWire.isFull()) return false;
if (this.y != null && this.yWire.isFull()) return false;
if (this.c != null && this.cWire.isFull()) return false;
return true;

}

The HBox match method is also implemented to reflect the box’s body; here a
simple transcription from the corresponding Hume:

protected boolean match(int currentNo)
{ boolean matchSuccess = false;
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switch (currentNo) {
{ case 0:

if (this.t != null && this.t.equals(Constant.BIT000))
{ matchSuccess = true;

this.tWire.reset();
this.t1 = Constant.BIT001;
this.x = Constant.BIT0;
this.y = Constant.BIT0;
this.c = Constant.BIT0;

}
break;

...
}
return matchSuccess;

}
}

Note that as a specific box is an instance of the corresponding class, this also
provides a simple basis for an implementation of templates.

Note that streams are also sub-classed boxes.
Finally, the program class defines the wires and box instances:

public class ProgramAdder {
Wire hw_gen_t1_to_gen_t = new Wire();
...
HBoxgen hBoxgen =s

new HBoxgen(hw_gen_t1_to_gen_t,...};
...
HBox[] hBoxs = new HBox[] {hBoxgen,...};

initialises the wires:

public ProgramAdder()
{ hw_gen_t1_to_gen_t.put(Constant.BIT000); }

and runs the scheduler:

public void run()
{ while (true) {

for (int i = 0; i < hBoxs.length; i++)
hBoxs[i].run();

}

public static void main(String[] args)
{ new ProgramAdder().run(); }

}
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1.4.4 Current Status

We have hand translated a number of Hume examples into Java. Initially we ex-
perimented with realising Hume boxes as Java threads. However, threads lack a
formal semantics so we next explored the use of JCSP, Welsh’s Java embedding
of CSP[Wel99], realising boxes as processes. However, this proved over elaborate
given that Hume has a sequential scheduling policy, so we finally adopted our cur-
rent approach of boxes as unprivileged objects. This has enabled us to clarify the
correspondences between Hume and Java, and has provided a rich set of general
classes for Hume types, boxes and wires, for use in our compiler.

We have constructed two parsers for Hume that construct Java abstract syntax
trees, from Hume concrete syntax and from Hume abstract syntax as output by
Hammond’s parser. Both parsers were built using the JavaCC compiler-compiler.
We are currently completing Java generation for boxes and wires, and anticipate
being able to process HW-Hume shortly thereafter. We are embedding the com-
piler in a prototype IDE for Hume which currently supports the drawing of box
diagrams from Hume programs.

1.4.5 Related Work

A number of projects have used Java or Java byte code as the target for functional
languages. Thus, Kawa[Bot98] is a compiler from Scheme Lisp to Java, and
MLj[BKR98] and IncH[dLZ00] are compilers to Java byte code for Standard ML
and Hope respectively. Similarly, Wakeling discusses the compilation of Haskell
to Java byte-code[Wak97]. Note that these languages all correspond to the Hume
expression language.

Fekete and Richard[FR98] discuss the translation of the reactive language Es-
terel into Java. Esterel has concurrent constructs analogous to the Hume coordi-
nation language but with considerably weaker expressive power.

In work closely related to that discussed here[HM03], Hammond translated
Michaelson’s Hume version of Burns and Wellings’ Ada mine pump system[BW01]
into Java. Hammond’s approach is similar to ours in defining a general Java class
for wires. However, our approach differs in:

� using boxed representations of types that subclass a general type class, rather
than directly using unboxed Java base types;

� creating boxes by sub-classing a general box class, rather than defining sepa-
rate classes;

� basing box scheduling on sequential methods, rather than on concurrent threads.

1.5 FUTURE WORK

In developing Hume to Java translation, we also wish to satisfy a central objective
in Hume’s development, to establish that language processing tools are consistent
with the Hume definition and meaning preserving ([MK02] p7). Thus, we wish
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to adopt Stepney’s approach to high integrity compilation [Ste93] and prove that
the meaning of a compiled Hume program relative to Java’s formal semantics is
the same as the program’s meaning in terms of the Hume formal semantics. If PH

is a Hume program, MH is the Hume semantic function, T H
J is a translator from

Hume to Java and MJ is the Java semantic function, then we wish to prove:

MH (PH) = MJ(T H
J (PH))

Semantics of Hume are well defined[Ham01]. Several operational semantics for
Java have been developed, for example Atalli et al’s Typol in the Jitan environment[Ata98]
and Nipkow’s Jinja within Isabelle/HOL[Nip03].

Our current objective is to complete the HW-Hume to Java compiler and the
formalisation of the translation of HW-Hume to Java. We will then start to explore
the correctness of HW-Hume to Java translation while developing translation and
compilation for higher Hume language layers.
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