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Abstract The Java-based Hume IDE provides a classic edit/run/debug
text-based interactive programming environment, augmented with the Hume
Diagram Tool(HDT) which displays two-dimensional box/wiring diagrams
from Hume source programs. Diagram layout may be modified interactively
and wires may be inspected to identify associated types.

Here, we present an overview of the IDE, focusing on the HDT. We also
present a preliminary performance evaluation of the Hume-Java compiler;
another major Hume IDE component.

1 Introduction

Hume[MK02] is a strongly typed programming language based on concurrent
finite state machines with transitions defined through pattern matching and
recursive functions. It is designed to support a high level of expressive power
and provide strong guarantees of dynamic behavioural properties such as
execution time and space usage.

Hume consists of the expression language and coordination languages,
which share a common declaration language.

The expression language is a purely functional, recursive language with
strict semantics. The properties of determinism, termination and bounded
time and space behaviour may be statically proved by type system and
semantics.

The coordination language is a finite state language. It describe multiple,
interacting, re-entrant processes built from the purely functional expression
layer. It has statically provable properties. These properties include both
process equivalence and safety properties such as the absence of deadlock,
live-lock or resource starvation. The basic units of the coordination language
are boxes, with pattern matching transitions between inputs and outputs,
and wires, that link boxes to each other and the external environment. The
coordination language also provides exception-handling facilities including
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Figure 1: One Bit Full Adder

timeouts and system exceptions, and is responsible for interaction with the
external environment through streams, associated with files or standard I/O,
and ports, associated with devices.

The declaration language enables the introduction of constants, type
aliases, data types and functions for use in the expression and coordination
language.

A Hume program consists of one or more boxes with inputs and outputs.
When a program is running, each box repeatedly tries to get its inputs and
match one of its patterns. If match is succeeds, it will calculate the value of
the associated expression for its outputs.

We are developing an experimental Java-based IDE for Hume which
includes a Hume to Java compiler and visualisation support for coordination
constructs. In the following sections, we provide a motivating overview of
Hume, and discuss the design of the Hume Diagram Tool and its use within
the IDE. Finally we present a preliminary performance evaluation of the
Hume to Java compiler, compared with other Hume implementations.

2 Diagramming Hume Programs

Consider a one bit full adder based on the truth table shown in Figure 1.
The following program for the full adder is written in the HW-Hume

language subset aimed at hardware descriptions. It is based on the clas-
sic combination of two half adders with an OR, where each half adder is
composed of an AND and an XOR.

1 type Bit = int 1;

2 type Next = (Bit,Bit,Bit);

Lines 1 and 2 introduce type aliases for one bit and a tuple of three bits.

3 box gen

4 in (t::Next)



5 out (t’::Next,x,y,c::Bit)

6 match

7 (0,0,0) -> ((0,0,1),0,0,0) |

8 (0,0,1) -> ((0,1,0),0,1,0) |

9 (0,1,0) -> ((0,1,1),1,0,0) |

10 (0,1,1) -> ((1,0,0),1,1,0) |

11 (1,0,0) -> ((1,0,1),0,0,1) |

12 (1,0,1) -> ((1,1,0),0,1,1) |

13 (1,1,0) -> ((1,1,1),1,0,1) |

14 (1,1,1) -> ((0,0,0),1,1,1);

Lines 3 to 14 define a box to generate and log test cases.

15 template fanout

16 in (x,y::Bit)

17 out (x1,y1,x2,y2::Bit)

18 match

19 (x,y) -> (x,y,x,y);

20 instantiate fanout as f*2;

Lines 15 to 19 define a box template to fanout two copies of its inputs
and line 20 instantiates two copies.

21 template xor

22 in (x,y::Bit)

23 out (z::Bit)

24 match

25 (0,0) -> 0 |

26 (0,1) -> 1 |

27 (1,0) -> 1 |

28 (1,1) -> 0;

29 instantiate xor as x*2;

Lines 21 to 28 define an XOR box template and line 29 instantiates two
copies.

30 template and

31 in (x,y::Bit)

32 out (z::Bit)

33 match

34 (0,0) -> 0 |

35 (0,1) -> 0 |

36 (1,0) -> 0 |



37 (1,1) -> 1;

38 instantiate and as a*2;

Lines 30 to 38 define an AND box template and line 39 instantiates two
copies.

39 box or

40 in (x,y::Bit)

41 out (z::Bit)

42 match

43 (0,0) -> 0 |

44 (0,1) -> 1 |

45 (1,0) -> 1 |

46 (1,1) -> 1;

Lines 39 to 46 define an OR box.

47 box show

48 in (s,c::Bit)

49 out (sc::(Bit,Bit,char))

50 match

51 (s,c) -> (s,c,’\n’);

Lines 47 to 51 define a box to display the program output for each test
case.

52 stream output to "std_out";

53 wire gen (gen.t’ initially (0,0,0)) (gen.t,f1.x,f1.y,f2.x);

54 wire f1 (gen.x,gen.y) (x1.x,x1.y,a1.x,a1.y);

55 wire x1(f1.x1,f1.y1)(f2.y);

56 wire a1 (f1.x2,f1.y2)(or.x);

57 wire f2 (gen.c,x1.z) (x2.x,x2.y,a2.x,a2.y);

58 wire x2(f2.x1,f2.y1)(show.s);

59 wire a2 (f2.x2,f2.y2)(or.y);

60 wire or (a1.z,a2.z) (show.c);

61 wire show (x2.z,or.z) (output);

Line 52 defines a stream linked to standard output. Finally lines 53 to
61 wire the boxes to each other and to the stream.

As is clear from this example, it rapidly becomes difficult to understand
the linear text of Hume programs composed of more than one or two boxes.
Comprehending individual boxes is relatively straightforward but envisaging
the wiring of a whole program is somewhat more demanding. Incidentally,
if templates had not been used, this simple example would involve details
of ten boxes and take up around 100 lines of text.
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Figure 2: Full Adder



Hume programmers1 have evolved ad-hoc diagrams for developing and
explaining multi-box programs. Such diagrams tend to correspond to the
coordination language, focusing on box wiring and eliding most detail of
pattern matches and types. For the example above, Figure 2 is typical.

However, drawing such figures by hand is incredibly time consuming. A
major motivation for the Hume IDE was to support at least diagrammatic
visualisation of extant Hume programs.

3 IDE and Diagram Design

Text-based interactive development environments (IDEs) for programming
languages, such as JBuilder [LSSL02] for Java, have a long pedigree. Typi-
cally, these support interactive program entry, editing, execution and trace-
based debugging.

There is also a long history of interactive visualisation and diagramming
aids for programming languages but until recently few have found much
currency. Contributing factors may be that:

• there are no standards for representing languages diagrammatically;

• diagrams make poor use of screen space compared with text;

• icon choice for atomic constructs tends to be ad-hoc and obscure;

• with a diagram/text distinction for overview/fine detail, moving be-
tween the mouse for diagrams and the keyboard for code text detail is
unwieldy.

However, UML now offers a language independent standard for object-
oriented program design based on class diagrams. Tools directly support-
ing UML, such as Rational Rose [BB02], or augmented with UML support
through plug-ins, such as Eclipse[Hol04], now enjoy wide use for OO software
development.

Curiously, there have been many experimental visualisation tools and
IDEs for functional languages[Yan01], but none seem to be in general use. Of
course, where imperative language implementations have huge commercial
user bases and are substantial sources of profit in their own right, functional
languages tend to be developed in research environments and depend on en-
thusiasts for support and maintenance. Nonetheless, perhaps real functional
programmers use vi?

We decided that our Hume IDE would be based on the classic text-based
edit/execute/debug model, augmented with diagramming support for the
coordination language. We also decided to focus at first on displaying extant

1Yes, plural...



programs as diagrams and to consider program generation from diagrams
at a later stage.

When we started building the IDE, there were two Hume implementa-
tions, the reference interpreter and the abstract machine compiler/interpreter,
which shared the same Haskell front end (hparse) for lexical analysis, pars-
ing and elaboration of box and wiring macros. Thus, we decided to adopt
the Hume abstract syntax from this front end as the basis for program ma-
nipulation and representation in the IDE.

The Hume Diagram Tool(HDT), implemented in JavaCC[Col] and Java,
is driven by the BNF for the hparse ADT. From the text for an ADT,
it generates an object-based internal representation with a node for each
non-terminals symbol of the BNF. From this internal representation, the
HDT builds objects to store each box and its wire information. Then, HDT
calculates box and wire display positions, and draws a box diagram in a
window.

Diagrams are based on coordination language constructs only, with a
labelled rectangle for each box and stream. To minimise clutter, multiple
wires between one box and another are elided to a single wire, and inputs
and outputs are not labelled or typed. However, wires may be selected to
display input/output names and types in a separate window. Because it is
very difficult to automatically avoid lines crossing, we allow a user to drag
the box to other positions so that line crossing is minimised and to clarify
the logical relations between boxes.

4 IDE Use

When running the IDE, the window shown in Figure 3 appears.

Figure 3: The Hume IDE window

We can input Hume source or open an existing file by selecting File—Open
or the Open button. After we open a file (adder.hume), the window in Figure
4 appears.



Figure 4: The Hume Diagram Tool window with a Hume file

Clicking Project—Box Picture draws the Hume box picture, as shown
in Figure 5.

We can drag boxes to other positions so that we can see the box picture
more easily, as shown in Figure 6. The HDT will automatically swap wire
positions to minimise wire cross-over.

If we want to look at the wire information, we can select the vertical
part of a wire line. This will display type and connectivity details, as shown
in Figure 7.

Finally, selecting Run—Run compiles the current Hume program to
Java, compiles this to JVM code and runs it, displaying output in a new
window. In profiling mode, when the program halts after a given number of
execution cycles, the IDE displays statistics for each box about how often it
was runnable, blocked or failed to match, cumulative and average execution
times, and the longest delay for any input to be consumed, as shown in



Figure 5: Box Diagram

Figure 8.
Finally, support is also provided for IDE and compiler development.

When we finish editing the source file, we can select Project—Hume Tree
to show the Hume syntax tree. It will save the file automatically, if we have
modified the file. It then calls the Hume to Java parser and displays the
syntax tree as shown in Figure 9. Similarly, selecting Project—Parser Tree
generates and displays the hparse output syntax tree, as shown in Figure
10.



Figure 6: Modified Box Diagram

5 Hume Implementation Comparison

As an initial evaluation of the HW-Hume to Java compiler[LM04], we com-
pare it with the reference interpreter and the abstract machine compiler/interpreter.
The reference interpreter is written in Haskell and the hami abstract machine



Figure 7: Wire information

Figure 8: Run window

interpreter in C. Ultimately, both are compiled with gcc.
First we contrast the size of the full adder program in elaborated Hume,

abstract machine code (Ham) generated by the phamc compiler, Java gener-
ated by the Hume to Java compiler, and Java Virtual Machine code (JVM)
generated by the JDK compiler:

Language lines characters chars/Hume chars
Hume 92 1.5K 1.0
Ham 759 8.8K 5.9
Java 1750 48K 32.0
JVM 36K 24.0



Figure 9: Syntax tree

The original Hume is considerably more compact than Ham, Java or
JVM code. The relatively naive Java translation is 32 times the size of
the Hume. However, this includes standard generic classes for representing
Hume constructs.

Running the adder for 10,000 execution cycles on the different imple-
mentations, on a 1.6GHz Pentium 4 with 256 MB memory, gave the times:

System time (secs) % of interpreter
Interpreter 7.93 100.0
hami 2.17 27.4
JVM 3.45 43.5

The Ham is the fastest implementation, at nearly four times as fast as the
interpreter, with Hume to Java around two and a half times as fast. However,
the Hume to Java is a relatively naive translation, with considerable scope
for optimisation.

6 Related Compiler Work

A number of projects have used Java or Java byte code as the target for
functional languages. Thus, MLj[BKR98] and IncH[dLZ00] are compilers to



Figure 10: hparse output tree

Java byte code for Standard ML and Hope respectively. Similarly, Wakeling
discusses the compilation of Haskell to Java byte-code[Wak97].

Kawa[Bot98] is a compiler from Scheme Lisp to Java. Perhaps the closest
to our work is Koser et al’s SML2Java[KLV03], which compiles Standard ML
to Java source.

Note that these languages all correspond to the Hume expression lan-
guage.

7 Future Work

The current compiler only support HW-Hume. We are steadily extending it
to handle full Hume. We also plan to use the JIT just-in-time compiler for
Java with Hume to Java compiler output.

At present, the HDT is driven by hparse output. We plan to extend it
to work directly with Hume source via the parser from the Hume to Java
compiler. Finally, in the longer term we plan to explore the generation
of Hume from diagrams drawn and augmented with code within the IDE.
We also plan to animate Hume diagrams with run-time trace and profiling
information, to aid program development and debugging.
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