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Abstract. HW-Hume is the decidable Hume level oriented to direct impe-
tation in hardware. As a first stage in the development of #&iedrcompiler
from HW-Hume to Java, we have implemented the semantics ofHiMde in
the IsabellgHOL theorem prover, enabling the automatic proof of comess of
programs in a FloyfHoare style.

1 Introduction

A verifiedcompiler gives guarantees that compilation preserves mgdrom source
to target, but not that the source program satisfies its Bpation. That is, given:

Ms:S—D - meaning of source programs in langu&e
Mt :T—->D - meaning of target programs in languafe
Cs1:S—>T - compilerfromSto T

whereD is some domain of meanings, we wish to guarantee for progtaim source
languages that:
Mt (C(Ps)) = Ms(Ps)

In contrast, a verifying compiler gives guarantees thattac®program satisfies its
specification, but not that the target is a true translaticthe source.

Verified compilation has a long but surprisingly thin pedigy since McCarthy and
Painter’s seminal work 40 years ago for arithmetic expss{9]. They defined very
simple source and target languages and their semanticsygles from source to target
and proved them correct. Almost all subsequent work haev@d this basic approach.
However, where McCarthy and Painter used an ad hoc notatidrc@nstructed proofs
by hand, there has been a growing trend to the use of formalpassibly executable,
notations, and of automated theorem proving technology.

Palsberg [14] designed, implemented and proved the coeestof a compiler gen-
erator, called Cantor, that accepts action semantic gegoTs.

Stepney [17] discusses compilation from the simple higlellémperative source
language Tosca to the low level target language Aida. Pralod) Z are used as the
meta-languages to define the denotational semantics offbstta and Aida, with trans-
lation templates from each source language syntax steittuthe equivalent target
language structure. While this highly ambitious work foriadustrial client, used ex-
ecutable notations to deliver a working verified compilémast all proofs were con-
ducted painstakingly by hand.

Stringer-Calvert [18] extends Stepney’s work in his Phstegoresenting an overview
of the development of a demonstrably correct compiler by twieaterms the DCC



method, which has three components: Specification, Impi¢gtien and Proof. The
correctness of the DCC compiler is proved mechanicallyg&iVs [16]. of program-
ming language, and targets used an abstract RISC machigdge.

Curzon [3, 4] presents a formal machine-checked verificatioa simple compiler
specification using the HOL [5] theorem prover, thus comigyra. unitary notation and
proof tool. He has implemented a tool that executes the gdrdompiler specification
using formal proof. He also discusses bootstraping a cocaupiler implementation.

Most recently, Klein and Nipkow [7] have used Isabgll®L [13] to prove the
correctness of a compiler from the Java subset Jinja to JVdlé.co

We are exploring the development of a provably correct oifiegl compiler from
HW-Hume [10, 11], the decidable but impoverished Hume lay@nted to hardware
realisation, to Java. We have already constructed a prmat#yV-Hume to Java com-
piler, discussed in [8].

While our work is are strongly influenced by Stepney, and bgiiKland Nipkow,
there are important éfierences. Where Stepney proved correctness via denotag®na
mantics, we intend to use an operational semantics. Whgettables us to retain close
correspondence with our prototype HW-Hume to Java compiterofs may be longer
than for denotational semantics, as operational semaintttsdes considerably more
detail of evaluation. Similarly, Klein and Nipkow use Is#ibdo also prove that source
programs are well formed and type correct. We are only corexemwith proving the
correctness of translation and assume that some prior giedias established other
properties.

As a vital core stage in our work, we have embedded the seasarftHW-Hume in
Isabelle, enabling proof of correctness. In the followiegtsns we provide overviews
of HW-Hume and it semantics, and of Isab#H©®L. We then present the realisation of
the HW-Hume semantics in IsabghOLs, and discuss the proof of correctness of two
HW-Hume exemplars. Finally, we consider how we intend to plete our formally
verified HW-Hume to Java compiler.

2 HW-Hume Semantics

2.1 HW-Hume Abstract Syntax

Figure 1 shows the abstract syntax of HW-Hume. A HW-Hume gogis built from
one or more box(s), one or more wire(s) and optional initedldrations, const declara-
tions and type declarations. The program execution is iaddent of the order of box,
wire and init declarations.

2.2 HW-Hume Execution M odel

Figure 2 shows the HW-Hume execution model which is basedamterminating,
round-robin, one-shot scheduling of boxes.



prog w=dech ”;”..”;” dech nx>1

decl := box | wire | init | constdecl| typedecl

box = "box” boxid ins outs”match” matches
ingouts ::= (ioid; :: type, ...ioid, :: typea) n>1
matches ::= match ”|” ... ”’|” match n>1
match  ::= patt "—>" expr

wire s="wire” linky ”to” link;

init »=link =" value

link ::= boxid . ioid

constdeck:= constid =" value
typedecl ::= typeid =" type
patt s=intliteral | = | _ | = | varid | (pattpatt)

expr = intliteral | = | varid | (expr,expn
val = intliteral | (val,val)
type i=int | typeid | (typstype

Fig. 1. HW-Hume Abstract Syntax

for each box
state— RUNNABLE
forever
for each box
if state = BLOCKED then
state«— MATCHFAIL
for each match
if some pattern matches input values then
consume values from input wires
evaluate associated expression
generate output wires
state~ SUCCESS
stop match loop
for each box
if state=EMATCHFAIL then
if output wires can be established to their input wires
establish output wiress
state— RUNNABLE
else
state BLOCKED

Fig. 2. HW-Hume Execution Model

hen



3 Isabelle Overview

Isabelle is a popular generic interactive theorem proveickvisupports a variety of
logics. IsabelltHOL [13] is the specialization for HOL(Higher-Order Logithat is
based on Gordon’s HOL system [5], which itself is based onrCiis original paper
[2]. As Tobias Nipkow [13] said:

HOL = Functional Programming Logic

Isabelle conforms largely to standard mathematical nmtaths a generic proof assis-
tant for logic, Isabelle is a powerful system for implemeagtlogic formalisms.

Isabelle Proof General is a generic interface for proofstasts in Isabelle which
supports a print mode for X Symbol tokens. In Isabelle, wewste

1<"bsub>v\<“esub>or 1<"isub>v or 1<" sub>v

In the Isabelle Proof General environment or an Isabelletgiocument, this will be
displayed as lwhich is easy to read.

In the sequel, we use Isabelle for Isabgll©L.

This section introduces Isabelle basic types with theimiive operations and fur-
ther non-standard notation.

base types:

e bool— the type of truth.
e nat— the type of natural numbers.

constructor types:

o list — the type of lists with the typéa list. nat list means that every element of list
has the typenat Empty list is []. The infix operator @ concatenates two ligtse
infix operator # inserts a element to the beginning of a¥dn is the nth-element
of xs(starting with 0).

e set— the type of sets with the typ@ set nat setmeans that every element of the
set has the typeat Empty set iq}. We write( instead of} for friendly reading.

e option— defined by
datatype 'a option= None| Some’a
It adjoins a new elemerfioneto a type’a. We write | x| instead ofSome xor
succinctnesghe| x| = x, wheretheis a function.

e Pairs— ordered pairs.d1, a,) is of typer; x 72, wherea; is of typer; anda; is of
typers. fst(ag, a2) = a1, sndas, ap) = ap, wherefstandsndare functions.

e Tuples— defined byPairs nested. 4;, a,, az) stands for &1, (az, az)). So
fst(ay, ap, a3) = a1, fst(snday, ap, as)) = a,.

function types:

e total function— denoted by=. Like SML, 71 = 12 = 73 meansr; = (12 = 73).
[t1,72,...,7n] = 7 is abbreviation ofr; = 7, = ... = 1y = 7. ItS update is
f(x:=y) wheref ::’a= 'b, x with type “a andy with type ’b.



e partial function— defined by’a = ’b option Nonerepresents undefinedness,
f x= x| means that is mapped ty. The domain off is defineddom f={a|f x#
Nong. We write ‘a — "binstead of’'a = ’b option emptyis defined byix.None
Its updates ig(x := Ly]). We abbraviatd (x := |y]) to f(x + y). Such functions
are called maps. The infix operate+ overwrites mapr, with m,.
i.e.my ++ mp = Ax. case m x of None= my x| Lly] = Ly

¢ Inductive definitions— a method to define a function. In fact, a function from set
Ato setB is defined by a relation s€ C A x B when se(C satisfies some proper-
ties. Many datatype are inductive defined. A structural tpnal semantics [6] is
inductive definition of an evaluation relation. The induetdefinitions [1] specifies
the least seR closed under given collection rules. Applying a rule to ebeits of
Ryields a result withirR. Milner [12] implemented one of the first inductive defi-
nitions. Isabelle provides commands for formalizing intikecdefinitions. Paulson
[15] proved a fixedpoint with inductive definitions in IsaleelKlein and Nipkow
[7] inductively defined Jinja semantics and proved corresgnof Jinja compiler.
We mainly present HW-Hume semantics with inductive defnisi

typevariables: denoted by'a, ’b etc. Like SML, they give rise to polymorphis types.

inferencerule: A; = A, = Az meansA; = (A = Ag).
[Ag; Ag; ...; Al = Alis abbreviation oA} = (A, = (... = (Ay = A)...)).
It means “IfA; andA; and ... andA, thenA”.
i.e. inference rule
Al A L A

A

4 HW-Hume Semanticsin |sabelle

4.1 HW-Hume Abstract Syntax in I sabelle

Figure 3 shows the abstract syntax of HW-Hume in IsabelléerAdrecompilation, all
constid in const declarations are replaced by their valared,all typeid in type decla-
rations are replaced by their types. The program execusiomdependent of the order
of box and wire declarations. So we define a HW-Hume program as

“types HProg = HBox listx HWire list’
“HInit list” is initial values. A box comprises a boxid, a series of irgu series of
outputs and a series of matches. Hence we define a box as

“types HBox= BNamex HIO list x HIO list x HMatch list’
The firstHIO list is for input and the second is for output.

4.2 HW-Hume States

Figure 4 shows the definition of the HW-Hume states — dynamidrenment. Each
box in a HW-Hume program has its own input and output. We ddifibecation =
INOUT x BNamex LNam@ to denote them. The states is a map from hLocation to
value. At the end of each cycle, a HW-Hume program checks ihe of each box’s



types BName= string -- "names for box"
types LName= string -- "names for io (link)"
types VName= string -- "names for variable"
datatype HP =1 | W | WI -- "ignore,wild,wild ignore."
| HPInt int -- "nat value"
| HPVar VName -- "variable"
| HPPair HP HP -- "pair"
datatype HE = | -- "ignore"
| HEInt int -- "int value"
| HEVar VName -- "variable"
| HEPair HE HE -- "pair"
datatype HV = HVInt int -- "int value"
| HVPair HV HV -- "pair"
datatype HT = Z -- "nat"
| HTPair HT HT -- "pair"
types HIO = LNamex HT
types HMatch = HP x HE
types HBox = BNamex HIO list x HIO list x HMatch list
types HWire = (BNamex LNamég x (BNamex LNameg
types HProg = HBox listx HWire list
types Hinit = BNamex LNamex HV

Fig. 3. HW-Hume Abstract Syntax

output and try to transfer their values to some box’s inpiuthére is an output which
cannot be transferred into a box, that box is blocked. Caahgrif an output is still
mapped to a value, that box is blocked. We define a fund@inoEmptyto check if
a box is blocked or not. The functidnit_hStetesets the initial states. The function
UpdateSupdates state by transferring each box’s output which careineferred to its
target.

4.3 HW-HumeBig Step Semantics

We next present the HW-Hume big step semantics in inducefmitions judgement
form.

Cycles is the top-step of running a Hume program. Its goab isut all boxesN
times in repeated cycles. When all cycles finish, the prognaits. The global states
(hState identify the program states.

We useRCdefined in Figure 4 as a running result. The possible restiRuioCare
error (Cer hErr) or success. When success, the resuigdState

We inductively defineRunCas well. TheRunC Bis the least relation set closed
under given rules below.

We define theRunCjudgement fornP . (n,s) = (rc). This is an abbreviation of
(n,s,rc) € RunC P TheP has typeHProg; n has typehCNum rc has typeRC.

We defineCycleinduction rules below.



Global State:

datatype INOUT = LI | LO

types hLocation = INOUT x BNamex LName
types hState = hLocation = HV

Local State:

datatype hErr = MPVer | MIPer | EEer | MOEer
types hVar = VName— HV

types hCNum = nat

Running Result States

datatype RC = Cer hErr| Cs hState Run Cycles (RunC)

datatype RB = Ber hErr | Bs hState Run Box and Boxes (RunB, RunBL)
datatype RM = Mer hErr | Ms hState Run Match (RunM)

datatype MIP = IPer hErr | IPf | IPs hStatex hVar Match in to pattrn (MatchlP)
datatype MPV = PVer hErr| PVf| PVs hVar Match pattrn to value (MatchPV)
datatype EE = Eer hErr| Es HE Evalate expression (EvalE)
datatype MOE = OEer hErr| OEs hState Match out to expression (MatchOFE)

Fig.4. HW-Hume State

e CO_s — Running a program 0 time, i.e. 0 cyctds not changed.

n=0
Prc(n,s) = (Cs 9

e Cl e — CallingRunBLerror, so running a program 1 cycle error.

n=1 ry (P2BL P, s) = (Ber e
Pt+c.(n,s) = (Cer en

e Cls— CallingRunBLsuccess, running a program 1 cycle success.

n=1 +, (P2BLP,s)= (Bs ) s’ = UpdateS sP
Prc(n,s) = (Cs )

e C_R_e — More than one cycle, recursive, the first cycle error.

n>1Pr. (1,5 = (Cer en
Pt+c.(n,s) = (Cer en

e C_R— More than one cycle, recursive, the first cycle is sucdgssult depends on
remaining cycles.

N>1Pr({(1,sy=>(Cs )y N"=n-1Pr. (N, S) = (rc)
Prc (n,s) = (rc)

We show below the result theorems:
theorem EvalE_Result  bn s Ivie () = (e6 =
(ee= Eer EEej v (des(ee= Es e3 A (HEhasVar es- False)



consts RunC :: HProg = (hCNumx hStatex RC) set

syntax RunC:: HProg = hCNum= hState= RC = bool
(-Fc () =(» [0,0,0,0]81)

trandations P+, (n,s) = (rc) = (n,s,rc) e RunC P

consts RunBL :: (HBox list x hStatex RB) set

syntax RunBL:: HBox list = hState= RB = bool
(Foi -2 = (2 [0,0,0]81)

trandations -, (bl,s) = (rb) = (bl,s rb) € RunBL

consts RunB :: HBox= (hStatex RB) set

syntax RunB:: HBox= hState= RB= bool
(-+p (- =) [0,0,0]81)

trandations B+, (s) = (rb) = (srb) e RunB B

consts RunM :: BName= LName list= LName list=
(HMatch list x hStatex RM) set
syntax RunM:: BName= LName list= LName list=
HMatch list= hState=> RM = bool
o-tm{s =) [0,0,0,0,0,0]81)
trandations bn,ilnl, olnl +, (Ml, ) = (rm) = (ml, s,rm) € RunM bn ilnl olnl

consts MatchlP :: BName=
(LNname listx HP x hStatex hVar x MIP) set

syntax MatchlP :: BName=
(LNname list= HP = hState= hVar= MIP = boot
(-Fi-p (- =() [0,0,0,0,0,0] 81)

trangations bni_p (ilnl, p,s, Iv) = (mipy = (ilnl, p, s, Iv, mip) € MatchIP bn

consts MatchPV :: (HP x HV x hVar x MPV) set

syntax MatchPV:: HP = HV = hVar = MPV = bool
(Fp-v{~--» =) [0,0,0,0] 81)

trandations Fp_y (p,v,IV) = (mpy = (p,v,Iv,mpy € MatchPV

consts EvalE :: BName= hState= hVar= (HE x EE) set

syntax EvalE :: BName= hState= hVar= HE = EE = bool
(- -Fe (=<2 [0,0,0,0,0] 81)

trandationsbn,s, Iv+. (e) = (€& = (e,e€ e EvalEbnslv

consts MatchOE :: BName= (LName listx HE x hStatex MOE) set
syntax MatchOE:: BName= (LName listx HE x hStatex MOE = bool

(- Fo-e (-, - -y = () [0,0,0,0,0] 81)
trandations bnt,_¢ (olnl,e,s) = (Moe = (olnl, e, s, moe € MatchOE bn

Fig. 5. Inductive Definitions and Judgement Forms




Given a box namén, global states and local statév, an expressioe will evaluate
to eeprovided eitheeeis error or there is some final success expressigwhich has
no free variables.
theorem MatchOE Result  bnrq_e (0Inl, &,8) = (moe —

(moe= OEer MOEegJ Vv (does(moe= OEs o€}

Given a box namén, then the associated output Iahl, expressiore and global
states and evaluates tmoesuch that eithemoeis error or there is some success global
stateoescorresponding to it.
theorem MatchP\.Result  +p_y (p,V,IV) = (mpy) =

(mpv= PVer MPVe} v (mpv= PVf) v (AIV.(mpv= PVs IV))

The patternp, valuev and local statdvs evaluates tonpvwhich is either error or
Match Fail or success local stdté.

The other theorems below are similar.
theorem MatchIP-Result  bnti_p (ilnl, p, s Iv) = (mip) =

(mip = IPer MPVe) v (mip = IPer MIPer) v (mip = IPf) v (Jips.(mip = IPs ip9)
theorem RunM.Result  bn,ilnl, olnl -, (M, s) = (M) = (dpls.(m= Ms pl9)v

(m= Mer MPVe) v (m= Mer MIPer v (m= Mer EEe) v (m= Mer MOEej)
theorem RunB Result B+, (S) = (rb) = (dbs(rb = Bs b3)v

(rb = Ber MPVe) v rb = Ber MIPel) v rb = Ber EEe) v rb = Ber MOEej)
theorem RunBL Result  +y ¢bls) = (rb) = (Ibs(rb = Bs b3)v

(rb = Ber MPVe) v rb = Ber MIPei) v rb = Ber EEe) v rb = Ber MOEe)
theorem RunC Result P+ (n,s) = (rcy = (As.(rc = Cs 9))v

(rc = Cer MPVej v rc = Cer MIPei) v rc = Cer EEe) v rc = Cer MOEe)

5 Proving HW-Hume Program Correctness

Now, we prove two HW-Hume programs correct from the HW-Huramantics in Is-
abelle.

5.1 Proving Swap

The first example isSwag which is very simple. There is only one box and one wire.
The box Swap’s out@@”) is a link to its in(“i”). The “Swap.6 and “Swap.1 are tuples.
The matching rule “(x,y)> (y,x)” will swap the values of Swap.i. Figure 6 depicts
the following code:

box Swap
in (i::(Bit,Bit))
out (o::(Bit,Bit))
match
&,y) > (v,%);
wire Swap
(Swap.o initially (0,1))
(Swap.i);
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Fig.6. Swap

With our HW-Hume abstract syntax in Isabelle, this prograrpresented as:

constdefs Swap P :: HProg
SwapP =
(
[ (+ Box )
(
’ ,SWap /’
(17, (Z.2D)], (+ in %)
[(l IOII’ (Z’ Z)t)]’ (* out *)

[
(CX Y o (Y " 'X 0e)
)
]9
[ (x Wire %)
((//SWap/, ,/0,,), (Ilswapl’ Ili//))
]$
)
constdefs Swap Init :: Hinit list
Swap Init =
[ (+ Init =)
( (/ /Swap /, ’ /i ’ I’ (OV, 1V)V)
]
)

After initialisation, “Swap.? has value “(0,1)". After running box Swag once,
“Swap.d got value “(1,0)". Then, at the end of the cycle, it will beatrsfered to
“Swap.i. So before the second cycleStvap.i has value “(1,0)”. Before the third cycle,
“Swap.i has value “(0,1)”, and so on.

In Isabelle, the global states of HW-Hume is definett&tate= hLocation— HV.
We can get the initial state by applying functiomt_hStateto Swap Init. We define



two states:
constdefs Swap SO:: hState

Swap S0= empty(LI, "'Swap’, "'i’’) = (Oy, L,)v)
constdefs Swap S1:: hState
Swap S1= empty(Ll, "’Swap’, "’i’’") — (1., 0,)v)

Simply, we have a lemma:
lemma Swaplnit: Init_hState Swagnit = Swap SO
i.e. Swap SOequals the initial state.

With our inductive defined HW-Hume semantics in Isabelle pn@/e below lem-
mas by recursively calling inductive rules.

lemma Swap SQ Cycle 0: SwapP . (0,Swap SO = (Cs SwapS0O
lemma Swap S1.Cycle 0: SwapP r; (0,SwapS1 = (Cs SwapSJ

For cycle 0 with stat& wapS0 or SwapS1, the result is success with that state.
The other lemmas are similar.

lemma Swap SQ Cycle1: SwapP r; (1, Swap S0 = (Cs SwapSJ
lemma SwapS1Cyclel: SwapP (1, SwapSl = (Cs SwapS0O
lemma SwapSQ Cycle 2: SwapP ¢ (2, Swap SO = (Cs SwapS0
lemma SwapS1 Cycle2: SwapP ¢ (2,SwapSl = (Cs SwapSJ

Finally, we have a theorem:
theorem Swap Cycles

SwapP ke (2N, Init_hState Swagdnit) = (Cs SwapS0O

SwapP rc (2 n+ 1, Init_hState Swapnit) = (Cs SwapSJ

Based on theoref@wap Cycles when we rurSwap2 = ntimes, ‘Swap.1 has value
“(0,1)”; when we runSwap2 = n + 1 times, ‘Swap.i has value “(1,0)".

5.2 Proving Adder

The second example ifAdder. There are three boxes and four wires. The bger!
outputs from “(0,0,0)" to “(1,1,1)” in each cycle repetidly. This output (fen.t) is
linked to the in of box &dder’. Matching rules of the boxddder’ calculate full bit
addition of “adder. by truth table. The resultéddder.d will be transfered to box 6ut-
put’. In the original version, the Gutput is standard output. Because we cannot at
present accommodatéd in our semantics in Isabelle, we simulate standard output b
box “output

In each cycle, gen.t is a value from “(0,0,0)” to “(1,1,1)". At the end of a cycle,
the value is transferred t@dder.I. On the next cycle, the full bit addition is stored in
“adder.d. At the end of the cycle, the value is transferred twtput.i. Then in the
third cycle, the box butput throws it away. Figure 7 depicts the following code:

box gen

in (i::(Bit,Bit,Bit))

out (o::(Bit,Bit,Bit), t::(Bit,Bit,Bit))
match



(®1®1®) -

\2

((0,0,1),(0,0,0))
,0,1) -> ((0,1,0),(00,1,0))
,1,0 -> (€@,1,1),(1,0,0))
,1,1) -> ((1,0,0),(1,1,0))
(1,0,0) -> ((1,0,1),(0,0,1))
(1,0,1) -> ((1,1,0,(,1,1))
(1,1,0 -> ((1,1,1),(1,0,1))
(1,1,1) -> ((0,0,0),(1,1,1));

VvV Vv

vV V V V

box adder
in (i::(Bit,Bit,Bit))
out (o::(Bit,Bit))
match
(0,0,0) -> (0,0
0,1,0) > (1,0)
(1,0,0) > (1,0)
(1,1,0) -> (0,1
(0,0,1) -> (1,0
0,1,1) -> (0,D
(1,0,1) -> (0,1
(1,1,1) -> (1,1)

box output
in (i::Bit, eat::(Bit,Bit))
out (o::Bit)
match
(*,eat) -> ();

wire gen (gen.o initially (0,0,0)) (gen.i, adder.i trace);
wire adder (gen.t) (output.eat trace);
wire output (output.o, adder.o) (output.i);

With our HW-Hume abstract syntax in Isabelle, this programresented as:
constdefs Adder P :: HProg

AdderP =
( [ (x Box =)
(
"'gen’’,
(""", (Z.Z. D)), (x in %)
{(l IOII’ (Z’ Z’Z)t)’ (, ,tl,’ (Z’Z’ Z)t)]’ (* out *)

( (Op, Op, Op)p’ ((Oe, Oe, 1e)e, (Oe, Oe, Oe)e)e ),

| ((Lp-1p. 1p)p (e Oer Oc)er (Lo Ler L)e)e)
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Fig. 7. Adder




),

(
""adder’,
(1", (Z,Z22))], (xin =)
{(”0", (Z, 2], (» out )
( (Op’ OD’ OD)P’ (Oe, Oe)e ),
("('1p’ Op, Op)p,  (Ze, Oe)e ),
|
),
(
"’output ’,
("7, 2), (eat’’, (Z, D], (+ in =)
{(/ ‘o”’, Z)]’ (* out *)
((HP.L, "’eat’'},))p, HE.I)
]
)
I,
[ (+ Wire %)

((/gen’,  o'' ), ('gen’, i),
(('gen’’, 7177 ), (’adder’, i’ ),
((’adder’, ’’o’’ ), (’output’, '’'eat’’)),
((’output’, "’o’’ ), ('output’, "’i’" ))

]?
)
constdefs Adder Init :: Hinit list
Adder Init =
(
[ (+ Init =)
( (l lgenl I’l li ’ I, (0\/, OV, OV)V)
]
)

We define global states éfdderin Isabelle as:
constdefs Adder SO’ :: hState

Adder SO’ = empty
(Ll, ’ /gen/ /’ ’ /i ’ /) — (OV’ OV’ OV)V
)

We define statddder. SO’ as a mapping from linkgeni to the value (00, 0).
constdefs Adder SO:: hState
Adder SO= empty

(L1, ""gen’”, 7i"") = (Oy, Ov, Ou)vs



(LI, ""adder”, ""i"") = (1y, Ly, Ly)y,
(LI, ""output ’, ’ "eat’’) > (Oy, Ly)v
)

Stateadder. SO maps linkgeni to (0,0, 0), adderi to (1, 1,1) andoutputeat to
(0,2).
Other state definitions are similar.
constdefs Adder S1’ :: hState
Adder S1’ = empty
(LI, ""gen’”, ”"i"") = (Ov, Ov, L)y,
(LI, "’adder’, "’i’’) — (0y, 0y, 0))y

)
constdefs Adder S1:: hState
Adder S1= empty
(LI, ""gen’”, ""i"") = (Oy, Oy, L)y,
(LI, ""adder”, " "i"") = (Oy, Oy, Ov)v.
(LI, ""output'’, " "eat’’) - (1y, L\)v
)

constdefs Adder S7:: hState
Adder S7= empty
(L1, ""gen’”, i) - (1y, 1y, 1)y,
(LI, "’adder’, "’i’’) — (1, 0y, L\)v,
(LI, ""output'’, " "eat’’) — (0y, L\)v
)
With our inductively defined HW-Hume semantics in Isabelle,prove the follow-
ing lemmas by recursively calling inductive rules.
lemma Adderlnit: Init_hState Adderinit = Adder SO
lemma Adder SO'_Cycle 1: Adder P+ (1, Adder SO') = (Cs AdderS1’)
lemma Adder S1'_Cycle.1: AdderP +¢(1,Adder S1’) = (Cs AdderS2

lemma Adder S6 Cycle 1: AdderP r; (1, Adder S6 = (Cs AdderS7

lemma Adder S7.Cycle 1: Adder P . (1, Adder S7 = (Cs AdderS0O
Finally, we have a theorem:

theorem Adder Cycles
Adder P +¢ (0, Init_hState Addernit) = (Cs AdderS0’)
Adder P +¢ (1, Init_hState Addernit) = (Cs AdderS1’)
Adder P +; (0 + 8« (n+ 1), Init_hState Addernit) = (Cs AdderS0O
Adder P+ (1+ 8+ (n+ 1), Init_hState Addernit) = (Cs AdderS1
Adder P +¢ (2 + 8« n, Init_hState Addernit) = (Cs AdderS2
Adder P +¢ (3 + 8« n, Init_hState Addernit) = (Cs AdderS3
Adder P +¢ (4 + 8 x n, Init_hState Addernit) = (Cs AdderS4%
Adder P +¢ (5 + 8« n, Init_hState Addennit) = (Cs AdderS5H
Adder P +¢ (6 + 8 % n, Init_hState Addernit) = (Cs AdderS6
Adder P +¢ (7 + 8 x n, Init_hState Addernit) = (Cs AdderS7



This set of thereoms characterises the number of cyclestfienmitial state to eval-
uate the program characterised by the abstract syhtber Init to reach the dferent
possible result states.

6 Results

We have carried out the above proofs using Isabelle on aurertibased PC running
Linux Red Hat 8, with 1GB of RAM and a 1.6GH CPU. Table 6 shovesdize of the
proofs and the time taken.

Swap Adder
Boxes 1 3
Wires 1 4
States 2 11
Match Rules 1 17

Proof Size (lines) 200 2000
Run Time (secs) 10 1020

Fig. 8. Isabell proofs.

From these initial results, we observe that the proof sizektenes appear to rise
very rapidly with increases in the size of programs. Thisrisurprising: at present we
are essentially performing naive proofs for all possibéagition sequences.

7 Conclusions

We have presented the embedding of HW-Hume in Isabelle ayrtof of correctness
of two programs. While we have demonstrated that our apprisgoromising, initial re-
sults suggest that we must explore more abstract tacticeke mechanical correctness
proof useable for realistic Hume programs composed fromymaurti-statgmulti-wire
boxes,

The work discussed here is central to our longer term goal\drdied compiler
from HW-Hume to Java. We recently decided to adopt Jinjaatatget language, to en-
able an integrated approach in Isabelle. We have also mdditieoriginal HW-Hume
to Java compiler to generate Jinja, and are currently fasimgl the translation from
HW-Hume to Jinja. Time permitting, the next stages wouldderhbed this formalisa-
tion in Isabelle and to explore automatic support for prdw@ittcompilation maintains
semantic consistency.
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