
HW-Hume in Isabelle

Chunxu Liu and Greg Michaelson

School of Mathematical and Computer Science
Heriot-Watt University, Riccarton, Scotland.

Email: {chunxu,greg}@macs.hw.ac.uk

Abstract. HW-Hume is the decidable Hume level oriented to direct implemen-
tation in hardware. As a first stage in the development of a verified compiler
from HW-Hume to Java, we have implemented the semantics of HW-Hume in
the Isabelle/HOL theorem prover, enabling the automatic proof of correctness of
programs in a Floyd/Hoare style.

1 Introduction

A verifiedcompiler gives guarantees that compilation preserves meaning from source
to target, but not that the source program satisfies its specification. That is, given:

MS : S→ D - meaning of source programs in languageS
MT : T → D - meaning of target programs in languageT
CS−T : S→ T - compiler fromS to T

whereD is some domain of meanings, we wish to guarantee for programPS in source
languageS that:

MT (C(PS)) = MS(PS)
In contrast, a verifying compiler gives guarantees that a source program satisfies its

specification, but not that the target is a true translation of the source.
Verified compilation has a long but surprisingly thin pedigree, since McCarthy and

Painter’s seminal work 40 years ago for arithmetic expressions [9]. They defined very
simple source and target languages and their semantics, gave rules from source to target
and proved them correct. Almost all subsequent work has followed this basic approach.
However, where McCarthy and Painter used an ad hoc notation and constructed proofs
by hand, there has been a growing trend to the use of formal, and possibly executable,
notations, and of automated theorem proving technology.

Palsberg [14] designed, implemented and proved the correctness of a compiler gen-
erator, called Cantor, that accepts action semantic descriptions.

Stepney [17] discusses compilation from the simple high-level imperative source
language Tosca to the low level target language Aida. Prologand Z are used as the
meta-languages to define the denotational semantics of bothTosca and Aida, with trans-
lation templates from each source language syntax structure to the equivalent target
language structure. While this highly ambitious work for anindustrial client, used ex-
ecutable notations to deliver a working verified compiler, almost all proofs were con-
ducted painstakingly by hand.

Stringer-Calvert [18] extends Stepney’s work in his PhD thesis, presenting an overview
of the development of a demonstrably correct compiler by what he terms the DCC

method, which has three components: Specification, Implementation and Proof. The
correctness of the DCC compiler is proved mechanically, using PVS [16]. of program-
ming language, and targets used an abstract RISC machine language.

Curzon [3, 4] presents a formal machine-checked verification of a simple compiler
specification using the HOL [5] theorem prover, thus combining a unitary notation and
proof tool. He has implemented a tool that executes the verified compiler specification
using formal proof. He also discusses bootstraping a correct compiler implementation.

Most recently, Klein and Nipkow [7] have used Isabelle/HOL [13] to prove the
correctness of a compiler from the Java subset Jinja to JVM code.

We are exploring the development of a provably correct or verified compiler from
HW-Hume [10, 11], the decidable but impoverished Hume layeroriented to hardware
realisation, to Java. We have already constructed a prototype HW-Hume to Java com-
piler, discussed in [8].

While our work is are strongly influenced by Stepney, and by Klein and Nipkow,
there are important differences. Where Stepney proved correctness via denotational se-
mantics, we intend to use an operational semantics. While this enables us to retain close
correspondence with our prototype HW-Hume to Java compiler, proofs may be longer
than for denotational semantics, as operational semanticsincludes considerably more
detail of evaluation. Similarly, Klein and Nipkow use Isaballe to also prove that source
programs are well formed and type correct. We are only concerned with proving the
correctness of translation and assume that some prior analysis has established other
properties.

As a vital core stage in our work, we have embedded the semantics of HW-Hume in
Isabelle, enabling proof of correctness. In the following sections we provide overviews
of HW-Hume and it semantics, and of Isabelle/HOL. We then present the realisation of
the HW-Hume semantics in Isabelle/HOLs, and discuss the proof of correctness of two
HW-Hume exemplars. Finally, we consider how we intend to complete our formally
verified HW-Hume to Java compiler.

2 HW-Hume Semantics

2.1 HW-Hume Abstract Syntax

Figure 1 shows the abstract syntax of HW-Hume. A HW-Hume program is built from
one or more box(s), one or more wire(s) and optional initial declarations, const declara-
tions and type declarations. The program execution is independent of the order of box,
wire and init declarations.

2.2 HW-Hume Execution Model

Figure 2 shows the HW-Hume execution model which is based on non-terminating,
round-robin, one-shot scheduling of boxes.

prog ::= decl1 ′′;′′ ...′′;′′ decln n ≥ 1
decl ::= box | wire | init | constdecl| typedecl
box ::= ′′box′′ boxid ins outs′′match′′ matches
ins/outs ::= (ioid1 :: type1, ...ioidn :: type1) n ≥ 1
matches ::= match1 ′′|′′ ... ′′ |′′ matchn n ≥ 1
match ::= patt ′′−>′′ expr
wire ::= ′′wire′′ link1

′′to′′ link2

init ::= link ′′=′′ value
link ::= boxid ′′.′′ ioid
constdecl::= constid ′′=′′ value
typedecl ::= typeid ′′=′′ type
patt ::= intliteral | ∗ | | ∗ | varid | (patt,patt)
expr ::= intliteral | ∗ | varid | (expr,expr)
val ::= intliteral | (val,val)
type ::= int | typeid | (type,type)

Fig. 1. HW-Hume Abstract Syntax

for each box
state← RUNNABLE

forever
for each box

if state != BLOCKED then
state← MATCHFAIL
for each match

if some pattern matches input values then
consume values from input wires
evaluate associated expression
generate output wires
state← SUCCESS
stop match loop

for each box
if state!=MATCHFAIL then

if output wires can be established to their input wires then
establish output wiress
state← RUNNABLE

else
state← BLOCKED

Fig. 2. HW-Hume Execution Model

3 Isabelle Overview

Isabelle is a popular generic interactive theorem prover which supports a variety of
logics. Isabelle/HOL [13] is the specialization for HOL(Higher-Order Logic)that is
based on Gordon’s HOL system [5], which itself is based on Church’s original paper
[2]. As Tobias Nipkow [13] said:

HOL = Functional Programming+ Logic

Isabelle conforms largely to standard mathematical notation. As a generic proof assis-
tant for logic, Isabelle is a powerful system for implementing logic formalisms.

Isabelle Proof General is a generic interface for proof assistants in Isabelle which
supports a print mode for X Symbol tokens. In Isabelle, we canwrite

1<ˆbsub>v\<ˆesub> or 1<ˆisub>v or 1<ˆsub>v

In the Isabelle Proof General environment or an Isabelle print document, this will be
displayed as 1v which is easy to read.

In the sequel, we use Isabelle for Isabelle/HOL.
This section introduces Isabelle basic types with their primitive operations and fur-

ther non-standard notation.

base types:

• bool— the type of truth.
• nat — the type of natural numbers.

constructor types:

• list — the type of lists with the type′a list. nat list means that every element of list
has the typenat. Empty list is []. The infix operator @ concatenates two lists. The
infix operator # inserts a element to the beginning of a list.xs!n is the nth-element
of xs(starting with 0).

• set— the type of sets with the type′a set. nat setmeans that every element of the
set has the typenat. Empty set is{}. We write∅ instead of{} for friendly reading.

• option— defined by
datatype ′a option= None| Some′a
It adjoins a new elementNoneto a type ′a. We write ⌊x⌋ instead ofSome xfor
succinctness.the⌊x⌋ = x, wherethe is a function.

• Pairs— ordered pairs. (a1, a2) is of typeτ1 × τ2, wherea1 is of typeτ1 anda2 is of
typeτ2. fst(a1, a2) = a1, snd(a1, a2) = a2, wherefst andsndare functions.

• Tuples— defined byPairsnested. (a1, a2, a3) stands for (a1, (a2, a3)). So
fst(a1, a2, a3) = a1, fst(snd(a1, a2, a3)) = a2.

function types:

• total function— denoted by⇒. Like SML, τ1 ⇒ τ2 ⇒ τ3 meansτ1 ⇒ (τ2 ⇒ τ3).
[τ1, τ2, ..., τn] ⇒ τ is abbreviation ofτ1 ⇒ τ2 ⇒ ... ⇒ τn ⇒ τ. Its update is
f (x := y) where f :: ′a⇒ ′b, x with type ′a andy with type ′b.

• partial function— defined by′a⇒ ′b option. Nonerepresents undefinedness,
f x=⌊x⌋means thatx is mapped toy. The domain off is defineddom f ≡ {a | f x ,
None}. We write ′a⇀ ′b instead of′a⇒ ′b option. emptyis defined byλx.None.
Its updates isf (x := ⌊y⌋). We abbraviatef (x := ⌊y⌋) to f (x 7→ y). Such functions
are called maps. The infix operator++ overwrites mapm1 with m2.
i.e.m1 ++ m2 ≡ λx. case m2 x o f None⇒ m1 x | ⌊y⌋ ⇒ ⌊y⌋

• Inductive definitions— a method to define a function. In fact, a function from set
A to setB is defined by a relation setC ⊆ A× B when setC satisfies some proper-
ties. Many datatype are inductive defined. A structural oprational semantics [6] is
inductive definition of an evaluation relation. The inductive definitions [1] specifies
the least setR closed under given collection rules. Applying a rule to elements of
R yields a result withinR. Milner [12] implemented one of the first inductive defi-
nitions. Isabelle provides commands for formalizing inductive definitions. Paulson
[15] proved a fixedpoint with inductive definitions in Isabelle. Klein and Nipkow
[7] inductively defined Jinja semantics and proved correctness of Jinja compiler.
We mainly present HW-Hume semantics with inductive definitions.

type variables: denoted by′a, ′b etc. Like SML, they give rise to polymorphis types.

inference rule: A1 =⇒ A2 =⇒ A3 meansA1 =⇒ (A2 =⇒ A3).
~A1; A2; ...; An� =⇒ A is abbreviation ofA1 =⇒ (A2 =⇒ (... =⇒ (An =⇒ A)...)).
It means “IfA1 andA2 and ... andAn thenA”.
i.e. inference rule

A1 A2 ... An

A

4 HW-Hume Semantics in Isabelle

4.1 HW-Hume Abstract Syntax in Isabelle

Figure 3 shows the abstract syntax of HW-Hume in Isabelle. After precompilation, all
constid in const declarations are replaced by their values,and all typeid in type decla-
rations are replaced by their types. The program execution is independent of the order
of box and wire declarations. So we define a HW-Hume program as

“ types HProg= HBox list× HWire list”
“HInit list” is initial values. A box comprises a boxid, a series of inputs, a series of
outputs and a series of matches. Hence we define a box as

“ types HBox= BName× HIO list × HIO list × HMatch list”
The firstHIO list is for input and the second is for output.

4.2 HW-Hume States

Figure 4 shows the definition of the HW-Hume states — dynamic environment. Each
box in a HW-Hume program has its own input and output. We definehLocation =
INOUT × BName× LName) to denote them. The states is a map from hLocation to
value. At the end of each cycle, a HW-Hume program checks the wire of each box’s

types BName= string -- "names for box"

types LName= string -- "names for io (link)"

types VName= string -- "names for variable"

datatype HP = I | W | WI -- "ignore,wild,wild ignore."

| HPInt int -- "nat value"

| HPVar VName -- "variable"

| HPPair HP HP -- "pair"

datatype HE = I -- "ignore"

| HEInt int -- "int value"

| HEVar VName -- "variable"

| HEPair HE HE -- "pair"

datatype HV = HVInt int -- "int value"

| HVPair HV HV -- "pair"

datatype HT = Z -- "nat"

| HTPair HT HT -- "pair"

types HIO = LName× HT
types HMatch= HP× HE
types HBox = BName× HIO list × HIO list × HMatch list
types HWire = (BName× LName) × (BName× LName)
types HProg = HBox list× HWire list
types HInit = BName× LName× HV

Fig. 3. HW-Hume Abstract Syntax

output and try to transfer their values to some box’s input. If there is an output which
cannot be transferred into a box, that box is blocked. Conversely, if an output is still
mapped to a value, that box is blocked. We define a functionBnoEmptyto check if
a box is blocked or not. The functionInit hStetesets the initial states. The function
UpdateSupdates state by transferring each box’s output which can betransferred to its
target.

4.3 HW-Hume Big Step Semantics

We next present the HW-Hume big step semantics in inductive definitions judgement
form.

Cycles is the top-step of running a Hume program. Its goal is to run all boxesN
times in repeated cycles. When all cycles finish, the programhalts. The global states
(hState) identify the program states.

We useRCdefined in Figure 4 as a running result. The possible results of RunCare
error (Cer hErr) or success. When success, the result isCs hState.

We inductively defineRunCas well. TheRunC Bis the least relation set closed
under given rules below.

We define theRunCjudgement formP ⊢c 〈n, s〉 ⇒ 〈rc〉. This is an abbreviation of
(n, s, rc) ∈ RunC P. TheP has typeHProg; n has typehCNum; rc has typeRC.

We defineCycleinduction rules below.

Global State:
datatype INOUT = LI | LO
types hLocation = INOUT × BName× LName
types hState = hLocation⇀ HV
Local State:
datatype hErr = MPVer | MIPer | EEer | MOEer
types hVar = VName⇀ HV
types hCNum = nat
Running Result States
datatype RC = Cer hErr | Cs hState Run Cycles (RunC)
datatype RB = Ber hErr | Bs hState Run Box and Boxes (RunB, RunBL)
datatype RM = Mer hErr | Ms hState Run Match (RunM)
datatype MIP = IPer hErr | IPf | IPs hState× hVar Match in to pattrn (MatchIP)
datatype MPV = PVer hErr | PVf | PVs hVar Match pattrn to value (MatchPV)
datatype EE = Eer hErr | Es HE Evalate expression (EvalE)
datatype MOE = OEer hErr | OEs hState Match out to expression (MatchOE)

Fig. 4. HW-Hume State

• C0 s — Running a program 0 time, i.e. 0 cycle.s is not changed.

n = 0
P ⊢c 〈n, s〉 ⇒ 〈Cs s〉

• C1 e — CallingRunBLerror, so running a program 1 cycle error.

n = 1 ⊢bl 〈P2BL P, s〉 ⇒ 〈Ber er〉
P ⊢c 〈n, s〉 ⇒ 〈Cer er〉

• C1 s — CallingRunBLsuccess, running a program 1 cycle success.

n = 1 ⊢bl 〈P2BL P, s〉 ⇒ 〈Bs s′〉 s′′ = U pdateS s′ P
P ⊢c 〈n, s〉 ⇒ 〈Cs s′′〉

• C R e — More than one cycle, recursive, the first cycle error.

n > 1 P ⊢c 〈1, s〉 ⇒ 〈Cer er〉
P ⊢c 〈n, s〉 ⇒ 〈Cer er〉

• C R — More than one cycle, recursive, the first cycle is success.Result depends on
remaining cycles.

n > 1 P ⊢c 〈1, s〉 ⇒ 〈Cs s′〉 n′ = n− 1 P ⊢c 〈n′, s′〉 ⇒ 〈rc〉

P ⊢c 〈n, s〉 ⇒ 〈rc〉

We show below the result theorems:
theorem EvalE Result: bn, s, lv ⊢e 〈e〉 ⇒ 〈ee〉 =⇒

(ee= Eer EEer) ∨ (∃es.(ee= Es es) ∧ (HEhasVar es= False))

consts RunC :: HProg⇒ (hCNum× hState× RC) set
syntax RunC:: HProg⇒ hCNum⇒ hState⇒ RC⇒ bool

(⊢c 〈 , 〉 ⇒ 〈 〉 [0,0, 0,0] 81)
translations P ⊢c 〈n, s〉 ⇒ 〈rc〉 ⇋ (n, s, rc) ∈ RunC P
consts RunBL :: (HBox list × hState× RB) set
syntax RunBL:: HBox list ⇒ hState⇒ RB ⇒ bool

(⊢bl 〈 , 〉 ⇒ 〈 〉 [0, 0,0] 81)
translations ⊢bl 〈bl, s〉 ⇒ 〈rb〉 ⇋ (bl, s, rb) ∈ RunBL
consts RunB :: HBox⇒ (hState× RB) set
syntax RunB:: HBox⇒ hState⇒ RB⇒ bool

(⊢b 〈 〉 ⇒ 〈 〉 [0,0, 0] 81)
translations B ⊢b 〈s〉 ⇒ 〈rb〉 ⇋ (s, rb) ∈ RunB B
consts RunM :: BName⇒ LName list⇒ LName list⇒

(HMatch list × hState× RM) set
syntax RunM :: BName⇒ LName list⇒ LName list⇒

HMatch list⇒ hState⇒ RM⇒ bool
(, , ⊢m 〈 , 〉 ⇒ 〈 〉 [0,0,0, 0,0, 0] 81)

translations bn, ilnl ,olnl ⊢m 〈ml, s〉 ⇒ 〈rm〉 ⇋ (ml, s, rm) ∈ RunM bn ilnl olnl
consts MatchIP :: BName⇒

(LNname list× HP× hState× hVar×MIP) set
syntax MatchIP :: BName⇒

(LNname list⇒ HP⇒ hState⇒ hVar⇒ MIP⇒ boot
(⊢i−p 〈 , , , 〉 ⇒ 〈 〉 [0, 0,0, 0,0, 0] 81)

translations bn ⊢i−p 〈ilnl ,p, s, lv〉 ⇒ 〈mip〉 ⇋ (ilnl ,p, s, lv,mip) ∈ MatchIP bn
consts MatchPV :: (HP× HV× hVar×MPV) set
syntax MatchPV :: HP⇒ HV⇒ hVar⇒ MPV⇒ bool

(⊢p−v 〈 , , 〉 ⇒ 〈 〉 [0,0,0, 0] 81)
translations ⊢p−v 〈p, v, lv〉 ⇒ 〈mpv〉 ⇋ (p, v, lv,mpv) ∈ MatchPV
consts EvalE :: BName⇒ hState⇒ hVar⇒ (HE× EE) set
syntax EvalE :: BName⇒ hState⇒ hVar⇒ HE⇒ EE⇒ bool

(, , ⊢e 〈 〉 ⇒ 〈 〉 [0, 0,0, 0,0] 81)
translations bn, s, lv ⊢e 〈e〉 ⇒ 〈ee〉 ⇋ (e, ee) ∈ EvalE bn s lv
consts MatchOE :: BName⇒ (LName list× HE× hState×MOE) set
syntax MatchOE:: BName⇒ (LName list× HE× hState×MOE⇒ bool

(⊢o−e 〈 , , 〉 ⇒ 〈 〉 [0,0, 0,0, 0] 81)
translations bn ⊢o−e 〈olnl,e, s〉 ⇒ 〈moe〉 ⇋ (olnl,e, s,moe) ∈ MatchOE bn

Fig. 5. Inductive Definitions and Judgement Forms

Given a box namebn, global statesand local statelv, an expressione will evaluate
to eeprovided eithereeis error or there is some final success expressioneswhich has
no free variables.
theorem MatchOE Result: bn ⊢o−e 〈olnl, e, s〉 ⇒ 〈moe〉 =⇒

(moe= OEer MOEer) ∨ (∃oes.(moe= OEs oes))
Given a box namebn, then the associated output listolnl, expressione and global

statesand evaluates tomoesuch that eithermoeis error or there is some success global
stateoescorresponding to it.
theorem MatchPV Result: ⊢p−v 〈p, v, lv〉 ⇒ 〈mpv〉 =⇒

(mpv= PVer MPVer) ∨ (mpv= PVf) ∨ (∃lv′.(mpv= PVs lv′))
The patternp, valuev and local statelvs evaluates tompvwhich is either error or

Match Fail or success local statelv′.
The other theorems below are similar.

theorem MatchIP Result: bn ⊢i−p 〈ilnl , p, s, lv〉 ⇒ 〈mip〉 =⇒
(mip= IPer MPVer) ∨ (mip= IPer MIPer) ∨ (mip= IPf) ∨ (∃ips.(mip= IPs ips))

theorem RunM Result: bn, ilnl , olnl ⊢m 〈ml, s〉 ⇒ 〈m〉 =⇒ (∃pls.(m= Ms pls))∨
(m= Mer MPVer) ∨ (m= Mer MIPer) ∨ (m= Mer EEer) ∨ (m= Mer MOEer)

theorem RunB Result: B ⊢b 〈s〉 ⇒ 〈rb〉 =⇒ (∃bs.(rb = Bs bs))∨
(rb = Ber MPVer) ∨ rb = Ber MIPer) ∨ rb = Ber EEer) ∨ rb = Ber MOEer)

theorem RunBL Result: ⊢bl 〈bls〉 ⇒ 〈rb〉 =⇒ (∃bs.(rb = Bs bs))∨
(rb = Ber MPVer) ∨ rb = Ber MIPer) ∨ rb = Ber EEer) ∨ rb = Ber MOEer)

theorem RunC Result: P ⊢c 〈n, s〉 ⇒ 〈rc〉 =⇒ (∃s′.(rc = Cs s′))∨
(rc = Cer MPVer) ∨ rc = Cer MIPer) ∨ rc = Cer EEer) ∨ rc = Cer MOEer)

5 Proving HW-Hume Program Correctness

Now, we prove two HW-Hume programs correct from the HW-Hume semantics in Is-
abelle.

5.1 Proving Swap

The first example is “Swap” which is very simple. There is only one box and one wire.
The box Swap’s out(“o”) is a link to its in(“i”). The “Swap.o” and “Swap.i” are tuples.
The matching rule “(x,y) -> (y,x)” will swap the values of “Swap.i”. Figure 6 depicts
the following code:

box Swap

in (i::(Bit,Bit))

out (o::(Bit,Bit))

match

(x,y) -> (y,x);

wire Swap

(Swap.o initially (0,1))

(Swap.i);

o

swap

(x,y) −> (y,x)

i

Fig. 6. Swap

With our HW-Hume abstract syntax in Isabelle, this program is presented as:

constdefs Swap P :: HProg
Swap P ≡
(

[(∗ Box ∗)
(
′ ′Swap′ ′,
[(′ ′i ′ ′, (Z,Z)t)], (∗ in ∗)
[(′ ′o ′ ′, (Z,Z)t)], (∗ out ∗)
[
((′ ′x ′ ′pv,

′ ′y ′ ′pv)p, (′ ′y ′ ′ev,
′ ′x ′ ′ev)e)

]
)

],
[(∗ Wire ∗)

((′ ′Swap′ ′, ′ ′o ′ ′), (′ ′Swap′ ′, ′ ′i ′ ′))
],

)
constdefs Swap Init :: HInit list
Swap Init ≡
(

[(∗ Init ∗)
((′ ′Swap′ ′, ′ ′i ′ ′, (0v, 1v)v)

]
)

After initialisation, “Swap.i” has value “(0,1)”. After running box “Swap” once,
“Swap.o” got value “(1,0)”. Then, at the end of the cycle, it will be transfered to
“Swap.i”. So before the second cycle, “Swap.i” has value “(1,0)”. Before the third cycle,
“Swap.i” has value “(0,1)”, and so on.

In Isabelle, the global states of HW-Hume is defined ashState= hLocation⇀ HV.
We can get the initial state by applying functionInit hStateto Swap Init. We define

two states:
constdefs Swap S0:: hState

Swap S0≡ empty((LI, ′ ′Swap′ ′, ′ ′i ′ ′) 7→ (0v, 1v)v)
constdefs Swap S1:: hState

Swap S1≡ empty((LI, ′ ′Swap′ ′, ′ ′i ′ ′) 7→ (1v, 0v)v)
Simply, we have a lemma:

lemma SwapInit: Init hState SwapInit = Swap S0
i.e.Swap S0equals the initial state.

With our inductive defined HW-Hume semantics in Isabelle, weprove below lem-
mas by recursively calling inductive rules.

lemma Swap S0 Cycle 0 : Swap P ⊢c 〈0,Swap S0〉 ⇒ 〈Cs SwapS0〉
lemma Swap S1 Cycle 0 : Swap P ⊢c 〈0,Swap S1〉 ⇒ 〈Cs SwapS1〉

For cycle 0 with stateS wapS0 orS wapS1, the result is success with that state.
The other lemmas are similar.

lemma Swap S0 Cycle 1 : Swap P ⊢c 〈1,Swap S0〉 ⇒ 〈Cs SwapS1〉
lemma Swap S1 Cycle 1 : Swap P ⊢c 〈1,Swap S1〉 ⇒ 〈Cs SwapS0〉
lemma Swap S0 Cycle 2 : Swap P ⊢c 〈2,Swap S0〉 ⇒ 〈Cs SwapS0〉
lemma Swap S1 Cycle 2 : Swap P ⊢c 〈2,Swap S1〉 ⇒ 〈Cs SwapS1〉

Finally, we have a theorem:
theorem Swap Cycles:

Swap P ⊢c 〈2 ∗ n, Init hState SwapInit〉 ⇒ 〈Cs SwapS0〉
Swap P ⊢c 〈2 ∗ n+ 1, Init hState SwapInit〉 ⇒ 〈Cs SwapS1〉
Based on theoremSwap Cycles, when we runSwap2∗n times, “Swap.i” has value

“(0,1)”; when we runSwap2 ∗ n+ 1 times, “Swap.i” has value “(1,0)”.

5.2 Proving Adder

The second example is “Adder”. There are three boxes and four wires. The box “gen”
outputs from “(0,0,0)” to “(1,1,1)” in each cycle repetitively. This output (“gen.t”) is
linked to the in of box “adder”. Matching rules of the box “adder” calculate full bit
addition of “adder.i” by truth table. The result “adder.o” will be transfered to box “out-
put”. In the original version, the “output” is standard output. Because we cannot at
present accommodate I/O in our semantics in Isabelle, we simulate standard output by
box “output.

In each cycle, “gen.t” is a value from “(0,0,0)” to “(1,1,1)”. At the end of a cycle,
the value is transferred to “adder.i”. On the next cycle, the full bit addition is stored in
“adder.o”. At the end of the cycle, the value is transferred to “output.i”. Then in the
third cycle, the box “output” throws it away. Figure 7 depicts the following code:

box gen

in (i::(Bit,Bit,Bit))

out (o::(Bit,Bit,Bit), t::(Bit,Bit,Bit))

match

(0,0,0) -> ((0,0,1),(0,0,0)) |

(0,0,1) -> ((0,1,0),(0,1,0)) |

(0,1,0) -> ((0,1,1),(1,0,0)) |

(0,1,1) -> ((1,0,0),(1,1,0)) |

(1,0,0) -> ((1,0,1),(0,0,1)) |

(1,0,1) -> ((1,1,0),(0,1,1)) |

(1,1,0) -> ((1,1,1),(1,0,1)) |

(1,1,1) -> ((0,0,0),(1,1,1));

box adder

in (i::(Bit,Bit,Bit))

out (o::(Bit,Bit))

match

(0,0,0) -> (0,0) |

(0,1,0) -> (1,0) |

(1,0,0) -> (1,0) |

(1,1,0) -> (0,1) |

(0,0,1) -> (1,0) |

(0,1,1) -> (0,1) |

(1,0,1) -> (0,1) |

(1,1,1) -> (1,1) ;

box output

in (i::Bit, eat::(Bit,Bit))

out (o::Bit)

match

(*,eat) -> (*);

wire gen (gen.o initially (0,0,0)) (gen.i, adder.i trace);

wire adder (gen.t) (output.eat trace);

wire output (output.o, adder.o) (output.i);

With our HW-Hume abstract syntax in Isabelle, this program is presented as:
constdefs Adder P :: HProg
Adder P ≡

(
[(∗ Box ∗)

(
′ ′gen′ ′,
[(′ ′i ′ ′, (Z,Z,Z)t)], (∗ in ∗)
[(′ ′o ′ ′, (Z,Z,Z)t), (′ ′t ′ ′, (Z,Z,Z)t)], (∗ out ∗)
[

((0p, 0p, 0p)p, ((0e, 0e, 1e)e, (0e, 0e, 0e)e)e),
...

((1p, 1p, 1p)p, ((0e, 0e, 0e)e, (1e, 1e, 1e)e)e)
]

(*, eat) −> (*)

gen

(i) −> (o, t)

adder

output

(i) −> (o)

Fig. 7. Adder

),
(
′ ′adder′ ′,
[(′ ′i ′ ′, (Z,Z,Z)t)], (∗ in ∗)
[(′ ′o ′ ′, (Z,Z)t)], (∗ out ∗)
[

((0p, 0p, 0p)p, (0e, 0e)e),
...

((1p, 0p, 0p)p, (1e, 0e)e),
...

]
),
(
′ ′output′ ′,
[(′ ′i ′ ′, Z), (′ ′eat′ ′, (Z,Z)t)], (∗ in ∗)
[(′ ′o ′ ′, Z)], (∗ out ∗)
[

((HP.I, ′ ′eat′ ′pv)p, HE.I)
]

)
],
[(∗ Wire ∗)

((′ ′gen′ ′, ′ ′o ′ ′), (′ ′gen′ ′, ′ ′i ′ ′)),
((′ ′gen′ ′, ′ ′t ′ ′), (′ ′adder′ ′, ′ ′i ′ ′)),
((′ ′adder′ ′, ′ ′o ′ ′), (′ ′output′ ′, ′ ′eat′ ′)),
((′ ′output′ ′, ′ ′o ′ ′), (′ ′output′ ′, ′ ′i ′ ′))

],
)
constdefs Adder Init :: HInit list
Adder Init ≡
(

[(∗ Init ∗)
((′ ′gen′ ′,′ ′i ′ ′, (0v, 0v, 0v)v)

]
)

We define global states ofAdderin Isabelle as:
constdefs Adder S0′ :: hState

Adder S0′ ≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v

)

We define stateAdder S0′ as a mapping from linkgen.i to the value (0, 0, 0).

constdefs Adder S0:: hState

Adder S0≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (1v, 1v, 1v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (0v, 1v)v

)

Stateadder S0 maps linkgen.i to (0, 0, 0), adder.i to (1, 1, 1) andoutput.eat to
(0,1).

Other state definitions are similar.
constdefs Adder S1′ :: hState
Adder S1′ ≡ empty(

(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v

)
constdefs Adder S1:: hState

Adder S1≡ empty(
(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (0v, 0v, 0v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (1v, 1v)v

)
...

constdefs Adder S7:: hState
Adder S7≡ empty(

(LI, ′ ′gen′ ′, ′ ′i ′ ′) 7→ (1v, 1v, 1v)v,

(LI, ′ ′adder′ ′, ′ ′i ′ ′) 7→ (1v, 0v, 1v)v,

(LI, ′ ′output′ ′, ′ ′eat′ ′) 7→ (0v, 1v)v

)
With our inductively defined HW-Hume semantics in Isabelle,we prove the follow-

ing lemmas by recursively calling inductive rules.
lemma AdderInit : Init hState AdderInit = Adder S0′

lemma Adder S0′ Cycle 1 : Adder P ⊢c 〈1,Adder S0′〉 ⇒ 〈Cs AdderS1′〉
lemma Adder S1′ Cycle 1 : Adder P ⊢c 〈1,Adder S1′〉 ⇒ 〈Cs AdderS2〉
...

lemma Adder S6 Cycle 1 : Adder P ⊢c 〈1,Adder S6〉 ⇒ 〈Cs AdderS7〉
lemma Adder S7 Cycle 1 : Adder P ⊢c 〈1,Adder S7〉 ⇒ 〈Cs AdderS0〉

Finally, we have a theorem:
theorem Adder Cycles:

Adder P ⊢c 〈0, Init hState AdderInit〉 ⇒ 〈Cs AdderS0′〉
Adder P ⊢c 〈1, Init hState AdderInit〉 ⇒ 〈Cs AdderS1′〉
Adder P ⊢c 〈0+ 8 ∗ (n+ 1), Init hState AdderInit〉 ⇒ 〈Cs AdderS0〉
Adder P ⊢c 〈1+ 8 ∗ (n+ 1), Init hState AdderInit〉 ⇒ 〈Cs AdderS1〉
Adder P ⊢c 〈2+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS2〉
Adder P ⊢c 〈3+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS3〉
Adder P ⊢c 〈4+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS4〉
Adder P ⊢c 〈5+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS5〉
Adder P ⊢c 〈6+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS6〉
Adder P ⊢c 〈7+ 8 ∗ n, Init hState AdderInit〉 ⇒ 〈Cs AdderS7〉

This set of thereoms characterises the number of cycles fromthe initial state to eval-
uate the program characterised by the abstract syntaxAdder Init to reach the different
possible result states.

6 Results

We have carried out the above proofs using Isabelle on a Pentium 4 based PC running
Linux Red Hat 8, with 1GB of RAM and a 1.6GH CPU. Table 6 shows the size of the
proofs and the time taken.

Swap Adder
Boxes 1 3
Wires 1 4
States 2 11
Match Rules 1 17
Proof Size (lines) 200 2000
Run Time (secs) 10 1020

Fig. 8. Isabell proofs.

From these initial results, we observe that the proof sizes and times appear to rise
very rapidly with increases in the size of programs. This is unsurprising: at present we
are essentially performing naive proofs for all possible transition sequences.

7 Conclusions

We have presented the embedding of HW-Hume in Isabelle and the proof of correctness
of two programs. While we have demonstrated that our approach is promising, initial re-
sults suggest that we must explore more abstract tactics to make mechanical correctness
proof useable for realistic Hume programs composed from many multi-state/multi-wire
boxes,

The work discussed here is central to our longer term goal of averified compiler
from HW-Hume to Java. We recently decided to adopt Jinja as the target language, to en-
able an integrated approach in Isabelle. We have also modified our original HW-Hume
to Java compiler to generate Jinja, and are currently formalising the translation from
HW-Hume to Jinja. Time permitting, the next stages would be to embed this formalisa-
tion in Isabelle and to explore automatic support for proof that compilation maintains
semantic consistency.

Acknowlegements

This research is partly supported by EU FP6 EmBounded. We would like to thank our
colleagues in the wider Hume project for valuable discussion.

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,Handbook of Math-
ematical Logic, pages 739–782. North-Holland, Amsterdam, 1977.

2. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

3. P. Curzon. Compiler correctness and input/output. Technical report, Computer Laboratory,
University of Cambridge, November 1992.

4. P. Curzon. The Verified Compilation of Vista Programs. Technical report, Computer Labo-
ratory, University of Cambridge, January 1994.

5. M. J. C. Gordon and T. F. Melham, editors.Introduction to HOL: a theorem proving envi-
ronment for higher order logic. Cambridge University Press, New York, NY, USA, 1993.

6. Matthew Hennessy.The semantics of programming languages: an elementary introduction
using structural operational semantics. John Wiley & Sons, Inc., New York, NY, USA, 1990.

7. Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like language, virtual
machine, and compiler.ACM Trans. Program. Lang. Syst., 28(4):619–695, 2006.

8. C. Liu and G. Michaelson. Translating Hume to Java. In H-W.Loidl, editor, Draft Pro-
ceedings of 5th Symposium on Trends in Functional Programming, Ludwig-Maximillian’s
Universitat, Munich, Germany, pages 113–128, November 2004.

9. J. McCarthy and J. Painter. Correctness of a compiler for Arithmetic Expressions. In J. T.
Schwarz, editor,Proceedings of Symposium in Applied Mathematics, 19, Mathematical As-
pects of Computer Science. American Mathematical Society, 1967.

10. G. Michaelson and Kevin Hammond. The Hume Language Definition and Report, Version
0.3. Technical report, Heriot-Watt University and University of St Andrews, 2004.

11. Greg Michaelson, Kevin Hammond, and Jocelyn Sérot. FSM-Hume is finite state. In Stephen
Gilmore, editor,Trends in Functional Programming, Volume 4, volume 4 ofTrends in Func-
tional Programming, pages 19–28. Intellect, 2005.

12. Robin Milner.How to Derive Inductions in LCF. Edinburgh University Press, U.K., 1980.
13. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.Isabelle/HOL – A

Proof Assistant for Higher Order Logic, volume 2283 of LNCS. Springer, 2002.
http://www.in.tum.de/˜nipkow/LNCS2283.

14. J. Palsberg. A provably correct compiler generator. InProceedings, ESOP ’92, 4th European
Symposium on Programming, Rennes, France, February 1992.

15. Lawrence C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions.
In Proof, language, and interaction: essays in honour of RobinMilner, pages 187–211. MIT
Press, Cambridge, MA, USA, 2000.

16. SRI-Formalware.The PVS Specification and Verification System. SRI International Com-
puter Science Laboratory, 2006.http://pvs.csl.sri.com/.

17. Susan Stepney.High Integrity Compilation: A Case Study. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1993.

18. D. W. J. Stringer-Calvert.Mechanical Verification of Compiler Correctness. PhD thesis,
University of York, March 1998.

