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Abstract. Wegner and Eberbach[16] have argued that there are funda-
mental limitations to Turing Machines as a foundation of computability
and that these can be overcome by so-called superTuring models. In this
paper we contest their claims for interaction machines and the wcalculus.

1 Introduction

The Turing machine (TM) [1] has been the dominant paradigm for Computer
Science for 70 years: Ekdahl[12] likens an attack on it to a “challenge to the
second law of thermodynamics”.

The roots of Turing’s work lie in debates about the notion of computability
in the pre-computer age[10]. Just before the Second World War, in an outstand-
ing period of serendipity, Turing, Church and Kleene all developed independent
notions of computability which were quickly demonstrated to be formally equiv-
alent. These seminal results form the basis for the Church-Turing Thesis that
all notions of computability will be equivalent. Until now, the Church-Turing
Thesis has remained unshaken.

A central concern of these pre-computer Mathematical Logicians was to for-
malise precisely the concept of effective computation. For Church, this is a mat-
ter of definition, explicitly identifying effective calculability with recursive or
lambda-definable functions over the positive integers. Church[5] states that:

If this interpretation or some similar one is not allowed it is difficult to
see how the notion of an algorithm can be given any exact meaning at
all.(p356)

Turing subsequently outlined a proof of the equivalence of his notion of “com-
putability” with Church’s “effective calculability”.

A fundamental distinction of Turing’s approach is that he identifies a human-
independent mechanism to embody his procedure, by explicit analogy with a
human being:

We may compare a man in the process of computing a real number
to a machine which is only capable of a finite number of conditions...
([1]Section 1).



In a 1939 paper discussing the unity of these different approaches, Turing is
explicit about the mechanical nature of effective calculation:

A function is said to be “effectively calculable” if its values can be found
by some purely mechanical process ... We may take this statement lit-
erally, understanding by a purely mechanical process one which may
be carried out by a machine. It is possible to give a mathematical de-

scription, in a certain normal form, of the structures of these machines.
([2]p166).

In a late paper he makes the same point with reference to digital computers:

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done
by a human computer. ([3]Section 4).

For Church and Kleene the presence of a human mathematician that applies
the rules seems to be implicit, but the ability to give an explicit procedure for
applying rules to symbols and to physically realise these procedures, was central
to all three conceptions of effectiveness. The corollary is that a computation
which is not physically realisable is not effective.

2 Wegner and Eberbach’s SuperTuring Computers

There has been robust debate in Mathematics, Philosophy, Physics and, latterly,
Computer Science about the possible of hypercomputation which seeks to tran-
scend the limits of classic computability. Copeland [6] and Cotogno[8] provide
useful summaries.

Thus, Wegner and Eberbach[16] assert that the fundamental limitations to
the paradigmatic conception of computation can be overcome by more recent
“superTuring” approaches. They draw heavily on the idea of an algorithm as
an essentially closed activity. That is, while the TM realising an algorithm may
manipulate an unbounded memory, the initial memory configuration is pre-given
and may only be changed by the action of the machine itself. Furthermore,
an effective computation may only consume a finite amount of the unbounded
memory and of time, the implication being that an algorithm must terminate to
be effective.

They say that the TM model is too weak to describe the Internet, evolution or
robotics. For the Internet, web clients initiate interactions with servers without
any knowledge of the server history.

Wegner and Eberbach claim that there is a class of superTuring computations
(sTC) which are a superset of TM computations. That is sTC includes computa-
tions which are not realisable by a TM. A superTuring computer is “any system
or device which can carry out superTuring computation”. They give discursive
presentations of interaction machines (IM), the m-calculus and the $-calculus,
and explore why they transcend the TM. here, we do not consider the $-calculus
as its sTC properties appear to depend on those alleged for interaction machines
and 7-calculus.



3 How might the TM paradigm be displaced?

In general, a demonstration that a new system is more powerful than a C-
T system involves showing that while all terms of some C-T system can be
reduced to terms of the new system, there are terms of the new system which
cannot, be reduced to terms of that C-T systemMore concretely, we think that
requirements for a new system to conclusively transcend C-T are, in increasing
order of strength:

1. demonstration that some problem known to be semi-decidable in a C-T
system is decidable in the new system;

2. demonstration that some problem known to be undecidable in a C-T system
is semi-decidable in the new system;

3. demonstration that some problem known to be undecidable in a C-T system
is decidable in the new system;

4. characterisations of classes of problems corresponding to 1-3;

5. canonical exemplars for classes of problems corresponding to 1-3.

Above all, we require that the new system actually encompasses effective
computation; that is, that it can be physically realised in some concrete ma-
chine. While we are not unduly troubled by systems that require potentially
unbounded resources such as an unlimited TM tape, we reject systems whose
material realisations conflict with the laws of physics, or which require actualised
infinities as steps in the calculation process.

4 Physical Realism and Computation

A key point about the Universal Computers proposed by Turing is that they
are material apparatuses which operate by finite means. Turing assumes that
the computable numbers are those that are computable by finite machines, and
initially justifies this only by saying that the memory of a human computer is
necessarily limited.

Turing is careful to construct his machine descriptions in such a way as to
ensure that the machine operates entirely by finite means and uses no techniques
that are physically implausible. His basic proposition remained that :”com-
putable numbers may be described briefly as the real numbers whose expressions
as a decimal are calculable by finite means.”

Turing rules out computation by infinite means as a serious proposition.
Most proposals for superTuring computation rest on the appeal of the infinite.
Copeland[6] proposes the idea of accelerating Turing machines whose operation
rate increases exponentially so that if the first operation were performed in a
microsecond, the next would be done in %,us, the third in %us, etc. The result
would be that within a finite interval it would be able to perform an infinite
number of steps. This evades all possibility of physical realisation. A comput-
ing machine must transfer information between its component parts in order to
perform an operation. If the time for each operation is repeatedly halved. then



one soon reaches the point at which signals traveling at the speed of light have
insufficient time to propagate from one part to another within an operation step.
Hamkins[14] discusses what could be computed on Turing machines if they were
allowed to operate for an infinite time. He hypothesises a relativistic experiment
in which a researcher moving near the speed of light experiences a finite duration
whilst back on Earth his graduate student has an infinite duration to solve a
problem. Hamkins fails to suggest which immortal graduate student he has in
mind for this task. Another theme of those advocating Super-Turing computa-
tion is the use of analogue computation over real numbers. For a review see [7].
The idea of being able to physically represent real numbers is highly questionable
in view of the quantum of action h. This poses fundamental and finite limits on
the accuracy with which a physical system can approximate real numbers.
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Fig. 1. An analogue representation of a real number using a physical version of the
real number line.

Suppose we want to use analogue encoding real numbers as spatial separation,
as shown in Figure 1,to encode a real number z that could be used by some Super
Turing analogue computational process. We first set up the the distance z and
then measure it during the process of the computation.This raises two questions:

1. How precisely can we, in principle at least, measure the distance z?
2. How stable is such an analogue memory. For long can it store the information.

Because of Heisenberg’s equation
h
ApAx = —
Pz 4

there is a tradeoff between the accuracy to which x can be represented as dis-
tance and the period for which z can be stored. If the mass of the slider is m
the uncertainty in its velocity is given by Av = m. This implies that the
persistence time of the analogue store T}, is constrained such that
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It is clear that for a practical device, T}, must be chosen exceed the time taken to
measure the distance x. This in turn, must be greater than 2%, since any distance

Tp



measurement will involve at least one reflection off the slider. If T, < 2£ then
the computer would be unable to read the real. We thus have the constraint

22  4drmAz?

c h
which implies
2
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4mme

For a 1 kilo slider adjustable over a range of 1 meter which allows the represen-
tation of reals in the range 0..1 as z + Az, we find that Az > 5.93 x 10~2?meters.
This corresponds to a real number stored with about 70 bits of precision.

To add an additional bit of precision to our real number we would have to
quadruple the mass of the slider. The analogue encoding of the reals requires a
mass which grows with Oe?® where b is the number of bits of precision to which
the reals are stored. For a Turing Machine the mass required grows linearly with
the number of bits. Thus proposals to incorporate the full mathematical abstrac-
tion of real numbers into computing devices so as to allow them to outperform
Turing machines are physically implausible.

5 Interaction Machines

Wegner and Eberbach claim that a Turing Machine is restricted by having to
have all its inputs appear on the tape prior to the start of computation. Inter-
action machines on the contrary can perform input output operations to the
environment in which they are situated. Interaction Machines, whose canonical
model is the Persistent Turing Machine(PTM) of Goldin [9], are not limited to
a pre-given finite input tape, but can handle potentially infinite input streams.
These arguments have been thoroughly criticised by Ekdahl[12]. Rather than
rehearse his arguments we shall focus on additional weaknesses of Wegner and
Eberbach’s claims.

5.1 Turing’s own views

Turing’s Test for machine intelligence is probably as well known as his original
proposal for the Universal Computer. He proposed in a very readable paper|[3],
that a computer could be considered intelligent if it could fool a human observer
into thinking they were interacting with another human being. It is clear that
his putative intelligent machine would be an Interaction Machine in Wegner’s
sense. Rather than being cut off from the environment and working on a fixed
tape, it receives typed input and sends printed output to a person.

Turing did notfind it necessary to introduce a fundamental new class of com-
puting machine for this gedanken experiment. He describes the machine using
what is a paraphrase (Turing 1950, page 436) of his description of the computing
machine in his 1936 paper. It is clear that Turing is talking about the same gen-
eral category of machine in 1950 as he had in 1936. He says he is concerned with



discrete state machines, and that a special property of such digital computers
was their universality:

This special property of digital computers, that they can mimic any
discrete state machine, is described by saying that they are universal
machines. The existence of machines with this property has the impor-
tant consequence that, considerations of speed apart, it is unnecessary
to design various new machines to do various computing processes. They
can all be done with one digital computer, suitably programmed for each
case. It will be seen that as a consequence of this all digital computers
are in a sense equivalent.( Turing 1950, page 442)

This is clearly a recapitulation of the argument in section 6 of his 1936 paper
where he introduced the idea of the Universal Computer. Turing argued that
such machines were capable of learning and that with a suitable small generalised
learning program and enough teaching, then the computer would attain artificial
intelligence.

5.2 Equivalence of Interaction Machines and Turing Machines

Consider first a digital computer interacting in the manner forseen by Turing in
his 1950 paper, with teletype input/output. Suppose then we have a computer
initialised with a simple learning program following which it is acquires more
sophisticated behaviour as a result of being ’taught’. As the computer is taught
we record every keystroke onto paper tape.

We initialise a second identical computer with the same program’ and at the
end of the first computer’s working life we give to the second machine as an input,
the tape on which we have recorded the all the data fed to the first machine.
With the input channel of the second machine connected to the tape reader it
then evolves through the same set of states and produce the same outputs as the
original machine did. The difference between interactive input from a teletype
and tape inputis essentially trivial.

A small modification to the program of a conventional TM will transform it
into a PTM. Like Goldin we will assume a 3 tape TM, M; with one tape T}
purely for input, one tape T» purely for output and one tape T3 used for working
calculations. We assume that tapes 77,7> are unidirectional, T3 is bidirectional.
Mj has a distinguished start state Sy and a halt state S,. On being set to work
it either goes into some non-terminating computation or eventually outputs a
distinguished termination symbol 7 to T3, branches to state S; and stops. We
assume that all branches to Sj, are from a state that outputs 7. Once 7 has been
output, the sequence of characters on T5 up to to 7 are the number computed
by the machine.

We now construct a new machine M, from M; as follows: replace all branches
to Sy with branches to Sp. From here it will start reading in further characters
from 77 and may again evolve to a state where it outputs a further 7 on T5.
Machine Msnow behaves as one of Goldin’s PTMs. It has available to it the



persisting results of previous computation on T3and these results will condition
subsequent computations. It is still a classic TM, but a non-terminating one.
It follows that PTM’s, and thus Interaction Machines of which they are the
canonical example, are a sub-class of TM programs and do not represent a new
model of computation.

6 w-Calculus

The w-calculus is not a model of computation in the same sense as the TM:
there is a difference in level. The TM is a specification of a material apparatus
that is buildable. Calculi are rules for the manipulation of strings of symbols and
these rules will not do any calculations unless there is some material apparatus
to interpret them.

Is there any possible physical apparatus that can implement the m-calculus
and, if so, is a conventional computer such an apparatus. Since it is possible to
write a conventional computer program that will apply the formal term re-write
rules of the 7-calculus to strings of characters representing terms in the calculus
[15] then it would appear that the m-calculus can have no greater computational
power than the von Neumann computer.A possible source of confusion is the
language used to describe the w-calculus: channels, processes, evolution which
imply that one is talking about physically separate but communicating entities
evolving in space/time. There is a linguistic tension between what is strictly laid
down as the rules of a calculus and the rather less specific physical system that
is suggested by the language. One has to be very careful before accepting that
the existence the m-calculus as a formal system implies a physically realisable
distributed computing apparatus.

Consider two of the primitives: synchronisation and mobile channels.

Is w-calculus synchronisation in its general sense physically realistic?

Does it not imply the instantaneous transmission of information - faster than
light communication if the processes are physically separated?

If the processors are in relative motion, there can be no unambiguous syn-
chronisation shared by the different moving processes. It thus follows that the
processors can not be physically mobile if they are to be synchronised with at
least 3 way synchronisation (see [11] pp 25-26).

Suppose we have the following pi calculus terms

a = (av.Q) + (by-R[y]) (1)

B = (b2.9) + (az.T[x]) (2)

In the above a and 3 are processes. The process atries to either output the
value v on channel a or to read from channel b into the variable y. The + operator
means non deterministic composition, so A + B means that either A occurs or
B occurs but not both. The notation av means output v to a, whilst av would
mean input from a into v. If « succeeds in doing an output on channel a it then



evolves into the abstract process @, if alternatively, it succeeds in doing an input
from b into y, then it evolves into the process R[y] which uses the value yin some
further computation.

We can place the two processes in parallel :

(av.Q) + (by-R[y])|(b2.S) + (az.T[z]) (3)

This should now evolve to

(QIT[v]) or to (S|R[2]) (4)

where either @ runs in parallel with T[v] after the communication on channel
a or where S runs in parallel with R[z] after the value z was transfered along
channel b from process Sto process a.

Since the two processes are identical mirror images of one another any de-
terministic local rule by which process f commits to communication on one of
the channels, must cause a to commit to the other channel and hence synchro-
nisation must fail.

Thus if @ commits to communication on channel a then its mirror image 3
must commit to communicate on b leading to: T'[z]|R[y], but this is not permitted
according to the w-calculus.

The argument is a variant of the Liar Paradox, but it is not a paradox
within the 7w-calculus itself. It only emerges as a paradox once you introduce
the constraints of relativity theory prohibiting the instantaneous propagation of
information. Nor does abandoning determinism help. If the commitment process
is non-deterministic, then on some occasions synchronisation will succeed, but
on other occasions the evolution both processes will follow the same rule, in
which case synchronisation will fail.

A global arbitration machine solves the problem at the loss of parallelism. A
worse loss of parallelism, in terms of complexity order, is entailed by distributed
broadcast protocols such as Asynchronous Byzantine Agreement[4].

In conclusion it is not possible to build a reliable mechanism that will im-
plement in a parallel distributed fashion any arbitrary composition of 7-calculus
processes.

6.1 Wegner and Eberbach’s argument

Wegner’s argument for the super-Turing capacity of the 7-calculus rests on there
being an implied infinity of channels and an implied infinity of processes. Taking
into account the restrictions on physical communications channels the implied
infinity could only be realised if one had an actual infinity of fixed link computers.
At this point we are in the same situation as the Turing machine tape - a finite
but unbounded resource. For any actual calculation a finite resource is used, but
the size of this is not specified in advance. W&E then interprets ’as many times
as is needed’ in the definition of replication in the calculus as meaning an actual
infinity of replication. From this he deduces that the calculus could implement



infinite arrays of cellular automata for which he cites Garzon [13] to the effect
that they are more powerful than TMs.

7 Conclusion

In Section 3, we gave criteria that must be met for the Church-Turing thesis to
be displaced. In general, a demonstration that all terms in C-T systems should
have equivalent terms in the new system but there should be terms in the new
system which do not have equivalents in C-T systems. In particular, the new
system should be able to solve decision problems that are semi-decidable or
undecidable in C-T systems. Finally, we require that a new system be physically
realisable. We think that, under these criteria, Wegner and Eberbach’s claims
that Interaction Machines, the 7-calculus and the $-calculus are super-Turing
are not adequately substantiated.

First of all, Wegner and Eberbach do not present a concrete instance of
terms in any of these three systems which do not have equivalents in C-T sys-
tems. Secondly, they do not identify decision problems which are decidable or
semi decidable in any of these systems but semi-decidable or undecidable re-
spectively in C-T systems. Finally, they do not explain how an arbitrary term
of any of these three systems may be embodied in a physical realisation. We
have shown that the synchronisation primitive of the calculus is not physically
realistic. The modeling of cellular automata in the calculus rests on this prim-
itive. Furthermore, the assumption of an infinite number of processes implies
an infinity of mobile channels, which are also unimplementable. We therefore
conclude that whilst the m-calculus can be practically implemented on a single
computer, infinite distributed implementations of the sort that W&E rely upon
for their argument can not be implemented.
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