FSM-Hume: Programming Resource-Limited Systems using Bounded

Automata

September 1, 2003

Abstract

Hume is a novel domain-specific programming language targeting resource-bounded computa-
tions, such as real-time embedded systems or mobile code. It is based on generalised concurrent
automata, controlled by transitions characterised by pattern matching on inputs and (recursive)
function generation on outputs. This paper discusses trade-offs between expressibility and decid-
ability in the design of FSM-Hume, a subset of Hume (or Hume layer) based on generalised linear
bounded automata with statically determinable time and space use. We illustrate our approach
with reference to space costing of a simple real-time simulation of a line-following autonomous

vehicle.

1 Introduction

There is a tension in programming language design between expressibility and decidability. Ideally,
we would like to be able to automatically prove the correctness, equivalence, termination, space
use and complexity of arbitrary programs. Such properties are especially important for resource-
constrained systems such as real-time embedded systems, or mobile code. However, these properties
are all undecidable for Turing-complete (TC) languages.

Decidability may be achieved by restricting the types and constructs in a language. However,
many attempts to do so have resulted in unwieldy languages where the programmer constantly fights
such restrictions in search of greater expressibility. Hume[5] is a novel language based on the concept
of language layers. Full Hume is TC but has been designed to facilitate analyses that identify where
program constructs break designated decidable properties. Each increasingly restrictive language layer
thus exposes increasingly strong properties.

In the remainder of the paper we discuss approaches to programming using finite automata (Sec-
tion 2), the Hume design (Section 3), the structure of Hume as a layered language (Section 4), the
use of the Finite State Machine Hume (FSM-Hume) layer in simulating a line-following autonomous
vehicle (Section 5), the FSM-Hume cost model for space usage (Section 6) and its application to the

vehicle simulation (Section 7).

2 FSA as Programming Tools

Classical finite state automata (FSA), for which all of the properties that we identified in the intro-
duction are decidable, lie at the opposite end of the decidability spectrum from TC-ness. FSA are
generally regarded as modeling tools rather than programming notations. They are well-suited to
this purpose, since formally-based techniques such as model checking can be used to verify required
program properties. For example, the Statecharts notation [7] is widely used to model synchronous
systems.

Several programming languages have been based on FSA, for example Esterel [2] and Promela [8]
which are used to specify protocols and reactive systems respectively. Decidable properties of programs
may then be explored using automatic techniques such as model checking, for example through the
Spin tool for Promela [8]. However, such languages are relatively inexpressive, typically lacking one or
more essential programming features such as asynchronous communication, complex data structures,
exceptions or interrupts. Furthermore, because of the use of weak type systems and abstraction
mechanisms, programs quickly become large and unwieldy, with vast state spaces when compiled to
the low level FSA notations used for automatic analysis.

An opposite approach has been taken by the UPPAAL group, who synthesize timed automata
from pseudo-assembler code in order to verify properties of reachability and schedulability [10, 1].
As with Hume, such an approach allows a choice to be taken between expressibility and decidability.
However, with the UPPA AL approach there is a wide semantic gap between the programming notation
and the proof technology. Consequently, programs may need major rewriting in order to ensure that
required properties are maintained. In Hume, in contrast, the choice of language layer determines
which properties can be decided. Moreover, as a high-level notation, it is relatively straightforward to

rewrite Hume source code if required.

3 Hume design

The Hume design starts from FSA but incorporates a number of fundamental differences from pre-
vious approaches. Firstly, Hume is based on a generalisation of standard FSA transition notation,
to encompass, at the limit, a full TC language. Secondly, Hume incorporates concurrent processing
through explicit multiple communicating FSA, which we call bozes. Thirdly, we make an explicit dis-
tinction between the coordination language, which describes external properties and configurations of
boxes, and the ezpression language, which describes input/output transitions within boxes. Finally, in
full Hume, both coordination and expression languages share a rich, polymorphic type system. These
design decisions enable us to identify layers of language in Hume, with different decidable properties,
as we discuss below.

To foreground the design, consider the Mealy machine shown in Figure 1, which checks that a
binary sequence has alternating 1s and 0s. A Mealy machine may be characterised by transition

quadruplets of the form:

0/0OK

e ERROR
1/ERROR
1/OK

Figure 1: Mealy machine for alternating 1s and Os.

input old state
0/OK
0/ERROR

1/ERROR

Figure 2: Mealy machine with explicit I/O and state

(old state,input) — (new state,output)

where old state, input, new state and output are finite sets. Thus, the above Mealy machine has

transitions:

(ZERO,0) -> (ZERO,ERROR)
(ZERO,1) -> (ONE,OK)
(ONE,0) -> (ZERO,OK)
(ONE,1) -> (ONE,ERROR)

Note that both the diagrammatic and state transition characterisations are slightly misleading. First
of all, it is implicit that an FSA cycles indefinitely, communicating with an external environment to
consume single input symbols and generating single output symbols. Secondly, it is implicit that an
FSA retains its state in-between cycles.

The external I/O links and state retention are made explicit in Figure 2. In general, for one FSA
it need not be specified where the input comes from or where the output goes to: both could be linked
to arbitrary sources and sinks, including to other FSA. Similarly, in principle, the old and new state
need not be a direct feedback link but could again come via arbitrary sources and sinks, including
other FSA.

value — integer — finite integer

| float — finite float

| character — character

| boolean — boolean value

| (value,value,. . .,value) — tuple

| <<wvalue,value,. . .,value>> — vector

| [value,value,. . .,value] — list

| constr value value ... value — discriminated union

Figure 3: Abstract syntax for Hume values.

We noted above that the state and I/O symbol sets for an FSA must be finite. However, these sets
may also be very big. Given a large enough set that maps to integers, then complex data structures
may be encoded using either Godel numbers within the set, or, more familiarly, structured ASCII
sequences whose concatenated bit values are integers within the set.

In Hume, we allow values of the form shown in Figure 3. Here, integer, float, character and boolean
are finite base types. A tuple is a fixed-width sequence of values of possibly different types. A wvector
is a fixed-width sequence of values of the same type. A list is an arbitrary length sequence of values of
the same type. A discriminated union is an arbitrary length sequence of values of possibly different
types. We also employ the standard string notation for vectors of characters.

The left- and right-hand sides of traditional transitions are reminiscent of two-element tuples
so we generalise them to: pattern — expression. Here the left-hand side pattern is composed of
variables, constants and structures, as shown in Figure 4. Note the wildcard pattern * which ignores
the corresponding input without consuming it. Similarly, the right-hand side ezpression may involve
the components of the pattern, in particular the variables it introduces, as shown in Figure 5. Thus,
we generalise an FSA to a boz with input and output wires. Note that we allow multiple input and
output wires, and that the state is no longer necessarily distinguishable from the input or output. We
shall return to this below.

Operationally, a box cycles repeatedly, trying to match transition patterns against the current
values on the input wires, treated as a single top-level tuple value. For a match to succeed, constants
and constructors must appear in the same positions in the pattern and input value. Variables in the
pattern are then instantiated to corresponding components of the input value. After a successful match,
the output wires are instantiated from the tuple of values generated by the transition’s right-hand
side.

For example, we can write the above Mealy machine in Hume as:

1 type BIT = int 1;

2 data STATE = ZERO | ONE;

patt — war — variable

| integer — finite integer

| float — finite float

| character — character

| boolean — boolean value

| (patt,patt,. . .,patt) — tuple

| <<patt,patt,. . .,patt>> — vector

| [patt,patt,. . .,patt] — list

| constr patt patt ... patt — discriminated union
| * — ignore input

Figure 4: Abstract syntax for Hume patterns.

exp — wvalue — value
| war — variable
| if exp then exp else exp — conditional exp
| case ezp of transitions — case exp
| let defs in ezp — local definition
| war ezp exp ... exp — function application
| exp op exp — infix operator
| * — no output

© 00 N o O

10
11
12

13
14

Figure 5: Abstract syntax for Hume expressions.

stream Input from "std_in";

stream Output to "std_out";

box Bits
in (oldstate::STATE,input: :BIT)
out (newstate::STATE,output::string)
match
(ZER0,0) -> (ZERO,"ERROR\n")
| (ZERD,1) -> (ONE,"OK\n")
| (ONE,0) -> (ZERO,"OK\n")
| (ONE,1) -> (ONE,"ERROR\n");

wire Bits (Bits.newstate initially ZERO,Input)
(Bits.oldstate,Output) ;

Line 1 defines a new type bit to be a one-bit-precision integer. Line 2 defines a new type STATE

Type Control Properties

finite operations decidable E & T; precise Sp & Ti
finite conditions decidable E & T; bounded Sp & Ti
stack + * operations decidable E & T; precise Ti

finite + * operations decidable T; precise Sp & Ti

finite prim. rec. decidable T; bounded Sp & Ti

infinite gen. rec. -

Figure 6: Type, control and decidability. E = equivalence, T = termination, Sp = Space, Ti = Time

with values ZERO and ONE. Lines 3 and 4 associate the streams Input and Output with standard
input and standard output respectively. Line 5 introduces the box Bits with input wires oldstate
and input, and output wires newstate and output. Lines 9 to 12 are the transitions. Note that
the output is generated by an explicit string. Transitions are associated with wires by position. For
example, for the first transition: wire oldstate matches ZERO; wire input matches O; ZERD sets wire
newstate; "ERROR\n" sets wire output. Lines 13 and 14 wire the box to itself and to standard input
and output. Wiring is by position, with input wiring followed by output wiring, so: in-wire oldstate
is wired to out-wire newstate of box Bits; in-wire input is wired to stream Input; out-wire newstate
is wired to in-wire newstate of box Bits; and in-wire input is wired to stream Input.

We will not discuss in further detail the type system or definition language shared by the expression

and coordination languages. Some flavour of both may be gained from the above example.

4 Hume Layers and FSM-Hume

An important motivation for Hume’s design was to enable analyses to identify whether or not arbitrary
Hume programs met particular criteria corresponding to required decidable properties[9, 3]. Hume’s
generalised FSA transitions provide the locus for such analyses: constraining the types of inputs that
may be matched by left-hand patterns, and the control structures used in right-hand ezpressions to
generate outputs, directly constrains decidable program properties, as summarised in Figure 6.

With finite types on wires and corresponding operations in transitions, equivalence, termination,
space use and time are decidable. Adding conditions to operations for a finite input FSA loses precise
time and space bounds because condition branch choice is unpredictable for arbitrary input. However,
it may be possible to establish accurate upper bounds.

With an infinite stack on wires, and the ability to ignore wires (denoted by the pattern *), an FSA
is equivalent to a Push Down Automata, for which decidable equivalence has just been established.
A PDA must terminate or repeat a state on a finite input but space use for an arbitrary input is
undecidable.

With a finite type on wires and the ability to ignore wires, an FSA is equivalent to a Linear

Bounded Automata (LBA). An LBA must terminate or repeat a state on finite input but equivalence

is undecidable for arbitrary input.

Replacing conditions with primitive recursion loses decidable equivalence. Finally, allowing infinite
data or unbounded general recursion makes all properties indeterminate in the general case.

Standard type and control flow analyses may be used to determine whether or not an arbitrary
box is an FSA, PDA or LBA, or if it is recursive or constructs potentially infinite values. However,
it is undecidable whether or not an arbitrary general recursive expression has an equivalent primitive
recursive formulation.

Finite State Machine Hume (FSM-Hume) is the Hume subset corresponding to LBA. Thus FSM-
Hume subsumes layers corresponding to FSA and to PDA over bounded, finite input. Only finite types
may appear on wires (i.e. base types, tuples and vectors) and only non-recursive control constructs
may be used (i.e. operations, conditions, non-recursive functions). Thus, for a given set of inputs,
each box cycle must terminate in bounded time using bounded space.

In principle, FSM-Hume might be extended with standard higher order functions over vectors such
as map and fold without losing essential language properties: these functions are known to terminate
and have well defined time and space cost models. Such functions have not yet been incorporated into

the language, however.

5 The Autonomous Vehicle Simulation

We have constructed a simulation of a basic autonomous vehicle in FSM-Hume. The vehicle tries to
follow a white line by repeatedly analysing a camera image consisting of one row of bits from a two
dimensional bit-map scene, effectively a map of the terrain the vehicle is traversing. The application is
taken from an EU-funded project which is developing vision-based controllers for the CyCab electric
vehicle.

Figure 7 gives an overview of the simulation. The vehicle has a location consisting of its Cartesian
coordinates in terrain space and its angle of orientation relative to the horizontal. The vehicle sends
its current location to the environment. If the vehicle has not “bumped” into the edge of the terrain
then the environment returns an image corresponding to the vehicle’s position. The vehicle then sends
the image to the control which calculates a new orientation to try to bring the white line back into
the centre of the image. Finally, the vehicle changes its position and requests the next image from the
environment. The vehicle also sends monitoring information to standard output.

We now consider the simulation in more detail. We have omitted type and constant definitions,
and some function definition details, where they are not germane to the discussion. Note that a scene
represented as a vector of vector of bits, and an image as a vector of bits.

Note that FSM-Hume constructs for vector manipulation demonstrate what would normally be
considered poor programming style. Where an iteration or recursion over a sequence would be em-
ployed in a TC language, in FSM-Hume such operations must be nominated explicitly, element by

element.

-

environment

location image bump

—

vehicle

]

monitor location
image

Figure 7: Vehicle simulation structure.

orientation

First of all, consider the environment:

within_scene (y,x,radians) = ...

look (y0,x0,radians) x = ...

lookat loc = <<look loc -7,look loc -6,...,lo0k loc 6,1lo0k loc 7>>;

box env
in (loc::location)
out (v::image,b::bool)
match loc -> if within_scene loc
then (lookat loc, false)

else (null_image, true) ;

wire env (vehicle.loc initially init_loc)

(vehicle.v, vehicle.b);

The environment accepts a location from the vehicle. If it is within the scene then the image at
that position is calculated (Lookat) and returned with a “no bump” flag. Otherwise, the empty scene
and a “bump” flag are returned. Note that lookat calculates each element of the image explicitly
where it would be “better style” to iterate over the scene.

Next, consider the vehicle:

move (y,x,a) da = ...

box vehicle
in (v::image,b::bool,ploc::location,c::real)
out (loc::location,m::monitor,loc’::location,v’::image)
match
(v, false, pl, c) -> let nl = move pl ¢
in (nl1, (v,pl,false,c,’\n’), nl, v)
| (v, true, pl, c) ->

(init_loc, (v,pl,true,c,’\n’),init_loc, lookat init_loc) ;

stream outputl to "std_out";

wire vehicle
(env.v,env.b,vehicle.loc’ initially init_loc,control.da initially 0.0)

(env.loc,outputl,vehicle.ploc,control.v);

The vehicle accepts an image and bump flag from the environment, its current location from its
previous cycle, and a new orientation from the control. If it hasn’t “bumped” then it calculates a
new location move. It then sends that new location to the environment, monitoring information to
the output, the new location to itself and the image to the control. If the vehicle has bumped then
the simulation is reset to the start state.

Finally, consider the control:

box control
in (v::image)
out (da::real)
match
< s s—s—s—s—s s s s s s_s__>>=-> 0.0

| <<y s sy sy sy >> => —-1.0%delta_a |

wire control (vehicle.v’) (vehicle.c);

The control accepts an image from the vehicle and returns a new orientation to the vehicle. Note
the use of explicit pattern matching on all possible positions of a 1, indicating the line, within the
image, where it would be “better style” to iterate over the image. The wildcard _ consumes and

ignores the matching value. Note that the control and environment are one step out of sequence so

box
E F bozx = Cost, Cost

ins = (vary i Ti,..., VAT, 3 Th)
type
Vi.1<i<n, E F 7 = h;
body

E + body = h,s

(1) box

n
E F box b in ins out outs body ; = Z h; + h,s
i=1

body
E + body = Cost, Cost

patt

Vi.1<i<n, E F patt; = sp;
space

Vi.1<i¢<n, E F exp;, = hi,s;

(2)

body
E + match patt; — > exp; | ... | patt, — > exp,

n n
= maz hi, maz (si + sp;)
i=1 =1

Figure 8: Space cost axioms for boxes

that the new orientation is computed from the old image at the new location. The simulation runs in

real time, and the vehicle never deviates more than a few bits to either side of the line.

6 FSM-Hume Space Cost Model

Figures 8-10 outline a space cost model for FSM-Hume boxes, based on an operational interpretation
of the Hume Abstract Machine (HAM) implementation. Heap and stack costs are each integer values
of type Cost, labelled h and s, respectively. FEach rule returns a pair of such values representing an
independent upper bound on the stack and heap usage. The result is produced in the context of an
environment, E, that maps function names to the space (heap and stack) requirements associated
with executing the body of the function. This environment is derived from the top-level program
declarations plus standard prelude definitions. Rules for building the environment are omitted here,
except for local declarations, but can be trivially constructed.

Rules 1 and 2 (Figure 8) cost boxes and box bodies, respectively. The cost of a box is derived
from the space requirements for all box inputs plus the maximum cost of the individual rule matches
in the box. The cost of each rule match is derived from the costs of the pattern and expression parts
of the rule. Since the abstract machine copies all available inputs into box heap from the wire buffer
before they are matched, the maximum space usage for box inputs is the sum of the maximum space
required for each input type. The space required for each output wire buffer is determined in the same

way from the type of the output value. The derivation of these sizes is straightforward and is omitted

10

here, but can be found in an earlier paper [4].

Figure 9 gives cost rules for a representative subset of FSM-Hume expressions. The heap cost of
a standard integer is given by H;,32 (rule 3), with other scalar values costed similarly. The cost of a
function application is the cost of evaluating the body of the function plus the cost of each argument
(rule 4). Each evaluated argument is pushed on the stack before the function is applied, and this
must be taken into account when calculating the maximum stack usage. The cost of building a new
data constructor value such as a tuple (rule 6) or a user-defined constructed type (rule 5) is similar
to a function application, except that pointers to the arguments must be stored in the newly created
closure (one word per argument), and fixed costs Hcon and Hyypie are added to represent the costs
of tag and size fields. The heap usage of a conditional (rule 7) is the heap required by the condition
part plus the maximum heap used by either branch. The maximum stack requirement is simply
the maximum required by the condition and either branch. Case expressions (omitted) are costed
analogously. sequence (used to calculate the size of the stack frame for the local

Finally, patterns contribute to stack usage in two ways (Figure 10): firstly, the value attached to
each variable is recorded in the stack frame (rule 9); and secondly, each nested data structure that is
matched must be unpacked onto the stack (requiring n words of stack) before its components can be

matched by the abstract machine (rules 10 and 11).

7 Space Behaviour of the Simulation

The space cost model discussed Section 6 has been implemented as part of the HAM compiler. Figure
11 shows the predicted and actual heap and stack use (calculated in 4-byte words) for the vehicle
simulation running on the HAM and using our static cost modeller [4]. This represents the majority
of the dynamic memory usage for this application: the remainder comprises the operating system
stack used for runtime system calls plus runtime state used to maintain boxes, create communication
links etc.

Overall, the predictions are very accurate for both stack and heap usage, with predicted heap
usage accurate to 1% and stack usage accurate to 7.7%. The deviations from actual usage are a result
of unused conditional branches/cases and conservative I/O buffer allocations. Since these deviations
result entirely from the actual dynamic execution paths explored by the specific test scene, they could
not in general be eliminated even by manual analysis of the code: indeed, a hand-coded application is
likely to be more conservative in memory usage than our analysis allows. The stack usage represents
an over-estimate of 23 words (or 92 bytes) of memory. While this is not large in absolute terms, we
have found stack costs for other examples to be accurate to within 2.5% [4]. The larger percentage
figure in this example almost certainly results from unexplored conditional paths.

Real-time embedded systems are a harsh execution environment. In order to demonstrate the
resilience of the implementation and the accuracy of the cost analysis, the vehicle simulation was run

continuously under RT-Linux for a period of 36 hours using our calculated memory settings. The

11

program ran without any memory accesses outside the allocated area and without “leaking” memory:
essential requirements for real-time control applications. Total dynamic memory usage (including
code, runtime stack, and runtime libraries) was 105340 words (412KB) of memory, a level easily
supported by single-board computers costing $70 or less (e.g. JK Microsystems’ 33MHz 186-based
FlashLite 186).

Our real-time test system used a surplus 450MHz Pentium II, a lower-performance processor than
that used for the actual Cycab controller. Over our 36-hour test period, maximum execution times
were 46us for the control box, 9ms for the env box and 3ms for the vehicle box with a worst-case real-
time response to the control input of 22.4us, and worst-case real-time responses to the primary vehicle
inputs of 31.2us. Such figures suggest that even with the current lightly optimised implementation,
Hume can be a practical programming language for real-time embedded systems.

We now plan to enhance the work described here by successively introducing simulations of a single
2-D camera, a pair of 2-D cameras enabling stereo vision in a 3-D scene, and proximity sensors. In the
longer term, we intend to adapt the simulation to deal with real-world interrupt-driven vision data
and to mount our application on the CyCab itself. This will involve interfacing to low-level interrupt
drivers, and dealing with hard real-time costing issues in addition to the space issues that we have
considered here. We believe that our costing approach should be extensible to these situations without

major technical complications.

8 Conclusion

This paper has introduced the Hume programming language and surveyed its general properties as a
layered language. We have focused on the FSM-Hume layer, which is restricted to bounded automata,
discussing the implementation and behaviour of a simple autonomous vehicle simulation written in
FSM-Hume. We have demonstrated that the space behaviour of FSM-Hume programs can be predicted
accurately, and that such programs can be run robustly in embedded systems environments without
fear of space leaks or unintended memory accesses. We conclude that FSM-Hume is both highly
expressive and allows the determination of strong formal properties concerning space behaviour.

We are continuing to explore the implementation and analysis of Hume layers. Our current focus
is the extension of our work to provide cost analyses for primitive recursive definitions and data
structures, thereby increasing expressibility for the programmer. This work builds on recently achieved
theoretical results on automatic cost analysis for recursive programs [6]. Our experience suggests that
entirely accurate costs can be determined for a range of primitive recursive definitions. However,
in cases where accurate costs cannot be determined, it may be necessary to assume infinite cost, a
situation that cannot arise with FSM-Hume. Accurate costing in the presence of primitive recursion

may thus require more careful programming than is necessary with the FSM-Hume layer.

12

Acknowledgments

This work was partly supported by grant GR/R 70545/01 from the UK’s EPSRC and by a grant from
the French CNRS.

References

[1]

T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times: A tool for modelling and
implementation of embedded systems. In J.-P. Katoen and P. Stevens, editors, Proc. of the 8th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,

number 2280 in Lecture Notes in Computer Science, pages 460-464. Springer-Verlag, 2002.

G. Berry. The Foundations of Esterel. In Colin Stirling Gordon Plotkin and Mads Tofte, editors,
Proof, Language, and Interaction. MIT, 2000.

W. S. Brainerd and L. H. Landweber. Theory of Computation. Wiley, 1974.

K. Hammond and G. Michaelson. Predictable Space Behaviour in FSM-Hume. In Proc. 2002
Intl. Workshop on Implementation of Functional Languages (IFL ’02), Madrid, Spain, number
2670. Springer-Verlag Lecture Notes in Computer Science, September 2002.

K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for Real-Time Embedded
Systems. In Proc. 2008 Intl. Conf. on Generative Programming and Component Engineering, —
GPCE 2003, Erfurt, Germany. Springer-Verlag Lecture Notes in Computer Sciences, September
2003.

K. Hammond and P.V. Vasconcelos. Inferring Costs for Recursive, Polymorphic and Higher-
Order Programs. In submitted to 2004 ACM Symp. on Principles of Programming Languages
(POPL 2004).

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Program-

ming, 8(3):231-274, June 1987.
G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2004.

J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Automata. Addison-
Wesley, 1969.

T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control Programs Using UPPAAL.
In Ten H. Lai, editor, Proc. of the IEEE ICDCS International Workshop on Distributed Systems
Verification and Validation, pages E15-E22. IEEE Computer Society Press, April 2000.

13

space

E + exp = Cost, Cost

(3) space
E integer = Hintzo,1

E (var) = (h,s)
space
Vi.1<i<n, E F exp, = hy,s;

(4) space
E + wvar exp, ... exp,

n

= Zhi+h, max (Si+(i—1))+s

=1 i=1

space
Vi.1<i<n, E + ezp, = hyis;
(5) space
E F constrexp, ... exp,

n

n
= Z hi +n + Heonstr, maz (8; + (i — 1))

=1 i=1

space
(6) Vi.1<i<n, E F exp, = h;si
space
E + (ezp, ..., exp,)

n

= Z hi+n+ Htuple; maoxr (Si + (l - 1))

=1 i=1

space

E F exp, = hy,s1
space

E F exp, = ha,se
space

E F exp; = hs,ss3

(7) space
E F if exp, then ezp, else exp;

= hy + max(ha, h3), max(s1, $2, 83)

Figure 9: Space cost axioms for representative expressions

14

patt

E F patt = Cost

(8) patt

E F integer = 0
(9) patt

E F var =1

. . patt
(10) Vi. 1 S ? S n, E F pattz :>n81'
patt
E + constr patt, ... patt, = Z s;+mn
i=1
patt

(11) Vi.1<i<n, E + patt, = s;

patt

n
E + (patt, ..., patt,) =>Zs,-—|—n
i=1

Figure 10: Stack cost axioms for patterns

Name Actual Pred. (P-A)/A
control box heap 57 60 3 53%
stack 36 42 6 16.7%
wires heap 47 50 3 6.4%
0 0 0 -

env box heap 49099 49580 481 1.0%
stack 129 137 8 6.2%

wires heap 11 11 0 -

stack 0 0 0 -

vehicle box heap 49164 49648 484 1.0%
stack 133 140 7 53%

wires heap 62 65 3 4.8%

stack 0 0 0 -

total heap 98511 99538 1027 1.0%
total stack 299 322 23 7.7%

Figure 11: Actual and predicted HAM space use for vehicle simulation (in words).

15

