
Recursion, Iteration and Hume Scheduling

Greg Michaelson, Robert Pointon, Gudmund Grov and Andrew Ireland

School of Mathematical and Computer Sciences
Heriot-Watt University

Riccarton, Scotland, EH14 4AS
{greg,rpointon,gg10,air}@macs.hw.ac.uk

Abstract

Converting programs from full or PR-Hume to FSM- or HW-Hume involves trans-
forming expression recursion to box iteration. However, this can add considerable
overheads through unnecessary scheduling of other boxes dependent on the itera-
tion output. Here we explore how analysis of output behaviour can identify boxes
which may be executed independently of normal super-step scheduling, without af-
fecting program meaning, and minimising the impact of the recursion to iteration
transformation. We use TLA+ to formalise the recursion to iteration transformation,
and alternative scheduling strategies, enabling their verification with the TLC model
checker.

1 INTRODUCTION

Hume[MK02] is a novel language that encapsulates a simple functional language
within a finite state machine framework. A program consists of a collection of au-
tomata, termed boxes, which are wired together, while the functional language is
used to handle the availability and pattern matching at box input, and the produc-
tion of box output.

A central motivation for Hume’s development was to produce a language amenable
to resource use analysis[HM03, MHJ04]. It is well known that precise static be-
havioural analyses cannot be developed for Turing complete languages, because of
the undecidability of termination and equivalence. It is also well known that trying
to program in languages whose expressiveness are restricted to enable precise anal-
ysis is unpalatable. Thus, we have conceived of Hume as a multi-level language
where different levels have different decidability properties depending on the types
and control constructs that are deployed, as shown in Table 1.

We propose the following methodology for program development:

write program in full Hume
until program costed or deemed uncostable

apply static analyses
if analyses break then

transform offending construct to lower level

Level Types/Constructs Time/Space Analyses
HW-Hume tuples of bits precise costs
FSM-Hume bounded types + accurate bounds

conditions
PR-Hume unbounded types + weak bounds

primitive recursion
Full Hume general recursion undecidable

TABLE 1. Hume levels and cost properties.

2 FROM LINEAR RECURSION TO BOX ITERATION

Program transformation is central to our programming methodology. The greatest
novelty lies in our ability to exploit transformations that move processing from
weak costability at the expression level to stronger costability at the coordination
level. Here, the key transformation is from expression recursion to box iteration,
moving from full, PR- or HO- Hume to FSM-Hume.

In the well known transformation[Man74], linear recursion may be replaced by
iteration:

linrec f g h x =
if f x
then return g x
else return linrec f g h (h x)

⇔

iter f g h x =
while not (f x)

x := h x
return g x

This transformation may be extended to primitive recursion, through the introduc-
tion of accumulation variables, and to higher order functions, through unfolding
of HOF applications to form equivalent specialised functions, but these are not
considered here.

In Hume, the iteration may be expressed by a box with a looped wire:

box iterbox
in (i::t1, iter::t3) out (o::t2, iter’::t3)

match
(i, *) → (*, i)

| (*, iter) → if f iter
then (h iter, *)
else (*, g iter);

wire iterbox (... , iterbox.iter’)

i

o iter’

iter

o

ii

linrecbox linrecbox’ iterbox

o o’

i’

FIGURE 1. Recursion to box iteration.

(... , iterbox.iter);

To be a valid Hume program the original linrec function must have been in a
box. Therefore a box that directly calls a linear recursive function may be trans-
formed to an equivalent two box form: the original box calls a new iterative box
with a a looped wire to manage the state:

box linrecbox
in (i::t1) out (o::t2)

match
(x) → (...linrec f g h x...);

⇔

box linrecbox’
in (i::t1, i’::t2) out (o::t2, o’::t1)

match
(i, *) → (*, i)

| (*, iter) → (... iter..., *);

wire linrecbox’ (... , iterbox.o)
(... , iterbox.i);

wire iterbox (linrecbox’.o’, iterbox.iter’)
(linrecbox’.i’,iterbox.iter);

as shown schematically in Figure 1.
For example, considering multiplying two integers by repeated addition:

mult r x 0 = r;
mult r x y = mult (r+x) x (y-1);

embedded in a program to generate successive squares:

type integer = int 64;

box mult1
in (i::integer) out (i’::integer, o::string)

match
x → (x+1, (mult 0 x x) as string++"/n");

stream output to "std_out";

wire mult1 (mult1.i’ initially 0) (mult1.i,output);

Rewriting the function in curried form with an explicit condition:

mult (r, x, y) = if y==0 then r else mult (r+x, x, y-1)

we can identify:

f (r, x, y) = y==0
g (r, x, y) = (r+x, x, y-1)
h (r, x, y) = r

giving the transformed program:

box mult2
in (i::integer, iter’::integer)
out (i’::integer, iter::(integer,integer,integer), o::string)

match
(x, 0) → (x+1, (0, x, x), *)

| (x, r) → (x+1, (0, x, x), r as string++"/n");

wire mult2 (mult2.i’ initially 0, itermult.o initially 0)
(mult2.i, itermult.i, output);

box itermult
in (i::(integer,integer,integer), iter::(integer,integer,integer))
out (o::integer,iter’::(integer,integer,integer))

match
((r, x, y), *) → (*, (r, x, y))

| (*, (r, x, y)) → if y==0
then (r, *)
else (*, (r+x, x, y-1));

wire itermult (mult2.iter, itermult.iter’)
(mult2.iter’, itermult.iter);

As well as making static analysis more tractable, this transformation also sig-
nificantly reduces space requirements. For some recursive functions, it may be
necessary to retain intermediate stack and heap space until the recursion termi-
nates. In contrast, in the iterative form, space can be reclaimed on each iteration,
with only the accumulating result retained on the feedback wire between iterations.

Table 2 shows the times to find the squares of the first 1411 integers using the
Hume reference interpreter.

Essentially, around one million calls to the recursive function are replaced by
around one million iterative box invocations. There is a net saving of around 30
seconds or 30% for the iterative boxes compared with the recursion.

Version Time (secs)
recursive (mult1) 100.4
iterative (mult2) 70.9

TABLE 2. Multiplication recursion and iteration times.

3 FORMALISING HUME WITH TLA

TLA[Lam94] is a linear temporal logic created based on the fact that specifications
are developed at different grain of atomicity, and allows us to verify that a finer
grained specification implements a coarser grained. This requires what Lamport
calls stuttering steps, i.e. steps that leaves the state unchanged. All TLA formulae
are therefore invariant under stuttering, i.e. adding or removing stuttering steps
does not change the validity of a formula. In a Hume transformation a box is
transformed to a ‘component’ of several boxes which requires more super-steps
for the computation. Allowing stuttering steps of the box before transformation is
the key when verifying transformations.

In TLA both program and properties are specified in the same logic. This sim-
plifies reasoning about properties compared to for instance Hoare logic[Hoa69].
TLA uses normal logical connectives like ∧,∨ and ⇒, in addition to the three op-
erators ′,2 and ∃∃∃∃∃∃∃∃ : ′ is used in actions – if we do not prime a variable we refer to the
before state and by priming it we refer to the after state; 2 is the normal ‘always’
operator in temporal logic, i.e. 2F denotes that F is always True; ∃∃∃∃∃∃∃∃ is an existen-
tial quantifier with non- standard semantics used for hiding internal variables in a
specification. We also require ∃∃∃∃∃∃∃∃ when verifying transformations in Hume.

Liveness constraints and (partly) the environment are not relevant here, and
will therefore be ignored in the rest of the paper. The environment is partly relevant
since when we verify a transformation of a component we ignore boxes not part
of it. We must then create an environment which non-deterministically updates
input and output wires to the component. We describe a system consisting of n ≥ 1
boxes. The state space consists of the wires w, a hidden component s used to ensure
correct scheduling. To simplify reasoning about boxes we have also introduced
state b to them. [N]x denotes either running action N or leaving the state variables
x unchanged (x′ = x). This is to ensure invariance under stuttering. Further, 〈· · · 〉
denotes a sequence. We can then specify a Hume program P as:

P , ∃∃∃∃∃∃∃∃ s : Inits ∧ Initw ∧
n̂

i=1

Initi ∧2[Ns∧NE ∧
n̂

i=1

Ni]〈w,b,s〉 (1)

Ns updates s in the following order: Execute 7→ Consume 7→ Write 7→ Execute 7→
. . .. Except for when we are transforming a component an abstraction away from
the rest of the system NE is trivially True.

Vn
i=1 Initi initialises the box components

and
Vn

i=1 Ni runs all the boxes. Since our overall focus is the coordination layer
we will not go into more detail than an informal discussion of the box actions

(Ni): In a Execute step all Runnable boxes are executed; In a Consume step all
input wires are consumed and in a Write step all output wires are written to. This
steps provides both a logical and philosophically satisfying ownership of shared
variables, i.e. wires, when communicating: In an Execute step the overall system
owns the wires; in a Consume step the wires are owned by the destination box
while in a Write step they are owned by the source box.

TLA+[Lam02] is a specification language which combines TLA with a variant
of ZF logic and offers tool support in form of the TLC model checker. Although ZF
does not provide an adequate representation for the underlying data structures of
the expression layer of Hume it provides sufficient functionality for this case where
the focus is more on the coordination layer. TLC is unique in the way that we can
verify refinement by model checking or, in our case, transformation as shown in
the next section.

4 VERIFYING RECURSION AS ITERATION

Let P be the original program and PT be the transformed program. We require
that PT behaves the same way as P in the following manner: The same inputs are
consumed; The same output are produced when consuming the same inputs; They
behave the same way after executing, e.g. if P blocks and cannot run, so shall
PT . However, we ignore the extra steps in PT . To verify the transformation we
threat it as a refinement, which in TLA is simply implication. P executes,consumes
and writes in the same super-step – while in PT these operations are performed
in different step: e.g. The internal state b of a box holds among other things a
consume buffer c and a output buffer o – both updated in an Execute step. These
are updated in the Execute step of P. In PT c is in the input buffer of first and
o in the output buffer of last – hence c is updated in the first super-step and o in
the last super-step. In addition the environment might update the input and output
wires before the component of PT terminates. We overcome this problem by not
comparing state element by state element but creating a mapping from the state
space of PT called a refinement mapping[AL88]. We then show that the implication
holds under this mapping. This mapping is achieved with the ∃∃∃∃∃∃∃∃ operator, leaving
us to verify:

∃∃∃∃∃∃∃∃ s : PT ⇒∃∃∃∃∃∃∃∃ s,w,b : P (2)

To show (2) must create witnesses w and b for w and b which represents the refine-
ment mapping. To achieve this we must introduce history variables to PT , which
has to follow some well-defined introduction rules in TLA to ensure soundness.
We use them to buffer changes up to the step where the component of PT termi-
nates. Then we use the buffered values to update the state variables. This is the
only step between consuming input and writing outputs where any change is made.

The proof was achieved by the TLC model checker. Due to the amount of
computation required for computing each step we only model checked a small
domain (1..50). The next step will be to verify that we can replace mult1 by

the component in PT . This requires a proof that additional super-step between
consuming inputs and writing outputs does not change how the other boxes of the
program behaves. By using other scheduling algorithms the proof we have shown
is sufficient, and we do not need to verify the complete program.

5 HUME SCHEDULING

While the two Hume versions are equivalent in terms of the result they produce,
they may differ in their temporal behaviour, depending on the chosen scheduling
strategy in the implementation.

A Hume wire is a single value buffer that connects exactly two boxes. A Hume
box can only run once per schedule super-step, it will try to match its input, and
upon success consume from the input wires, evaluate some result, and then block
until the output wires are free to accept the result. These semantics lead to deter-
ministic programs, where non-deterministic programs can be constructed by spec-
ifying that a box is ‘fair’, and this enables fair (LRU) matching of the box input
patterns.

At the end of each super-step cycle, a box may be in one of the following states:

1. Runnable The box has successfully consumed inputs and asserted outputs.

2. Blocked-output The box has successfully consumed inputs but failed to as-
sert outputs. It will attempt to assert outputs on subsequent cycles.

3. Match-fail The box has failed to find required inputs.

The Match-fail state is equivalent to Runnable, but is distinguished to support
program tracing and debugging. In what follows, we understand Runnable to in-
clude Match-fail.

The execution cycle is illustrated in Figure 2.
One scheduling implementation of this is lock-step scheduling where all non-

blocked boxes are run once and then the inputs and updated with the new outputs.1

Thus, the normal lock-step scheduling of Hume programs is as follows:

for ever
execute each Runnable box
super-step

To return to the recursion to iteration transformation, where linrecbox takes
one schedule step to complete, iterbox will take many, depending on the orig-
inal depth of recursion. In principle this is not problematic as repeated box itera-
tion should have the same order of cost as recursion. However, because the base
scheduling mechanism always tries to run every box on each execution cycle, any
boxes that depend directly or indirectly on the box iteration generating an output

1Due to the current lack of any data-flow, or temporal dependency analysis, lock-step scheduling
is used in all valid Hume implementations.

BlockedOut Runnable

check inputs

consume inputs
generate outputs

BlockedOut
Superstep BlockedOut

check outputs

BlockedOut Runnable

MatchFail

assert outputs

MatchFail

Evaluation

FIGURE 2. Execution cycle.

Box Runnable Matchfail
mult1 1412 0
mult2 1412 998589
itermult 998589 1412

TABLE 3. Scheduling states.

will be repeatedly scheduled but fail to consume inputs. Such boxes nonetheless
incur a repeated unnecessary scheduling overhead.

Table 3 shows the overall scheduling behaviour of the recursive and iterative
multiplication programs. Note that in this example boxes never enter the blocked
output state.

In the recursive case, the single box mult1 calls fac 1411 times. In the iter-
ative case, the top level box mult2 passes initial data to itermult 1411 times,
with itermult failing to match inputs once prior to each communication. Thereafter,
both mult2 and itermult are scheduled 998,489 times, with mult2 always
failing to match inputs.

As well as being introduced by this transformation, the use of feedback wiring
and iteration is a standard Hume programming construct. Here, it is common for
many schedule steps to depend on the looped wire and not on any external input or
output. Thus, while these conditions hold, such boxes can be scheduled repeatedly
for greater efficiency. Note that changing the scheduling locally may change the
temporal behaviour of the program and affect program meaning.

6 EFFICIENT SCHEDULING

There are at least two distinct approaches to improving the scheduling efficiency:
one is to take a hierarchical view of the expression decomposition, and the other is
to amend the scheduler for improved efficiency in particular cases.

6.1 Hierarchical Scheduling

By treating the decomposition of the expressions of a box into a set of boxes that
are then ‘nested’ within the skeleton of the original box, then it is possible to use
a hierarchical scheduling mechanism. The child boxes can read the input from
skeleton (once input is matched), and then run using a nested instance of the Hume
scheduler until they produce output for the skeleton. The scheduler within the
skeleton box can only be active while the skeleton box itself is being executed.

for ever
execute each Runnable box
super-step

execute(box):
if matched input then

evaluate expression
do output

execute(skeleton box):
if matched input then

while no output
execute each Runnable child box
super-step children

This approach preserves the super-step meaning within the original program
and therefore program meaning.

We believe there is a way of transforming any nested box hierarchy into the
usual flat representation. However, any resultant flat representation would have
many boxes that would be idle the majority of the the time, and so efficiency would
likely be lost.

Nesting of the scheduler is an overkill for what we are trying to accomplish
and requires Hume programs to be decomposed with the special skeleton boxes.
At present, we are trying to keep Hume stable and are resistant to feature bloat;
therefore we would prefer not to add the machinery to support the skeleton boxes
and nested scheduling.

6.2 Towards Staged Scheduling

By keeping the original scheduling approach but amending it to automatically
schedule more efficiently in certain cases, we should gain benefits for free in many
existing programs regardless of whether they contain boxes generated by expres-
sion decomposition or not.

In the usual execution of a box, a Runnable box may have either asserted out-
puts to other boxes and itself, or just to other boxes, or just to itself. If it has
asserted outputs just to itself then it can have no impact on the ability of any other
box to consume inputs. We say that such boxes have the self-output property.

Thus, in principle, such boxes may execute repeatedly until they assert an out-
put for another box, without affecting the overall outcome of program execution,
provided there are no strong timing dependencies elsewhere in the program.

Let us add a fourth execution cycle state of Selfout. Then a staged scheduling
strategy might be:

for ever
while no box is Runnable

execute each Selfout box
execute each Runnable box
super-step

Where the original may suffer from starvation and have poor performance, the
hierarchical approach would be expected to offer better performance but with more
likelihood of starvation, where the staged approach should avoid starvation while
still offering better performance than the original.

7 STATIC AND DYNAMIC SELF-OUTPUT IDENTIFICATION

It would be highly beneficial to identify statically box matches with the self-output
property at compile time, to enable optimal scheduling in their presence. For HW-
Hume this is straightforward as there are no conditional expressions on the right
hand side of box matches. Thus, self-output matches can be identified by direct
inspection of associated actions and wiring.

However, FSM-Hume introduces conditional expressions in box match actions
and so analysis can at best identify matches which may self-output. If such matches
are treated liberally as self-output then their boxes may be prioritised inappropri-
ately. In contrast, if such matches are treated conservatively as non-self-output then
opportunities for scheduling efficiencies will be lost. This is compounded for PR-
and full Hume which allow mutually recursive functions, additionally requiring
full dataflow analysis.

Thus, we have modified the reference interpreter to implement the third mod-
ified scheduling approach, as shown in Figure 3, with dynamic identification of
self-output boxes. In this implementation, on the super-step we actively inspect

SelfOutBlockedOut MatchFail

Runnable empty?

check inputs

Evaluation

consume inputs
generate outputs

no yes

BlockedOut

MatchFail

BlockedOutSuperstep

check outputs

SelfOutBlockedOut

MatchFail

MatchFail

assert outputs

noyes
only self output?

Runnable

Runnable

FIGURE 3. Execution cycle with self-output prioritisation.

Version Scheduling Time (secs)
recursive original 100.4
iterative original 70.9
iterative new 57.0

TABLE 4. Execution times with self-out scheduling.

both the output values and the wiring for each box and deem a box self-output if it
has only produced values on feedback wires.

Executing the iterative multiplication example on the original and modified
interpreters gives a further 14% time saving for this example, as shown in Ta-
ble 4. This saving results from a significant reduction in unnecessary scheduling,
as shown in Table 5. By comparison with the old scheduling state behaviour shown
in Table 3, with the new scheduling scheme, mult2 is never scheduled once it has
entered a failed match state, so long as itermult is looping in the self out-
put state, giving a saving of around 997,000 unnecessary schedules out of around
2,000,000.

Box Scheduling Runnable Matchfail Selfout
mult2 new 1412 1412 0
itermult new 1411 1411 97178

TABLE 5. New scheduling states.

Self
OutputGeneric

BoxBox

FIGURE 4. Decomposition of Hume boxes.

8 CORRECTNESS

The Hume super-step scheduling results in program output being deterministic and
independent of the order of box scheduling. The transformation of functions into
boxes and modified scheduling is now shown informally as preserving the program
super-step semantics.

The evaluation of Hume expressions (within a box) is performed in a strict and
deterministic manner, that is, there is a single thread of execution for evaluation.
By observing that the single threaded evaluation of an expression means that eval-
uation can occur at only one locus in an expression at any single point in time, we
claim that, in an equivalent set of generated boxes, one and only one box can ever
be runnable at any point in time. Therefore, in transforming functional code into a
set of boxes, the boxes must under-utilise the potential for concurrency.

With only one box runnable at any time, the scheduling of these boxes becomes
trivial - evaluate the one box then super-step the outputs of this same box. Thus
the super-step semantics are preserved but irrelevant and can be made substantially
more efficient.

The original set of boxes would typically utilise concurrency and hence the
super-step semantics are vital. The two main approaches suggested in this paper -
hierarchical and self-output - preserve the program super-step semantics by forcing
all of the transformed generated boxes to run to completion before enabling the
original boxes again.

The hierarchical approach (as shown in Figure 4) treats the generated boxes
as a Hume program embedded within a Hume program. While it preserves the
necessary semantics it also enables a more general and powerful programming
model, i.e. it does not restrict the nested boxes to being single threaded and it also
allows hidden state. The self-output approach (as shown in Figure 4) optimises the
scheduling for a particular class of generated boxes, and thus is slightly restrictive.
A more general solution would mark the generated boxes at compile time and use
this information along with the dynamic scheduling.

While we stated that only one box could ever be runnable at any time, it may in
practise be useful to allow more than one to be runnable, but in a parallel pipelined
approach. However the generated boxes are still not, and cannot be, concurrent.

9 FORMALISING SELF-OUTPUT SCHEDULING IN TLA

In the specification of a self-output scheduling algorithm (3) we replace the next
action of a box by Ni from (1) by N SO

i :

P3 , ∃∃∃∃∃∃∃∃ s : Inits ∧ Initw ∧
n̂

i=1

Initi ∧2[Ns∧
n̂

i=1

N SO
i]〈w,b,s〉 (3)

Selfout behaves the same way as Runnable (Selfout ⇒ Runnable, but they are still
two distinct states. Selfout is only introduced to identify the cases described above
– hence the scheduling in (3) will only differ from (1) when none of the boxes are
Runnable. Let SO hold if there are now Runnable boxes:

SO ,

n̂

i=1

sti 6= Runnable

By using this definition we can define the next action N SO: Let N unch
i be the

‘unchanged action’ used above. Further, N s
i behaves like Ni with the difference

that if the process is in the state Selfout, introduced below, it behaves like it is
Runnable. If SO then we only execute boxes where sti = Selfout, unless we are
in a Write (W) step. We then need to reassert the output wires to see if they have
become Runnable. If ¬SO all boxes are executed as in (1):

N SO
i , if SO ⇒ (sti = Selfout ∨W) then N s

i else N unch
i

We let soi hold for box i if the output buffer o only (attempts) to write to internal
wires. A box enters a Selfout state in an Execute (E) step – and remains there unless
it blocks or so fails after an E step.

We next prove that self-output scheduling creates the same program as super-
step scheduling, i.e. it implements super-step scheduling. The proof is based
around the fact that a Selfout state is the same as a Runnable state in super-step
scheduling – shown in Lemma 1. A consequence of this is that N s

i implies Ni and
is proved in Lemma 2. Let the super-script so denote self-output scheduling if it is
not clear by the context:

Lemma 1 Selfoutso ⇒ Runnable

Proof. By the definition of the Selfout possible state. 2

Lemma 2 N s
i ⇒ Ni

Proof. By the definition of the Selfout possible state and Lemma 1. 2

To verify the implementation a mapping st is created for the internal box states
of the self-output algorithm. st provides the witness for existentially quantified
state st variable, and equals st unless st = Selfout where it equals Runnable. The
implementation is proved in Theorem 1:

Theorem 1

∃∃∃∃∃∃∃∃ s : Initso
s ∧ Initso

w ∧
n̂

i=1

Initso
i ∧2[N so

s ∧
n̂

i=1

N SO
i]〈w,b,s〉 ⇒

∃∃∃∃∃∃∃∃ s,st : Inits ∧ Initw ∧
n̂

i=1

Initi ∧2[Ns∧
n̂

i=1

Ni]〈w,b,s〉

Proof. Since we are ignoring liveness here, the proof is split into two parts: (1) We
must show that the initial state are identical; and (2) we must show that the step-
simulations(next actions) are identical. The initial states are identical by definition,
hence

∃∃∃∃∃∃∃∃ s : Initso
s ∧ Initso

w ∧
n̂

i=1

Initso
i ⇒∃∃∃∃∃∃∃∃ s,st : Inits ∧ Initw ∧

n̂

i=1

Initi

is easy to prove. To show step-simulation we must show that

∃∃∃∃∃∃∃∃ s : 2[N so
s ∧

n̂

i=1

N SO
i]〈w,b〉 ⇒∃∃∃∃∃∃∃∃ s,st : 2[Ns ∧

n̂

i=1

Ni]〈w,b〉

which by standard TLA reasoning can be reduced to

∃∃∃∃∃∃∃∃ s : [N so
s ∧

n̂

i=1

N SO
i]〈w,b〉 ⇒∃∃∃∃∃∃∃∃ s,st : [Ns ∧

n̂

i=1

Ni]〈w,b〉.

We know that [· · ·]x abbreviates · · · ∨ x′ = x, reducing our problem to

∃∃∃∃∃∃∃∃ s : (N so
s ∧

n̂

i=1

N SO
i)∨(〈w,b〉′ = 〈w,b〉)⇒∃∃∃∃∃∃∃∃ s,st : (Ns∧

n̂

i=1

Ni)∨(〈w,b〉′ = 〈w,b〉).

Since (〈w,b〉′ = 〈w,b〉) ≡ (〈w,b〉′ = 〈w,b〉) is trivial to show, we are left to prove

∃∃∃∃∃∃∃∃ s : (N so
s ∧

n̂

i=1

N SO
i) ⇒∃∃∃∃∃∃∃∃ s,st : (Ns ∧

n̂

i=1

Ni).

so is just added for readability and N so
s ≡ Ns, meaning the conjuncts N so

s and Ns

can be removed:

∃∃∃∃∃∃∃∃ s :
n̂

i=1

N SO
i ⇒∃∃∃∃∃∃∃∃ s,st :

n̂

i=1

Ni.

Since both programs have the same amount of boxes, we are left to show that

∃∃∃∃∃∃∃∃ s : N SO
i ⇒∃∃∃∃∃∃∃∃ s,st : Ni.

holds for an arbitrary box i. By unfolding the definition of N SO
i we must show that

∃∃∃∃∃∃∃∃ s : if SO ⇒ (sti = Selfout ∨W) then N s
i else N unch

i ⇒∃∃∃∃∃∃∃∃ s,st : Ni.

We separate between the two cases (1) (SO⇒ (sti = Selfout ∨W)) and (2) ¬(SO⇒
(sti = Selfout ∨W)). Case (1) is true if either ¬SO or sti = Selfout or W . For these
cases the following must hold

(¬SO∨ sti = Selfout∨W) ⇒∃∃∃∃∃∃∃∃ s : N s
i ⇒∃∃∃∃∃∃∃∃ s,st : Ni.

This hold by Lemma 2. For case (2) ¬(SO ⇒ (sti = Selfout ∨W)) can be reduced
to SO∧ sti 6= Selfout∧¬W . Hence we must verify

SO∧ sti 6= Selfout∧¬W ⇒∃∃∃∃∃∃∃∃ s : N unch
i ⇒∃∃∃∃∃∃∃∃ s,st : Ni.

Since SO we know that none of the boxes are Runnable and the current box is not
Selfout, we know that the state is either Matchfail or Blocked. By ¬W we now we
are in an Execute step or a Consume step. Since in a Write step a Matchfail state
is turned into Runnable it must be in a Consume step if the st is Matchfail, where
only the input wires are updated. Since a Matchfail is induced they will be left un-
changed. Hence the theorem holds. Furthermore, a box will leave all it’s variables
unchanged if it is in a Blocked state except when it is in a Write (W) step – where
it attempts to write to the output wires. Since one of the assumptions are ¬W we
know that all variables are left unchanged. This concludes the proof. 2

In Theorem 1 we verified that P3 ⇒ P1. We can also show equivalence between
the scheduling (P3 ≡ P1) by showing the converse of this implications (P1 ⇒ P3).
This proof is more complicated and requires the introduction of auxiliary variables,
and we will not show it here.

10 FORMALISING HIERARCHICAL SCHEDULING

Hierarchical scheduling introduces new features to Hume (box skeletons) and we
can only show that it implements scheduling if there are no box skeletons. This
proof will not be shown here, where we will focus more on the application of this
scheduling.

In §4 a proof of transformations was shown. The proof was divided into two
parts: A proof that a component implements a box; A proof that the extra super-
step introduced does not change the behaviour of the rest of the program. We only
showed the first part of this, but are confident that hierarchical scheduling with the
transformation

Box ⇒ Box Structure

simplifies each of these proofs.
In the component transformation proofs the only free variable is the output

buffer – all others are existentially quantified/hidden by the ∃∃∃∃∃∃∃∃ operator. This is due
the latency introduced by the transformation and that we cannot control the envi-
ronment. The mappings also complicates the soundness proof of this approach. If
we replace this component by a box structure we do not have hide any component,
which very much simplifies things.

For program transformation, by introducing a box structure instead of the com-
ponent we know that all other boxes will “freeze” until termination of the structure.
Hence, there is no need to verify the impact the transformation has on other boxes.

11 SUMMARY

We have introduced a transformation from linear recursion to box iteration, which
increases the applicability of static resource analysis and improves performance by
reducing memory overheads. The transformation has been verified in TLA, which
has also been used to formalise Hume’s super-step scheduling.

The recursion to box iteration transformation highlights scheduling inefficien-
cies in the presence of self-output boxes which repeatedly process their own out-
puts without affecting other boxes, resulting in unnecessary scheduling of other
boxes. We have presented a modified scheduling approach that substantially im-
proves scheduling of self-ouput boxes. We have also discussed the benefits of
box abstraction for generalising this improvement to enable independent Hume
program components to execute in parallel. Finally, we have formalised the new
scheduling algorithm in TLA and shown it to be equivalent to super-step schedul-
ing.

We next intend to automate the transformation and apply it to realistic pro-
grams. We will also explore the impact of the modified scheduling strategy on a
wider range of programs. We think that it will prove fruitful to investigate related
dataflow analysis techniques. Finally, we think it important to initiate debate on
how best to abstract over Hume boxes.

12 ACKNOWLEDGEMENTS

This research is supported by the EU FP6 EmBounded Project.
We would like to thank our collaborators in the EmBounded and UK DTC

SEAS projects, in particular Kevin Hammond.

REFERENCES

[AL88] Martn Abadi and Leslie Lamport. The Existence of Refinement Mappings. In
Yuri Gurevich, editor, Proceedings of the Third Annual IEEE Symp. on Logic in
Computer Science, LICS 1988, pages 165–175. IEEE Computer Society Press,
July 1988.

[HM03] K. Hammond and G. Michaelson. Hume: A Domain Specific Language for
Real-Time Embedded Systems. In Proceedings of GPCE’03: Generative Pro-
gramming and Component Engineering, Erfurt, Germany. Springer, LNCS,
September 2003.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 12(10):576–585, October 1969.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, 1994.

[Lam02] Leslie Lamport. Specifying Systems — The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Reading, Massachusetts, 2002.

[Man74] Z. Manna. Mathematical Theory of Computing. McGraw-Hill, 1974.

[MHJ04] G. Michaelson, K. Hammond, and J.Serot. FSM-Hume: Programming
Resource-Limited Systems using Bounded Automata. In Proceedings of ACM
Symposium on Applied Computing, Nicosia, Cyprus, pages 1455–1461. ACM
Press, March 2004.

[MK02] G. Michaelson and K.Hammond. The Hume Language Definition and Report,
Version 0.2. Technical report, Heriot-Watt University and University of St An-
drews, January 2002.

