
ZU064-05-FPR JFP2016 15 June 2017 15:31

Under consideration for publication in J. Functional Programming 1

Data structures as closures

Greg Michaelson and Robert Stewart
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh,

EH14 4AS, Scotland
(e-mail: G.Michaelson@hw.ac.uk; R.Stewart@hw.ac.uk)

Abstract

In formalising denotational semantics, Strachey introduced a higher order update function for the
modelling of stores, states and environments. This function relies solely on atomic equality types,
λ abstractions and conditions to represent stack disciplined association sequences as structured
closures, without recourse to data structure constructs like lists.

Here, we present higher order functions that structure closures to model queue, linear ordered and
tree disciplined key/value look up functions, built from a subset of OCaml equivalent to moderately
sugared pure λ functions. We also discuss their type and performance properties.

1 Introduction

For many problems, there is a need to store pairs of keys and values, for access by key.
Typical real-world key/value APIs are implemented using data structures, for example the
Haskell Data.Map module in the containers library is implemented using efficient size
balanced tree structures (Adams, 1993). Usually, update and search are separate activities.

For illustration, we’ll use OCaml. In what follows, we will use ⇒ ...⇒ to indicate a
judicious mix of α renaming, and β and η reduction. To implement a key/value map, we
will assume a list data structure corresponding to:

(∗ l i s t da ta s t r u c t u r e s u p p o r t i n g a key / v a l u e API ∗)
type ’ a l i s t = N i l | Cons of ’ a ∗ ’ a l i s t ; ;

and will use :: as an infix proxy for Cons, and [] for Nil.
Let’s suppose that, for update, if the key is unknown then the pair is added at the end of

the list. Otherwise, the value associated with the key is modified:

(∗ a key / v a l u e u pd a t e f u n c t i o n ∗)
l e t rec u p d a t e key v a l u e l i s t =
match l i s t with

[] → [(key , v a l u e)] |
(key1 , v a l u e 1) : : r e s t →

i f key=key1
then (key , v a l u e) : : r e s t
e l s e (key1 , v a l u e 1) : : u p d a t e key v a l u e r e s t ; ;

For example:
u p d a t e ” a ” 1 [] ⇒ ...⇒ [(” a ” , 1)]
u p d a t e ” b ” 2 [(” a ” , 1)] ⇒ ...⇒ [(” a ” , 1] ; (” b ” , 2)]
u p d a t e ” a ” 3 [(” a ” , 1) ; (” b ” , 2)] ⇒ ...⇒ [(” a ” , 3) ; (” b ” , 2)]

ZU064-05-FPR JFP2016 15 June 2017 15:31

2 Greg Michaelson and Robert Stewart

Then, for search, if the key is found then the most recent associated value is returned.
And if the key isn’t found then some error condition arises:

l e t rec s e a r c h key l i s t =
match l i s t with

[] → r a i s e (F a i l u r e ” s e a r c h ”) |
(key1 , v a l u e 1) : : r e s t →

i f key=key1
then v a l u e 1
e l s e s e a r c h key r e s t ; ;

We’ll come back to the error condition later.
If memory space is not an issue, then, for update, rather than checking to see if the key

is known, the list may be extended with a new tuple at the front, in a stack discipline:

l e t sUpda te key v a l u e r e s t = (key , v a l u e) : : r e s t ; ;

For example:

sUpda te ” a ” 1 [] ⇒ ...⇒ [(” a ” , 1)]
sUpda te ” b ” 2 [(” a ” , 1)] ⇒ ...⇒ [(” b ” , 2] ; (” a ” , 1)]
sUpda te ” a ” 3 [(” b ” , 2) ; (” a ” , 1)] ⇒ ...⇒ [(” a ” , 3) ; (” b ” , 2) ; (” a ” , 1)]

Here, for search, the latest value associated with a key will always be found first. Update
no longer requires searching and copying, but the list grows with the number of updates
rather than the number of unique keys.

In contrast, for a given list of pairs, instead of using general update and search functions,
we could construct a far more efficient list specific search function with the associations
bolted in. For example, for:

[(”a” ,1);(”b” ,2)]

we could use:
l e t rec pSea rch key =

i f key=” a ”
then 1
e l s e

i f key=” b ”
then 2
e l s e r a i s e (F a i l u r e ” s e a r c h ”) ; ;

This is as if we had unfolded the search function across the list.

l e t rec fun pSea rch key = s e a r c h key [(” a ” , 1) , (” b ” , 2)] ⇒ ...⇒

l e t rec fun pSea rch key =
match [(” a ” , 1) ; (” b ” , 2)] with

[] → r a i s e (F a i l u r e ” s e a r c h ”) |
(key1 , v a l u e 1) : : r e s t →

i f key=key1
then v a l u e 1
e l s e s e a r c h key r e s t ⇒ ...⇒

l e t rec fun pSea rch key =
i f key=” a ”
then 1
e l s e s e a r c h key [(” b ” , 2)] ⇒ ...⇒

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 3

l e t rec fun pSea rch key =
i f key=” a ”
then 1
e l s e
match [(” b ” , 2)] with

[] → r a i s e (F a i l u r e ” s e a r c h ”) |
(key1 , v a l u e 1) : : r e s t →

i f key=key1
then v a l u e 1
e l s e s e a r c h key r e s t ⇒ ...⇒

l e t rec fun pSea rch key =
i f key=” a ”
then 1
e l s e

i f key=” b ”
then 2
e l s e s e a r c h key [] ⇒ ...⇒

l e t rec fun pSea rch key =
i f key=” a ”
then 1
e l s e

i f key=” b ”
then 2
e l s e
match [] with

[] → r a i s e (F a i l u r e ” s e a r c h ”) |
(key1 , v a l u e 1) : : r e s t →

i f key=key1
then v a l u e 1
e l s e s e a r c h key r e s t ⇒ ...⇒

l e t rec fun pSea rch key =
i f key=” a ”
then 1
e l s e

i f key=” b ”
then 2
e l s e r a i s e (F a i l u r e ” s e a r c h ”)

This Functional Pearl explores how we might construct association pair specific func-
tions like this, by effectively extending the function for a known sequence of pairs with a
new layer of if ... then ... else ... for a new pair. To do so, we will build on the pioneering
work of Christopher Strachey, who introduced such updateable functions for modelling
states, stores and environments in denotational semantics. We shows that Strachey’s func-
tions can be used to implement a real world key/value update and search API, without
recourse to data structures such as lists and trees.

2 Strachey’s update function

In Strachey’s approach (Strachey, 1966), the meanings of programs are characterised as
functions from input to output domains, via intermediate domains representing various

ZU064-05-FPR JFP2016 15 June 2017 15:31

4 Greg Michaelson and Robert Stewart

forms of state. In turn, domains are modelled as updateable functions. Thus, Strachey
characterised a store as a function from L-values to R-values:

σ ′ =Uα(β ′,σ)

where σ ′ is the new store function, U is the update function, α is an L-value, β ′ is an
R-Value to be associated with α , and σ is the old store function.

Subsequently (Strachey, 2000), Strachey defined U as:

(U(α,β ′))σ = σ ′ where σ ′χ = (χ = α)−> β ′,σ χ

using the conditional expression notation:

condition −> expression1 , expression2

Recasting this in OCaml gives:

l e t rec s t r U p d a t e i d e n t v a l u e s t o r e =
fun i d → i f i d = i d e n t then v a l u e e l s e s t o r e i d ; ;

In effect, adding an identifier/value pair to a given store is realised by wrapping a
conditional expression round the store function. Furthermore, just like our second list
update function, the store function is extended in a stack discipline; when it is called with
some argument identifier, the conditional for the most recent update for a known identifier
is always met before those for prior updates.

For example, given an initial empty store function:

l e t empty i d = r a i s e (F a i l u r e ” s e a r c h ”) ; ;

consider adding an association between ”a” and 1:

s t r U p d a t e ” a ” 1 empty ⇒ ...⇒
fun i d → i f i d =” a ” then 1 e l s e empty i d ⇒ ...⇒
fun i d → i f i d =” a ” then 1 e l s e r a i s e (F a i l u r e ” s e a r c h ”)

Similarly, adding an association between ”b” and 2 gives:

s t r U p d a t e ” b ” 2 (fun i d → i f i d =” a ”
then 1
e l s e R a i s e (F a i l u r e ” s e a r c h ”)) ⇒ ...⇒

fun i d → i f i d =” b ”
then 2
e l s e (fun i d → i f i d =” a ”

then 1
e l s e R a i s e (F a i l u r e ” s e a r c h ”)) i d ⇒ ...⇒

fun i d → i f i d =” b ”
then 2
e l s e

i f i d =” a ”
then 1
e l s e R a i s e (F a i l u r e ” s e a r c h ”)

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 5

code

value

1

value

N

variable 1

variable N

Fig. 1. Closure

fun id −> if id=identifiercode

"b"

2value

identifier

store
code

"a"

1value

identifier

then value

else store id

fun id −>

raise (Failure "search")

store

code

Fig. 2. Closure for "a"/1, "b"/2

3 Closures

We have reduced applications of the update function to something resembling a normal
form, delving into the function body until we can perform no more substitutions. In func-
tional language implementations, however, partial application typically involves a mech-
anism to associate bound variables with arguments such that, when bound variables are
encountered in function bodies, the associated arguments are used. Thus, when a call
returns a function in which former bound variables appear free, their bindings must be
accessible when the function is subsequently used.

Typically, a structure called a closure is built to record the code for that function and
its free variable bindings. We will represent closures as shown in Figure 1. For example,
Figure 2 shows the closure for the function for the associations for ”a”/1 and ”b”/2. Note
that different closures may share the same code.

We’re now going to explore how to build updateable function that follow other disci-
plines. Unlike Strachey’s update, however, our functions will enable both look-up and self-
extension. In general, we will build functions that model associations between arbitrary
keys and values. For a known key we will return the associated value, and for an unknown

ZU064-05-FPR JFP2016 15 June 2017 15:31

6 Greg Michaelson and Robert Stewart

key we will update the function with a new association. Hence, the functions must always
be passed both a key and a value, and return both a value and a possibly updated function.

4 Queue function update

In our original list function, we added an new association at the end of the list of known
associations. Thereafter, the list is searched from the start to the end, and if the required
entry is not found, then it is added at the end. That is, the list is maintained in what we
might term a queue discipline as it is extended at the back but searched from the front.

In our pure functional analogue, operationally, we want to splice in a new conditional
expression for a new association pair at the end of the function for the known association
pairs.

For example, given:

fun i d → i f i d =” a ” then 1 e l s e r a i s e (F a i l u r e ” s e a r c h ”)

we would like the effect of:

qUpdate ” b ” 2 (fun i d → i f i d =” a ”
then 1
e l s e r a i s e (F a i l u r e ” s e a r c h ”)) ⇒ ...⇒

fun i d → i f i d =” a ”
then 1
e l s e

i f i d =” b ”
then 2
e l s e r a i s e (F a i l u r e ” s e a r c h ”)

We need to somehow tease the function apart and reconstruct it. However, we are not
going to use reflection or meta-programming. Rather, the function being updated will
reconstruct itself, association by association. Thus, at the end of the reconstructed chain
of associations, rather than raising an exception, the function requires the ability to splice
in a new association offering the possibility of further extensions in the future.

Suppose we have an update function:

fun rec qUpdate key v a l u e r e s t = . . .

where rest is the function being updated.
For an unknown key, at the end of the chain of conditionals, there must be a call to a

function that returns both the associated value and a new function that knows about the
new association:

l e t rec qEmpty key v a l u e = (va lue , qUpdate key v a l u e qEmpty)

Note that qEmpty passes itself to qUpdate.
Now, qUpdate is to return a new look-up function for a new key and value. If the new

function knows the key, it returns the value and recreates itself:

l e t rec qUpdate key v a l u e r e s t =
fun k v → i f k = key

then (va lue , qUpdate key v a l u e r e s t)
e l s e . . .

Otherwise, it:

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 7

• calls the old function to return the value for the unknown key and a possibly modified
old function;

• returns the value and recreates itself using the possibly modified old function:

l e t rec qUpdate key v a l u e r e s t =
fun k v → i f k = key

then (va lue , qUpdate key v a l u e r e s t)
e l s e

l e t (newvalue , n e w r e s t) = r e s t k v
in (newvalue , u p d a t e key v a l u e n e w r e s t)

Here the call to rest will return a copy of itself, possibly changed if the required key k is
unknown.

For example, let’s start by extending an empty sequence with the pair ”a”/1:

qEmpty ” a ” 1 ⇒ ...⇒

(1 , qUpdate ” a ” 1 qEmpty) ⇒ ...⇒

(1 , fun k v → i f k=” a ”
then 1
e l s e

l e t (newvalue , n e w r e s t) = qEmpty k v
in (newvalue , qUpdate ” a ” 1 n e w r e s t))

Let’s now add ”b”/2:

(fun k v → i f k=” a ” then 1 e l s e . . .) ” b ” 2 ⇒ ...⇒

l e t (newvalue , n e w r e s t) = qEmpty ” b ” 2
in (newvalue , qUpdate ” a ” 1 n e w r e s t) ⇒ ...⇒

l e t (newvalue , n e w r e s t) = (2 , qUpdate ” b ” 2 qEmpty)
in (newvalue , qUpdate ” a ” 1 (qUpdate ” b ” 2 qEmpty) ⇒ ...⇒

(2 , qUpdate ” a ” 1 (qUpdate ” b ” 2 qEmpty))

To recap, we started out with:

qUpdate ”a” 1 qEmpty

with qEmpty as the rest function after ”b”/2 and we now have:

qUpdate ”a” 1 (qUpdate ”b” 2 qEmpty)

with (qUpdate ”b” 2 qEmpty) as the rest function after ”a”/1.
In general, as a new pair is added, the function is reconstructed with the composed calls

reflecting a queue order of access. The closure for ”a” /1, ”b”/2 is shown in Figure 3.

5 Types

The update function has a recursive type:

ZU064-05-FPR JFP2016 15 June 2017 15:31

8 Greg Michaelson and Robert Stewart

fun k v −>

 if k=key

 else

 let (newvalue,newrest) = rest k v

 in (newvalue,qUpdate key value newrest)

 then (value,qUpdate key value rest)

code

1value

code

"b"

2value

code

"a"

rest

rest qExtend

key

key

Fig. 3. Queue disciplined closure for "a"/1, "b"/2

α → β →U →U
where:
U = α → β → β * U

assuming that α is an equality type.
Like the Y combinator, this update function cannot be implemented in a decidable, stati-

cally typed polymorphic language because any static type checker would infinitely recurse
into type U . One approach for implementing Strachey functions is to use a dynamically
typed language, where the decidability of the type correctness of U is not performed at
compile time. For example, the empty and update functions in Python 2.7 are:

def qEmpty (key , v a l u e) : re turn (va lue , qUpdate (qEmpty , key , v a l u e))

def qUpdate (r e s t , key , v a l u e) :
re turn lambda k , v : (va lue , qUpdate (r e s t , key , v a l u e))

i f k==key
e l s e qChange (r e s t (k , v) , key , v a l u e)

def qChange ((newvalue , n e w r e s t) , key , v a l u e) :
re turn (newvalue , qUpdate (newres t , key , v a l u e))

A second approach is to use a language that permits type unsoundness by overlooking
the cyclic property of type U , and this is the approach we take in this paper. We use the
OCaml -rectypes flag to enable a selective occurs check admitting equirecursive types
(Pierce, 2005). Thus, qEmpty and qUpdate have types:

v a l qEmpty : ’ b → ’ c → ’ c ∗ ’ a as ’ a = <fun>

v a l qUpdate : ’ a → ’ b
→ (’ a → ’ d → ’ b ∗ ’ c as ’ c)
→ (’ a → ’ d → ’ b ∗ ’ e as ’ e) = <fun>

Note that, for qUpdate, ’b and ’d, and ’c and ’d are the same types.
These functions can be implemented in System F compliant languages with a wrapper

of user defined data type, but this is left as an exercise for the reader.

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 9

6 Ordered function update

We can modify the update function to give the effects of adding a new key/value association
in key order. For a known key, we return the value and recreated function. For an unknown
key, if it comes before the current known key we return the new value and recreate the
function to reflect the new key order. Otherwise, as before, we seek the unknown key in
the old function, and return the associated value and possibly modified function:

l e t rec oUpdate key v a l u e r e s t =
fun k v → i f k=key

then (va lue , oUpdate key v a l u e r e s t)
e l s e

i f k<key
then (v , oUpdate k v (oUpdate key v a l u e r e s t))
e l s e

l e t (newvalue , n e w r e s t) = r e s t k v
in (newvalue , oUpdate key v a l u e n e w r e s t) ; ;

l e t rec oEmpty key v a l u e = (va lue , oUpdate key v a l u e oEmpty) ; ;

Notice how, as each new pair is added, the function is reconstructed with the composed
calls reflecting an ascending order of key access. See Figure 4 for successive closures for
”a” /1, ”c” /3, ”b”/2.

7 Ordered function update with key/value modification

Alternatively, we can modify the queue function to either search for the value associated
with a key or change the value associated with a key:

l e t rec cUpdate key v a l u e r e s t =
fun s e a r c h k v →

i f k=key
then

i f s e a r c h
then (va lue , cUpdate key v a l u e r e s t)
e l s e (v , cUpdate key v r e s t)

e l s e
l e t (newvalue , n e w r e s t) = r e s t s e a r c h k v
in (newvalue , cUpdate key v a l u e n e w r e s t) ; ;

l e t rec cEmpty s e a r c h key v a l u e = (va lue , cUpdate key v a l u e cEmpty) ; ;

Note that the size of this function only grows with the number of unique keys.

8 Unbalanced binary tree

We next construct an function that follows an unbalanced tree discipline, as recursive
function calls rather than as a tree based data structure, with “rest” functions representing
the left and right branches. If an unknown key comes before the current known key then
it is sought using the left branch function; if it comes after that key then the right branch
function is used. In either case, the whole function is recreated using the possibly changed
left or right branch function as appropriate:

ZU064-05-FPR JFP2016 15 June 2017 15:31

10 Greg Michaelson and Robert Stewart

code

"c"

3value

rest

key

code

oExtend

(A)

(B)

code

1value

code

"c"

3

code

"a"

rest

oExtend

fun k v −>

 if k=key

 else

 then (value,oUpdate key value rest)

if k<key ...

code

1

"a"

rest

fun k v −>

 if k=key

 else

 then (value,oUpdate key value rest)

if k<key ...

key

key

key

value

rest

value

code

"b"

2value

rest

key

Fig. 4. Ordered closure for (A) "a"/1, "c"/3 and (B) "a"/1, "c"/3, "b"/2

l e t rec t U p d a t e key v a l u e l e f t r i g h t =
fun k v → i f k=key

then (va lue , t U p d a t e key v a l u e l e f t r i g h t)
e l s e

i f k<key
then

l e t (newvalue , n e w l e f t) = l e f t k v
in (newvalue , t U p d a t e key v a l u e n e w l e f t r i g h t)

e l s e
l e t (newvalue , n e w r i g h t) = r i g h t k v
in (newvalue , t U p d a t e key v a l u e l e f t n e w r i g h t) ; ;

l e t rec tEmpty key v a l u e = (va lue , t U p d a t e key v a l u e tEmpty tEmpty) ; ;

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 11

fun k v −>
if k=key
then (value,tUpdate key value left right)
else
if k<key...

code

right

right

left

key

code

tExtend

value

key

2

"b"

"a"

code

value

left

right

left

value3

"c"

code

key

1

Fig. 5. Tree closure for "b"/2, "a"/1, "c"/3

The tree for ”b” /2, ”a” /1, ”c”/3 is shown in Figure 5.

9 Performance

We will now compare the performance of the list based and closure based functions for
stack and queue disciplines. We are using the camlopt native code compiler within OCaml
3.11.2 running under Linux CentOS 6 on a 2.6GHz Intel Xeon with 22GB memory. Times
are taken with the OCaml Sys.time function. Reported times are the averages of 5 runs.

Table 1 shows comparative times in seconds for first updating, and then searching the
list and closure versions of the stack and queue disciplined functions with P unique pairs
of strings and integers.

To make a fair comparison for the queue discipline, we introduce a new list queue
function:

l e t rec l q U p d a t e k v l =
match l with
(key , v a l u e) : : r e s t →

i f k=key
then (va lue , l)
e l s e

l e t (newvalue , n e w r e s t) = l q U p d a t e k v r e s t
in (newvalue , (key , v a l u e) : : n e w r e s t) |

[] → (v , [(k , v)]) ; ;

which has the same computation structure as the closure based function but uses list
construction.

The list based update function (1) and list based search (2) both grow linearly with the
number of pairs. This is because a new pair is always added at the end of the existing pairs.

ZU064-05-FPR JFP2016 15 June 2017 15:31

12 Greg Michaelson and Robert Stewart

List based Strachey functions Queue based

update search
update
(stack)

update search update search
update
(list)

update search sUpdate strUpdate store qUpdate (qUpdate) lqUpdate
P (1) (2) (3) (4) (5) (6) (7) (8)

300 0.0018 0.0010 0.0000 0.0000 0.0004 0.0002 0.0028 0.0016
600 0.0068 0.0048 0.0000 0.0000 0.0010 0.0002 0.0140 0.0072
900 0.0166 0.0104 0.0000 0.0000 0.0022 0.0000 0.0380 0.0178
1200 0.0314 0.0184 0.0000 0.0000 0.0038 0.0000 0.0808 0.0336
1500 0.0546 0.0304 0.0000 0.0002 0.0062 0.0002 0.1406 0.0584
1800 0.0826 0.0434 0.0000 0.0002 0.0090 0.0002 0.2198 0.0880
2100 0.1164 0.0580 0.0002 0.0000 0.0122 0.0002 0.3297 0.1232
2400 0.1618 0.0774 0.0000 0.0002 0.0162 0.0004 0.4717 0.1796
2700 0.2154 0.0932 0.0000 0.0002 0.0194 0.0002 0.6379 0.2290
3000 0.2838 0.1208 0.0002 0.0000 0.0250 0.0004 0.8339 0.2846
3300 0.3583 0.1418 0.0002 0.0002 0.0296 0.0004 1.1342 0.3731
3600 0.4511 0.1730 0.0002 0.0002 0.0360 0.0006 1.5252 0.4739
3900 0.5497 0.2092 0.0000 0.0004 0.0426 0.0006 1.9151 0.5781
4200 0.6713 0.2298 0.0004 0.0002 0.0474 0.0008 2.2561 0.6971
4500 0.8019 0.2668 0.0004 0.0002 0.0562 0.0010 2.5478 0.8309
4800 0.9693 0.3006 0.0002 0.0004 0.0648 0.0010 2.9050 0.9998
5100 1.1296 0.3453 0.0006 0.0004 0.0714 0.0012 3.3735 1.1596
5400 1.3300 0.3975 0.0004 0.0004 0.0814 0.0010 3.9148 1.3544
5700 1.5160 0.4265 0.0004 0.0004 0.0910 0.0016 4.5797 1.5428
6000 1.7563 0.4859 0.0004 0.0006 0.1000 0.0014 5.2488 1.7811

Table 1. Times in seconds for list and closure based stack and queue functions

List based stack update (3) and the Strachey update function (4) both take negligible
time. This is because the list function adds a cons cell at the top level where the Strachey
function adds a closure at the top level.

Strachey’s search function (5) takes around 20% of the time of list search (2). This is at
first sight surprising as we might expect closure entry to be more costly than list selection.
However, we suspect that OCaml is optimised to always place closure frames directly onto
the stack with stack relative code in the closure body. The access time for both functions
grows linearly with the number of pairs.

The queue based update function (6) takes a negligible time. Like the Strachey function,
this function also adds a top level layer of closure to an existing function.

The queue based search function returned by qUpdate (7) takes around 10 times as long
as list based search (2). Descending the chain of closures to find a required key is faster
than descending the corresponding list, as shown by the comparison of the list (2) and
Strachey (5) searches. However, returning the result from the end of the queue also involves
reconstructing the entire chain of closures. Further investigation is needed to clarify the
precise behaviour of the OCaml implementation here.

The list based queue update (8) is comparable to list based update (1).

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 13

10 Related work

Church introduced the representation of numerals (Church, 1936; Church, 1941) as pure λ

functions (pp28-9). In general, the nth numeral is:

λa.λb.anb

that is it applies function a n times to some value b. Arbitrary numerals can be generated
from zero and successor:

zero = λa.λb.b
succ = λa.λb.λc.b (a b c)

so an application of succ adds a layer of applying a.
Church also introduced a representation of pairs (Church, 1941) with selectors as pure

λ functions (p30):

[M,N] = λa.a M N
I = λb.b
21 = λa.a (λb c.c I b)
22 = λa.a (λb c.b I c)

Since Church, there have been many similar approaches to representing numerals as λ

functions. In particular, that from Scott’s widely cited but unpublished System of Func-
tional Abstraction has been particularly influential. Curry et al (Curry et al., 1972) seem
to give the first account of Scott numerals, but using a mix of λ calculus and combinators
(pp259-60):

zero = A = K = λx.λy.x
succ = F = λuxy.Bxyu

Given B = KI, succ reduces to:

λuxy.KIxyu⇒ λuxy.Iyu⇒ λuxy.yu

Parigot (Parigot, 1988), in a type theoretic exploration of recursive data types, first
defines:

zero = λ f.λa.a
succ = λv.λ f.λa.((f v) (v f a))

He also defines an alternative “stack” representation with:

zero = λ f.λa.a
succ = λv.λ f.λa.(f v)

which is Scott’s numeral.
Similarly, Steensgaard-Madsen (Steensgaard-Madsen, 1989) presents:

ZU064-05-FPR JFP2016 15 June 2017 15:31

14 Greg Michaelson and Robert Stewart

zero = λ succ.λ zero.zero
succ = λn.λ succ.λ zero.succ (n)

citing Scott. He also presents a list representation.
Mogensen (Mogensen, 1994) builds on Scott’s representation to provide an elegant if

inefficient encoding of λ calculus in itself:

x = λabc.a x - identifier
M N = λabc.M N - application
λx.M = λabc.c (λx.M) - function

so:

λx.x x = λabc.c (λx.(λabc.b (λabc.a x) (λabc.a x)))

Koopman et al (Koopman et al., 1994) use Clean to explore the computational efficiency
of Church, Scott and Parigot style representations of Peano numbers, lists and trees. They
suggest that such encodings are a poor basis for practical implementations, and the Church
style encoding is markedly less efficient than the simpler Scott and Parigot schemes.

These representations derived from the Church encoding share, with Strachey’s and our
approach, the use of closures to represent structures. They also share the feature of being
composed from constructors with abstractions to enable the subsequent insertion of other
functions to extend them or select from them. Thus, they treat structures as passive entities,
to be manipulated by other functions, much as data structures are treated in programming
languages. In contrast, our functions are active entities which, in combining construction
and inspection, return modified copies of themselves.

(Michaelson, 1988) discusses the representation of data structures as closures using
the Navel derivative of strict, ad-hoc polymorphic SASL (Turner, 1976). (Michaelson,
1994) analyses the constant space update function in the context of the direct functional
implementation of the denotational semantics of a simple imperative language.

11 Conclusion

We have shown how to construct updateable elementary linear and branching data struc-
tures from closures using a minimal pure subset of the functional language OCaml. We
have been inspired by Strachey’s update function for representing maps in denotational
semantics.

Search using the function from our queue update function is markedly slower than the
equivalent list based search function. This suggests that search based on our other update
functions will also be slower as they follow the same pattern of closure reconstruction in
search.

However, it is pleasing that Strachey’s update returns a function which is faster than the
equivalent list function: a tribute to OCaml as well as to Strachey.

It would be interesting to explore how to construct updateable circular data structures
using the same approach.

ZU064-05-FPR JFP2016 15 June 2017 15:31

Data structures as closures 15

Acknowledgements

This work started at the CSIRO Division of Information Technology and the University of
Technology, Sydney.

We’re pleased to acknowledge the support of EPSRC EP/K009931/1 “Rathlin”. The
OCaml implementation of all functions in this paper is available online 1.

We would like to thank:

• Jamie Gabbay and Joe Wells for discussion about the types of these functions;
• Bob Tennant for discussion about the origin of Strachey’s update function;
• the anonymous referees for constructively critical comments.

References

Adams, S. (1993). Efficient sets - a balancing act. Journal of Functional Programming, 3(4), 553–
561.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58, 345–363.

Church, A. (1941). The calulii of λ conversion. Princeton University Press.
Curry, H. B., Hindley, J. R., & Seldin, J. P. (1972). Combinatory Logic: Volume II. North-Holland.
Koopman, P., Plasmeijer, R., & Jansen, J. M. (1994). Church Encoding of Data Types Considered

Harmful for Implementation: Functional Pearl. Tobin-Hochstadt, S. (ed), Proceedings of 26th
International Symposium on Implementation and Application of Functional Languages. ACM.

Michaelson, G. (1988). Data structures as self-modifying functions. Tech. rept. TR-FB-88-09.
Division of Information Technology, CSIRO, North Ryde, Australia.

Michaelson, G. (1994). Association sequences as self-modifying functions. Journal of Programming
Languages, 2(1), 41–66.

Mogensen, T. Æ. (1994). Efficient Self-Interpretaion in Lambda Calculus. Journal of Functional
Programming, 2, 345–364.

Parigot, M. (1988). Programming with proofs: a second order type theory. Pages 145–159 of:
Ganzinger, H. (ed), Proceedings of ESOP’88: 2nd European Symposium on Programming.

Pierce, B. (2005). Advanced Topics in Types and Programming Languages. MIT Press.
Steensgaard-Madsen, J. (1989). Typed representation of objects by functions. ACM Transactions on

Programming Languages and Systems, 11(1), 67–89.
Strachey, C. (1966). Towards a Formal Semantics. Pages 198–220 of: Steele, T. B. (ed), Formal

Language Description Languages For Computer Programming. North-Holland.
Strachey, C. (2000). Fundamental Concepts in Programming Languages. Higher Order and Symbolic

Computing, 13, 11–49.
Turner, D. (1976). SASL Language Manual. Tech. rept. University of St Andrews.

1 https://github.com/robstewart57/strachey-ocaml

https://github.com/robstewart57/strachey-ocaml

ZU064-05-FPR JFP2016 15 June 2017 15:31

	Introduction
	Strachey's update function
	Closures
	Queue function update
	Types
	Ordered function update
	Ordered function update with key/value modification
	Unbalanced binary tree
	Performance
	Related work
	Conclusion
	References

