
Design, formalization and realization of Harmonic Box
Coordination Language: an externally timed specification

substrate for arbitrarily reliable distributed systems

Samuel R. J. George

A dissertation submitted to the University of Bristol in accordance with the
requirements for award of the degree of Doctor of Philosophy in the

Faculty of Engineering
Merchant Venturers School

June 2014

Word count: 73,603

Abstract

The functional specifications of high integrity systems include details needed to harden
them against hardware and implementation failures, leading to a lack of design trans-
parency, duplicative certification exercises and implementation inflexibility. This thesis
develops a new ontology-driven meta-model for specifying such systems, in which the
language itself is instantiated over a canonical coordinate system in spacetime.

We define a system of localized timed types, denoted by a canonical tree of iden-
tifiers, and a dense model of time, which we call Pre- (Pre-Harmonic Box Coor-
dination Language), for which we give a deep embedding in the Coq proof assistant.
We go on to develop a full coordination programming language of harmonic boxes (full
), defined over these types; the language is parametrized on arbitrary inner box
languages, and we provide a simple example that gives rise to a hardware description
language. We give a full semantics at progressive levels of formality. We argue that
the decoupling of a light-weight ontology from formalizing logic language produces a
more flexible approach than can be achieved with monolithic specification languages,
allowing bisimulation properties to be established between programs and more di-
rectly physical axiomatizations of hardware. We demonstrate how the use of a reflexive
morphism in simplifies the establishment of timing properties and composition of
specifications.

We develop an interpreter exported from a proof assistant. In doing so, we demon-
strate an unusually easy route to establishing soundness of our language up to the
soundness of the formalizing logic, and discuss the completeness limitations. To this
end, we review issues in computability, and construct a comparison in which formal
logics are included in the same schema as coordination and specification languages. We
conclude with an empirical demonstration of properties derived from the interpreter,
and evaluate the extent to which the work substantiates our conjectures.

Acknowledgements

I gratefully acknowledge the advice and support of my supervisors in completing this
work. My thanks go especially to Prof. Greg Michaelson, who has tirelessly advised
and encouraged me to the conclusion of this thesis. I am thankful also to Dr. Ian Holyer
for overseeing matters at Bristol, and grateful to Prof. Dhiraj Pradhan for his help in
the initial stages of my doctoral study. I would also like to thank Dr. Steve Gregory, my
progress reviewer, for his useful comments.

I wish to thank the University of Bristol for the award of a Centenary Postgraduate
Research Scholarship, which contributed to making this work possible.

To my parents

iii

Declaration

I declare that the work in this dissertation was carried out in accordance with the re-
quirements of the University’s Regulations and Code of Practice for Research Degree
Programmes and that it has not been submitted for any other academic award. Except
where indicated by specific reference in the text, the work is the candidate’s own work.
Work done in collaboration with, or with the assistance of, others, is indicated as such.
Any views expressed in the dissertation are those of the author.

Signed:

Date:

v

Contents

1 Introduction and motivation 1
1.1 Motivating a language . 1
1.2 Hypothesis . 2
1.3 Contributions . 2
1.4 Thesis structure . 3

2 Specification: computation, coordination and certainty 7
2.1 Languages, automata and semantic models 7
2.2 Expression languages as computable functions 8
2.3 Entropy . 10

2.3.1 Finite and infinite computations in the presence of non-determinism 10
2.4 The controversy of executable specifications 12

2.4.1 Specification language toolkits and verifying compilers 14
2.5 The coordination language dichotomy . 17

2.5.1 Time and space . 18
2.5.2 Axiomatizing entropy . 25

2.6 Concrete coordination languages and structures 25
2.6.1 Synchronous coordination languages 26
2.6.2 Asynchronous languages, models and calculi 32

2.7 Evaluating agents and entropy in concrete coordination models 37
2.8 Intuitionistic type theory . 38
2.9 Logical systems . 39

2.9.1 Logical propositions, formulae and embeddings 40
2.9.2 Establishment of logical formulae 45

2.10 Verified compilers and the preservation of semantics under transformation 50
2.10.1 POPLMARK . 51
2.10.2 Isabelle-based . 52
2.10.3 Coq-based . 52
2.10.4 Verifiability of proof assistants . 52

2.11 A remark on fault tolerance . 54
2.12 Assembling the parts . 54
2.13 Conclusion . 59

3 The Harmonic Box Coordination Language I: Motivation, examples and se-
mantic preliminaries 61
3.1 The case for a harmonic and ontologically aware language 61

vii

3.2 Informal exposition of a coordination language by conformationally rep-
resentative examples . 64

3.3 Introduction to the structure of HBCL . 65
3.4 Instance and library closure semantics . 67
3.5 Examples . 69

3.5.1 One box . 69
3.5.2 Two parallel boxes . 74
3.5.3 One box with feedback . 78
3.5.4 Two boxes in a pipeline . 81
3.5.5 Two boxes in a pipeline with feedback from second to first 82

3.6 More involved examples . 82
3.7 HBCL timing principles and properties 84
3.8 Summary . 93

4 The Harmonic Box Coordination Language II: Formal syntax and semantics 95
4.1 Structure of the formalization of HBCL 95
4.2 Abstract syntax . 97

4.2.1 Sets and primitive categories from the meta-logic 98
4.2.2 Abstract syntax construction rules 98

4.3 Approach to the semantics . 105
4.4 Semantic domain . 105

4.4.1 Typography . 107
4.4.2 Semantic domain common to coordination and expression lan-

guages . 109
4.4.3 Coordination language . 114
4.4.4 Expression language . 129

4.5 Further detail . 133
4.6 Reference interpreter . 133
4.7 Soundness, completeness and bisimilarity properties 133

4.7.1 Soundness . 134
4.7.2 Completeness . 135
4.7.3 Bisimilarity . 136

4.8 Summary . 137

5 Semantics and interpreter in Coq 139
5.1 Choice of embedding for HBCL . 139

5.1.1 Choice of logic and proof assistant 140
5.1.2 Choice of ontology and temporal logic 140
5.1.3 Choice of semantic representation 141

5.2 Specification in Coq: methods and constraints 141
5.2.1 Termination, well-foundedness and consistency 142
5.2.2 Key Coq programming paradigms 143

5.3 Link between operational semantics and Coq functions 148
5.4 Static formalization parameters . 148

5.4.1 Pre-HBCL, full HBCL, and the type of box languages 149
5.4.2 HBCL module design in Coq . 152

5.5 Formalization of the coordination language 154

viii

5.5.1 Section variables . 154
5.5.2 FIFO step and entry point . 155
5.5.3 FIFO-box memory step . 161
5.5.4 Box step . 162
5.5.5 Nested box step . 170
5.5.6 Box-FIFO memory step . 175
5.5.7 Super-step assembly . 175

5.6 Formalization of the example expression language 176
5.6.1 Sized types . 176
5.6.2 Cost functions . 177
5.6.3 Structure of the formalization . 177

5.7 Provable properties . 178
5.8 Summary . 180

6 Results of the canonical examples and an illustrative case study 183
6.1 Code export and compilation . 185
6.2 Trace table production . 186
6.3 Single box examples . 187
6.4 Parallel composition example . 196
6.5 Two pipelined boxes example . 199
6.6 Simple feedback example . 202
6.7 Feedback with pipeline example . 203
6.8 More involved examples . 205

6.8.1 Half adder . 205
6.8.2 Full adder . 212
6.8.3 Cascade adder . 215
6.8.4 Multiplier . 216
6.8.5 Triple modular redundancy (TMR) replicated multiplier 222
6.8.6 Scale metrics . 227

6.9 Possible technical improvements . 228
6.9.1 Use of tactic language . 228
6.9.2 Compiler . 229
6.9.3 Refinement of semantics . 229
6.9.4 Recasting modules into records . 230
6.9.5 Higher-order functions with proofs 230
6.9.6 Removal of convenience arguments 230
6.9.7 Unification of fixpoint and cofixpoint versions of semantics . . . 231

6.10 Summary of points demonstrated . 231

7 Conclusions and further work 233
7.1 Principal contributions . 233

7.1.1 Absolute time . 233
7.1.2 Deep embedding . 234
7.1.3 Ease of proof . 235

7.2 Ancillary contributions . 235
7.2.1 Separation of coordination and expression constructions: box lan-

guages as parameters . 235

ix

7.2.2 Formalization of FIFOs . 236
7.2.3 Agents and entropy . 237
7.2.4 Instance and library closure semantics 237

7.3 Critical evaluation . 237
7.3.1 Evaluation of hypotheses . 237
7.3.2 Use of Coq . 239

7.4 Further work . 241
7.4.1 Hardware formalization . 241
7.4.2 Mutual recursion of coordination languages 243
7.4.3 Reliability engineering tools . 243
7.4.4 Persistent state HBCL . 245
7.4.5 Multiple axiomatizations . 246

7.5 Summary . 247

References 247

Appendices 264

A Design of HBCL 265
A.1 Design space of HBCL . 265
A.2 OID semantics . 265

A.2.1 Why OID semantics and an ontological approach? 265
A.2.2 Monotonicity principle of OID semantics 266
A.2.3 Sandboxing and the semantics of composition 267
A.2.4 Static and dynamic OID semantics 267
A.2.5 Qualitative heterogeneity in the OID string 268
A.2.6 Rootless references . 269

A.3 Pre-HBCL: defining timed observables . 269
A.3.1 Instance signatures . 270

A.4 Full HBCL: a coordination meta-language 270
A.4.1 Entropic sandwich . 271

A.5 Full HBCL language structure . 272
A.5.1 Identifiers (a) . 274
A.5.2 OIDs (b) . 274
A.5.3 The plain untimed type system (c) 275
A.5.4 The OID type system functor (d) 275
A.5.5 The harmonic type system functor (e) 276
A.5.6 Untimed box language interface functor (f) 276
A.5.7 The harmonic box language interface functor (g) 277
A.5.8 Concrete coordination language functor (h) 277
A.5.9 Coordination language interpreter (i) 281
A.5.10 Coordination language instantiation (j) 281

B Semantic notation: a simple example 283
B.1 Notation: an illustrative example . 283
B.2 Abstract syntax of the propositional calculus 283
B.3 Semantic domain of propositional calculus example 284
B.4 Structural operational semantics: notation 287

x

B.5 The embedding of semantics in Coq . 292
B.6 Propositional calculus abstract syntax in Coq 292
B.7 Propositional calculus semantic domain in Coq 293
B.8 Structural operational semantics of the propositional calculus example in

Coq . 296

C Further Harmonic Box Coordination Language Syntax and Semantics 315
C.1 Concrete syntax . 315

C.1.1 Primitive tokens . 315
C.1.2 Concrete syntax common to coordination and expression languages316
C.1.3 Concrete syntax for coordination language 316
C.1.4 Concrete syntax for expression language 318

C.2 Static semantics as a static semantic object 319
C.2.1 Fragment common to expression and coordination languages . . 319
C.2.2 Untimed expression fragment . 321

C.3 Coordination dynamic semantics . 330
C.3.1 Program super-step . 330
C.3.2 FIFO step . 336
C.3.3 MemFB step . 340
C.3.4 Boxes step . 342
C.3.5 Nested boxes step . 349
C.3.6 MemBF step . 351

C.4 Expression language dynamic semantics 352
C.4.1 Expression static semantic object and argument match 352
C.4.2 Function invocation . 354
C.4.3 Function and data resolution . 356
C.4.4 Data look-up . 358
C.4.5 Expression evaluation . 359
C.4.6 Pattern evaluation . 361
C.4.7 Construction evaluation . 363

D Further Harmonic Box Coordination Language formalization in Coq 367
D.1 Module types . 367

D.1.1 Absract type of identifiers . 367
D.1.2 Absract type of OIDs . 368
D.1.3 The untimed (but sized) type system 370
D.1.4 The untimed OID type system . 370
D.1.5 The timed type system . 370
D.1.6 The untimed box abstraction . 371
D.1.7 The harmonic box abstraction . 372
D.1.8 The coordination language . 375

D.2 Correspondence of coordination language operational semantics with Coq
code . 385

D.3 Correspondence of expression language operational semantics with Coq
code . 386

D.4 Module instantiations . 386
D.4.1 The ID implementation . 386

xi

D.4.2 The OID implementation . 389
D.4.3 The bit field type system . 394
D.4.4 The untimed OID type system functor 404
D.4.5 The harmonic type system functor 404
D.4.6 The expression language type classes 405
D.4.7 The harmonic box functor . 406
D.4.8 The coordination language functor 411

D.5 Coordination language interpreter implementation (main functions) . . 423
D.5.1 Super-step . 423

D.6 Expression language . 438
D.6.1 Expression reduction . 475

E Listings of further Harmonic Box Coordination Language examples 501
E.1 Gate and fan-out instance library . 501
E.2 Boolean source and sink instance library 503
E.3 Boolean voter library . 504
E.4 Coq code for negator example . 505

F Further Harmonic Box Coordination Language execution traces 521
F.1 Parallel composition . 521
F.2 Simple pipeline . 526
F.3 Simple checksum . 532
F.4 Pipelined checksum . 533
F.5 Half adder . 534
F.6 Full adder . 539
F.7 Cascade adder . 565
F.8 Multiplier . 589
F.9 Replicated multiplier . 601

xii

List of Figures

1.1 Thesis roadmap . 5

2.1 The spatial dichotomy between sequential and coordination languages . 18

3.1 Case study summary . 65
3.2 A negator instance scenario . 71
3.3 A parity box scenario . 75
3.4 A parallel composition . 77
3.5 A checksum configuration . 79
3.6 A pipeline scenario . 81
3.7 A checksum calculated with negation . 83
3.8 Structure of replicated multiplier . 85
3.9 Lamport-like timing diagram for negator box 86
3.10 Timing diagram for pipeline example . 88
3.11 Timing diagram for pipeline example with compressed timed type time-

line relative to memory timeline . 89
3.12 Timing diagram for pipeline example with read-write memory phases

dissociated . 91
3.13 Timing diagram for pipeline example with intervals 92

5.1 Structure of full HBCL . 153
5.2 Multiplier category diagram . 180

6.1 Commuting diagram of HBCL formalization and execution 184
6.2 Half adder . 206
6.3 Full adder . 214
6.4 Structure of a cascade adder . 215
6.5 Structure of multiplier . 217
6.6 Structure of replicated multiplier . 224

A.1 OID layout for logical instances and libraries 268
A.2 Entropy sandwich . 272
A.3 Structure of full HBCL . 273

xiii

List of Tables

2.1 Specification formalism comparison matrix 58

6.1 Conformational examples . 186
6.2 Coordination state colour code . 187
6.3 Half adder truth table . 205
6.4 Full adder truth table . 213
6.5 Voter truth table . 223
6.6 Program statistics . 227

D.1 Coordination language formalization correspondence 386
D.2 Expression language formalization correspondence 386

xv

Chapter 1

Introduction and motivation

This thesis introduces the Harmonic Box Coordination Language (), which is a co-
ordination language. Coordination languages share much in common with concurrent
languages, and both are more expressive of parallel behaviours than many traditional
programming languages such as C. In contrast with sequential languages, which usu-
ally deal with concurrency (if they deal with it at all) by importing the indeterminable
scheduling semantics of thread-spawning system calls, coordination and concurrent
languages formalize concurrency within the semantics of a programming language it-
self.

1.1 Motivating a language

There is no shortage of programming or specification languages, and so we must make
the case for proposing a new one. The aim of is to provide a convenient method for
specifying arbitrarily complex concurrent programs that are amenable to semi-automatic
reflexive transformation into other programs, but which witness the semantics of
the original program under a state space interpretation function when mapped to de-
fined hardware configurations. These hardware configurations may be in a degraded
condition, which the transformed program, through its interpretation function, might
be specified to tolerate. These concepts are familiar from fault-tolerant hardware design,
but their application to high-level languages is a novelty.

Definition: Interpretation function
An injective mapping between two system histories, which can be defined with

a bisimulation predicate. Usually, we are interested in showing that a simpler and
more intuitive system has all of its states witnessed by a more complex, and uglier,
implementation.

1

1.2 Hypothesis

In this work, we set out to show that:

1. The specification of deterministic functions over absolute time and an ontology
of harmonically timed types in a space-time coordinate system provides a precise
description of correctness in real-world distributed computation, and gives rise
to simpler composition and transformation semantics than is achievable with the
partial orders of an asynchronous or locally clocked model.

2. Deeply embedding the axiomatization of an ontologically aware language in the
formal logic of a proof assistant allows statements to be made about how the se-
mantics of that language relate to other formalisms (such as a physical description
of hardware) expressed in the same logic. This class of statement is larger than
that which may be stated in the toolkit of a monolithic specification environment.

3. It is easier to establish the soundness and completeness of a deep embedding of
a coordination language by constructing a proof-carrying interpreter that derives
its properties from the proof assistant’s logic than by producing an ex post facto
proof over a predicate characterization of the language.

1.3 Contributions

We make the following contributions. The first six are directly in support of our three
hypotheses:

• Ontology of global clocking and coordinate system Axiomatic specifications of
computation (hypothesis 1).

• Ontology observation semantics The axes of understanding of Pre- (hypoth-
esis 1).

• Dependent type-theoretical semantics Typed reality and type of interpreters;
linkage of predicate and operational definitions by functions to parametrized 𝜎-
types (hypothesis 2).

• Polarizationof specification languages into formal logics andontology Demon-
stration that design space of specification toolkits can be covered by formal logics
and deep embeddings of ontologies (hypothesis 2).

• Formalization in a proof assistant Predicate and operational characterization of
full in Coq (hypothesis 3).

2

• Working simulation and proof Demonstration of simple route to establishing for-
mal properties; working simulation gives conviction to structure of coinductive
bisimilarity proof structure and empirical evidence of correctness of interpreter
function (hypothesis 3).

The other contributions are useful innovations that arose in solving problems:

• Separation of coordination and expression constructions Box languages as
parameters.

• Formalizationof FIFOs Communication by absolutely timed and deterministic clocked
s.

• Agents and entropy Clear boundary between determinism of model and unified
treatment of agents and entropy as external influences via input streams.

• Instance and library closure semantics All resolution semantics independent of
a root namespace.

1.4 Thesis structure

In chapter 2 we review what a coordination language is, and how it fits within general
models of computation. The difference between programming languages and specifica-
tion languages is examined, and from this we look into issues of what it means for a pro-
gram to be correct. Further, we look at equivalence classes of various types of sequential
and parallel languages, their expressivity and limitations on the ability of some classes
to simulate others. At an early stage, a distinction is drawn between synchronous and
asynchronous languages. In particular, care is taken to examine those languages that
have an especially similar structure or application focus to . H belongs to the
family of synchronous coordination languages. We discuss what this means in detail,
and go on to make a further definition and distinction between internally timed and ex-
ternally timed synchronous languages. In this chapter, we also examine how languages
are embedded in the formulæ of logics that can be mechanistically validated as such by
computer programs. The chapter covers what it means to embed languages as formulæ
in those logics, and goes on to review deductive systems for reasoning about these log-
ics. In particular, it probes the limiting factors of confidence in such systems, and allows
us to calibrate our aspirations for the formalization of against what is practically
possible with available tools.

Chapter 3 gives an intuitive overview of and review of timing issues, followed
by a set of progressive examples that is illustrative of the structures that can be repre-
sented in (or, indeed, any general purpose coordination language).

Chapter 4 goes on to define and present an abstraction of the formal syntax and

3

semantics in the form of a predicate-enriched semantic domain, and points to the ap-
pendices where detailed operational rules can be found.

Chapter 5 introduces the module-functorial structure of and provides a de-
tailed formalization in Coq. The details of the formalization of the coordination lan-
guage and expression language are presented in section 5.5 and section 5.6. The first
part of section 5.5 deals with the formalization of the coordination language, illustrated
by salient extracts from the Coq sources. This is followed by a detailed description of
the coordination part of the concrete interpreter, again accompanied by suitable extracts
from the Coq code. This pattern is repeated for the example expression language in sec-
tion 5.6.

Chapter 6 presents the results of running the simple examples discussed in chapter 3
through the interpreter. It goes on to introduce a further set of more realistic progressive
examples that more fully test the scalability of the language, and reviews the kind of
statements that can be made in Coq about specifications.

Chapter 7 concludes the thesis, including, in section 7.3, a critical evaluation of what
has been presented. We also assess the potential that arises for further work.

Figure 1.1 shows this outline pictorially, with dependencies between different chap-
ters. An arrow pointing to a particular chapter indicates that it benefits from being read
after that from which the arrow emanates. The arrows should be read transitively. Mul-
tiple paths through the diagram exist: a shorter path indicates a workable progression
to the final chapter, but reading only these chapters will result in an incomplete picture.
A chapter to which multiple arrows point has multiple dependencies.

4

Introduction
1 Approaching

specification

2

HBCL
exposition

3
HBCL formal

semantics

4

Coq formalization
and

implementation of
HBCL

5
Results of the

canonical example
and involved

example

6

Conclusion
7

Figure 1.1: Thesis roadmap
5

Chapter 2

Specification: computation,
coordination and certainty

This chapter discusses an apparently wide range of topics: sequential and coordination
languages, specification languages and proof tools. The present work is concerned with
formalizing a coordination language in a proof tool, but to see why one would want to do
this, and to contrast it with other approaches, we must examine the substantial overlaps
among the issues covered here. This is brought together at the end of the chapter with
a table of comparison, which we use to motivate and differentiate our approach in the
remainder of the thesis.

2.1 Languages, automata and semantic models

In order to say anything useful about coordination languages as programming lan-
guages, we need a working definition of both.

Informally, a programming language describes logical systems that can be imple-
mented in the physical world as a sequence of system states. The language is executable
if it can be physically represented and initialized in such a way that the laws of physics
alone produce an evolution of states through time that is consistent with the semantics
of the language. Automata theory is the discipline of studying the abstract properties of
such machines, and a Turing machine is the canonical species of automaton that can per-
form general computational tasks [186]. The first modern computers were the earliest
physical analogues of the archetypal Turing machine, although the actual architectures
used were based on von Neumann random-access models [190].1 All buildable com-
puters are finite and therefore imperfect.

It is also helpful, for the purposes of this chapter, to think of a coordination (or in-
deed any programming) language as a formal language, or at least two formal languages
in one. The static language defines the valid input strings of the language as it is writ-

1Charles Babbage’s analytical engine [138] is the first design for a Turing-equivalent machine.

7

ten down. Frequently this comes as two further languages, a language accepted by a
parser (embodying the syntactic rules, often as a context-free language so that tractable
parsers can be written) and a language accepted by the compiler, which embodies the
static semantics restricting the valid parse trees generated by the first language2. The
strings accepted by the compiler can be thought of as instantiating a final automaton
(in the case of a stream-based coordination language, an 𝜔-automaton3), which is the
language of input streams to dynamic executions. This final automaton, in its gener-
alized form as quantified over all possible static-semantically valid programs, can also
usefully be thought of as an abstract machine: one that is capable of simulating a Turing
machine if the language is Turing-complete. It is the dynamic semantics of a language,
as characterized by its abstract machine, which define the useful class of languages that
is generally loosely referred to as ‘programming languages’: this is the most interesting
part of a programming language, and the only element of such languages that will be
discussed in this chapter.

Coordination languages differ from generic programming languages in that their se-
mantics have an internal axiomatization of space or concurrency, and this makes them
particularly suitable for certain tasks that are by necessity concurrent. However, for
analytical and practical reasons, it is sometimes useful to reduce their semantics to a
formalized notion of a monolithic abstract machine. This abstract machine, defining a
class of coordination language-accepting run-time automata, emphasizes the trace se-
mantics of a coordination language as the evolution of a global state space. It allows
them to be simulated on a sequential machine and also permits the entire ensemble of
program components to be reasoned about as a whole. The collapse of a coordination
language into a monolithic machine often leads to a model-theoretic formulation of its
semantics, and some languages that take this approach therefore describe themselves
instead as ‘models’, ‘calculi’ or ‘architectures’. Some lack concrete syntax entirely, but
for the reasons just described, they will all admit description as ‘languages’. We exam-
ine them in detail in section 2.6.

2.2 Expression languages as computable functions

In the coordination/expression dichotomy, the purpose of an expression language is to
do a one-shot computation: to produce some outputs from some inputs. No state is kept
between invocations, so the computation is re-enterable. Turing machines can compute

2The accepted taxonomy of languages describes a hierarchy of levels of expressivity, with each level
defined by an accepting automaton that validates legal members of the language. These are the so-called
Chomsky types [49]. Where the present thesis concerns dynamic semantics, it is concerned with infinite
streams, and the language of such valid streams are described by an extension to the finite languages which
are called 𝜔-languages, as defined by Büchi automata [38].

3The fact that they are called𝜔-automata corresponds with the common usage of ‘𝜔’ as a representation
of the first infinite cardinal, which is the cardinality of the natural numbers ℕ, or ℵ.

8

any computable function [186].
Turing machines define a class of idealized machine, which progresses through a

series of discrete states according to some table which, for any given state, defines what
actions the machine should carry out to bring it to the next state. It achieves arbitrary
complexity through the provision of a notional tape of finite cells of infinite length.
These cells contain information that can be read from and written to by the machine.
Non-deterministic versions of the machine provide multiple possible next states, and
probabalistic machines provide a means of choosing between them, for example us-
ing a ‘random’ tape of entropy. It was shown in the 1930s that anything that can be
expressed with this sort of sequential computation can be expressed as a term in the
𝜆-calculus; both are equivalent to the notion of the 𝜇-recursive function.4 All of these
formalisms are equivalent in their ability to express computable functions. By ‘equiva-
lent’, we mean that any function expressible in one can be encoded in another, and pro-
duce consistent results: they are morphisms over relations between any two domains
and co-domains. From this, the definitions start to take on the look of an equivalence
class, and many others have since produced reformulations and equivalent models that
compute equivalent classes of functions. The Church-Turing conjecture concerns how
the various definitions of computable functions are to be regarded. They are definitions
(or axiomatizations) of an idea, one that seems to be strongly linked to physics, and it is
Turing’s approach that comes closest to capturing this. More recent work has been done
by Gandy [82] and Sieg [171]. This is not the place for a detailed treatment of this sub-
ject. The reader is referred to a text such as [52] or [193] for discussions of computability
issues.

In the present work, we incline to the physical definition of the functions capturable
with an expression language. In support of this, it is relevant to note that the Church
models of computation do not have to be — in spite of the fact that they usually are —

emulated by a sequential Turing-inspired machine. Direct physical reduction machines
have been built which express 𝜆-calculus semantics directly in hardware. These include
 [156], [58], and more recently, Naylor’s -based ‘Reduceron’ [147].

Languages for Turing machine analogues and the 𝜆-calculus are capable of express-
ing non-terminating programs: while(1) loops in C without break or return statements
are the most obvious example in the sequential case. Primitive recursive functions
do not suffer from this problem because the argument on each recursive call becomes
smaller in some sense. Similarly, tools implementing a simply typed 𝜆-calculi only de-
fine terminating computations: they are stongly normalizing.5 However, there are func-
tions which are effectively computable but cannot be expressed in a primitive recursive

4The 𝜆-calculus is due to Church [50]; The 𝜇 operator is due to Kleene [119].
5The original𝜆-calculus of Church was typeless, but there are typed versions, which are easier to control

for practical software engineering: [20] is the authoritative work.

9

form: the classic example is the Ackermann function. Turing-complete languages (that
is, those that can model a Turing machine) are thus capable of expressing computations
which cannot, in general, be guaranteed to halt. This is a problem for a coordination
language when used in a safety-critical environment: it is neither deterministic nor ac-
ceptable for a one-shot computation, defined in an expression language, to report to its
invoking coordination language that it did not malfunction, but nevertheless ran out of
time in doing its work. The solution is to place bounds on the size arguments and use in-
genuity to find proofs on an expression-by-expression basis that a particular expression
will terminate. Various tools can help in applying patterns of previously distilled insight
to these problems, in order to limit the amount of human ingenuity that is required in
each case.

The Hume expression language deals with these logical realities very deftly [96].

2.3 Entropy

There is an intuitive link between the idea of entropy as information content and the
entropy of physical systems: physical systems with a higher degree of disorder require
more information to be used in order to describe them. The information needed to
describe a plain piece of card is less than that needed to describe the same card but
punched full of holes: holes that may or may not ‘mean’ something, such as a computer
program or the number of teacakes sold in a chain of cafes on a particular day.

The idea of informational entropy originates in Shannon’s work on quantifying the
information content of communication channels [170]. Shannon entropy is the resulting
measure of information. For present purposes, we do not need to delve into the math-
ematics of entropy, or the intriguingly mathematical connections between the two, but
we do need to observe that informational entropy is a measure of the unpredictability
of a communication channel. It is entropy as a source of unpredictability that is key to
making a probabalistic Turing machine out of a deterministic Turing machine: it is the
source of the random tape. If entropy is being received as an infinite stream (or tape), the
entropy rate of our idealized source of information will be the same as the bit rate of the
information itself. Entropy is not needed to specify a probabalistic computation, but it is
needed to reason about the distribution of results given multiple runs: if we wanted to
do this, the mathematical definition of entropy would be necessary. The present project
is confined to deterministic computations, so we need not do this here.

2.3.1 Finite and infinite computations in thepresenceof non-determinism

A probabalistic Turing machine can be simulated by a Turing machine that makes de-
cisions on what to do next based on the content of a random tape. A non-deterministic
Turing machine is one that has points in its execution where more than one action may

10

occur next. Unlike a probabalistic Turing machine, it does not specify a way of choosing
what to do next, so in a real semantic sense, the computation can be thought of as defin-
ing all of these choices at once. This leads to a rapidly divergent execution path. As
each path may give rise to further choices, each of those may lead to yet further choices,
and so on, leading to a set of possible execution histories that grows exponentially with
the length of the trace. These divergences describe a tree structure, and Plotkin gives
a simple proof [157] that if the computation described by the set of possible choices is
finite, then the program must be certain to terminate. The proof goes on to show that
if there is an infinite set of possible traces, then the computation that produces at least
some of them must be infinite, and that therefore some of the possible paths will not
terminate, and thus not return a result. This is bounded non-determinism.

The idea of a computational system exhibiting unbounded non-determinism is that
such a system allows computations to be defined that will always return results, but
that the set of such results, as determined by the final node on the execution trace, is
infinite. If such systems are possible, they do not appear to fit with Plotkin’s proof, so
what is going on? Clinger dealt with these problems in his Ph.D. thesis [51], and this is
where the idea of fairness comes in. If a program is written for a non-deterministic Tur-
ing machine, there is no way of specifying how, in an execution, the non-deterministic
choice is to be made. If there were two choices — one to halt immediately, and the other
to make the choice again — the implementation may always choose to go round again
and therefore never terminate. The programmer of the non-deterministic machine has
no way of specifying that some fairer policy to choose between the two options should
be adopted, such as to toss a coin.

We suggest that a source of Shannon entropy provides this, and so a probabalistic
Turing machine can simulate a system that exhibits unbounded non-determinism. The
entropy ensures that some class of programs, which is wider than those that can be cer-
tain to terminate on a non-deterministic Turing machine, will nevertheless terminate
eventually, but that termination may not happen for an indefinitely long time. Even for
this simplest example program, the program is guaranteed to halt (potentially well after
the heat death of the universe, in a physical incarnation), but the set of possible results of
the computation is infinite.6 Whether we regard this as meaning that a result will never
be returned depends on whether we believe that there is such a thing as a completed in-
finity that bounds our reality. In mainstream mathematics, completed infinities (at least
since Cantor) are perfectly normal; constructivists resist the idea of completed infinities.

6We can equate the length of the trace with the size of the set of answers if each time the choice is made,
a natural number is incremented by unity.

11

2.4 The controversy of executable specifications

The business of a computation is to take some inputs and produce some outputs. Ex-
ecutable specifications are sets of instructions for how to produce the latter from the
former. They concern the how of computation, rather than the what. The ‘what’ of com-
putation, mathematically, is a relation over all possible inputs and outputs. While it is
trivial to construct such a relation from an executable specification, the controversy of
whether this is desirable concerns whether the predicate that is produced in this way is
a reliable way of axiomatizing the intentions of the specifier.

While functional programs appear better suited to specifying executable specifica-
tions than imperative programs, it is nevertheless still possible to write many different
functional programs which compute the same thing, still dealing with some of the how
of computation: such programs can thus lack canonicity.

The idea that a functional program could be used as a specification was put for-
ward by Turner [188]. There was a flurry of debate in the 1990s as to whether functional
specifications should be executable or not. A paper by Hayes and Jones [99] argued that
executable specifications risk enshrining irrelevant implementation details, and cannot
accommodate non-deterministic systems whose relations describe surjective functions.
Furthermore, Hayes and Jones argued that specification languages should be able to ex-
press non-computable functions so that they can deal with certain theoretical aspects
of computation that go beyond what is physically computable. Fuchs [80] put forward
counter-arguments to this position, based mainly on the pragmatic idea that useful non-
executable specifications can often be made executable. This can be done by introducing
constructive elements and transformations that turn them into executable programs.
Gravell and Henderson [91] reviewed the arguments, and concluded that executable
specifications need not be harmful, but should be used in conjunction with other meth-
ods in order to gain confidence that a specification matches intuitive requirements.

In this thesis, we incline towards the position of Gravell and Henderson, and suggest
a methodology which extracts the advantages of both executable and non-executable
specifications. We advocate a type-theoretical approach, where 𝜎-types parametrized
on the type of an input are used to give the type of an output, and the function type spec-
ified using these two types is subsequently used to give a type of executable specification
in the host logic.7 If that type is inhabited, then there exists an executable specification,
but it is canonical if and only if all the other inhabitants of that function type produce
the same mapping from inputs to outputs. In other words, an executable specification
thus defined is canonical if and only if the relation defining the predicate forming the
𝜎-type is (provably) injective.

It is possible to prototype such predicative definitions of the relation of a function
7Assuming that the host logic is based on the 𝜆-calculus and therefore has reduction semantics.

12

by stubbing out the predicate and admitting any proof obligations while the function
is developed. One can then develop the predicate in tandem with filling in the proof
obligations it generates, strengthening the executable analogue of the specification. The
inspiration for what this predicate should consist of comes from the normal way of spec-
ifying what a function should do in a specification language, by expressing logical for-
mulæ that must hold when quantified over all mappings in the function space. If, when
this process is thought to be complete, a lemma cannot be proven stating that the pred-
icate is injective, then it suggests, but does not (and the undecidability of predicate logic
tells us cannot) prove that not all of the function space is understood. This prompts a
search for new components of the allied predicate. This process offers a way to ensure
that in all such cases, the objections of the Hayes and Jones argument are adequately
discharged through showing that the executable function is not over-specified, and also
that the allied predicate specification is not under-specified. If a terminating case of this
process is found, the predicate, or a tautological equivalence class of which it is a mem-
ber, becomes the canonical specification. If we were to repeat the process, we would
know we were specifying the same function modulo the relation over its inputs and out-
puts, because the predicates thus obtained would (if we were right in thinking they did
the same thing) be tautologies over their domains, and we should try to prove them so.

Using this methodology in high integrity systems, there is still a human risk of sys-
tematically misunderstanding the problem space, that could lead to the wrong functions
and the wrong predicates. In this case we would have an un-‘pleasant’ specification, to
use Dijkstra’s terminology [64]. This might be mitigated by allowing several teams to
work on this process independently, who all agree that they want to work on the same
intuition of what the specification should be, even if their understandings of what this
intuition is differ slightly: every attendee of a meeting writes different notes. If they can
then find a proof in the host logic that the predicates on the function relation they have
found are tautological, then a high degree of confidence can be obtained that their spec-
ifications match the intuition of what was wanted. It is similarly likely that any ways
in which each individual’s intuition differed were not material to what their team, as a
whole, was trying to achieve. Even the first part of this methodology can only be very
partially explored in a thesis, but it is nonetheless possible to present a development
that is compatible with these principles, and that is what is done in the remainder of
this work.

It ought to be stressed that this use of predicates does not mean we are talking about
the triples of Hoare’s axiomatic basis of computer programming [107] or other predica-
tive theories of programming, such as that described by Hehner [100]), or unified theo-
ries of programming [109]. Mostly, these envisage some state space on which a program
operates, and look at what can be said of the state space before and after the program has
done its work. In the present undertaking, we are discussing logics which are founded

13

in typed 𝜆-calculi, and we therefore view computation more using Church’s eyes than
Turing’s (see section 2.2). Our idea of a function is more the mathematical one of a rela-
tion over a domain and co-domain than the imperative one of some kind of sequential
procedure on a single domain, and it is those relations that our predicates define.

The rest of this chapter is devoted to examining the dichotomy between coordination
languages and expression languages, and their semantics. Proof assistants are amply
expressive to describe any kind of specification, executable or not, but the generality of
proof assistants and the lack of verified toolchains (a lack which some are addressing,
see section 2.10.4) to refine usable implementations have left a niche for another category
of specification tool. These toolkits allow the refinement of specifications as axioms of
what a system must do, and what its invariants are, into a fully executable specification,
in the sort of process described by Fuchs. We introduce them now, before going on to
explain why it is that we prefer to specify (and programs we write in it) directly in
a general purpose logic and proof assistant.

2.4.1 Specification language toolkits and verifying compilers

Specification languages have executable subsets, and language toolkits help us to find
them through a process of model refinement that might eventually be exported to a
directly executable language and machine. A verifying compiler is one that will only
compile ‘correct’ programs according to some specification. It can be a component of a
model refinement toolkit, although such toolkits often only emit pseudo-code that must
be hand-translated into some other language. One view of a compiler is as a piece of
software that transforms, as part of an implementation refinement, a recipe for a com-
putable function into one with more directly physical semantics. Neither verifying com-
pilers, nor specification language toolkits, are necessarily verified, and this places limits
on the confidence that may be placed in the systems they help to develop. We advance
the argument that the reason this is tolerated is because it is the most rigorous kind of
specification approach that is available, not the most rigorous that is possible (again, see
section 2.10.4).

The leading specification and refinement toolkit of the moment is arguably the Event-
B [11] specification language and methodology, and its realization in the Rodin tool
[12, 164], which provides an implementation.8 Event-B is an evolved form of the B
method [10], which itself owes a good deal to Z notation [4].

2.4.1.1 Specification languages as logical middleware

Specification languages can be viewed as logical middleware. They are not general pur-
pose logic tools, such as proof-checkers or proof assistants, although we might reason

8Some work has been done on formalizing B in proof assistants [32].

14

about them with such tools. They are not programming languages: refined programs
for onward compilation may be an output of such systems. These formalisms can be
convenient and expressive. However, they can be dispensed with if the axiomatization
of a temporal modality is pushed into the coordination semantics of a concrete coordi-
nation language, while the logic element of such a language is expressed as a direct deep
embedding of that concrete language in a proof assistant’s logical system. In this case,
the executability of expressions and coordination constructs in the embedded concrete
coordination language is guaranteed if the proof assistant can be made to export a suit-
able interpreter of the axiomatized coordination semantics, whose termination prop-
erties are warranted by the host logic. We therefore keep axiomatizations as thin as
possible, since the proof assistant is the common denominator and the place where in-
variants and imperatives of the system are specified. We could axiomatize kinematics in
the proof assistant entirely separately from the axiomatization of a concrete language,
and specify the relationship between the two at the proof assistant level, thus avoiding
bloating either structure and enhancing independence from the logic. That is the ap-
proach taken by this work. There needs to be some ontological glue between the two:
again, we would like it to be as thin as possible. In the present work, this role is taken
by Pre- (see chapter 3).9

2.4.1.2 The drawbacks of specification toolkits

Specification toolkits are captive ecosystems. They contain logic languages for specify-
ing invariants and existential imperatives; they contain imperative structures to specify
computational procedures; they produce proof obligations to ensure that computational
procedures respect the logical specification, and contain deductive systems and proof-
checkers to discharge these obligations. These proof systems lack the power and con-
venience of full-fledged proof assitants. The objection that none of this is itself verified
could be mitigated by developing multiple implementations, or overcome by verifying
them. However, to verify them means they must be axiomatized in some other logic,
and this itself is a process that may be prone to error, and we of course then approach a
circular argument when we ask: how do we verify the verifier? Quis custodiet ipsos cus-
todes?10 There are logical problems with this that run up against Tarski’s undefinability
theorem [177] and Gödel’s incompleteness theorems [88]. We outline some of the ways
this has been pragmatically accommodated in existing work on self-verifiability, and
suggest some new ways, based on a structuralist approach with networks of physical
morphism proofs to limit the effects of these problems, in section 2.9.2. This leads to

9If the coordination language makes it possible to construct specifications that are not deadlock/livelock
free, then the exported tool must refuse to run such programs. As a corollary of soundness, is free of
this problem: see chapter 4.

10Harrison quotes and asks the same oft-repeated question [98] (the phrase has multiple attributions, but
this version appears to be from Juvenal’s sixth Satire [116], pp. 67–68, ll. 347–348) in a very similar context.

15

the idea of approaching absolute confidence in a limit. One thing is clear: such confi-
dence can only be derived from very general logical tools that are powerful enough to
axiomatize each other,11 and specification toolkits are too domain-specific to the task of
specifying computer systems to be satisfactory for this purpose.

Many safety properties of systems refer to the same imperatives whose importance
is a purely human designation. For, example, in any vehicle control system, it is likely to
be an invariant of the system that vehicles do not crash. This in turn is a stipulation that
implicitly acknowledges the laws of physics, and it is our intuition that if we axiomatize
the laws of physics in multiple logics or specification systems, those axioms must be
the same physical axioms and axiomatized human imperatives,12 and that differences
in structure ought to be accounted for as relations under morphisms for key properties.
However, specification languages would grow uncontrollably if they attempted to ax-
iomatize the laws of kinematics, let alone physics generally. This means that it is left
to the specifier to render informal semantics of a scenario (such as ‘a driver will not
drive past red lights’) outside the specification language, and nothing guarantees that
these individual axioms achieve adequate coverage of the domain to uphold far more
general human axioms over physics such as ‘high energy collisions must not happen.’
13 Only general purpose logics and proof tools are powerful enough to axiomatize for-
mally everything of importance in the application domain, including relevant fragments
of physics.

Individual programming languages are mathematical structures that have similar
structural universality. It makes little more sense to consider their canonical form as
being their over-specified representation in some particular logic than it does to imag-
ine that some arbitrary program is canonical of an ill-articulated set of requirements.14

If compiler I transforms a program in language A into a program in language B, and
compiler II transforms a program in language B into a program in language C, and
compilers I and II were developed using different specification and refinement toolkits,
how does one know that the axiomatizations of language B in both toolkits axioma-
tize the semantics of the same language? How does one know that the final compiler
stage that produces assembly code respects the same axiomatization of the semantics of
the hardware that was used in model-checking that hardware? Large numbers of peo-
ple working on the same thing will inevitably use diverse toolkits. To assume artificial
canonicity in any of these axiomatizations risks an over-specification problem.

A more familiar example is the over-specification of mathematical constructions by

11Gödel tells us that they cannot prove each other’s consistency.
12Similarly, if we were to embed one logic in another, and embed it again in yet another, we would need

to show that the axioms of these proof systems were the same axioms.
13What we mean by ‘high’ is a parameter.
14Unified theories of programming examine the common structure in all programming languages [109].

16

confusing their popular and sometimes even implicit formalization in 15 set theory
and first order logic with the phenomena that are being described. For instance, natural
numbers can be formalized in sets using the usual Peano axiomatization [153], but this
does not mean that they are sets. These are familiar problems in the philosophy of math-
ematics, which we do not discuss further here, but instead revisit in section 2.9.1.2. We
refer the reader seeking a more general treatment of some of these philosphical issues
to an introductory text such as [53].

2.5 The coordination language dichotomy

Why use coordination languages? In a loose sense, single-threaded imperative lan-
guages can express concurrent processes by using a statement to appeal to a spawning
operation that creates an independent execution path. Semaphores, mutexes and other
constructs arbitrated by an operating system are used to produce ad hoc restrictions on
the total order of possible interleaved statement processing events. The resulting pro-
grams are awkward to reason about, because the important coordination issues become
obscured among immaterial sequences of linear operations.

Coordination languages become useful when computations are expressed as func-
tions, which map inputs to outputs without keeping any intermediate state. In this way,
if imperative programs are recast in 𝜆-calculus-based functional languages, computa-
tion is distilled into expression languages, while all coordination issues are dealt with by
a coordination language, which determines the order in which these expressions execute,
and how data is passed between them. This can be regarded as an extension of the pure
functional paradigm of programming, such as that found in Haskell [184], where coor-
dination is provided by linking monads with streams. As such, coordination languages
are not only useful for programming in a parallel style on a single computer, but also
provide a means to specify the interactions of large distributed systems. In the latter
case, the objective may be not to compute the answer to a problem, but to specify how
the components of a system interact so that it is possible to specify imperatives and
invariants.

In the rest of this section, we first examine what physical realities are being axioma-
tized in coordination languages, before going on to discuss the expressivity of different
types in Figure 2.1 and the emulation and animation of their structures by expression
languages. We deal with the more difficult converse case in section 2.5.1.4, once we have
given a more complete description of the various types of coordination language in the
preceding sections. When an expression language models a coordination language, it
is simulating coordination; when a coordination language models an expression lan-
guage, the spatial elements can improve the way in which the corresponding expres-

15Zermelo–Fraenkel [78, 194]

17

Turing machine Probabalistic
Turing machine

Quantum
Turing machine

Synchronous
coordination

language

Asynchronous
coordination

language

Quantum
coordination

language

Increasing
spatial

divergence

Increasing dimensions of entropy

Figure 2.1: The spatial dichotomy between sequential and coordination languages

sion is calculated. When we look at the second row of Figure 2.1 prescriptively, we are
dealing with coordination languages; when looking at it descriptively, we need process
calculi, the Actor model, or similar abstractions.

2.5.1 Time and space

Since Babbage, and certainly since Turing, computation has been an activity conceived
to occur in space and time, the four-dimensional fabric that is the backdrop to most of
our understanding of physics. Non-physical computation can be achieved by ‘oracle
machines’,16 but oracles are useless if we are interested in finding effective procedures
that evaluate answers to problems, since non-Delphic oracles do not exist in the physical
world.

Sequential computation is one-dimensional in this four-dimensional fabric. Although
in practice it has some spatial localization, that localization is not semantically accessible
to the computation. Since there are no mechanisms of interaction, there are no interac-
tions. In section 2.5.1.1.1, we briefly survey what minimal assumptions are necessary
about the nature of time for the purposes of formalizing these computations.

Coordination languages and allied calculi often require an axiomatization in three-
dimensional space— often a very explicit one— such as in the Ambient Calculus [40] or
Milner’s bigraphs [141]. If the coordination language is being used as a convenient ab-
straction to structure an essentially sequential computation, then communication is not
spatial, but is just stored in a state variable while something else happens. In this case,
an axiomatization in space is not required, and the model collapses to a sequential one,
albeit with checkpoints, semaphores, mutexes and similar sub-structures. However, if

16The idea of oracles in this sense was briefly introduced by Turing [187] and extensively developed by
others.

18

the coordination language is being used to express the specification of truly parallel
hardware, then an axiomatization of space is unavoidable.

2.5.1.1 Axiomatizing time

The nature of time is a philosophical morrass at the limits of theoretical physics: we have
no intention of becoming embroiled in this problem. We thus confine our discussion to
two pragmatic issues that have to be addressed and accommodated when axiomatizing
any temporal formalism: the ordering relation and the texture of time.

2.5.1.1.1 The arrow of time, causality and the ordering of events In an influ-
ential paper, Lamport [123] discussed the physical relationship between time, the order-
ing of events, and the implications this has for distributed systems. Lamport observed
the difficulties that physical time poses to theoretical computer scientists: namely, it is
impossible to say with certainty what the absolute ordering on some set of concurrent
events was, or will be. However, this does not mean that it is impossible to say useful
things about concurrency. When specifying a concurrent system that is supposed to
exhibit convergent behaviour, it is usually partial orders that are important, and from
this Lamport develops his model of event ordering in distributed systems. However,
in order to reason about properties of a concurrent system, it is necessary to describe
its entire state space, and this means that a total ordering must be found. The actual
total ordering used is irrelevant, as long as it is consistent with all the partial orderings,
and so a concurrent specification essentially under-specifies this total ordering, with the
result that proofs have to be quantified over an equivalence class of total orderings.

In his algorithm for finding some inhabitant of this total order, Lamport uses an
arbitrary order relation over all processes, over which necessary partial orders are given
precedence. Although Lamport does not use the term, the physical provenance of this
arbitrary ordering can be thought of as a formalized source of Shannon entropy. Further,
Lamport’s ‘happened before’ relation implies a dense or continuous (i.e., not discrete)
model of time, since it is always possible to bisect an interval between two events by
interpolating a third event that happened after the first, but before the second. This
means that, in the general case, it is impossible to know the total ordering on all events
in such a system: some events may be so close to each other as to render determination
of which happened first an impossible task.17

We wish to say little about the arrow of time and causality, save that it is implic-
itly axiomatized as the causative element in any prescriptive language. Lamport ob-

17 Unknowable quantities (in some cases reducible to quantum effects) do not form the basis for a quantum
computer. The point about Schrödinger’s cat is not that the cat is possibly dead and possibly alive, but that
it is both alive and dead at the same time. This is how the extra dimension in von Neumann entropy arises,
as we explain in section 2.5.2.

19

serves [123] that to say that one event can affect another is one way of characterizing the
‘happens before’ relation.

Key term: TAI
Temps Atomique International. International time defined as that witnessed by an

agreed-upon ensemble of atomic clocks, witnessing proper time in the Earth’s geoid.
The Earth’s geoid is a coordinate system that rotates along with the planet; since
the reference clocks are stationary on the Earth, they are all in the same relativistic
frame.

2.5.1.1.2 The texture of time There are three main ideas characterizing the texture
of time: it might be continuous, it might be dense, or it might be discrete. The key
point is that we do not need to know which of these it is, or whether it is any of them.
To computer scientists, concerned as they are with discrete mathematical structures,
discrete models of time are adequate to deal with sequential computation. They can
be logically embedded within dense models of time, which can in turn be described
within a continous model of time: any of these are adequate. However, we will argue
that adequate models of coordination constructs require at least dense time, since, as we
observed about Lamport’s reasoning above, whenever the state spaces of two systems
are combined, the intervals between one’s events may be bisected by virtue of a total
ordering relation.18 If we want to reason about the effects of these computations on
the world using the continuous functions of classical physics, then of course we need
to embed this in continuous time. In the rest of this section we briefly explain what is
meant by ‘continuous’, ‘dense’ or ‘discrete’ time.

Continuous time is the time of classical physics, which uses real numbers and con-
tinuous functions to model reality.

Dense time is time understood as a rational number, and is discussed by Kopetz
[120]. The conception of time used in the present work is very similar to that of Kopetz,
who in passing mentions the use of global clocks and . We take this further in incor-
porating the ontology of global time more explicitly in .

Discrete time, or sparse time, is time that can be adequately characterized by integers.
It is the usual time of computation, in which a state machine advances from state to state
in atomic steps.

Lamport’s Temporal Logic of Actions () [125], with its infinitesimally small stut-
18Unless we subscribe to a theory that time is granular. Even if we did, times in the order of magnitude

of the Planck time are completely useless for anything to do with practical computation, because of the
quantum limits of measurement. Further, for the purposes of the kind of systems that we are likely to
want to control with computation, classical physics and continuous time are adequate, even if they do not
give the most comprehensive account of physical reality: this certainly seems compatible with what was
envisaged by Gandy [82] in his abstraction of the minimal requirements for a physical computer.

20

tering steps, has a continuous notion of time. Dense time formalisms are somewhat rare
but do exist, for example in the work of Cau et al. [43]. Individual examples in all sequen-
tial programming constructs and synchronous coordination languages are reducible to
discrete time models: this is the basis of virtually all sequential computation so it would
be otiose to cite exemplars. Kopetz [120] makes the point that it is the distribution of
processes and the need to compose them in some way that means that a generally de-
scriptive formalism must deal with dense time, while individual processes or sets of
processes reduce to sparse, or discrete time. It is worth amplifying this by observing
that it is redundant to extend this to continuous time, because in the human act of spec-
ifying a perdurant system, there is no practical reason to use irrational numbers when
we can approach such numbers with arbitrary accuracy using rational numbers.

2.5.1.2 Axiomatizing space

Not all coordination languages axiomatize space: it is possible to rely on a weaker idea:
that of independence of events. While the Ambient Calculus [40] and bigraphs [141], ax-
iomatize space directly, a difficulty arises from what it means to locate a process, which
has no dimensions at all in Euclidean space. Those that do, in effect, project computa-
tion into space, giving processes volume and attaching semantics to their interactions.
This produces yet another non-canonical analogue of a probabalistic Turing machine.
Eschewing the idea that the identity and specification of logical processes themselves
have any physical materiality, we prefer the abstraction that distribution in space ax-
iomatizes the independence of measurement events and the temporal and spatial un-
certainties associated with them: it is those measurements that we wish to use to specify
the input of a computable function. This does not result in reduced expressivity, as we
can deduce movement and its consequences from the results of measurements relating
to positioning systems. The drivers of such movement may or may not be random, but
any such randomness is external to the definition of the computation.19 Therefore, in
this work, rather than localize processes, we localize only the observations (or inputs)
that define those processes and the manifestations (or outputs) that signify their success-
ful realization in reality. However, the positions of process implementations in space do
matter if we want ever to specify and model the interaction of a computational specifi-
cation with a physical system. Computational processes may be associated with pieces
of hardware as part of configurations, so that, for example, we can conclude that the
physical destruction of a piece of hardware has destroyed the physical realization of the
computational process that was mapped to it.

19Spatial measurement independence, thus understood, needs to be redefined if the impact of quantum
entanglement on quantum computation is considered.

21

2.5.1.3 Expressing coordination languages as sequential languages

Figure 2.1 shows sequential (or expression) languages in the top row, and coordina-
tion languages in the bottom row. We now examine which coordination languages can
be executed (if the coordination language does not explicitly axiomatize physical space)
or simulated (if it does) by which sequential languages. In general, any one can sim-
ulate any other, but there are certain subtleties to observe. It takes longer to simulate
a program written in the bottom row than it takes to run it in a (physically) spatially
distributed form, and it takes (exponentially) longer to simulate a language on the right
of the diagram with one on the left. The latter is just another way to phrase a point orig-
inally observed by Feynman [74]. Following Deutsch [63], we express this as a quantum
Turing machine in the diagram.

Synchronous coordination languages can be simulated with sequential Turing ma-
chines. In general, there are many expressions to be evaluated at a given time, and a
coordination language in its spatial incarnation supposes that these are evaluated in
different places. If this language is simulated by a single sequential machine, then each
of these expressions is evaluated at the same logical time (by a wall-clock in the physical
coordination analogue) and it cannot matter to the state space trace in which order they
are actually calculated, since information travels at the (finite) speed of light; there can
therefore be no causation between these co-incident expressions, and thus, by contradic-
tion, it does not matter in which order they are evaluated. The specification expressed by
a synchronous coordination language is therefore completely deterministic. Moreover,
as a direct result of this proof sketch by the joint axiom (of physics) of the finite speed
of light, and the axiom (of synchronous computation) of simultaneous state evolution,
any two synchronous coordination programs are orthogonal and composable.20

Asynchronous coordination languages on the other hand, allow events to occur ac-
cording to their own clocks, where the unknowability of the total order, as reasoned
about by Lamport, means that to produce a trace in this language means that an arbi-
trary ordering of concurrent events must be found. If it is proposed to model the whole
state space of these choices, then a sequential Turing-equivalent machine can be used.
This is unlikely to be practical, since the number of such traces rises exponentially with
the number of processes. If we further specify that we want to pick one of these out-
comes in a fair simulation, so that a run of the simulation is indistinguishable in effect
from a run of the physical parallel machine, then, in the absense of a source of real en-
tropy, a deterministic machine is inadequate. To effect a simulation then, it is necessary
to add a source of entropy, in order to pick an execution path at each divergent point

20It would be dangerous to generalize a synchronous system of quantum computers because the pos-
sibilty of quantum entanglements has exotic effects on this causation argument: although quantum en-
tanglement cannot be used to move information faster than the speed of light, it can apparently produce
instantaneous causation.

22

when there is a choice of relative order to be made. The choice of order may well affect
the result of the computation. This is equivalent to the ‘random’ tape in a probabalistic
Turing machine .

The same arguments about partial and total orders affect a quantum coordination
language, which needs the same level of randomness to simulate the coordination as-
pects of such a construction. At the same time, quantum computers are required to
perform the quantum computations specified by individual sequential processes, and
if communication is generalized to the point of allowing communication of quantum
information, the causation consequences of superposition have to be considered. Given
that quantum computers in their present form are still highly experimental, there is not
yet any practical justification for considering this in any greater detail.

In the synchronous and asynchronous cases, simulating coordination constructions
has a practical use beyond modelling, in that it is a technique to simplify the resource
bounds analysis of a computational problem. It may be easier to solve a sequential prob-
lem by transforming it into a coordination one using a box calculus [92, 93], and to sim-
ulate the resulting coordination program on a sequential machine, than it is to analyse
the resource use behaviour of the original sequential program. We discuss this further
in section 2.5.1.4.

2.5.1.4 The emulation of sequential languages by coordination languages

In section 2.5.1.3 we discussed how coordination languages can be emulated by sequen-
tial machines performing serially the computations that go on concurrently in a na-
tively parallel system, but doing them in an order that preserves the same causal re-
lationships as in the native case. We shall see in section 2.6.2 that the axiomatization
of asynchronous coordination languages causes some controversy about the nature of
computations that can be specified, but that these problems can be accommodated by
axiomatizing a source of entropy and using probabalistic as opposed to non-deterministic
Turing machines.

Reasoning about coordinated computation is always more difficult than dealing
with purely sequential machines, so there has to be a pragmatic reason to make it worth-
while. Two questions need to be asked. First, can coordination languages achieve speed-
ups compared to ordinary computation in the same entropy class illustrated in Figure
2.1? Second, can a coordination language ℒ𝐶with expression language ℒ𝐸 simulate
a sequential language above and to the right of it in the diagram more efficiently than
ℒ𝐸? We address each point in turn.

2.5.1.4.1 Refactoring expressions as coordination constructs for efficiency
Now that processors have effectively reached physical limits on achievable clock speeds,

23

the computing power on a chip is being increased by adding extra cores — separate se-
quential processors on a chip, or on a motherboard. This has given rise to the popular
notion that new ways have to be found to write programs to deal with the coordination
issues this brings up. It also poses the problem of how to speed up problems which
have traditionally only been thought of as being expressible as linear and cumulative
computations. However, we do not wish to examine this issue here. We are more in-
terested in explaining a less obvious but equally useful rôle for coordination languages,
that of refactoring a program to help with termination analyses.

The Hume box calculus [93] is a formal tool for refactoring Hume programs where
the expressive power of pure functional constructs is traded for the resource-analysis
tractability of more concurrent implementations. These transformations include the in-
troduction of nested boxes via hierarchical Hume. It provides transformations for rea-
soning about the correctness of such refactorings.

This use of coordination languages does not mean that the coordination-equivalent
program should necessarily be regarded as the more canonical one. If the coordination
incarnation of the specification obfuscates the intention of the original specificier, some-
thing analogous to Ockham’s razor ought to lead us to reject it as such. In particular, if
we wish to use an entropy to perform a probabalistic computation, it can be argued that
it is better to specify a sequential machine with entropy, than to include it obscurely in
a coordination model.

2.5.1.4.2 Additional computational power of coordination languages? The
‘’ complexity class [54] describes the complexity of a class of problems that can be
handled by parallel computers with resources only polynomially scaled in comparison
with the size of the problem, so it can be viewed as a parallel version of the P complexity
class. Its relationship to classic sequential complexity classes is unknown, so it would be
rash to claim that coordination analogues of sequential programs can always be made
to run faster than the original program. It seems difficult to imagine how programs
based on cumulative information like one-way hashes could be scaled to run in parallel,
without changing the original algorithm.

There is one open-ended question we would like to end with. Looking at Figure 2.1,
can feedback and causation in a non-deterministic coordination language amplify the
dimensions of the entropy?

Process calculi are usually used to describe systems that must exhibit some conver-
gent behaviour notwithstanding the indeterminacy involved in the ordering of events,
the non-deterministic selection of possible behaviours, and non-deterministic choice
operators. There is nothing that prevents them from being used to implement some
sequential probabalistic algorithms in the same way that a synchronous coordination

24

language can be used to rephrase some sequential deterministic programs.
Although quantum computers are not yet a practical reality, it is also worth noting,

however, that it has been shown that classical network and graph structures can be char-
acterized as containing von Neumann as well as Shannon entropy [16,97]. By extension
of the argument for using asynchronous process calculi to model probabalistic compu-
tation, this raises the intriguing possibility that it may be possible to simulate quantum
computation with classical asynchronous models more efficiently than with an ordi-
nary Turing-equivalent computer (although less efficiently than with a native quantum
computer). Such a model would require the Hilbert spaces of quantum computation to
be encoded in the causalities of evolutions of non-deterministic coordination structures,
whose state spaces have exponential sizes with respect to the size of the system. Given
the formidable difficulties of building real quantum computers, this is a potentially in-
teresting avenue.

2.5.2 Axiomatizing entropy

A final point is that the amount of entropy in a communicating asynchronous process
is variable depending on whether the processes interact on the basis of some sort of
‘perfect’ internal entropy, such as radioactive decay, or whether they are part of a ple-
siochronous system in which the spatial divergence, thermodynamics of and physical
limitations on the measurement of clocks have an effect. Such effects produce uncer-
tainty in establishing a total order of events in a system which we would otherwise
prefer to specify as perfectly synchronous. In this case, there is some entropy in the
total order, but any engineered tolerances of clock skew limit the amount of entropy so
that the same partial order is always respected.

Von Neumann entropy [191] generalizes Shannon entropy, measuring the informa-
tion content in the complex plane of a two-dimensional Hilbert space. It is of primary
interest in the way the informational analogue of the physical entropy of the quantum
system can be physically represented in the superposition of two quantum states. An
array of quantum bits exponentiates the amount of information that can be carried by
an equivalent array of simple probabalistic bits of the same size. Von Neumann entropy
can be found within non-quantum coordination structures [16,97]. No formalization of
von Neumann entropy is required in the present work.

2.6 Concrete coordination languages and structures

In common parlance, a computer is a box containing a central processing unit (), and
until recently that resembled only a single Turing-equivalent machine. In this sec-
tion, the term ‘computer’ will be used somewhat interchangeably with a single Turing

25

machine, functional reduction machine, or other Turing-equivalent automaton.
The semantics of Church-Turing computation directly or indirectly require machines,

which are always implicitly instantiated and localized in different parts of space, giv-
ing an intrinsically physical animation to the notion of concurrency. My computer sits
in a grey box next to my desk. Other computers are in other places: on another desk,
or embedded, for example, in some application-specific device. Multiple processors
on one chip are conceptually no different from two processors in two different inter-
connected computers in two different grey boxes. Coordination languages attempt to
express the concurrency of a number of such automata in order to write programs that
compute something more quickly using several computers, or are easier to analyze than
equivalent programs written for a single automaton. Axiomatizations of concurrency
assume independence of events in different processors: it is usually safe to ignore the
electromagnetic or other physical interaction of two properly functioning computers sit-
ting side-by-side, unless they are connected together with a communication mechanism.
This assumption is implicitly taken to be an accurate model in most circumstances.

2.6.1 Synchronous coordination languages

The primary characteristic of synchronous languages and architectures, of which we
give examples later in this section, is that their evolution is driven by time, and not
by communication between system components. This makes them particularly suit-
able for use in real time applications. They are extensively used in safety-critical sys-
tems because they permit a tractable approach to replicating components that does not
force application programmers to implement bespoke asynchronous consensus solu-
tions. One of the earliest papers advocating this approach was Lamport’s Using Time
Instead of Timeout for Fault-Tolerant Distributed Systems [124]; the attractiveness of this so-
lution is underlined by the discovery soon after by Fischer, Lynch and Paterson, that
distributed asynchronous consensus with even one faulty process is, in fact, impossi-
ble [75].

While these languages have a deterministic evolution that can be simulated by a
single thread of execution, they can nevertheless be considered to be coordination lan-
guages under our taxonomical scheme because they internally axiomatize concurrency
or spatially dispersed evaluation; in a practical sense, they just stipulate that every to-
tal order of the execution of a distributed implementation preserves the partial orders
described by the synchronous language.

Synchronous languages axiomatize that there is a clock by which state evolutions are
timed, but say nothing about what that clock is. It is required to run forwards only,
but may do so at a rate and with a lack of stability that bears no resemblance to wall-
clock time. Usually, the implicit assumption is that a program described with the syn-

26

chronous language will be instantiated in some sense in many different pieces of equip-
ment with many different clocks: once the program is loaded, it is capable of saying
how the hardware should behave, with reference to its own clock. We refer to this type
of synchronous language by the term internally timed, to emphasize the point that the
language is both dependent on the instantiation of a clock, and also that if we look at a
black box realizing the program from the outside, we have no direct way of observing
that clock.

To suggest another novel term, an externally timed language axiomatizes a particular
clock outside the program, and the programmer or person initiating an execution has
no say in choosing that clock: it is part of the language and, axiomatically, cannot be in-
stantiated after some particular program has been written. For universally composable
systems on planet Earth, the sensible choice must be humanity’s canonical time stan-
dard: . This is not to say that the language itself cannot be instantiated according to
isolated clocks, but if it is, it becomes a qualitatively different language whose clock is
not objectively defined in those parts of reality where there is no knowledge of it. The
key difference with an ordinary synchronous language is that implementations of pro-
grams cannot smuggle in their own definitions of clocks: clocks are defined in a one-
to-one relationship with a language, and any quantification over multiple clocks must
therefore be done at a meta-language level. This is a consequence of having a language
defined over an explicit ontology. We suggest that this sort of competitive instantiation
is of little practical interest: what is of interest is that that by axiomatizing the ontol-
ogy of time — proper time in the Earth’s geoid21 as witnessed by the weighted average
of the clocks in the clock ensemble — it becomes possible to judge any system in
the language by the same consistent temporal standard of observation, in the same way
that by fixing the logical semantics of a language, we start to gain confidence that all
programs written in the language are semantically consistent.22 The idea of an external
clock rate forming part of a specification is present in a synchronous communications
standard such as /.23 The necessity for knowledge of the absolute time arises in
applications such as global positioning systems, or in some modulation schemes used
in digital broadcasting or wireless data networks, but it is novel that this necessity be
built into a language. We develop the idea of an externally timed language in chapter 3,

21The restriction to the coordinate system tied to the lump of rock on which we live makes the definition
relativity-proof and accords with the specification of .

22To deal with an objective standard of observation requires a spatial axiomatization and an axiomatiza-
tion of human designation. This is discussed in chapter 3. It also requires that all people and tools using a
language reference equivalent axiomatizations of it. This is an issue of epistemology that, when taken to
the extreme of questioning the formal system in which these axioms are stated, also runs up against the
realities of Gödel’s incompleteness theorems and the limitations of logic. We acknowledge and discuss
these issues later in this chapter.

23‘Synchronous Optical Networking’ [179] and ‘Synchronous Digital Hierarchy’ [8]. Both standards do
much the same thing; is defined in various documents by Telcordia Technologies, and is widely used
in North America, while is a set of standards, and is widely used elsewhere.

27

but for now we survey existing synchronous languages, which we regard as internally
timed.

2.6.1.1 Field bus-oriented architectures

A number of systems in recent decades have been developed to address coordination
amongst nodes, focusing on transmitting observable quantities over buses in a tempo-
rally coherent way. The principal shortcoming of the node abstraction is that it does not
in itself offer any way of reasoning about the mutual coherence of replicated nodes.

The Time-triggered Architecture () [121] is a comprehensive high level model
for describing systems. Its abstraction consists of a unified time base, observations of
state information and events, computation nodes and buses. Coordination is achieved
by limiting clock skews between components to be less than a silent interval, during
which nothing is scheduled to happen. It defines a number of interfaces for control and
data flow, and some explicit mechanisms for dealing with fault tolerance. All of this
represents a useful high level abstraction over hardware, but presents difficulties in a
workflow involving formal refinement from a functional specification, because there is
no good way to define the behaviour of each node. Each node can contain latent state
information, and this limits the transparency of the fault tolerance facilities, since the
application programmer must still deal explicitly with the possible consequences of di-
vergent state under pathological execution conditions.

Rushby provides a useful survey of other bus architectures targeting fault-tolerant
applications [167]. All of these systems express relatively low-level hardware-features,
and other than , do not have high level timing abstractions that are relevant to the
present investigation.

2.6.1.2 Other schedule-refining architectures

The Hierarchical Timing Language () [101] is a framework for formalizing the tim-
ing and scheduling properties of a concurrent control system. It is a generalization of
the Giotto language [103]. Its semantics are based on a ‘Logical Execution Time’ (‘’)
model. The model defines a notional time before which a piece of code (‘task’) may
not start executing (the ‘release time’), and another notional time by which it must have
finished executing (the ‘termination time’). There are ‘communicators’ which move
data around, and various higher level constructs for convenience and modularity. H
uses an ‘Embedded Machine’ or ‘E-machine’ to police these requirements, ensuring that
these logical time constraints hold within wall-clock time. The model produces ‘E code’
which specifies the timing and schedule properties to the E-machine. The task of guar-
anteeing resource use is delegated to the task code.

The progresses some way towards architecture-independent design, but it has a

28

number of drawbacks:

• The semantics can lead to some arbitrary timing choices, based on a best guess
of execution times (which is architecture and implementation dependent).

• The E machine does not schedule code: rather, it waits for timing or other hard-
ware interrupts and determines whether a piece of code may start to run, or whether
it should have terminated. The actual scheduling is done either by the operating
system (if there is one) or by a dedicated scheduler. Henzinger et al. have pro-
duced a system that uses ‘S code’ to define a schedule [102].

• While the E code is portable, the tasks that it supervises are not, since resource
usage may vary by compilation target. The does not make worst case execution
time () or other resource usage guarantees.

• A task may include arbitrary code in any language. This code may keep state
in between the times it is enabled, which introduces a potential state divergence
problem if we consider replication.

• E code introduces another specification language into the verification process that
is not normative: this reduces its usefulness as a universal interface between real
time program specification and implementation.

Chatterjee et al. [45] have developed a reliability analysis for fault-tolerant imple-
mentations of models, but this analysis assumes that processors either function cor-
rectly or not at all, which is a significant drawback.

AF is an architecture of ‘time-synchronous streams’ and ‘stream processing
functions’ [183]. These stream processing functions, or ‘components’, are not necessarily
deterministic. Each component is connected to streams through named ports, and these
structures can be nested to form composite components. The timing model is globally
clocked,24 but composite components have internal freedom to manage the evolution
of their own clocks, as long as their external interfaces remain synchronized with the
global clock of the enclosing component (or, at top level, global scope).

2.6.1.3 Fully descriptive languages

2.6.1.3.1 RTLHardwaredescription languages Hardware description languages
at the Register Transfer Level (‘’) are clocked, and can therefore be regarded as syn-
chronous languages, although at a very low level. Classic examples are Verilog [2],
 [1] and more recently the subset of SystemC [3] version 1.0. Like ordinary

24‘Global’ here means that each specification uses the same clock reference: it says nothing about the
relationship of these clocks to each other or standardized time.

29

programming languages, hardware description languages can be executed (although
the word ‘simulated’ is more often used, because the target is a physical machine rather
than an abstract one). However, the dynamic semantics of hardware description lan-
guages are often less formal than those of programming languages, again, because they
are intended to be physically intuitive descriptions. The semantics are those of physical
electronics and very close to the semantics of physics itself. The semantics of physics
are laws of Nature; from the point of view of logical systems, they are axioms.

2.6.1.3.2 Esterel Esterel [35] is a synchronous programming language that has been
in development for three decades. It operates at a higher level than hardware descrip-
tion languages and has definite, precise semantics in the language-theoretic sense. It
has a global notion of time, that functions as a single axis on which all computation
events have a definite position. Events scheduled to occur at the same time execute in-
finitely fast and simultaneously. Communication occurs through ‘signals’, which are
broadcast across a system. They function very like wires, and like wires, are free of the
blocking behaviour that can occur in a message passing model. However, unlike phys-
ical wires that have an enduring existence, a signal can legitimately be entirely absent
in a cycle. This deterministic axiomatization of concurrency is deliberately unphysical,
but is ideal for specifying systems that should exhibit deterministic behaviour: specifi-
cations can be implemented by more realistic models of concurrency and then shown
to be witnesses to the original Esterel specification. In order to avoid infinite loops on
signals being written and read in the same instant of time, there are semantic rules to
ensure that signals remain coherent. Esterel modules can contain some basic imperative
programming constructions.

2.6.1.3.3 Hume coordination language (unfair subset) Hume [96] is a language
in the pure functional paradigm, in which concurrency is axiomatized in the simultane-
ous existence of multiple boxes. Hume’s coordination language concerns the interaction
between these boxes, and its expression language concerns the computation that occurs
within these boxes.25 Hume does not have an explicit external time axis in the core se-
mantics: this is added when assumptions about the clocking of inputs are made when
the program is analyzed for execution time constraints. These constraints are intro-
duced first via an intermediate language [114, 115], and are then refined to implement
the correct resource behaviour on a particular hardware platform.

Hume’s scheduling comes from its ‘super-step’ [94]. The super-step ensures that
data buffers between boxes (‘wires’) remain coherent, by requiring all executable boxes
within a super-step to be run only once, before boxes are next assessed for runnability

25Boxes can be nested in some versions of Hume, in which coordination constructs are allowed within
boxes [92].

30

in the following super-step. The evolution of the super-step can be thought of as the
progress of an internal global clock. If all boxes in a Hume development have unfair
pattern matching (in other words, matches are evaluated in a fixed order), any overlap
in patterns is resolved the same way each time a box is run, so the evolution of the whole
system is completely deterministic. Given that the semantics of Hume ensure that the
order in which executable boxes are run is immaterial, they can be regarded as evolving
simultaneously, thus not producing an underspecified state space in which different
interleavings of events would be possible. In this respect super-stepping semantics share
some similarities with Esterel.

The Hume expression language has a number of levels, ranging from a hardware
description language (HW Hume) to a Turing complete programming language (Full
Hume). Each level has more expressive power than the level below it, but it becomes
progressively more difficult to reason automatically about resource use: in the case of
Full Hume, it is impossible, on account of the halting problem. There are three inter-
mediate levels of Hume. Finite state machine Hume is similar to HW Hume, but can
replace binary data types in HW Hume with more abstract (non-recursive) types. It also
allows non-recursive first order functions and conditionals. Template Hume adds a set
of common predefined higher-order functions, such as map and fold. PR Hume allows
primitive recursion and inductive data types. Full Hume has no limits on recursion.

One of the Hume design paradigms involves refactoring a program written in a high
Hume level into a lower Hume level so that the resource use analysis tools can generate
upper bounds.

The centrepiece of Hume’s resource use analysis is the automatic amortized cost
analysis tools described by Jost et al. in [114]. The idea of amortized analysis was first
proposed by Tarjan [176]. The idea is that the state of a computation is associated with
a potential, or amount of some time or space resource available. Each step of execu-
tion then increases or decreases this potential. This type of analysis means that it is
not necessary to reason about absolute potential at any point, but only the changes of
potential. Tarjan’s technique required ingenuity to determine suitable abstractions to
make the state spaces of complex code structures tractable. A simple recursive function
that, for example, summed integers with a suitable base case, would be easy to reason
about. However, to determine an abstraction manually for a complicated function that
uses deeply structured data and conditional constructs is very difficult. The key con-
tribution of Jost et al. was to use automatically potential-annotated types to provide an
automated analysis, invoking linear programming solvers to determine an abstraction
that could efficiently partition the trace space. Hume source code is first translated into
the lower level ‘Schopenhauer’ language. The upper bounds found in this way are not
minimal, but they produce good maxima that are not impractically larger than empiri-

31

cally derived resource use data.
The automated analysis uses the resource behaviour implicit in the semantics of the

Schopenhauer language. To translate this into the semantics of real machines, it is nec-
essary to carry out a lower level analysis which takes into account the resource usage
behaviour of particular platforms. This has been done for the Renesas M32C/85 board
[33], using a proprietary tool. The analysis must be repeated for each targeted hard-
ware architecture and compiler tool-chain used in order to generate an executable from
Hume code. Only precision-timed architectures (i.e. those that do not possess effec-
tively non-deterministic optimizations) can provide the necessary hard upper bounds
on resource usage by particular instruction sequences.

2.6.2 Asynchronous languages, models and calculi

Asynchronous coordination models are characterized by assuming that all events take
place at distinct times. As a result, a total order exists among events, even though that
total order may not be known: this is usually the basis of an asynchronous language’s
implicit axiomatization of concurrency. Reasoning about such systems involves prov-
ing properties of interesting partial orders, and also showing that desired invariants
are unaffected by permutations of the total order. As a total order is unpredictable and
even unknowable, asynchronous models axiomatize a source of Shannon entropy. Ran-
domness is essential to prove liveness in certain circumstances, a property that in the
context of non-deterministic choice is often described as ‘fairness.’ The issue of fairness
is thoroughly bound up with the thorny issue of unbounded non-determinism, which
appears to threaten our claim that asynchronous coordination languages are, in general,
reducible to what can be easily calculated with non-deterministic Turing machines.

2.6.2.1 Abstract and descriptive languages

2.6.2.1.1 Petri nets and derivatives as coordination languages Petri nets, as
documented in Petri’s Ph.D. thesis of 1962 [155] are one of the oldest formalisms for
concurrency, and have been extensively developed and extended by Petri and others.
At their most basic, they are bipartite graphs of ‘places’ and ‘transitions’ whose state
is determined by the allocation of tokens to places and whose temporal evolution is
determined by the semantics of enabled transitions that ‘fire’, consuming tokens from
one place and depositing them in others. Petri nets have been enriched with data types
and functions (coloured Petri nets [113]); pure functional languages such as Haskell are
especially well suited for this [161]. Stochastic Petri nets [23, 132] formalize the firing
delays with probability distributions. Hybrid Petri nets [59] allow continuous functions
to be introduced into a system description, which is useful in modelling the control of
physical processes. Formal hybrid approaches to system design have been advanced in

32

the methodology [169].
Petri nets continue to be used in formalizing more traditional coordination problems

in concurrency and scheduling, as in recent work by Calvert and Mycroft [39].

2.6.2.1.2 The Actor model as a coordination language The Actor model of He-
witt et al. [106] was introduced in 1973 and axiomatizes everything as being an actor:
an actor can, in the words of Hewitt et al., be ‘. . . an active agent which plays a role on
cue according to a script.’ Actors may produce new actors. The sending of messages is
more ambiguous than with process calculi, since there is no synchronous coordination
on the sending of events (cf. Section 2.6.2.1.3). The Actor model emphasizes the ax-
iomatic independence of actors, with their own local times. The sending and receiving
of messages is not synchronized, but eventual delivery is guaranteed: this is the incar-
nation of unbounded non-determinacy. This lack of global time and uncertain status
of messages in transit has caused problems in reasoning about the Actor model: these
problems were addressed by the introduction of ordering laws [105] and apparently re-
solved by the introduction of global time and an extended powerdomain26 model by
Clinger [51]. Something akin to a global state can be found in the powerdomain, but
not in the Actor model itself. There appears to have been some confusion since as to the
relationship between the logical or physical existence of a global ordering (or setoid of
global orderings), and the existence of a global clock. In Agha’s authoritative exegesis of
the Actor model [14], he again reiterates the tenet that a global clock is meaningless, but
also cites the work of Clinger as being consistent with this. The implicit conflation of
the logical existence of an axiomatization of a set(oid) of global orderings and the lack
of knowledge of a system that makes a global clock implausible, seems to be at the root
of much disagreement about the Actor model.27

Hewitt insists that the Actor model is inspired by physics [104], and this is a source of
some problems. Without an explicit axiomatization of both the Actor model and physics
in a logical system, an inchoate appeal to physics seems unconvincing as an argument
for the reasonableness of the Actor model. The Actor model is not in itself a physical
theory, and it is only axioms that represent physical laws of Nature that are beyond hu-
man disputation in scientific discourse, in the absence of contradictory evidence. The
achievements of physics flow from its axiomatization in mathematics (itself usually ax-
iomatized in set theory) and informal inferences in the progressions between lines of
proof; computational models that ignore this need for axiomatization are forced to rely

26Powerdomains are originally due to Plotkin [157].
27The sheer unknowability of total orders occurs frequently in reasoning about distributed systems, but

does not imply that axiomatizing those systems with respect to total orders causes inconsistent reasoning.
Lamport, in his Paxos paper [126] on the (fictionally) eponymous asynchronous consensus protocol, refers
to a global state that is a ‘quantity observed only by the gods’: this is a metaphor that assists understanding
without, of course, saying anything about theology, although it does make the usual implicit assumptions
about the ontology of concurrency.

33

on informal axiomatizations, which are a recipe for misunderstandings, inconsistency
and muddle. If we were forced to axiomatize the relevant part of a physical system to-
gether with the logic specifying or describing how it evolves, we might first very well
instantiate the four-axis system of spacetime, and immediately there ceases to be any-
thing mysterious about concurrency: everything to do with fixing orders falls out in a
neat correspondence between entropy in Boltzmann’s statistical thermodynamics and
Shannon’s theory of information. Hewitt has put forward [104] relational quantum me-
chanics [166] as a justification for not considering the idea of a global state at any one
time to be a real phenomenon, extrapolating that there is no reality other than inter-
action. However, relational quantum mechanics is only one interpretation of quantum
mechanics. The consistency of an interpretation of part of physics is not grounds for
rejecting bisimilar ones, unless one wishes to invoke metaphysical dogma, and should
not lead us to reject a formalization based on partial orders and the elegant and intuitive
way it allows us to quantify over time.

Setting aside the physics-based controversies that tend to proliferate around it, much
progress has been made in reasoning about the Actor model by axiomatizing it alge-
braically. Gaspari and Zavattaro introduced an algebra for reasoning about the Actor
model in 1997 [83]. Agha and Thati again took an algebraic approach to the Actor model
in 2004 [13], using a typed version of the 𝜋-calculus, which they call A𝜋, to reason about
a simple object-based language, observing that the expressivity and reconfigurability
from within the semantics of the Actor model has interacted with the drive to evolve
process calculi into mobile and mutable forms. This trend towards algebraic treatments
of Actor-style models continues to make progress.

The Actor model is a very useful abstraction of widely distributed interacting ob-
jects that fits in well with the popular object-oriented programming paradigm. How-
ever, some of the dogma associated with what it means and how it can or cannot be rea-
soned about using algebraic techniques should be treated with caution. In the course
of discussing their algebraic approach, Agha and Thati [13] draw attention to Milner’s
inspiration from the Actor model in designing the 𝜋-calculus [140], and it is to process
calculi that the discussion now turns.

2.6.2.1.3 Process calculi and algebrae as coordination languages Process cal-
culi provide means of formalizing and expressing concurrency, axiomatizing the inde-
pendence of sequential processes that in a concrete model might be separated by time
or space. The first process calculi were the Communicating Sequential Processes ()
of Hoare et al. [37, 108] and the Calculus of Communicating Systems () of Milner et
al. [139]. The fundamental abstraction of both is the process, which is an algebraic en-
tity. It is defined by the set of actions that it takes () or events that it accepts () in
order to evolve into other processes. Events may have data attached to them. Processes

34

can exist concurrently and their behaviour is independent, except when they communi-
cate by synchronizing on an event or action. Where a process is able to evolve through
a choice of behaviours, non-determinism is introduced. This behaviour was borrowed
from Dijkstra’s idea of guarded commands [65]. A process has no character apart from
the behaviours it may exhibit in transforming itself into a different process concomi-
tantly with defined actions or events. Process calculi can accurately describe localized
systems where those systems can be characterized as having a number of states, and in
which those states can be mapped to a set of processes whose traces form closed loops.
Synchronization on events amounts to a synchronous form of message passing. This
is a good description of the observable external behaviour of a piece of sequential (or
nested parallel) code running on either a single or multiple processors.

Process algebræ such as the Algebra of Communicating Processes () [29] study
similar structures to those specified by their ‘calculus’ cousins, but stress structural al-
gebraic properties over what they are physically meant to represent.

Timed process calculi Both and have timed variants, timed [60, 160,
168] and timed [180, 181] respectively. The timed versions are able to model such
things as delays and timeouts, restricting when certain processes may run with respect
to a clock. However, they remain fundamentally asynchronous languages, being exten-
sions of the core semantics of their untimed counterparts.

Reconfigurable andmobile process calculi The first process calculi were static
structures. Unlike the Actor model, processes could not send or create other processes
or set up new communication channels. The 𝜋-calculus [142] [143] allows links to be
reconfigured between processes. The ambient calculus [40] uses a quite different set of
primitives: processes contained in ‘ambients’, which are spatially defined localities in
which computation happens. This enables processes to be moved around in a seman-
tics of containment, closely modelling how a mobile computing device moves through
administrative domains, or a remote procedure call is made on some distant machine.
Yet another model with mobile agents can be found in Milner’s bigraphs [141].

Quantumprocess calculus Communicating Quantum Processes () [84] is an
extension of the 𝜋-calculus to incorporate quantum data types and quantum communi-
cation alongside classical coordination constructs. In the absence of practical quantum
computers, it is currently only of theoretical interest.

2.6.2.2 Complete, concrete and prescriptive languages

2.6.2.2.1 Occam Occam [6] is a parallel programming language originally devel-
oped and introduced by May [135] for programming the ‘transputer’, a novel

35

parallel processing architecture put forward in the 1980s. It has ordinary imperative
features as well as constructs for specifying that code must be run sequentially or in
parallel. It is directly inspired by , and can be regarded as a concrete language ana-
logue of the process calculus.28

2.6.2.2.2 Erlang Erlang [17] is a functional programming language that is designed
for distributed execution. The main abstraction used by Erlang is the ‘process’ [44].
Processes are essentially repeatably executable instances of functions whose domain is
the messages that can be received by other processes, and whose range is the messages
that it can send to other processes. Erlang’s communication and concurrency model
is in essence that of the Actor model, and has in turn been modelled by D’Osualdo et
al. [66, 67] using ‘Actor Communicating Systems’, from which they generate Petri nets
and use a coverability checker to automate the verification of the original Erlang pro-
grams. One could translate this into a process calculus, if desired, using the execution
semantics of Petri nets which are defined in terms of a relation over the state space that
resembles the trace semantics of a process calculus.29 Owing to the ease of distributing
and replicating code, and migrating functions from failed nodes to active ones, Erlang
can be used to make reliable implementation systems with soft real time constraints.
However, it lacks generic solutions to problems of consensus and network partition,
which causes problems when the persistent storage of data is required.

2.6.2.2.3 Humecoordination language Hume has been discussed in section 2.6.1.3.3
with reference to the unfair mode of pattern matching in boxes. Where fair matching is
specified, Hume’s semantics resemble asynchronous coordination languages, since its
matching semantics then look like guarded commands.

2.6.2.2.4 Linda Linda [42] is a coordination language that is characterized by con-
current access to a global tuplespace. Worker processes, rather than send messages to
others or push them down channels, communicate only by the intermediation of the
tuplespace, into which messages are written and read. Interaction with the tuplespace
is atomic. This is an elegant abstraction which is independent of how the computable
functions of processes are specified, and also completely decouples expression from co-
ordination. The idea of tuplespace put forward in Linda has been implemented in other
similar languages.

28Although the ‘transputer’ is no longer developed, , also devoloped by May [136], can be regarded
as a successor technology, and can be programmed using the language, which is essentially C but with
extensions for parallelism.

29The opposite transformation has been much explored (most recently, in [130]).

36

2.6.2.2.5 Functional reactive programming languages Functional reactive pro-
gramming () [70] is a programming paradigm that closely follows the monadic ap-
proach to the interaction of pure functional programs with their environments. The
essential idea is that the evolution of the program’s dynamic state is triggered by exter-
nal events which propagate through the program as a set of causes and effects, whose
computational content is abstracted into pure functions. The process is asynchronous.

2.6.2.2.6 TLM Hardware description languages Transaction level modelling is
an abstraction of hardware description languages that starts to abstract away from timed
implementation details. The structures it defines begin to look like those defined by con-
current programming languages. The current SystemC standard [3] includes detailed
facilities for this kind of asynchronous modelling.

2.7 Evaluating agents and entropy in concrete coordina-
tion models

Agents on the one hand, and the entropy of autonomous or parallel processes on the
other, can in many ways be regarded as two sides of the same coin. However, we are
developing the idea that in a crucial sense they are quite different, a difference that
is frequently elided by process calculi, the Actor model and many popular models of
concurrency.

Save insofar as all science is corrigible by new experimental observations, the laws
of physics themselves are a complete and fully adequate model of the abstract idea of
concurrency; indeed, it is more accurate to say that the idea of concurrency is an ab-
straction of part of physics. However, Hewitt’s idea that the Actor model is ‘inspired’
by physics [104] is odd: a model inspired by physics, but short of a formal axiomatiza-
tion of physics, claiming itself to be an adequate model of an interacting physical system,
looks rather like an obsfucation of physics. The word ‘actor’ is a clue to the confusion.
It implicitly mixes the idea of human free will and agency with the entropy and uncer-
tainty inherent in quantum and chaotic phenomena. The only way to assert consistently
that human agency and physically concurrent independent events are the same thing
is simultaneously to espouse some quite specific theories of human consciousness, and
that strays far from the subject matter of computer science. We encounter the confla-
tion of agency and entropy again in the summary of design in appendix A.4.1, and
explain further there how does things differently.

Process calculi and algebræ are more neutral models, put forward with less vocifer-
ous and polemic ardour than the Actor model. They are perfectly good mathematical
models of independent and interacting events. The abstraction fits both mechanically
computational systems, and systems in which abstractions of observable human be-

37

haviour (of the same kind modelled by queueing theory) provide input events that drive
the model.

The present work is differentiated from any of these models, because it neither mod-
els physics nor agents. Instead, it uses the minimal amount of physics necessary to
produce a coordinate system in space-time, and then deals with specifications of how
objects in this coordinate system should evolve deterministically in terms of their in-
puts. This might look like a simple synchronous language, but the approach does more
because it uses a single unified coordinate system rooted in observations specified by
international political structures, rather than a coordinate system declared by local fiat
inside a single computer with its own authoritative clock. Specifications of what a sys-
tem should do in are parametrized only in observations anchored in this coordinate
system, and whether the system in fact does do this depends on effective engineering an-
imating this human imperative. If we cannot control the determinism of the inputs, then
the state evolution will not be deterministic from the outside, but it will be deterministic
given the inputs.

2.8 Intuitionistic type theory

In this thesis, we have used the Coq proof assistant to implement a programming lan-
guage. It happens, for reasons discussed later, that Coq uses an intuitionistic logic.
Martin-Löf’s Intuitionistic Type Theory [133] is the technical underpinning to such log-
ics. Usually, we will only need to reference these topics indirectly through our use of
Coq, but one concept from this type theory that we will use in its own right is that of a
Σ-type; we explain what this is now because we will use the concept in the next section.
A Σ-type is similar to a Cartesian product, but one in which the type of a component
on the left affects the type of a component on the right. A very useful application of
this is in constructing types which have a concrete and a propositional component. For
example, if we have a predicate, isPrime, which takes a natural number argument and
is true (inhabited) when that argument is a prime number, then we can construct a Σ-
type representing prime numbers that is a pair of a natural number and a proof that
the particular prime number is in fact prime. The proof has a dependent type, such that
a proof that ‘2’ is a prime number has a different type than that of the proof that ‘3’
is a prime number. Inhabitants of this type can only be prime, since the presence of
the proof term is proof of this by construction. This idea of propositions as types and
proof as inhabitants is central to intuitionistic type theory and is closely related to the
Curry-Howard isomorphism. We will have more to say about these matters when we
discuss the Coq proof assistant, but for now, we state that we will use the lower-case 𝜎-
type to refer to one of these 𝜎-types formed of a concrete and propositional component.
Finally, we note that if our predicate is polyadic (it has more than one argument), then

38

we can generate a parametrized 𝜎-type, where the parameter of this 𝜎-type is one of the
arguments of the predicate, while the underlying concrete type is determined by the
type of the second argument. This idea is used repeatedly in this thesis. At the simplest
level, it is used to give types to the types and data of a subject type system. We go on to
put the concept to work to dependently type a ‘static semantic object’, and ultimately to
give a type to an ‘reality’, a coinductive type parametric in the coinductive type of
possible input observations over time.

2.9 Logical systems

What are we trying to achieve with this heavy emphasis on formality? In developing
reliable structures we need to do two things with a logical system: we need to show
that a specification has particular properties that we identify as being necessary or de-
sirable; and we need to be sure, with some arbitrary degree of certainty, that purported
implementations of such logics actually fulfil their specifications. To have any hope of
doing this consistently, we should know that our reasoning in each case concerns the
same specification, so we must define and prove the semantic equivalence of a stack of
abstraction layers using morphisms. This produces a strong definition of the correctness
of an implementation. This notion of correctness expresses the correlation between the
axiomatization in a logic of an intuitive specification in a human mind, and the axiom-
atization of its realization in the physical world according to physical laws of Nature.
Logical systems have common elements that facilitate this. They possess a way of defin-
ing structures: into these structures must be encoded anything we wish to reason about,
whether it be the physical world, a piece of mathematics, or any other definite structure
humanly conceivable. They then provide a means of making statements about those
structures, producing formulae or propositions of the logic, which may quantify over the
possible members of definable structures. Finally, they provide some method that may
allow us to establish the truth of these formulæ. Where formulæ range over finite struc-
tures, exhaustive state exploration of every possible value of such formulæ is at least
theoretically possible. For infinite structures, and, in practice, most finite ones, some
sort of deductive technique is required. This takes the form either of a formal deductive
logic, which allows us to determine what are valid arguments of the logic through its
rules of inference, or a supplementary technique over representatively exhaustive state
exploration, such as a coverage analysis.

We now review logical systems in some detail, and conclude the chapter by draw-
ing them into a unified comparison table with the type of systems we are interested in
modelling in . Full , as a programming language, could be used to implement
a proof assistant itself, so it is relevant to explore whether our ontology-driven approach
to delivers any fresh insights to incompleteness issues.

39

2.9.1 Logical propositions, formulae and embeddings

In this section, we discuss how structures in the information domain— and claims about
them — are formalized. We do not say anything about proof yet; that is the subject of
section 2.9.2. By ‘information domain’, we mean the world of abstract structures that
might30 have a Platonic existence independent of any physical extension. Such struc-
tures need not have epistemic immanence.

2.9.1.1 Predicate logics

This is no place to rehearse the history of logic. We simply observe what is generally
meant by predicate logic. Predicate logics are quantified extensions of propositional
logics [79]. Pure propositional logics deal with structures and inferences over truth-
valued variables, but cannot accommodate variables of some other type, such as con-
crete structures of mathematics, physics or information. Predicate logics allow just this,
so statements that have a truth value can be made about types of things that are not sim-
ply propositions. For example, in arithmetic, 𝑥+𝑦 = 4 is a statement that is true for 𝑥 = 2
and 𝑦 = 2, or 𝑥 = 1 and 𝑦 = 3, but false for 𝑥 = 2 and 𝑦 = 3. Such expressions (which are
well-formed fomulæ) do not have truth values until their variables (in this case 𝑥 and 𝑦)
are bound to values, which in this case are integers. Crucially, we may then say things
about all possible values that may be bound to variables, by quantifying over them. For
example, we can say for all possible values of 𝑥(or ∀𝑥), something is true. For example,
if we allow our integers to be signed, we can say that for all 𝑥 there exists31 some value
of y (or ∃𝑦), such that 𝑥+ 𝑦 = 4. To put it another way, ∀𝑥∃𝑦 𝑥+ 𝑦 = 4 (we neglect saying
explicitly that 𝑥 and 𝑦 are signed integers). This statement happens to be true, so it is a
theorem, given suitable axioms of arithmetic. We defer discussion about how we can be
convinced this is true until section 2.9.2.1.

We have not said much about what 𝑥 and 𝑦 are. Implicitly, 𝑥, 𝑦 ∈ ℤ, and we have
taken for granted that predicate logics allow constants such as 2 or∅, and operators such
as +, or {}, which encode relationships between structures. But herein is a potential
problem. This works brilliantly if we are only interested in integer arithmetic, but it
cannot deal with arbitrary structure, unless that structure is encoded in some way.32

In practice, mathematicians classically use set theory to describe nearly all mathe-
matical objects, including arithmetical ones. Sets have the advantage of being very sim-
ple33 constructions. With an empty set object, and the ideas that a set can contain any

30Whether they do or not depends on one’s philosophical tastes.
31This quantifier can be controversial, especially in intuitionistic logic, where it is taken to mean ‘it is

possible to construct’, where the proof is expected to give the means of construction.
32Attempts of this sort were brought to an abrupt end by the discovery of Gödel’s first incompleteness

theorem. Gödel’s encodings of logic in arithmetic are known as Gödel numbers [88].
33In practice, set theory has to be more carefully defined, such as in set theory, to avoid the logical

problems of a set being a member of itself, which gives rise to Russell’s paradox in ‘näıve’ set theory.

40

number of other (unordered) sets, arithmetic, and most of mathematics, can be encoded.
This is the perennial problem of embedding. In computer science, the preferred foun-

dational system for expressing types of structure are type-theoretical or category-theoretical,
although this does not remove the problem of assigning meaning to the structures we
define in these structural schemata. We will return to this subject in section 2.9.1.2.
For now, we talk about predicate logics quantified over an implicit placeholder for
whichever type of structure we are interested in. Otherwise, it is not clear from the term
‘predicate logic’ whether we have some particular structure in mind (frequently arith-
metic or set theory is assumed), or whether we wish to speak about it as quantified34

over diverse structural systems.
The kind of predicate logic just described is first order. In other words, quantification

is allowed over the concrete structures (such as integers) for which predicates may be
defined. There are many other logics of ‘higher’ order, which allow quantification over
first order predicates. We need not go into this here, but will return to the subject when
we discuss proof in section 2.9.2. Such higher order logics can be compressed through
suitable encodings and with suitable axioms into first order logic, so long as we do not
insist on a semantically unified notion of truth between first order logic and the logic
that it is encoded into it.35

2.9.1.2 The assignment of meaning to logical structures

We are about to talk about embedding programming languages in logical structures.
The embeddings of languages are often spoken about in terms of ‘deep’ and ‘shallow’

embeddings: ‘deep’ means that all structures of the language (or whatever else we are
embedding) are describable in a plain data structure which has no semantic notion of
the import of these structures — and if such encoded structures are themselves logics,
any truth-functional structures in that logic have no special status in the encoding logic;
‘shallow’ means that some of these structures have been borrowed from the contain-
ing logic, so it is impossible to quantify over all possible programs in the formalized
language without formalizing the whole logic itself in some external structure. This
understanding of the terms ‘deep’ and ‘shallow’ is widely used in the literature with-
out reference. The first uses of the term embedding itself (without description as ‘deep’
or ‘shallow’ in this way) is given by the Oxford English Dictionary as first occurring in
the fields of mathematics and linguistics [9]. Its use in computer science seems likely to
have spread from here or from the mathematical idea of isometric embedding, although
arguably it is the background notion of Gödel numbers that has propelled this usage.

We next discuss briefly what it means to embed anything, not necessarily a program-
ming language, in a logical structure. The characteristic of an embedding is the process

34Further consideration of the irony of this word in fact reveals some useful insights: see section 2.9.2.
35This follows a fortiori from Tarski’s undefinability theorem [177].

41

of modelling something, be it a language, a logic, reality or anything else in some host
medium, which can also be any of these. The key problem in formalizing anything
showing organized structure is that there are often many good ways to do it, so none
of the formalizations is the thing that we are formalizing. One can adopt principles
for choosing good models for things, for example, Newton’s least sufficient explanation
principle [148],36 but this does not imply that a particular such model thus obtained is
canonical. There is a duality between an assumption that something is true and the as-
sumption that some model or other adequately and succinctly describes a phenomenon
we have identified.37 It would be perverse to axiomatize natural numbers by taking,
say a Peano axiomatization [153], and then develop all of arithmetic by only counting
even ordinals. It might be an adequate model, but not good enough to tempt us to
elide the model with the very thing it is modelling. The difficulty of having many mod-
els of this sort was famously posed by Benacerraf [26]. This is the problem of under-
determination, which he threw into sharp relief by highlighting the contradictions that
occur if one person regards Zermelo ordinals as being natural numbers and another re-
gards von Neumann ordinals as being natural numbers. When set-theoretical questions
are asked about one number being a member of another, different results are obtained,
none of which says anything useful about arithmetic.

2.9.1.2.1 Temporal logics in predicate logics We observe that temporal logics
are born of a particular ontological interpretation of modal logics. The expositions of
temporal logics that we review in this section do not stress the ontology, but in talking
about time, which is a physical phenomenon, they implicitly acknowledge one. A modal
logic [31] is one where truth or consistency is parametrized on some external variable.
That variable may be probabalistic or express some imperative or impossibility, but the
modality we are interested in is that of time. When a modal logic is formalized in an
ordinary logic, the modal dimension is by necessity deeply embedded, as there is no
concept of time built into the formalizing logic in which to embed it shallowly. Other
modalities require a formalization of necessity, uncertainty and possibility, while tem-
poral logics require a formalization of time. Temporal logics thus have a clearer ontology
and are beset by fewer epistemic difficulties than other modal logics.38

Time is an infinite modality. The predicates and quantifiers of temporal logics range
over legitimate evolutions and invariants of a temporal system. Temporal logics are
capable of asserting predicate formulæ over executions which can never be satisfied: in
other words, there are no possible traces for which the formulæ evaluate to ‘true’. For
example, a formula can express the assertion that a set of coordination constraints result

36p.794
37Model theory is founded on this notion.
38We are assuming in saying this that we have a more intuitive grasp of what time is than what probability

or necessity are.

42

in a system that is free from deadlock: if the system does in fact suffer from deadlock,
the logic is describing a history of the system that cannot exist, even though it might be
possible to construct an execution model that runs as far as the point where it deadlocks
or otherwise causes the temporal formula to evaluate to ‘false’ .

Temporal logics are used to specify properties required of models that must hold
over a number of states of the underlying model. The major temporal logics relevant
to computer science follow Pnueli’s key 1977 paper [158], in which developments in
modal and tense logic in the preceding decades were applied in a particularly concise
way, using the the modalities ‘invariance’ and ‘eventuality’: this is the essence of Linear
Temporal Logic ().

Pnueli’s breakthrough led to a controversy in the early 1980s concerning the devel-
opment of more expressive temporal logics in computer science. There are essentially
two approaches: those where formulæ have an implicit universal quantification [73]
over all possible executions (the linear logics, such as Pnueli’s original model), and those
where universal and existential claims about the properties of paths can be freely mixed
(branching time logics). Neither is more expressive than the other. Linear logics such
as cannot make claims about multiple possible futures, so are unable to make state-
ments such as ‘There exists an execution path in which such-and-such is eventually
true’. Branching logics such as Computation Tree Logic () [71], on the other hand,
cannot quantify over execution paths, since they would be trying to quantify over some-
thing which is by definition never closed. They cannot make statements such as ‘There
exists a path on which it will at some point become the case that such-and-such will be
true for evermore’. C* [72] is a superset of and : it is very expressive, but suffers
from being a large language and difficult to use.

The final temporal logic system we will mention here is the Temporal Logic of Ac-
tions. T is a logic system devised by Lamport [125] which uses Pnueli’s original
modalities of invariance and eventuality, and replaces reasoning about paths and ex-
ecutions by considering ‘actions’, which express a possible next state in terms of the
preceding state. Lamport’s motivation was to push as much as possible of the reason-
ing about the specification of a system into atemporal reasoning and the consideration of
actions, using the (two) temporal operators as little as possible. This is a paradigm we
embrace in the present formalization, although we do not use .

As we saw earlier in this chapter, we are observing a dichotomy between expression
languages and coordination languages in developing and formalizing our coordination
model. The former have no conception of time at all; it is the latter languages for which
we need a temporal formalism. However, it suffices to embed the notion of time directly
in a coinductive type or predicate that represents the state of a system, or the required
state of a system at each discrete time slice: there is no need to introduce an extra layer
by first embedding a temporal logic. This does not prevent us from reasoning about this

43

structure using a temporal logic: we could give this coinductive type as a parameter to a
formalization of such a temporal logic, where that logic was expressed as a dependently
typed coinductive predicate. However, the paraphernalia of temporal quantifiers from
a separate temporal logic are not necessary in our development, since not only are we
developing a language, not a logic, but also it is a language that instantiates the idea of
time itself: we do not have to borrow the axiomatization of time from a temporal logic
in a ‘shallow’ embedding style. We have all the quantifying power we need directly
in the logic we use to formalize the language. We will now apply a similar argument
to axiomatizations of semantics. We will see in section 5.1.1 how the same approach
is consistent with the partitioning of into Pre- and full that we introduce in
chapter 3.

2.9.1.2.2 Semantics If we were to axiomatize a semantic style prior to presenting
the semantic rules of , we would be axiomatizing a special-purpose specification
language or programming language, albeit one envisaged for interpreting, or simulating
other languages. This signals that we are again in the presence of the Church-Turing
thesis: nesting one deeply embedded programming language inside another language,
itself embedded in a logic, would serve only to obfuscate matters. After presenting
 in chapter 4, we therefore embed directly in the logic of a proof assistant in
chapter 5. The semantics of chapter 4 have to be presented in some style, and so we
use notations that are as evocative as possible of dependent type theory. Underlying
the typography is an schema from which a stylesheet generates the typesetting.
This relatively informal presentation could be proven to be compatible with the Coq
formalization if we chose to formalize the schema within Coq. We discuss why we might
conceivably want to do this in section 7.4.5, but we would definitely not want to carry
out our primary formalization in a proof assistant through the intermediation of such an
empty structure: its only purpose is to provide a simplified type theory for the purposes
of presentation.

Following this approach, the question of embedding semantics becomes one of find-
ing a methodology, rather than of first embedding a semantics description language. In
an evaluation style, the conclusion of a rule should show how an expression gives rise
to a structure which is ‘the answer’. The various premises correspond to the branch-
ing logic based on the structure that is found when breaking down the implicant of the
conclusion and recursively applying semantic rules. In this style, the implicand of the
conclusion is constructed directly from the implicants and implicands of the various
premises. This is sometimes called a ‘big-step’ style, since no state is apparently kept
between the beginning and end of the computation. The specification of functions and
structures of the embedded language are entirely dealt with by the data structures in
which they are embedded, and the behaviour of the functions thus encoded is animated

44

by the functions of the embedding language.
We also use a 𝜎-type paradigm to combine this style with an axiomatic style, as dis-

cussed in relation to the Hayes and Jones argument in section 2.4. The use of 𝜎-types
for strong specifications in general is a paradigm that pervades Coq; it is the basis of
Sozeau’s ‘Program’ environment [173], and is the subject of a chapter in Bertot and
Castéran’s tutorial book [30]. We do not discuss denotational semantics: first, because
sounding the Platonic overtones of the denotational approach risks confusing the on-
tological themes we are developing with denotational baggage (evaluation semantics,
mixed with a higher order type-theoretical predicated approach, come quite close to
the territory of denotational semantics); second, our example expression language has
only first order functions, so we do not need to use a model for the 𝜆-calculus and thus
reach for Scott-Strachey domain theory, the centrepiece of the denotational approach.
Instead, we use the reduction semantics and higher order structures of a proof assistant
directly.

2.9.2 Establishment of logical formulae

If we have a proposition such as ∀𝑥∃𝑦 𝑥 + 𝑦 = 4 or ∀𝐴∀𝐵 𝐴 ∧ 𝐵 → 𝐴, how do we know
it is true? Or to be more precise, how do we know it is a valid, or consistent theorem of
the logic?

Before rehearsing common methods for becoming convinced of the validity of the-
orems, we ought to say what we think reaching a proof in one of these methodologies
might maximally hope to establish. These matters are contentious, and are on the bor-
ders of pure philosophical enquiry. In his popular book, The Road to Reality [154], Pen-
rose discloses his view of issues of Platonism in mathematics and related positions as
‘prejudices’, and since we are presenting our views on these matters only as contextual-
izing conjectures, we adopt the same approach, and ask the reader to take what follows
as our philosophical ‘prejudices’ (they differ from Penrose’s).

We take the view that one of the things that makes us human seems to be our ability
to choose what our axioms are. All logical thinking — certainly from the ancient Greeks
onwards — requires at least some axioms; Gödel tells us that the study of pure logic
using logic itself does not let us escape axioms either [88]. Descartes quipped that ‘Good
sense is the most evenly distributed thing in the world; for everyone believes himself to
be so well provided with it that even those who are the hardest to please in every other
way do not usually want more of it than they already have.’ [62]39 It is, however, all too
easy to conflate the wisdom of how axioms are chosen in any sphere with every human
being’s innate understanding of physical causation and the consistency of physics over
space and time: an evolutionary adaptation that is vital to surviving in the physical

39p. 5

45

world.40

We conjecture that one way of looking at physical axioms (the laws of Nature) and
logical axioms41 is by viewing a particular kind of self-formalization of a logic in a proof
assistant as a fixpoint of Nature with respect to time and space that mirrors a cofixpoint
characterization of a stacked logic such as Turing’s Ordinal Logic [187].42 If one uses a
proof assistant’s logic to show a morphism between part of physics modelling an execu-
tion of the proof assistant and a direct deep embedding of the proof assistant’s logic in
itself, then one has the capacity to escape the spiralling stack of logics that one obtains
by continually adding axioms and ‘larger’ infinities of infinitely nested logics.43 Phys-
ical causation can be considered an analogue of logical rules of inference, in a similar
way that physical geometry is related to abstract mathematical topology. One can take
the view that the pair of foundational theories should be arranged the other way round,
and argue that the logic is prior to physicality, and that the universe is somehow the
physical extensionality of some computation or other,44 but this is largely a matter of
conviction. For practical purposes, experimentally testable scientific law is something
readily graspable without needing an understanding of the nature of the conscious-
ness that is doing the grasping. One might even argue that our willingness to accept it
seems to comes from reason as a biological adaptation to the physical world, whence
come ‘laws of thought’. The physical analogue of a proof-checker might escape logical
axioms through accepting that laws of physics are invariant in reality, and appealing
to the plausibility of a thought experiment in which this Quine-like [111] proof checker
can check its infinite physical self-model by running the experiment an infinite number
of times, each time stripping away a layer of simulation from the embedding.

A proof assistant can therefore be used to study logic as an experimental science
amenable to the scientific method like any other part of science. Logic becomes a human
labelling through axiomatization of the potential of physical structure: in this way of
thinking, the key to accepting the validity of a logic is through the physical realization

40This line of thinking suggests a critique of the heritage of Kant’s Critique of Pure Reason would be infor-
mative, but we resist the temptation to start a discussion on the history of rationalism, scepticism, and the
history of logicism.

41It is tempting to pair logical axioms as laws of thought, in the tradition of Aristotle, Boole (notably
in [34]) and others. This does not work if the axioms are arbitrary, as in Frege’s axiomatization of first order
logic [79], or if they are as good as arbitrary as far as experimental testing is concerned (if, for example,
they contain existential hypotheses of unconstructable transfinite universes).

42The locus of the non-mechanistic part of the proof of Gödel’s theorems, in this way of looking at things,
is in the acceptance that the universality and spatio-temporal unboundedness of the laws of physics really
holds.

43 Disjoint areas of physics appear Turing-complete in this regard: one can build a Newtonian computer
such as Babbage’s analytical engine without needing Maxwell’s equations or quantum mechanics. This is
really a matter of analyzing the mathematic shape of physical actions and is the intuition of Gandy and
Sieg, which we discuss in this chapter.

44The Zenil compendium [193] is a modern exploration in concepts of a ‘computable universe’ that orig-
inated with Feynman [74] and Deutsch [63].

46

of a proof checker, and belief in the accuracy of the self-model and the laws of physics.45

The physical model is prior to the logic, not vice versa. Logical axioms are replaced by
physical ones and discharged through morphisms. The idea has some resonance with
the structuralist argument (Benacerraf [26] et al.) in the philosophy of mathematics,
except that we are less interested in giving an account of what mathematical objects are,
but more concerned about what can be believed about a logical system that might use
the relationship between its own axiomatization of itself and its own axiomatization of
its mechanical proof checker to infer something about the consistency of its logic up to
the consistency of physics. We have no more space to devote to this here, so we leave it
as a conjecture; it is, however, relevant to discuss contemporary developments in verified
stacks [145] in an introduction to proof assistants such as this, and we therefore return
to this topic in section 2.10.4.

2.9.2.1 Deductive and exhaustive state analysis

Exhaustive state analysis is based on the principle that in seeking to show the veracity of
a statement, whether quantified over propositional or concrete domains, one can validly
conclude that the statement is true if it holds for all values of its domain. A truth table in
propositional logic is the simplest example. Model-checking suffers from problems in
state explosion and thus uses graph analysis and reduction techniques to achieve cov-
erage of the state space [81]. Acceptance of the mathematical techniques is implicitly
underpinned by deductive reasoning, although that deductive reasoning occurs stati-
cally at the design-time of the tool rather than during individual verification exercises.
While model-checking is a widely used approach to verification, the present work is not
about model-checking, so we do not consider it further.

Deductive systems use explicit rules of inference to validate each step of an argu-
ment. Exhaustive enumeration can be used in the sense of case analysis (more so in
classical logics), particularly where inductive types are involved. However, the key to a
deductive system is the way that complex conclusions are built up using rules of infer-
ence.

2.9.2.2 Proof assistants

The functionality of a proof assistant can be divided into two: the proof-checking ker-
nel is the most important component; the other features help to find proofs. The kernel
checks whether an encoding of a logical formula and a supposed proof of it are legal
structures within the logic, and whether the ‘proof’ is a valid proof. It is a task of ap-
plying the rules of inference of the logic in a mechanized form: this part of a proof

45The distinction between a hardware or software proof checker is immaterial: the complete physical
model of a proof checker is a computer with a program physically encoded into it. How much of this is on
a hard drive (or for that matter punched cards) or burnt into silicon is neither here nor there.

47

assistant is typically a very small piece of code, which makes it surveyable by human
beings, so that it is possible to become convinced of its correctness by direct inspection.
A proof checking kernel that meets this condition is known as satisfying the De Bruijn
criterion [21].

The vast majority of the code base of a proof assistant is not involved with checking
proofs at all, but in helping the user to find them using tactics. Since any useful logic is
undecidable, it is impossible to write a tactic that will always find a proof, if one exists.
However, such tactics can still be extremely useful, since finding proofs is usually a case
of deciding to apply formulaic patterns of reasoning. The rôle of insight is usually in
deciding which tactics to try in an unfamiliar situation. The automatic application of
tactics, particularly once they are composed into more complicated composite tactics,
can save an enormous amount of time. Crucially, the impact of a bug in this part of the
proof assistant is limited to the inconvenience of the assistant crashing, or producing a
‘proof’ which is rejected by the checking kernel. It does not risk validating faulty proofs,
which would be disastrous.

The verifying kernel of proof assistants, in effect, reduces a question of whether
something is a valid argument in a logic to one of running a physical experiment, whose
axioms are not rules of inference, but laws of physics. The assistant is not written in
terms of physical laws, but in the semantics of a programming language. However, in
compiling a programming language into binary form for a particular architecture, one is
reducing the problem to one of physics, albeit that the semantic model of hardware is a
finite state machine model of a configuration of matter, engineered to evolve bisimilarly
with a physical model up to discretization. The physical experiment involves setting up
the proof checker on concrete computer hardware to verify the proof of a theorem, with
the experimenter starting the program and leaving the computer to its own devices un-
til it halts or they lose patience with it. The computer’s state under these circumstances
evolves according to the laws of physics. We have a hypothesis, namely that the proof
script, when loaded into the machine, will cause the proof checker to issue a , which
we test according to the scientific method. We want to be able to draw the conclusion
that a successful outcome of an experiment (or verification attempt) shows either that
the proposition was correct, or that the proof was faulty. This is emphatically not the
same thing as proving that the proposition was false. To do that, we would need to state
the negation of the proposition and produce a verifiably correct proof of that instead.

In critically evaluating such an experiment, we have to discharge the obligation to
provide a convincing argument that the configuration of the physical apparatus is con-
sistent with the semantics of the logic in which the proposition is stated. As well as
concluding that the proposition encoded in the theorem is true, another possible con-
clusion to draw from a successful or unsuccessful proof verification run would be that
some axioms were wrong — either that the semantic model of the hardware was wrong,

48

because the physical model of the hardware’s specification was inadequate, or the par-
ticular instance of the hardware was faulty, or that we were wrong to quantify the par-
ticular laws of physics on which we relied over all space and time and scales, or the
logic used by the proof was inconsistent, or that the whole experiment was hopelessly
misconceived, in that it did not in any way mirror the semantics of the logic that our
intuition told us we thought we had embedded in the physical system.

To have confidence in the outcome of a verification run, therefore, we must become
subjectively convinced that none of these explanations was justified. This is the physi-
cal subjective analogue of becoming convinced that axioms that are ultimately based on
laws of thought are true, notwithstanding that Gödel’s incompleteness theorems show
that we can never prove them in the logical sphere by using their own apparatus. Still,
laws of thought seem safer when they can be put in a structure morphism with a phys-
ically deductive system that is axiomatized on what are apparently laws of Nature.46

In this experimental formulation of a proof-checker, one therefore cannot ignore
what Dijkstra dismissed as the ‘pleasantness problem’ of formal methods [64]. The idea
of pleasantness is that of whether the formal specification of a system accords with our
intuition of what we wanted it to say. We have already considered how such problems
might be overcome by the use of parallel axiomatizations shown to be equivalent un-
der structure morphisms. However, even if we choose to eschew such issues as outside
the scope of formal methods for general specification work, we cannot avoid the matter
where gaining confidence in a proof-checker is concerned. Even with a proof checker
that satisfies the De Bruijn criterion, the complexity of the reasoning that allows us to
map the result of a physical experiment to a logical deduction draws us inexorably to
formalizing the computer and every tool we used in designing it into a logic that we can
check with computers themselves.

In considering the validity of projecting a computer’s model of itself into the logic
that we are checking in that very computer, we cannot avoid the need to become con-
vinced that what we physically have conforms to our logical model of it. This is similar
to an engineer reaching a judgement that the bridge standing in front of them is a re-
flection of the mathematical model that claims that it will not fall down, except that a
bridge does not calculate things about itself, other than its own structural integrity, or
lack of it. That mathematical model is a fusion of a set of physical axioms and a particu-
lar conformation of matter, and the engineer must be convinced that both are justified in
relation to the bridge. If we accept the indispensability of considering the pleasantness
of a computer’s model of itself, we have some philosophy to do, but we have a way of
approaching Gödel that identifies the problem of known self-consistency with a human

46While the mere idea of a structure is an abstract one that only exists in a logical system, it seems plausible
that the injection of physical axioms might be enough to bootstrap the formalization of a logic with the most
plausible external axioms possible.

49

belief in the fitness of models and the quantifiability of physical laws over space-time,47

and does not leave us appealing to the Platonic existence of mathematical objects and
inscrutable laws of the human mind.

2.9.2.2.1 Particular proof assistants We now come to discuss individual proof
assistants. There is a bewildering array of tools available: a representative but very
non-exhaustive list includes those based on classical higher order logic such as [151],
 [90], and the major logics of Isabelle [149]; dependent type-theory-based tools in-
cluding Coq [68] and Agda [150]; and environments geared to pure-mathematics such as
Mizar [185] . Again, this is not the place to write an encylopædia of the history of proof
assistants: such synoptic works exist, those by Geuvers et al. are particularly informa-
tive [85, 86]. Rather, we will focus our discussion on two of the most well-developed
and popular tools, which together are representative of a wide class of available sys-
tems: these are Isabelle/ and Coq.

Isabelle is a meta-proof assistant. It uses [89] as an abstraction that can capture
the structures and inference rules of various different logics. The most widely used
of Isabelle’s logics is Higher Order Logic (), which is based around the typed 𝜆-
calculus, and has a polymorphic type system. Its logic over these structures is classical,
in that it admits the excluded middle as a valid rule of inference. It has predicate types,
but these cannot be used for explicit subtyping.

Coq, by contrast, contains one logic, based on dependently typed logic and con-
structive type theory. It implements an extended version of the Calculus of Construc-
tions [56]. It has an intuitionistic logic, in which all proofs must be constructive: it does
not permit classical axioms unless these are explicitly admitted by individual develop-
ments. It has a dependently typed type system which encompasses both concrete and
propositional types. Proofs are functions with the type of proposition that they prove;
arguments are implicants and conclusions are implicands. It is impossible to construct
objects of the type ‘False’, an empty propositional type, since it has no constructors.
False propositions are ones with no inhabitants. This view of propositional functions
as proofs of their types is rigorously based in the theory of the Curry-Howard isomor-
phism [172].

47In other words, the laws of physics here, now, are the same as the laws of physics somewhere else, next
week.

50

2.10 Verified compilers and the preservation of semantics
under transformation

Both Isabelle and Coq possess facilities to export verified compilable code, which is pro-
duced from the executable subsets of the logics.

For simplicity, in the following discussion, the subject of compilation is not a syntac-
tic entity, but a member of a semantic domain of static semantic objects. Membership of
this (predicate-qualified) static semantic object guarantees that it can be animated in an
interpreter function of the operational semantics from within the formalizing logic that
exports compilers. The reason for discussing the topic like this, removing any syntax
that could violate static semantic rules, is that it allows us to define compilation neatly
as a monomorphism.

The process of compilation is one of translating one structure, which is a member
of the set of valid programs in a high level language, to another, which is typically a
member of the set of valid programs of a lower level language. The dynamic seman-
tics (a function) of the lower level language should be a monomorphism of the dynamic
semantics of the higher level language (another function) with respect to equivalence
relations of the inputs and outputs as prepared for, and output by, each set of seman-
tics. Ultimately, the task of a compiler is to produce binary code that can be processed
by a piece of hardware (which itself has semantics). The task of the verified compiler
developer is to prove that the compiler function is indeed a monomorphism. It is bet-
ter to show this monomorphism using the predicate characterizations of the semantics
than to show it using their operational counterparts, since this separates correctness of
compilation from the implementations of the virtual or physical machines on which the
static semantic objects are run.

Unfortunately, the big snag with this approach to verified compilation is that there
are no chains of common axiomatizations that allow this to be done from code all the
way to hardware and deductive hardware verification, although there has been some
recent resurgence of interest in Moore’s idea of verified stacks [145], which is an exciting
area of research. The same snag applies a fortiori to finding a verified proof assistant: at
the moment, no comprehensive solution is available. We therefore use the code export
facilities of a proof assistant in the present work, even though this leaves verification
gaps. These logical lacunæ are problematic in making a safety case to use the results in
real safety-critical systems: they leave much scope for further work in proof tool devel-
opment.

2.10.1 POPLMARK

More concretely, the PM [19] challenge invited submissions of formalizations of
a variant of System F [41], with specific challenges being given. The challenges speci-

51

fied the meta-theoretical properties that should be provable, and the animation of the
language that should be producible in a compiler or interpreter implementation. The
interesting part of the PM challenge is not so much the particular challenge that
the authors devised, but that it attracted a number of responses, which in sum substan-
tiate the wider point that large scale formalization and production of verified tools is
indeed practicable.

2.10.2 Isabelle-based

Isabelle has been used to verify compilers for some time, for example, in Strecker’s verifi-
cation of a compiler for a subset of Java in 2002 [175]. There has also been a more general
effort by Berghofer et al. to produce tools that provide executable code from predi-
cate definitions [27, 28]. H code maps relatively easily to Haskell by code extraction,
and can then be executed outside the Isabelle environment [95] (this requires a chain of
trust with the Haskell tools themselves).

2.10.3 Coq-based

Compcert [128, 129] and its sister projects use Coq to build certified compilers, whose
input languages are generally subsets of C. Consequently, a certified compiler could
be produced for the present language by providing a certified transformation into the
existing Coq formalization of the semantics of one of these C dialects. Chlipala has used
Coq to produce a compiler for a higher level functional language using Coq [47]. While
not a compiler as such, Tollitte et al. [182] have produced recent work on automatically
producing executable Coq from predicates. This is relevant to the method advocated in
this thesis because we have emphasized an approach based on developing predicates
and parametrized 𝜎-types in tandem. The method of Tollitte et al. has the capacity to
take some of the drudgery out of developing a reference interpreter, but does not help
if the finding of predicates is based on the intuition gained by developing operational
semantics, and hence a reference interpreter, by hand.

2.10.4 Verifiability of proof assistants

We observed in section 2.4.1.2 how specification toolkits that check logical claims about
specifications raise the problem of what verifies this verifier. Extended to general pur-
pose logics and their implementing proof assistants, this is clearly an infinite loop, which
touches again on the problems of verified stacks. Deductive verification has been ap-
plied to hardware for some time, too, (e.g. [137]), even though model-checking is still
the dominant approach.

The most difficult element, however, is verifying one proof assistant with another:
this is, strictly, impossible, owing to Gödel’s second incompleteness theorem. However,

52

various successful attempts have been made to produce self-verifying tools that get close
to this limiting point. See, for example, the work by Harrison [98], Myreen [146] and
Davis [61] for -flavoured developments in this field. The main stratagem used for
producing a development of this kind is to make the external axiom that is inevitably
relied upon as small, transparent and readily convincing as possible. Harrison, in his
study of self-formalizing Light, uses a slightly stronger theory to prove that
Light is consistent, and employs it to prove that a slightly weaker theory is also consis-
tent.

Barras produced a formalization of the Calculus of Constructions in Coq in 1996
[22], but little work on this has been done since. The infinite type universe hierarchy of
Coq is in many ways more appealing for self-verification, since, according to our earlier
conjecture, it is conceivable that it could enable the location of an experimental fixpoint
by a Quine construction that is not dependent on ever more exotic infinitary axioms.48

Code exporters are useful development tools, and can be helpful for bootstrapping a
proof assistant: however, to rely on their use suggests that we should verify them, which
means another tool is needed to do this (this cannot be done by a proof-checking kernel
— it is not within the remit of the De Bruijn criterion).

A final important but overlooked consideration in proof assistant development is
that of multiple axiomatizations. The presence of multiple repositories of formal math-
ematics formalizing the same theories leads to the problem of captive dependency sys-
tems. Alama et al. review Public Mizar and Coq libraries [15], and examine how differ-
ent systems deal with dependencies in these environments. In particular, they examine
large formal s, which only admit theorems with verifiable proof scripts in some logic
or other. This immediately suggests the Benacerraf problem we discussed above is at
work again, since no formalization of what intuitively seems to be the same mathematics
is necessarily canonical in any meaningful way. The challenge of relating such systems
to each other in a usable way is an enormous and, so far, relatively unexplored problem.

In a more ‘applied’ field, multiple formal axiomatizations of the C programming
language are being devloped by Krebbers et al. [122]. These multiple axiomatizations
do not address the problem of proving that they are equivalent. This would require
embedding heterogeneous logics within each other. We contend that the best confi-
dence in such axiomatizations would be gained by deeply embedding each axiomatiza-
tion within each logic, itself deeply embedded in a comparison logic, and then showing
morphisms between axiomatizations in the host logic and each such embedded logic. If
the logics are then permuted so that another logic is the comparator logic framing the
morphism, then complete confidence in the consistency of these axiomatizations with
human intuition and with each other could be approached in a limit, as the number of

48We would like to investigate how such an approach might relate to Wittgenstein’s problematical cri-
tiques of Gödel [24, 76, 77, 165, 192], but this lies utterly outside the scope of the present task.

53

such axiomatizations and logics is increased. This is an idealized possibility in the spirit
of a grand challenge of the kind described by Hoare [110] or Moore [145], possibly one
that is rather too grand.

2.11 A remark on fault tolerance

A simple strategy for synchronously removing single points of failure can be imple-
mented by applying overlapping replication transformations, following the original ob-
servations of von Neumann in constructing arbitrarily reliable systems [189]. More
modern and sophisticated fault tolerance techniques can be used at an asynchronous
level of abstraction, but simple synchronous techniques are very robust and suit a syn-
chronous language.

2.12 Assembling the parts

We have now reviewed a variety of formalisms, including programming languages,
specification languages and proof frameworks. We now explain the interaction between
these kinds of systems, using Table 2.1. Each formalism in Table 2.1 is compared using
the following five headings:

• Abstracta In this column we give a natural-language description of what entities
the formalism is trying to describe, such as a type system, time, computational
processes, or communication channels. The connection between the symbollic
treatment of these phenomena in or underlying mathematical structure and
the thing in reality which they are trying to describe is almost never formalized,
with the exception of the and Pre-.

• Concreta In this column we describe the type of things that instantiate the abstracta.
This is usually some sort of text file, but, except in the case of , the text and
the mathematical structures it respresents have only an informal relationship to
identifiable entities in reality. ‘Abstracta’ and ‘concreta’ are standard philosoph-
ical terms. In our formalization of , we use dependant typing to introduce
pairwise relationships of abstracta and concreta, where a more concrete form is
obtained by supplying a Curried argument to a functional term.

• Executable functions In this column we answer whether the formalism in question
provides a semantics for evaluating functions that are equivalent to (or can express
a subset of) one of the standard axiomatizations of Turing-completeness, such as
the 𝜆-calculus.

54

• Predicates and propositions This column categorizes the formalisms according to
whether they have a semantic notion of truth and an ability to quantify over some
(sub)sets of its abstracta.

• Deductive apparatus This column asks whether the formalism in question has a
semantics of valid arguments for establishing the truth of predicates over the ab-
stracta. For intuitionistic formalisms such as Coq exploiting the Curry-Howard
isomorphism, the semantics are the same as for executable functions. It is, how-
ever, impossible to have Turing-complete executable functions with a sound de-
ductive apparatus, as this would imply an (impossible) solution to the halting
problem. Coq’s executable functions are thus limited to being primitive-recursive,
and extra axioms over coinductive structures, which are unexecutable in native
Coq, are needed to deeply embed Turing-complete languages.

Formalism
Abstracta Concreta Exe-

cutable
func-
tions

Predi-
cates
and
proposi-
tions

De-
ductive
appara-
tus

B method and
Event-B

Abstract
machines (ad
hoc states and
events)

Statically
compliant text

Yes Some,
first
order

Limited

Time-
triggered
architecture

ad hoc
observations
with respect
to time;
coordination
protocol

Compliant
specifications

No No No

Hierarchical
timing
language

Ad hoc types
and time;
program;
module;
mode; task

Compliant
specifications

No No No

55

Formalism
Abstracta Concreta Exe-

cutable
func-
tions

Predi-
cates
and
proposi-
tions

De-
ductive
appara-
tus

AF Components;
ports;
channels;
streams.
Discrete
clocks related
by stream
compression
factors

Compliant
specifications

State
transi-
tion
function
expected
in ad hoc
logic

No No

Verilog Modules,
wires.
Event-driven

Statically
compliant text

Limited No No

VHDL Ports,
processes,
entities,
architectures,
libraries.
Event-driven

Statically
compliant text

Limited No No

Esterel Axiomatization
of time allows
simultaneity;
signals;
modules

Statically
compliant text

Limited No No

Actor model Actors;
messages

Compliant
specifications

No No No

Hume Boxes, wires Statically
compliant
programs

Yes No No

Petri nets Places,
transitions,
tokens

Compliant
graphs

In basic
nets, not
directly;
in some
exten-
sions,
yes

No No

56

Formalism
Abstracta Concreta Exe-

cutable
func-
tions

Predi-
cates
and
proposi-
tions

De-
ductive
appara-
tus

Communicating
sequential
processes (and
relatives such
as CCS, ACP,
𝜋-calculus)

Events,
processes

CSP models No No No

SystemC Ports,
modules,
processes,
arbitrary C++

Valid C++
programs
using
SystemC
libraries

Yes No No

Occam Processes,
channels,
sequence and
parallel
operators,
guarded
commands

Statically
compliant text

Yes No No

Erlang Data types,
function
closures,
processes

Statically
compliant text

Yes No No

Linda Tuplespace
and processes
operating on it

Program in a
compliant im-
plementation

Dependent
on
imple-
menting
language

No No

Linear
temporal logic

Propositional
variables and
time

Compliant
expressions

No Yes No

Temporal
logic of
actions

Z sets, time Statically
compliant text

No Yes With
+ and
an im-
plemen-
tation,
yes

57

Formalism
Abstracta Concreta Exe-

cutable
func-
tions

Predi-
cates
and
proposi-
tions

De-
ductive
appara-
tus

Isabelle/HOL Higher Order
Logic

Statically
compliant text

Not
directly

Yes Yes

Coq Calculus of
(co-)inductive
constructions

Statically
compliant text

Yes, but
primi-
tive
recursive

Yes Yes

Pre- Spacetime
coordinate
system; timed
types; object
identifiers;
memories of
timed types

Specific
measurements
or measurable
quantities in
physical
reality; fixing
values of
timed type
memories

No No No

Full Pre-HBCL
concreta plus
box
specifications
and s

Instances of
full HBCL
structures and
their mapping
to Pre-
concreta

Yes,
boxes
and s

No No

Table 2.1: Specification formalism comparison matrix

The Curry-Howard isomorphism is implicitly present in this table: concreta and
predicates are related in the same way as executable functions and logical deductions.

We can see that formalisms in Table 2.1 spread across many columns, but none
achieves completely satisfactory coverage. At one extreme, programming languages
specify computational procedures, while at the other, the formal logics of some proof
assistants have no, or very limited, executable functions. Specification toolkits, such as
the B-method, satisfy most of the columns, but such monolithic solutions lack general-
ity, and cannot easily be extended to axiomatize application domains or more general
reasoning. In every case, the concreta of the formalisms lack an ontologically sound
anchor to reality, relying instead on informal associations between specifications and
particular physical systems. In the rest of this thesis, we go on to carve a distinctive
place in this schema for . We do this by focusing a deeply embededded ontology

58

layer in a proof assistant, which maximises logical power whilst minimizing the com-
plexity of what is. We will go on to see how this deep embedding provides a fast
route to establishing language soundness, up to the soundness of the embedding logic.
It is this apparent sleight of hand that has obliged us to examine in particular detail
what a proof assistant is, and why it, and its logic, can be relied upon.

2.13 Conclusion

We have identified two strong dualities in this chapter: the duality of expression and co-
ordination constructions and the duality of physical and logical processes. We have seen
a variety of synchronous programming languages and asynchronous models. However,
we have not seen either a general synchronous model which is sufficiently parametriz-
able to describe simple and nested expressions and coordination structures, with poten-
tial language heterogeneity, or a unified synchronous formalism for high and low level
structures. Further, we have noted that there are certain philosophical ambiguities and
shortcomings among some asynchronous models that flow from a conflation of physical
entropy with unpredictable human agency. The language we present in further chap-
ters is a response to these observations. In particular, it uses a synchronous model that
can accommodate expressions from gates to very high level functional languages,
but which retains the possibility of using simple hardware fault tolerance techniques to
be applied at the macro-scale.

We have explained what can be achieved by both specifying and realizing result-
ing specifications using formal tools. We have discussed the limits on these processes,
surveyed some of the tools available for the task, and brought this study together in
synthesizing an approach to formalizing the semantics of a language.

59

Chapter 3

The Harmonic Box Coordination
Language I: Motivation, examples
and semantic preliminaries

On two occasions I have been asked,
‘Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right
answers come out?’ . . . I am not able
rightly to apprehend the kind of
confusion of ideas that could provoke
such a question.

Charles Babbage — Passages from the
Life of a Philosopher

Reason is, and ought only to be the
slave of the passions, and can never
pretend to any other office than to
serve and obey them.

David Hume — A Treatise of Human
Nature

We now present the Harmonic Box Coordination Language. First, we explain why the
language is harmonic. This is the essential feature that makes the language unusual and
particularly suited to real-time applications. The choice of this temporal structure is very
closely related to the other novelty in our approach: ’s ontological commitment.

3.1 The case for a harmonic and ontologically aware lan-
guage

Ontology is a branch of philosophy that is concerned with describing reality. An on-
tologically aware specification language is not one that tries to make deep statements
about reality, or becomes involved in the controversies of ontology, such as the existen-

61

tial status of mathematical structures. Rather, we suggest that designing an ontologi-
cally aware language is about choosing a mathematical structure that refers unambigu-
ously to what is being specified. This is important in safety-critical engineering, since
if multiple safety theorems need to be proved about a physical or data object, then the
basic axes of understanding of the identity and properties of that object must be fixed
relative to the logical system.

A five-axis system is sufficient: three-dimensional space, plus time and an identifier
space. Once we fix a base coordinate system in space defined by these axes, we have a
sufficiently rich fabric to specify complex systems with significant precision. The nat-
ural scales to choose are those of the proper time in Earth’s geoid as witnessed by :
this fixes the first four axes. We suggest that the strongest form of human designation is
that of object identifiers, which are rooted in international political structures (/
s). This identifier space has an infinite tree structure, so it is possible to graft a lan-
guage’s conception of object identity onto some suitable part of the tree (and in fact, to
develop the semantics with the particular node to which it is grafted as a parameter).
This way of looking at things leads directly to how we set up the harmonic properties
of the language, which we now discuss.

Key term: OID
Object identifier. A standardized tree of natural numbers with a single, interna-

tionally recognized, root.

The idea of a harmonic language comes from two observations. First, that the spec-
ification of all computer hardware has somewhere in it a clock-conditioned oscillator.
Second, that most of these crucial low-level clocks (as distinct from the rather inaccurate
real-time clock in most computers) are mutually incoherent: this means that computers
have to model communications between themselves asynchronously, which presents
formidable difficuties to engineering fault tolerance in distributed systems.

The processes of a low-level computer design are clock-driven, and typically observe
the electrical potential of some conductor at a time determined by the main oscillator. If
the specifications of what computers should be doing are to be universally composed,
it follows that some single clock is required. This means we have to ask questions about
what that clock is, and what we can know about observations that are timed according
to it, which generates the need for the temporal part of our ontological approach. It is
also necessary to uniquely identify the parts of the computer in a way which is dealt
with by the scope of a local identifier space in the hardware specification language of
a single computer. Finally, we justify the apparent problems with clock skew over long
distances by observing that all we need to do is find sufficiently accurate witnesses of
executions according to the global clock; the coarseness in the time scale compared to a

62

local clock is dealt with using a pure functional programming approach, in which the
separation of expression and coordination constructions makes for a system which is
indifferent to such coarseness.

This approach also facilitates an extremely strong idea of ‘correctness’ for the pur-
poses of engineering fault tolerance, because the idea of what is prescribed as being
correct is enshrined in a solid ontological formalism, rather than in the implicit assump-
tions of a particular tool.

We now describe how we meta-instantiate (‘meta-’, since it is the instantiation
of the language, not the things that might be described in it), tying it to a coordinate
system in space-time that bears a static relationship to the Earth’s geoid at the begin-
ning of standard international atomic time in the 1950s. From a computer science point
of view, the unusual step here is to specify the time base of the computer relative to a
canonical clock ensemble, without the need to build a computer at all. The definition
of a language to program a single computer according to a clock we do not own or con-
trol gives rise to what we would like to call an externally timed language. This gives an
extremely strong conception of system correctness, because the logic is described rel-
ative to a very commonly accepted handle on physical reality, and the reliability of all
computer systems we might build to implement a specification is judged by its ability
to manifest its prescriptions of reality in a way that bisimulates this specification. We
already have a potential computer — the Earth — and physics gives us its semantics.
We animate the computer by arranging matter into components that represent and ma-
nipulate information efficiently, by labelling those components and by attaching signif-
icance to the information flowing into and out of them. As a bonus, by having a single
clock in this planetary computer (a property it shares with most desk-bound comput-
ers), with managed skew, we can eliminate many problems in the reliability of asyn-
chronous communication, since all communication is time-triggered. Even desk-bound
computers have to deal with clock propagation considerations because of the very high
frequencies at which their clocks run. A planetary computer programmed using an ex-
pression/coordination dichotomy can make do with much slower clock speeds. The
computers evaluating the expressions run at normal speeds, but are tasked only with
finding witnesses to Church-style functions, so their internal clocking is irrelevant to
the specification.

However, if we are to regard our planet as a computer (a purely human designation
and axiomatization), we must have a system for uniquely discussing its parts that is
similarly ontologically well-rooted in international politics as — at least since the pre-
eminence of Greenwich — physical coordinate systems are in space and time. Fortu-
nately, such mechanisms already exist, and it is easy to graft a language’s semantic
conception of these parts onto this robust reference system, enabling to refer to

63

individual interfaces and instances of logic in a temporal modality.
Os are a tree of natural numbers with a single root recognized by the and .1

It is one of the firmest referential anchors possible in the morass of humananity’s com-
mon intentionality. An individual is just a list of natural numbers, and thus very
easy to deal with in machine-assisted reasoning. One could imagine a mapping to a
more meaningful structure, such as 2, but this would add needless complication at
this stage, and would introduce a great deal more arbitrary choices over the deep struc-
ture, over-specifying the model and obscuring any canonicity we might hope for, insofar
as any axiomatization can ever approach canonicity. For demonstration purposes, we
sandbox some s with an arbitrary root. We give more details of the semantics of
usage within in appendix A.2.

3.2 Informal expositionof a coordination languageby con-
formationally representative examples

The static semantics of any language give the rules by which a model of arbitrary com-
plexity can be built up from simple steps. A compiler accepts the next component if it is
well-formed and its introduction is compatible in a specified way with existing compo-
nents in the specification. The source-code static semantics of a language are relatively
uninteresting: the behaviour of the model that the language represents depends on the
structure of the object that can be built by applying the static semantics to some particu-
lar abstract syntax tree (), rather that how that object was built: the same object could
be built by many different sets of abstract syntax trees and static semantic rules.

In the case of a coordination language, the most basic scenario is a single expres-
sion (Figure 3.1(a)). Next, is the idea of the parallel introduction of a box which has no
interactions with any existing boxes: a parallel composition (b). The three remaining
scenarios we will use examine how communications between boxes may be introduced.
First, there is the pipelining of two boxes (c); second, there is feedback from a box di-
rectly to itself (d); and third, there is indirect feedback via a pipeline (e). These three
structures appear very similar, but the structural difference is in whether the directed
graph that describes the communication channels between boxes is cyclic at all. The sim-
ple feedback case allows cycles of one link, and the unrestricted case allows any directed
cyclic graphs. The presence of unrestricted cyclic structures of these sorts is essential to
allow a coordination language to represent unrestricted recursion; it therefore by im-
plication introduces the possibility of non-terminating computations in some semantic
domain, even though expressions within boxes are restricted to provably terminating

1These acronyms stand for the International Standards Organization and the International Telecommu-
nication Union respectively.

2Lightweight Directory Access Protocol.

64

(a) One box
[inType] [outType]

[expr]

(b) Two parallel boxes

[expr]

[expr]

(c) Single box with feedback

[expr]

fifo...

(d) Two pipelined boxes

[expr] [expr]

(e) Two pipelined boxes with feedback

[expr] [expr]

fifo...

Figure 3.1: Case study summary

computations.
So in summary, our five, in an informal sense, ‘canonical’ examples are as follows:

1. A single box

2. A parallel composition of two single boxes

3. A pipelined composition of two single boxes

4. A box with feedback

5. A pipelined composition with feedback

These fundamental primitives of parallel and pipelined composition emerge from
coordination mechanisms intended to adapt sequential functional programs to parallel
implementations such as Caliban for Haskell [118, 178, 184].

3.3 Introduction to the structure of HBCL

The basic coordination structures of are exceptionally simple. There are two types
of memories. Memories are just lists of values with some particular temporal validity.
They maintain internal buffers which do not necessarily empty themselves every time
they are read. The relationship of the values in the lists to the current time are deter-
mined by static parameters of the memory: the times to or from live (/). There
are two different sorts of memories that execute at different times in the execution cycle.
There are memories that stand between boxes (that contain the specifications of compu-
tations) and s, and there are memories that stand between s and boxes. The
two are different because there is a unidirectional data flow in each case. The dynamic

65

semantics are built up from an endless four-fold execution cycle which, by definition,
never blocks on unavailable input, but by default produces empty output data in such
circumstances. Boxes execute, then box- memories, then s, then -box mem-
ories, then boxes again. The types and every component in the system have a rational
number frequency. The frequency of the top-level cycle is determined by the lowest
common multiple of all the system components, so not every component executes on
every cycle.

Definition: Timed type
A data type that has a frequency; its inhabitants have an absolute time that is an

integer number of ticks having a duration of the reciprocal of that frequency.

Definition: Memory
A point in the identifier/time coordinate space with which is associated a timed

type and a frequency.

Definition: TTL/TFL
Time-to-live or time-from-live. This gives an offset from the current time in

whole numbers of cycles at the frequency of a memory. In the case of a time-from-
live, the value of the memory is the given number of cycles after it was considered
current, and in the case of a time-to-live, it is the number of cycles until it will be
considered current. In the case of a sampled analogue quantity, these have natural
meanings. In the case of intermediate quantities, their main purpose is to define the
lengths of s, which have an implicit length of the time to or from live at either
end. Internally, the time to or from live is a single signed integer, with times-to-live
being negative and times-from-live positive.

The state trace is a coinductive structure that is completely determined by the coin-
ductive input stream observable at the system boundary. This is expressed as a depen-
dent type in the formalization, which gives a ‘type’ of reality, which only has one mean-
ingful inhabitant in the real-world analogue: the way in which reality actually unfolds
over time. This inhabitant provides what is meant by a correct execution, and is defined
as long as the axiomatization of what is observable fits with reality (this is a human des-
ignation). The manifestations on the edge of the model are the way reality must evolve
if the program, as an agent of causation, is realized. Realizing the specification thus in-
volves constructing an argument that the semantic trace of a particular program has a
witness in reality, up to some arbitrary degree of confidence. All of these programs are

66

composable, since they axiomatically refer to different observations and manifestations
in reality. We elaborate on the subtleties of this in the examples that follow, and in the
formalizations described in the following chapters. Further commentary on the design
features of can be found in appendix A.

Key term: FIFO
First in first out. A queue of data in which items are removed in the same order

as that in which they are inserted. In , s are timed, so they consume and
produce data at the same clocked rate, and have a deterministic length.

The structures that we have mentioned so far describe the Pre- coordinate sys-
tem. Its embedding in a logic allows an application specifier to give a predicate speci-
fication of some system without being bound by the specific features of an executable
language. Full is such a language, whose instances provide computational proce-
dures that specify an operational causative link between -box memories and box-
memories.

Definition: Instance signature
A set of Pre- structures over which a logical predicate or a full program

may be specified.

3.4 Instance and library closure semantics

The way in which deals with code organization and repeating structure is novel
and born of the same ontology-focused philosophy that occasioned ’s observation
semantics. The key to giving effect to an program is not to compile it,3 but to
catalyse its accession to a suitable epistemology of engineering.4 Therefore, when we
write linst in global or linst scope, we are saying that here is a definition of a unique
piece of logic that has a unique history. It might not yet be connected to observation
points (this is done with hinsts and cinsts), but nevertheless by issuing this linst as
an instruction, we are giving it an existence in some human frame of reference.

This is much like creating a car registration plate that has yet to be assigned to a car.
The plate has a conceptual existence before, during and after being affixed to a car in
some material form, and continues to exist in a historical sense long after the car has

3Although we have done so in this thesis, using an interpreter to simulate evolutions of state specified
by the language.

4We could call it a ‘database’, but we avoid this because databases have become synonymous with
the implementations that record the data and relationships between them, as opposed to the data
themselves.

67

been destroyed — even when the database recording the plate has been closed down,
forgotten, or destroyed.

This becomes more interesting when we add libraries, or llibs to the mix. Libraries
have the effect of altering the scope, so that linsts declared within them have deferred
instantiation: they must be referred to by some other linst which does not have de-
ferred instantiation (or if it does, the instantiation will be deferred to the same extent
as the instantiator). There are further scoping subtleties, which we discuss as we en-
counter them. Using just these primitive components, we can adjust the visibility of
libraries depending on their placement, produce nested instances, and write down in-
stance functors.

It is unusual to do without module and namespace systems, but we have chosen to
eschew them in order to defeat a more serious problem: that of competing root names-
paces. Module resolution systems usually rely on particular filesystem layouts or envi-
ronment variables, but this requires subtle common assumptions between supposedly
compatible system components that eventually fail: an unacceptable situation for ro-
bust systems. Java and some other languages piggyback on the domain name system in
order to try to ensure uniqueness, but these systems rely on every contributor respect-
ing conventions that struggle to deal with versioning and namespace re-use. At the
bottom of this problem is that, just as competing system clocks cause synchronization
problems, competing filesystem roots cause referential failures. The filesystem itself
provides relative file paths and breadcrumb syntax (../), but programming languages
seldom make use of this because it looks so confusing. Hosts can be configured to try
first to resolve domain names as if they were subdomains of a local namespace, but to
anchor the consistency of a system in such a subtle network configuration detail would
hardly be robust.

The solution we adopt is novel, in that it need not reference a root, nor rely explicitly
on exploration towards the root of a tree by the use of ../ or similar syntax. Rather,
any name not resolvable at local scope is taken to be declared somewhere between the
current scope and the root, and any compound name is one whose root component sim-
ilarly occurs somewhere between the current scope and the root. More remote clashes
with the the same names are thus masked. A reference to a library that is referenced
but not declared at the current scope instantiates a functor: nothing in the library can be
safely instantiated until it is put into a context that supplies another library containing
instances with the correct input/output signatures.

A consequence of this is that any fully defined library or instance (i.e., not a func-
tor) can be grafted anywhere onto another library tree and will have exactly the same
semantics. It also opens the possibility of supplying bisimilar implementations for miss-
ing definitions that satisfy some predicate we might associate with a signature. There
is a very practical motivation behind this lack of an explicit root: bootstrapping a stan-

68

dard. While in its pure form, the ontology of is predicated on being grafted into
the tree of / s, it is likely that practical systems that might use the approach we
have advocated would use different roots and different versions of . It is impracti-
cal to suppose that one could start with a canonical version of the system that would be
widely adopted, and that a suitably robust organization framework be set up to admin-
ister the tree structure. By allowing rebasing that does not affect the standard, we allow
one system to graft another system into its descendant s by means of a mapping, if
necessary with explicit conversion logic. This avoids the kind of internetworking stan-
dards disagreements that arose in the creation of the internet. Roots and their subtrees
become a setoid structure susceptible to structure-preserving morphisms.

We return to this theme again in a different guise when we discuss multiple axiom-
atizations in heterogeneous deductive logics. In the extreme case, conversion logic and
grafting of heterogeneous ontological schemata permit any hierarcical identifier system
(not just s or namespaces administered by supranational organizations). This ex-
tends to our spatio-temporal ontology too: any spatio-temporal coordinate system with
known relationships to all other such systems in a transitive closure with proper time
in the Earth’s geoid are effectively equivalent and inter-operable.

3.5 Examples

3.5.1 One box

We introduce our first example by means of the schematic diagram in Figure 3.2. The
whole configuration is contained in the dotted-line ‘cinst’box, called negConfig. It in-
stantiates the configuration instance called a negCfInst, in the configuration library
negCf. This is shown by the label in the top right of the configuration box. This type of
configuration specifies that a logical instance be instantiated called ‘negInst’, defined
by negatorInst in the negator library. The label ‘linst’ in the label on the upper left
of the negator instantiation means that it is a piece of logic that comes into existence by
virtue of the existence of the configuration. It exists for precisely as long as the config-
uration exists. The logical instance negInst declares an input memory (i.e. a -box
memory, hence the subscript ‘fb’) called posIn. This is an observable bit of informa-
tion with a fixed frequency that will be bit-flipped by the harmonic box ‘bitNeg’ and
manifested on the output memory negOut. Both types of the timed type tDat are from
the common library. The hardware box ‘negHwInst’ is an hinst reference. This means that it
has an existence that is independent of the existence of the configuration. The hardware
instance is a placeholder for a physical description of a piece of hardware that is incom-
pletely specified: it does not ‘know’ what logic it should implement. The mapping of
the logic to the hardware closes this open specification and the configuration demands

69

that the logic be implemented (by refinement) in the particular piece of hardware. The
configuration is only realized if this prescription is adhered to. The logical instance is
also an open specification, in that it does not ‘know’ what values to observe, or where
to manifest the bit-flipped result. Again, the mapping arrows close this specification.

We now discuss how this model is rendered in source code. First, we introduce
a library containing only a trivial datatype.

Listing 3.1: A harmonic datatype

1 llib commonDat {
2
3 type uDatTripleProt (bool * bool * bool);
4
5 oid type uDatTripleOid uDatTripleProt;
6
7 htype tDatTriple : uDatTripleOid [64];
8
9 type doublePairProt (bool * (bool * bool));

10
11 oid type uDatDoublePairOidT doublePairProt;
12
13 htype tDatDoublePair : uDatDoublePairOidT [64];
14
15 }

An ‘llib’ is a logical library. The one given here on line 1 is called ‘commonDat’. There
are two points that need explaining here. The first is what is meant by a ‘library’ in this
context; the second is why it is ‘logical’. Being a library means that instantiation of the
structures it contains is deferred until a point at which an instance outside the scope
of the present library instantiates it. The effect of deferred instantiation is transitive on
scope enclosure, so any instance directly or indirectly enclosed by the library is deferred.
This applies both to type definitions and to ‘logical instances’, which will be discussed
shortly. Any contents of the library and any nested libraries can be instantiated from
outside the scope of the library, as long as there is no intervening instance in the enclo-
sure scope of the inner library to which reference is being made. The ‘l’ in‘llib’ stands
for ‘logical’ and indicates that the contents of the library are data types or instances of
causative logic.

Inside the ‘llib’ can be seen the declaration of the two types necessary for the nega-
tor box below: at line 3 there is a tuple of three Boolean values, while at line 9 there ap-
pears a pair of one Boolean with another pair of nested Booleans. The ‘oid’ and ‘htype’

keywords elevate this type to a full harmonic type as understood by the coordination
language. The type declarations of lines 5 and 11 elevate these respective types to
 uniqueness, while the htypes of lines 7 and 13 elevate these to timed types, assigning

70

negConfig:negCf.negCfInst
cinst

negInst:negator.negatorInst
linst

posIn:common.tDat

Mfb

negOut:common.tDat

Mbf

bitNeg

hbox

negHwInst:negatorHw.negatorHwInst
hinst reference

posIface:common.tDat
hin

negIface:common.tDat
hout

Figure 3.2: A negator instance scenario

71

a frequency. Frequencies appear in square brackets.
Next, we introduce a negation box itself.

Listing 3.2: A negating box

1 llib negator {
2
3 linst negatorInst {
4
5 mem(fb) posIn : commonDat.tDatDoublePair [64, tfl(0)];
6 mem(bf) negOut : commonDat.tDatTriple [64, ttl(2)];
7
8 observe {
9 posIn;

10 }
11
12 manifest {
13 negOut;
14 }
15
16 hbox bitNeg : posIn -> negOut [64]
17 {
18 main : { posIn : ((bool * (bool * bool))) }
19 -> { negOut : (bool * bool * bool) } :=
20 { negOut = ((not posIn .0.0, not posIn .0.1.0 , not posIn .0.1.1)) };
21 }
22 }
23 }

The negator listing contains a negator library, called ‘negator’ (line 1), and a negator
instance, called ‘negatorInst’ (line 3). This requires some explanation. When an
program is deployed or simulated, it is done at the implicit scope of an anonymous in-
stance. If the program is being deployed in the real world, it acquires a prepended
dependent on the fiat of some external agency. We do not concern ourselves with this
here, because we will always simulate (or, equivalently, interpret) programs in an
ontological sandbox: a synthesized reality of our imagination with the root arc asso-
ciated with this root instance, rather like the way that an instance of a * kernel exists
in its own reality, associating itself with the root of its file system namespace. Such
distinctions are a worthwhile hazard of an ontologically aware language.

The library of types commonDat is declared at the same root instance scope, allowing
the resolution of commonDat.tDatDoublePair and commonDat.tDatTriple to behave as
expected in lines 5 and 6 respectively. This accords with the lookup semantics in which
declarations of types in another library called commonDat would have been preferred,
had they existed in the scope of negatorInst or negator. All such identifiers are thus
made relative, so the semantics of an instance at a given scope are invariant, no matter
onto which arc they may be grafted.

Line 5 declares a memory of the negator instance, which becomes qualified by the

72

prepended arc of the instance . ‘fb’ indicates that it is an input memory: that is, one
that stands between a data flow from s to boxes. ‘posIn’ is the raw name without this
implicit appendage. As discussed above, the text after the colon is the timed type of
each of the values in the memory. 64 is the memory’s frequency in Hz. The text ‘tfl(0)’
indicates that the most recent value that emerges on a memory execution (every 64th of
a second) has a time stamp 2 cycles after the time of the memory execution (in this case
also at 64Hz).

Line 6 defines the output memory (or box- memory), and follows the same scheme.
The names of memories that are exposed as the instance interface (the Pre- instance
signature) are enclosed by the curly braces following the keywords ‘observe’ and ‘man-

ifest’ for inputs and outputs respectively. We see that the input memory posIn ‘ob-
serves’ the environment (at line 9) and negOut stipulates that a value be manifested in
the environment if the program specification is satisfied (at line 13).

Finally, the definition of a harmonic box is signalled by the keyword ‘hbox’ at line
16. In this case, it has a frequency of 64 Hz, as indicated by the number in square brack-
ets. The hbox ‘bitNeg’ is defined to observe one memory, posIn, and output values to
one other memory, negOut. If we had more than one harmonic box binding, or more
than one untimed box language, or more than one expression language, we would need
concrete syntax here to indicate which language or binding was being used, so that the
appropriate parser and compiler or verifier component could be invoked. Given that
for each of these bindings and languages, we have at present only one exemplar, this
syntactic clutter is unjustified and we default to discussing the box language that we do
possess.

Definition: Box language
A computational structure within a coordination language that specifies the

functional relationship of a set of inputs to outputs.

The hbox definition contains a program in the bit field expression language. There
must be at least one function called main (at line 18), according to the rules of the bind-
ing, and this function must have an argument with a structure that matches the inputs
it refers to, and an output that matches the outputs it refers to. Both of these arguments
are records. The identifiers that the record uses to map values correspond to variable
identifiers which in this case are syntactically equal to the identifier of the coordi-
nation language memories. The values corresponding to each memory are tuples of
values of the memory’s underlying plain type. The size of this tuple is determined by
the relationship of the frequency of the memory to the frequency of the timed type.5 In

5With the present box language, the box execution frequency must be the same as the memory execution
frequency, to comply with the restriction to fixed size types in the underlying type system.

73

this case both are 64Hz, so the tuple contains one value on each execution of the box.
This is why there is apparently an extra set of brackets around the raw data tuple in the
type signature of the function. Inside this set of brackets is the raw type of the input
and ouput. We use an explicit representation of the type here, which can nonetheless
be unified with the declared uDatTripleProt type. The actual definition of the function
follows the := symbol, and consists of an expression. The expression here is the con-
structor of an appropriate output value, where values are obtained by an application of
the ‘not’ function to a pattern that dereferences a component of the input value. The
patterns consist of a list of record member identifiers or tuple positional parameters as
they descend through the structure of the input type. The built-in ‘not’ function can be
seen to be applied to each of the input Booleans to produce an output triple at line 20.

3.5.2 Two parallel boxes

We now consider a parallel composition of a one input I/O negation box and a parity
calculator.

Figure 3.3 shows the parity box in an identical conformation to the negator box of
Figure 3.2. The labels have been changed to refer to parity boxes. posIn has become
dataIn, while negOut has become parityOut. We therefore proceed straight to present
the code for the parity scenario.

Listing 3.3: A parity box library

1 llib parity {
2
3 type uDatParity ((bool , bool , bool), bool); -- final boolean is parity bit
4
5 oid type uDatParity;
6
7 htype tDatParity : uDatParity [128];
8
9 linst parityInst {

10
11 mem(fb) datIn : commonDat.tDatTriple [64, tfl(0)];
12 mem(bf) parityOut : tDatParity [64, ttl(2)];
13
14 observe {
15 dataIn;
16 }
17
18 manifest {
19 parityOut;
20 }
21
22 hbox parCalc : datIn -> parityOut [64]
23 {
24 main : { datIn : (commonDat.tDatTriple) }
25 -> { parOut : (tDatParity , tDatParity) } :=

74

pConfig:parityCf.parityCfInst
cinst

pInst:parity.parityInst
linst reference

dataIn:common.tDat

Mfb

parityOut:tDatParity

Mbf

parCalc

hbox

pHwInst:parityHw.parityHwInst
hinst reference

datIface:common.tDat
hin

parityIface:tDatParity
hout

Figure 3.3: A parity box scenario

75

26 { parOut = ((datIn.0, xor datIn .0.0 (xor datIn .0.1 datIn .0.2)),
27 (datIn.0, xor datIn .0.0 (xor datIn .0.1 datIn .0.2)))

};
28 }
29
30 }
31
32 }

In comparison with the negator example, the only structural difference to notice is that
the data types specific to the parity example are declared at the parity library scope. If
they were declared inside the instance they would not be accessible to code instantiating
the parity library, and the output would have an unknown type (this would result in an
inconsistent program). This data type also has double the frequency of its memory.
The consequence of this is that the output must occur twice in the the output tuple for
the ‘parOut’ field of the record. Accordingly, the function ‘main’ now produces a pair of
values, at lines 26 and 27. Each element of the pair is identical. Each of these elements
is a pair, containing the original input value and a parity bit. The parity bit is calculated
by applying the built-in exclusive function xor to two of the bits in the input triple,
and again applying the operation to the result of this and the remaining input bit.

We now give a parallel composition with a negator box, shown in Figure 3.4. It
can be seen, if we disregard the nesting, that the structure is exactly the same as two
non-communicating negator and parity implementations instantiated side by side. The
linst is not given in a library context. This means that, in the case of a simulated/inter-
preted execution, this is a command to the interpreter to instantiate the instance
there and then; in the case of a non-simulated instantiation in reality, it is a statement
that the instance exists, and starts to accrue a real history (which may consist of null
data if the input memories are not yet bound to some real inputs). The existence of the
trace is therefore fully defined, regardless of whether an implementation successfully
realizes the program by causing a history of output manifestations consistent with this
trace.

Listing 3.4: A parallel composition

1 linst parityPar {
2
3 linst negInst : negator.negatorInst;
4 linst parityInst : parity.parityInst;
5
6 observe {
7 negInst.tDatIn as tDatInNeg;
8 negInst.tDatOut as tDatOutNeg;
9 }

10
11 manifest {

76

pConfig:parCompCf.parCompCfInst
cinst

parComp:parCompL.parCompInst
linst reference

pInst:parity.parityInst
linst

dataIn:common.tDat

Mfb

parityOut:tDatParity

Mbf

parCalc

hbox

negInst:negator.negatorInst
linst

posIn:common.tDat

Mfb

negOut:common.tDat

Mbf

bitNeg

hbox

tDatInPar:common.tDat

Mfb

tDatOutPar:parity.parityInst.tDatParity

Mbf

tDatInNeg:common.tDat

Mfb

tDatOutNeg:common.tDat

Mbf

negHwInst:negatorHw.negatorHwInst
hinst reference

posIface:common.tDat
hin

negIface:common.tDat
hout

pHwInst:parityHw.parityHwInst
hinst reference

datIface:common.tDat
hin

parityIface:tDatParity
hout

Figure 3.4: A parallel composition

77

12 parityInst.dataIn as tDatInPar;
13 parityInst.parityOut as tDatOutPar;
14 }
15
16 }

3.5.3 One box with feedback

To illustrate a simple example, we develop a basic rolling checksum. The structure of
this example can be seen in Figure 3.5. This time, the logic underlying instance cInst has
two inputs and two outputs. It is nested inside another instance called cInstFIFO, which
connects one of these outputs to one of the inputs, so that the new enclosing instance
has only one input and output. These are mapped to hardware in the normal way.

First, we define a checksum instance in a library without connecting up the that
achieves the feedback. We do this because we want to reuse this instance in a later
checksum pipeline example where we pass the feedback through the negator box.

Listing 3.5: A checksum box library

1 lib checksum {
2
3 inst checksumInst {
4
5 mem(fb) datIn : tDatTriple [64, tfl(0)];
6 mem(fb) checkIn : tDatTriple [64, tfl(0)];
7 mem(bf) checkOut : tDatTriple [64, ttl(4)];
8 mem(bf) checkOutCopy : tDatTriple [64, ttl(4)];
9

10 observe {
11 dataIn;
12 checkIn;
13 }
14
15 manifest {
16 checkOut;
17 checkOutCopy;
18 }
19
20 hbox checkBox : (datIn , checkIn) -> (checkOut , checkOutCopy) [1 / 64]
21 {
22 main : { datIn : (uDatTripleProt); checkIn : (uDatTripleProt) }
23 -> { checkOut : (uDatTripleProt); checkOutCopy : (uDatTripleProt) } :=
24 { checkOut = ((xor datIn .0.0 checkIn .0.1),
25 (xor datIn .0.1 checkIn .0.2),
26 (xor datIn .0.2 checkIn .0.0));
27 checkOutCopy = ((xor datIn .0.0 checkIn .0.1),
28 (xor datIn .0.1 checkIn .0.2),
29 (xor datIn .0.2 checkIn .0.0))
30 };

78

cConfig:checksumCf.checksumCfInst
cinst

cInstFIFO:checksum.checksumInstFIFO
linst reference

cInst:checksum.checksumInst
linst

checkIn:common.tDat

Mfb

datIn:common.tDat

Mfb

checkOut:tDatToCheck

Mbf

checkOutCopy:common.tDat

Mbf

checkBox

hbox

datIn:tDatToCheck

Mfb

checkOut:common.tDat

Mbf

cHwInst:checksumHw.checksumHwInst
hinst reference

datIface:tDatToCheck
hin

checkIface:common.tDat
hout

Figure 3.5: A checksum configuration
79

31
32 }
33
34 }
35
36 }

Of particular interest (at line 20) is that, reflecting Figure 3.5, the hbox has a signature of
two input and output memories. We reuse the Boolean triple data type from commonDat.
This time, the function main computes a checksum (lines 24 to 26) using the xor function.
This is a triple that is assigned in the output tuple to the identifier checkOut. At lines
27 to 29, the logic is repeated for the identical checkOutCopy. We now instantiate this
logical instance, introducing a feedback :

Listing 3.6: A fully specified single box checksum

1 linst checkTest {
2
3 linst checkInst : checksum.checksumInst;
4
5 observe {
6 datIn as checkInst.datIn;
7 }
8
9 manifest {

10 checkInst.checkOutCopy as datOut;
11 }
12
13 fifo checkInst.CheckOut to checkInst.CheckIn;
14
15 }

This example introduces some new syntax. First, the colon in ‘linst checkInst :

checksum.checksumInst’ indicates that the instance is being instantiated from a library,
in this case the instance checksumInst in library checksum. If the checkTest instance
had been specified in a library scope, this instantiation would have been deferred until
checkTest itself had been instantiated, but given that checkTest is instantiated directly
in the anonymous global instance scope, it is instantiated immediately. Now that we
have a nested instance, the specification of the nested observations and manifestations
changes slightly to include the keyword ‘as’. This is syntactic glue between the instance
signature of the enclosing instance and the nested instance. ‘datIn as checkInst.datIn’

means that the handle datIn can be used when using a checkTest instance to refer to the
datIn input memory of the nested instance checkInst. The manifested output memo-
ries reverse the position of the local and nested identifiers so that the way the statement
reads is closer to an equivalent description in natural English. Also, we see the first

80

pConfig:plineCf.plineCfInst
cinst

pline:plineL.plineInst
linst reference

pInst:parity.parityInst
linst

dataIn:common.tDat

Mfb

parityOut:tDatParity

Mbf

parCalc

hbox

negInst:negator.negatorInst
linst

posIn:common.tDat

Mfb

negOut:common.tDat

Mbf

bitNeg

hbox

parityOut:parity.parityInst.tDatParity

Mbf

posIn:common.tDat

Mfb

pHwInst:parityHw.parityHwInst
hinst reference

datIface:common.tDat
hin

parityIface:tDatParity
hout

Figure 3.6: A pipeline scenario

example of the keyword ‘fifo’, denoting the specification of an eponymous .

3.5.4 Two boxes in a pipeline

The next example involves two boxes in a pipeline. The structure can be seen in Figure
3.6. As was the case in Figure 3.5, the nesting and connection of a in the enclosing
instance pLine has exposed only one input and output to be mapped to hardware /.

Listing 3.7: Pipelined boxes

1 linst pLine {
2
3 inst negInst : negator.negatorInst;
4 inst pInst : parity.parityInst;
5
6 observe {
7 negInst.posIn as posIn;
8 }
9

10 manifest {
11 pInst.parityOut as parityOut;
12 }
13

81

14 fifo negInst.negOut to pInst.dataIn;
15
16 }

First in the pipeline is a negator box; it is followed by a parity box. There is a in be-
tween them. This arrangement instantiates instances of each from the relevant libraries
and does so at global instance scope. This program computes the same parity function
as the plain parity instance, but does so with an inverted input.

3.5.5 Two boxes in a pipeline with feedback from second to first

The final example is a rolling checksum with negation. It can be seen in Figure 3.7. There
are no new structures here: the novelty is in the less restricted form of directed cyclic
graph described by the communication flows. There are now two s in the program.
Only one input and one output are left and need to be mapped to hardware. The effect
of the program is the same as the plain checksum box, except that it computes a different
checksum as a result of the negation instance interposed in the checksum feedback.

Listing 3.8: Negated checksum

1 linst checkTestNeg {
2
3 linst checkInst : checksum.checksumInst;
4 linst negInst : negator.negatorInst;
5
6 observe {
7 datIn as checkInst.datIn;
8 }
9

10 manifest {
11 checkInst.checkOutCopy as datOut;
12 }
13
14 fifo checkInst.CheckOut to negInst.posIn;
15 fifo negInst.negOut to checkInst.datIn;
16
17 }

3.6 More involved examples

In chapter 6, we develop a set of progressive examples which culminate in a replicated
multiplier in section 6.8.5; we preview its illustration in Figure 3.8, as it is convenient to
illustrate what we mean by an interpretation function.

The replication example of Figure 3.8 shows three parallel replicas of the same code:

82

cConfig:checksumCf.checksumCfInst
cinst

cInstFIFO:checksum.checksumInstFIFO
linst reference

cInst:checksum.checksumInst
linst

checkIn:common.tDat

Mfb

datIn:common.tDat

Mfb

checkOut:tDatToCheck

Mbf

checkOutCopy:common.tDat

Mbf

checkBox

hbox

negInst:negator.negatorInst
linst

posIn:common.tDat

Mfb

negOut:common.tDat

Mbf

bitNeg

hbox

datIn:tDatToCheck

Mfb

checkOut:common.tDat

Mbf

cHwInst:checksumHw.checksumHwInst
hinst reference

datIface:tDatToCheck
hin

checkIface:common.tDat
hout

Figure 3.7: A checksum calculated with negation

83

given the fanout and voter logic, we can construct a bisimulation predicate that wit-
nesses the non-replicated equivalent: the interpretation function in question is a two-
out-of-three voting function. Unlike asynchronous consensus systems, each replica never
needs to ‘know’ what the state of the other replicas is. If a replication transformation is
applied by drawing a boundary around some processes and replicating what is inside,
bounded by fanouts and voters, then if another transformation is drawn so as to over-
lap these fanouts and voters, a restoring effect is carried forward through a data flow
without ever any single replica knowing whether it is correct. This is the old idea of
restoring organs, introduced by von Neumann in 1956 [189], and we should be careful
to point out that the apparently Byzantine faults that it can tolerate have nothing to do
with the axiomatization of Byzantine processes communicating by asynchronous mes-
sage passing of Lamport et al. [127]. The Byzantine Generals’ Problem is about resistance
to a potentially duplicitous general inconsistently disseminating his decisions to other
unreliable generals who may (mis)communicate between themselves; the synchronous,
von Neumann-style, model is about a diffuse aggregate truth as comprehended across
a clique of processes that do not directly communicate with each other being passed on
in the same diffuse, probabalistic form through another discrete set of replica generals.
The will of these generals is a synthetic property following from the definition of which
generals are in the ruling clique; it is not and need not be accurately known by every
general involved, and might be better described as a ‘Byzantine polyarchy’.

3.7 HBCL timing principles and properties

H’s timing model is axiomatic. We will now explain in more detail what we mean by
this, and why it is a useful approach. An specification exists in a single coordinate
system in which events only occur at rational-number instants in time. This is not phys-
ically plausible, as it neglects dispersion, jitter and wandering clocks. Dispersion occurs
because of instabilities and uncertainties in measuring the time of flight of a particular
signal. Jitter occurs because of the instability in any physical clock (usually characterized
by the Allan variance), thermodynamic effects in information transit times and quan-
tum effects in measurement. The further that two supposedly synchronized clocks or
clock signals are from one another in space, the further they may wander from each
other due to accumulated random walk effects in clock propagation. The key to trans-
forming an idealized specification that captures the logical requirements of the
application developer into a realistic transformation is to use two ideas that implement
the same concept in discrete and continuous domains respectively. The first idea is to
use bisimulation and morhpisms to transform programs into more precisely timed
 programs. The second, related, idea is to use homeomorphisms when projecting
the actual, continuous, timing properties of a physical system onto the rational-number

84

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

rmOut1

rmOut2

rmOut3

rmOut4

rmOut5

rmOut6

rmOut7

rmOut8

fanoutInst1

fanoutInst2

multInst1

multInst2

multInst3

voterInst

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1

memIn2

memIn3

memIn4

fanout1A

fanout2A

fanout3A

fanout4A

fanout1B

fanout2B

fanout3B

fanout4B

fanout1C

fanout2C

fanout3C

fanout4C

memIn1

memIn2

memIn3

memIn4

fanout1A

fanout2A

fanout3A

fanout4A

fanout1B

fanout2B

fanout3B

fanout4B

fanout1C

fanout2C

fanout3C

fanout4C

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

memIn1B

memIn2B

memIn3B

memIn4B

memIn5B

memIn6B

memIn7B

memIn8B

memIn1C

memIn2C

memIn3C

memIn5C

memIn7C

memIn8C

voter1

voter2

voter3

voter4

voter5

voter6

voter7

voter8

memIn4C

memIn6C

Figure 3.8: Structure of replicated multiplier

grid. The point can be made by considering a ‘rubber sheet’ graph of memories (dis-
crete) against time (rational or continuous) that can be arbitrarily manipulated within
certain boundary conditions. Transformations from one program to another allow
only discrete manipulations of points of interest on this sheet, while hardware transfor-
mations would allow continuous manipulations on a real-numbered backdrop.

To illustrate this point, we adapt Lamport’s graphical approach, specifically, that
found in Figure 3 of his seminal paper on time, clocks, and the ordering of events [123].
Figure 3.9 shows the negator box of section 3.5.1 using this kind of notation. The two-
dimensional surface does not show two dimensions of space-time (3 + 1 dimensions),
but instead memory identifier-time (1 + 1 dimensions): there are therefore no hidden
or collapsed axes. The distinction between physical space and identifier space is impor-
tant because the apparently un-physical features of the diagram, such as instantaneous
communication, do not violate the speed-of-light restriction on the rate of information
transfer in metres per second: the horizontal axis of the diagram is concerned only with
units of discrete-links-between-abstract-objects per second, which lacks dimensions of
physical distance.

In this kind of diagram, vertical red lines show -box memories. Such a mem-
ory is a point in one-dimensional identifier space, smeared into a line along the time

85

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

posIn
(fifo-box)

tfl

− ×
 s

− ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

negOut
(box-fifo)

ttl

Figure 3.9: Lamport-like timing diagram for negator box86

axis, analogously to a world line in the physical terminology of relativity. Blue lines
do the same for box- memories. Purple lines show causative relationships stipu-
lated between two memories, which are specified by instances of box languages.
Green lines show the causative relationships between two ends of a . In order for
 programs to be deterministic and realizable when mapped to hardware, there are
restrictions on the gradients of these lines. Each has a direction that is implicit,
given that a only ever transmits information from a box- memory to a -box
memory. For extra clarity, an arrow head is included in each execution of a shown
on the diagram. If the arrow is considered as a vector with identifier-space and time
components, then the time component must be greater than or equal to zero for a box ar-
row, and strictly greater than for a . Given that a box cannot be connected directly to
another box, the combination of these two conditions ensures that any particular box
output cannot affect its own corresponding input, which would create a contradiction,
violate our model of causality, and render the language non-deterministic.

To return to the rubber sheet model, in refining the timing within or finding a
physical realization (projection onto spacetime), we oberve that if the background fabric
of reality is inelastic, then we must impose some boundary conditions on permissible
distortions to prevent causation lines running backwards or at superluminal speed in
the (at least, relatively) inelastic space onto which the rubber sheet is projected. Finally,
we note that the causation lines of boxes and s cannot be ‘drawn’ onto the sheet if
we consider continuous deformations of a rubber sheet, because even a small number
of boxes and s projected onto two dimensions in this way would be a cat’s cradle,
the topology of which would change as the lines were crossed and uncrossed as various
sections of memories were deflected up or down. If we did draw the lines on the sheet,
we would still be able to consider the relationship between two geometries as causation-
preserving homeomorphisms, but not continuous deformations.

The presence of s can be seen in Figure 3.10. The vectors obey the require-
ment of having a strictly positive time component. We also see another feature in this
example: the parityOut memory has a timed type that has twice the frequency of the
memory. The dot for the parityOut memory, which ticks at instants in time, has been
stretched into a lozenge, spreading the box execution arrow that connects to it into a
triangle. This represents a kind of ‘dispersion’ that occurs as a result of the mismatch
of frequencies. In general, we can stretch either kind of memory like this, turning each
arrow into a trapezium with parallel sides along the time axis. Each non-parallel side
must obey the same gradient conditions as when we were considering this shape as col-
lapsed into a line, with the additional requirement that a line drawn between the top
left and bottom right corners must also obey the same condition.

In Figure 3.11 we see the result of a rubber-sheet manipulation in which the disparity
of timed type frequency, compared to that of the memory, is elided. This transformation

87

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

posIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

negOut
(box-fifo)

ttl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

datIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

parityOut
(box-fifo)

ttl

Figure 3.10: Timing diagram for pipeline example

88

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

posIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

negOut
(box-fifo)

ttl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

datIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

parityOut
(box-fifo)

ttl

Figure 3.11: Timing diagram for pipeline example with compressed timed type timeline
relative to memory timeline

has not violated the causality rules or changed the topology of the spatial relationship
of memories; the memories represented by the black lozenges have been compressed
back into circles of nominally infinitessimally small size.

Universal compositionality of programs follows axiomatically from this style
of specification when components are linked with s. Since each end of the is
defined relative to the same clock (the same temporal coordinate system) that is instan-
tiated with the language, not with the language instance, then the resulting has a fixed
and deterministic length. Whether or not two implementations are composable or not is
quite a different matter, because dispersion, jitter and wandering clocks must be taken
into account in this case. We now elucidate how this might occur in the context of our
simple pipeline example. The power of this approach is not that it excuses us from en-

89

gineering acceptable temporal tolerances, but that transformations from one pro-
gram to another, such as that illustrated in Figure 3.8, can take place without considering
physical constraints. The overall correctness of the implementation of an program,
transformed via other programs, and eventually rendered into a physical imple-
mentation, is provided by the transitivity of the transformations, of which only the final
one needs to be concerned with details such as dispersion, jitter and wandering clocks.
The boundary conditions might be expressed algebraically using interval arithmetic. In
appendix A.4.1, we think of this transformation design space as an ‘entropy sandwich’.

One potential criticism that can be levelled at the ‘rubber sheet’ model is that it is
very restrictive of allowable clock divergence if universal composability is to work, as the
necessary guard interval to cope with the ‘blurring’ of the vibrating rubber sheet within
some probabalistic bounds is small; it gets smaller with every higher-frequency com-
ponent that is added, and is also constrained by the length of the shortest . This is a
powerful motivator for programming a model into hierarchical units, as is allowed by
full . The lowest common multiple (henceforth) of the memories that are visible
from outside an instance is independent of all of the potentially higher frequencies
inside the instance. This is compatible with our intuition about most computers, where
clocks become more and more tightly synchronized with decreasing spatial dimensions,
with the most tightly controlled clocking environment being that of a central processing
unit.

We can imagine attaching a semi-rigid boundary to the rubber sheet enclosing an
 instance, whose internal clock tolerance (or rubber sheet deformation tolerance)
might have a higher frequency, and thus a lower permissible deviation in the time
domain. If that instance communicates with its neighbours over longer s, and in
some ensemble with a lower , then the tolerance between instances may be larger.
We might intuit that larger clock deviations due to vibrations in the measured time
occur between clocks with a larger spatial separation. Or, to think of it another way,
the instantaneous displacement uncertainties of clock divergence between two spatially
separated clocks would probabalistically correlate with the spatial separation.6 Carry-
ing out these implementations is outside the scope of the current thesis, but we consider
them because these matters have an effect on the design of , and especially its hier-
archical nested structure. We stress that nothing in this ‘rubber sheet’ way of thinking
about implementations requires that physics is like that: it is just a way of axiomatizing
unavoidable measurement uncertainties.7

6Thought of in terms of wavelengths, these quantities start to look something like a superposition of
waves.

7To look at the other side of the coin, if real, physical spacetime (as opposed to a construction that helps
us to reason about the uncertainties of metrology) could physically be consistently axiomatized to have this
kind of minutely non-deterministic vibrating geometry on quantum scales, then we suppose it might con-
ceivably make an interesting way of smoothing some aspects of the impedance mismatch between quantum
mechanics and general relativity — but such thoughts about theoretical physics are far outside our present

90

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

posIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

negOut
(box-fifo)

ttl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

datIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

parityOut
(box-fifo)

ttl

Figure 3.12: Timing diagram for pipeline example with read-write memory phases dis-
sociated

91

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

posIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

negOut
(box-fifo)

ttl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

datIn
(fifo-box)

tfl

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

 ×
 s

parityOut
(box-fifo)

ttl

Figure 3.13: Timing diagram for pipeline example with intervals

92

In Figure 3.13 we see the permissible smearing due to vibrations of the rubber-sheet
coordinate system. The lozenge has been further divided up, with the writing and read-
ing phases of a memory separated by the grey guard interval, and the instants for read-
ing and writing then being spread into more realistic intervals. The gradient top-left to
bottom-right diagonal arrow in each purple and green causation link shows the maxi-
mum ‘speed’ of the reading at one end affecting the writing at the other; the bottom left
to top-right arrow shows the minimum speed.

Definition: Multi-manifest
Of a quantity, to be represented, by definition, by some function over spatio-

temporally dispersed measurable quantities.

Before ending this section, we make a final remark on the engineering of clock trees.
Clocks in are multi-manifest. We define the clocks we are interested in and some
function over them (such as the average number of ticks, weighted by the stability of
the clock, since some particular reference event), without ever knowing the quantity
to which this function evaluates; it is instead known to a particular degree of certainty
within defined bounds. The actual measurements of some subset of these clocks can then
be transmitted in a clock tree to replicated slave clocks, which are singly not authorita-
tive, but which are collectively defined to be a particular slave clock, whose unknowable
average is knowably inside some bound of the master clock ensemble, up to a given level
of certainty. The master clock indexes the top level coordinate system, but the clock trees
are distributed spatially in the same way that instances are distributed spatially.
As a result, local ensembles relying on some local slave clock ensemble may have some
large error compared to the clocking of an arbitrary instance with an implementa-
tion more distantly localized in space. However, these distant instances are unlikely to
need as high a level of coordination with respect to each other as compared to a closely
coupled local system, so the inevitably longer s can be allowed to have larger differ-
ences between their minimum and maximum tolerated transmission speeds, allowing
greater relative blurring of temporal coordinate systems. The statistics of engineering
precisely what amounts to an acceptable clock tree divergence and guard interval is an
implementation matter that would need to be addressed, were to be developed
into a system of practical tools.

3.8 Summary

We have now seen how programs are constructed. We have met the basic coor-
dination features and seen how elements can be composed by the use of nesting. We

subject, so let us leave them there.

93

have explained the timing properties of and the issues that must be navigated in
implementations, presenting diagrams that can be regarded as a scheme for graphical
proofs. However, we have not yet seen a formal account of what is and is not a valid
 program. Neither have we said how the coordination state evolves from one dis-
crete time slice to the next. We address these issues in the next chapter, presenting
formal syntax, before elaborating on the static and dynamic semantics and discussing
formal properties of the language.

94

Chapter 4

The Harmonic Box Coordination
Language II: Formal syntax and
semantics

The practice of tuning organs by
equal temperament is, in my humble
opinion, most erroneous.

Samuel Sebastian Wesley — Musical
Standard, 1863

This chapter concerns the formal specification of the concrete and abstract syntax of
, its semantic domain and dynamic semantics. To aid familiarity, we have tried, in
developing the syntax, to adhere to conventions in the semantics of Standard ML [144]
and Hume [96] wherever possible.

4.1 Structure of the formalization of HBCL

We have adopted the following methodology in developing the semantics:

1. Specify the underlying datatypes of the static semantic domain.

2. Wrap these datatypes in predicates in order to arrive at a strongly typed static
semantic domain in which only meaningful and executable subsets of the under-
lying data structures can be constructed. These predicates are parametric in the
input and output types (or more generally, bounds) of the program. Leave the
predicates undefined until the operational semantics have been developed.

3. Develop the dynamic semantic domain. Stub out predicates confining it to sane
states for the program being executed. These predicates take a static semantic
object as a parameter and generate a 𝜎-type giving the type of the domain. In the

95

case of the coordination language, this is the coordination state object. In the case
of a functional expression language, the domain of this is the type of expressions.1

4. Provide the operational semantics over the semantic domain.

5. Strengthen the operational semantic rules using predicates on the dynamic seman-
tic domain states before and after the application of each rule, where inhabitants
of the strong semantic domain parametrize those predicates.

6. Refine all predicates referred to above until the point at which those specifying
the semantics always describe an injective relation, so that reductions of the op-
erational semantics always find the single inhabitant of the relevant 𝜎-type. This
𝜎-type is the result of the evaluation of a program as specified by the overal in-
jective relation of the top-level semantic rule: the input parametrizes the 𝜎-type,
restricting its inhabitant to the allowed output.

7. Develop static semantics that specify how a compiler/verifier may construct the
static semantic object.

This approach is a compromise between the ease of developing operational seman-
tics, and the importance of finding a type-theoretical meaning of programs. A type-
theoretical meaning is desirable in order to enable extensions to the work in which the
validity of refinement steps are shown by finding witnesses to the trace inhabiting the
type, or proving morphisms between different expressions of the same semantics that
have also been reduced to a type. We do not follow this methodology to the end, since
it requires an amount of work out of scale with the current enterprise, but we follow it
as far as the specification of the operational semantics.

The semantics are therefore strongly specified using predicate subtyping, modulo
completion of all empty predicates and admitted lemmas. Many of these predicates are
dependent on parameters, giving rise to a form of dependent types. The operational
semantics are given in an evaluation style, and are closely related to the construction of
a reference intepreter that proceeds using the reduction rules of a host logic based on a
typed 𝜆-calculus.

The approach followed by the static semantics is to specify completely all possible
abstract syntax trees as either producing a semantic object that satisfies the semantic
rules, or an invalid semantic object. If a valid static semantic object is produced, it has
its dependent type fixed by the type of its run-time argument and return type.

The dynamic semantics bind an argument to this static semantic object and guaran-
1For expression execution, we use a big-step semantic model, using the types of a host logic to define the

type of expressions, and outsourcing our reduction semantics through a direct appeal to the host logic’s re-
duction rules. We thus avoid dealing directly with Scott-Strachey domain theory, or asking what reduction
actually is in denotational or other form.

96

tee to evaluate a result: this implies that the static semantic object must carry construc-
tive proof of termination. In a pure functional language, an interpreter in this paradigm
is a function that takes this static semantic object to produce an evaluation function of
the correct type. The static semantic object maps directly to the concept of a piece of
executable code, where the interpreter function, prior to the application of the static se-
mantic object and input argument, embodies the semantics of the machine that executes
the code. The functions in the reference interpreter developed for this thesis essentially
form an executable specification.

There is, of course, an infinitely large set of static semantic objects, semantic formu-
lations and data encodings that populate a category of isomorphisms with respect to
state evolutions of executions for different encodings. The more equivalent semantics
that are given in heterogeneous styles, the more inhabitants of this isomorphic category
can be found, and the more confidence we can have that the language being formalized
is well understood. For the purposes of this thesis, however, we confine ourselves to
concrete reduction rules.

A subset of isomorphisms of the type just discussed corresponds to stages of compi-
lation through generally injective transformations between intermediate stages. This
differentiates compilers from transformations into equivalent axiomatizations of the
language, which should be bijective. This approach is similar to that used in the con-
text of imperative languages by the Compcert project [128,129]. Compcert and its sister
projects use Coq to build certified compilers, whose input languages are generally sub-
sets of C. Consequently, a quick route to a certified compiler could be produced for the
present language by providing a certified transformation into the existing Compcert
formalization of the semantics of one of these C dialects.

It is worth stressing that the semantics specify that only valid program objects carry
proofs of correctness. A verified compiler (which we leave to further work) must con-
struct only objects in this type, but the existence of an object in this type does not neces-
sarily mean that the compiler can construct it. In other words, there is always a possibil-
ity of there being undetectable errors in the static semantics. However, this is much less
worrisome than the prospect of constructing invalid program objects that are then used
as if they were valid. If it were felt necessary to prove that any compilation function did
not produce false negatives, it would require a more informative and strongly specified
inconsistent object. These are not priorities, so they are not pursued further here.

4.2 Abstract syntax

We now present an abstract syntax for . The notation is conventional; it is discussed
in the context of a simple propositional calculus example in appendix B.

97

4.2.1 Sets and primitive categories from the meta-logic

𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ∈ 𝑛 ∈ ℤ ∶ -2 ≤ 𝑛 ≤ 2-1 (4.1)

The set intconst is the set of signed 2’s complement 64-bit integers.

𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡𝑝𝑜𝑠 ∈ 𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ∩ {𝑛 ∈ ℤ ∶ 𝑛 ≥ 0} (4.2)

The set intconstpos consists of those integers that are members of intconst and are greater
or equal to zero.

𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡 ∈ {⊤,⟂ } (4.3)

The set boolconst is the set of the constants ‘true’ and ‘false’.

𝑟𝑜𝑚𝑎𝑛𝑙𝑒𝑡𝑡𝑒𝑟 ∈ {𝚊, . . . , 𝚣} ∪ {𝙰, . . . , 𝚉} (4.4)

The set romanletter is the set of upper and lower case roman letters, of which there are
52.

𝑎𝑟𝑎𝑏𝑖𝑐𝑛𝑢𝑚𝑒𝑟𝑎𝑙 ∈ {𝟶, . . . , 𝟿} (4.5)

The set arabicnumeral is the set of decimal figures zero to nine.

𝑖𝑑𝑝𝑟𝑒𝑝𝑒𝑛𝑑 ∈ 𝑟𝑜𝑚𝑎𝑛𝑙𝑒𝑡𝑡𝑒𝑟 ∪ { } (4.6)

The set idprepend is the set of characters that may begin an identifier, being the set of
roman letters and the underscore character.

𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑 ∈ 𝑟𝑜𝑚𝑎𝑛𝑙𝑒𝑡𝑡𝑒𝑟 ∪ 𝑎𝑟𝑎𝑏𝑖𝑐𝑛𝑢𝑚𝑒𝑟𝑎𝑙 ∪ {′} (4.7)

The set idappend is the set of characters that may be present in any other position in an
identifier name: the roman letters, the arabic numerals and the ‘prime’ symbol.

4.2.2 Abstract syntax construction rules

4.2.2.1 Abstract syntax common to coordination and expression languages

𝑡𝑦𝑝𝑒 ∶∶= 𝚝𝚢𝚙𝚎𝙱𝚊𝚜𝚎𝚝𝚢𝚙𝚎 𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒
| 𝚝𝚢𝚙𝚎𝚃𝚞𝚙𝚕𝚎𝚝𝚢𝚙𝚎 𝑡𝑦𝑝𝑒𝑠
| 𝚝𝚢𝚙𝚎𝚁𝚎𝚌𝚘𝚛𝚍𝚝𝚢𝚙𝚎 𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠
| 𝚝𝚢𝚙𝚎𝚃𝚢𝚙𝚎𝚒𝚍 𝑡𝑦𝑝𝑒𝑖𝑑

(4.8)

The category type is the disjoint union of four kinds of type: a base case type, a tuple
of types, an associative array (record) of types, and an invocation of a type previously
defined by name.

98

𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒 ∶∶= 𝚋𝚊𝚜𝚎𝚝𝚢𝚙𝚎𝙱𝚘𝚘𝚕 (4.9)

The category basetype is a singleton category containing only one base type. It could be
extended to include numerical types to enrich the language.

𝑡𝑦𝑝𝑒𝑠 ∶∶= 𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍 𝑡𝑦𝑝𝑒𝑠 𝑡𝑦𝑝𝑒
| 𝚝𝚢𝚙𝚎𝚜𝙱𝚊𝚜𝚎 (4.10)

The types category is a tuple of types, built up inductively from an empty base case,
with each recursive construction using typesInd adding a new type.

𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ∶∶= 𝚊𝚜𝚜𝚘𝚌𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍 𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚
| 𝚝𝚢𝚙𝚎𝚜𝙱𝚊𝚜𝚎 (4.11)

The inductive structure of assoctypes works in the same way as types, except that this time
each new type is associated with a variable identifier, using the vardeclprim category.

𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ∶∶= 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖 𝑣𝑎𝑟𝑖𝑑 𝑡𝑦𝑝𝑒 (4.12)

vardeclprim is the Cartesian product of a variable identifier and a type. It is used in
declaring variable types and defining the permissible contents of particular record types.

𝑣𝑎𝑟𝑖𝑑 ∶∶= 𝚟𝚊𝚛𝚒𝚍𝙸𝚍 𝑖𝑑 (4.13)

varid is a singleton category wrapping the plain identifier type, retained in case we were
later to want to introduce a further syntactic rule for this kind of identifier (for example,
we might limit the initial letter to lower case characters).

𝑖𝑑 ∶∶= 𝚒𝚍𝙷𝚎𝚊𝚍 𝑖𝑑𝑝𝑟𝑒𝑝𝑒𝑛𝑑
| 𝚒𝚍𝚃𝚊𝚒𝚕 𝑖𝑑𝑝𝑟𝑒𝑝𝑒𝑛𝑑 𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑𝑠 (4.14)

An identifier is either a single character (one of the set of idprepend), or such a charac-
ter combined with a list of characters formed from the permitted successor characters
defined by idappend.

𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑𝑠 ∶∶= 𝚒𝚍𝚊𝚙𝚙𝚎𝚗𝚍𝚜 𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑𝑠 𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑
| 𝚒𝚍𝚊𝚙𝚙𝚎𝚗𝚍𝚜𝙸𝚍𝚊𝚙𝚙𝚎𝚗𝚍 𝑖𝑑𝑎𝑝𝑝𝑒𝑛𝑑 (4.15)

The category idappends is a list of idappend characters, formed in the same way that we
defined types. The abstract syntax notation does not faciliate higher-order lists, so we
repeat this design pattern a number of times.

𝑡𝑦𝑝𝑒𝑖𝑑 ∶∶= 𝚝𝚢𝚙𝚎𝚒𝚍𝙸𝚍 𝑖𝑑 (4.16)

A typeid is a specialization of the id type, in the same way that varid was.

𝑡𝑦𝑝𝑒𝑑𝑒𝑓 ∶∶= 𝚝𝚢𝚙𝚎𝚍𝚎𝚏 𝑡𝑦𝑝𝑒𝑖𝑑 𝑡𝑦𝑝𝑒 (4.17)

The category typedef associates a type identifier with a plain type.

99

𝑢𝑡𝑦𝑝𝑒𝑑𝑒𝑓 ∶∶= 𝚞𝚝𝚢𝚙𝚎 𝑡𝑦𝑝𝑒𝑖𝑑 𝑡𝑦𝑝𝑒𝑖𝑑 (4.18)

The category utypedef declares an untimed type. The first typeid is the new type
identifier for this new type, while the second is the plain type out of which the new
type is constructed.

ℎ𝑡𝑦𝑝𝑒𝑑𝑒𝑓 ∶∶= 𝚑𝚝𝚢𝚙𝚎 𝑡𝑦𝑝𝑒𝑖𝑑 𝑡𝑦𝑝𝑒𝑖𝑑 𝑓𝑟𝑒𝑞 (4.19)

The category htypedef follows the same pattern as utypedef, except this time a new har-
monic type is formed from an untimed type. A frequency is added to the definition.

𝑓𝑟𝑒𝑞 ∶∶= 𝚏𝚛𝚎𝚚 𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡𝑝𝑜𝑠 𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡𝑝𝑜𝑠 (4.20)

An object of the category freq consists of two positive integers. The first is the numerator
of a rational-numbered frequency; the second is the denominator. The implicit units are
 seconds.

4.2.2.2 Coordination language top level

𝑙𝑖𝑛𝑠𝑡 ∶∶= 𝚕𝚒𝚗𝚜𝚝 𝑖𝑑 𝑙𝑖𝑛𝑠𝑡𝑑𝑒𝑐𝑙𝑠
| 𝚕𝚒𝚗𝚜𝚝𝚕𝚒𝚋 𝑖𝑑 𝑙𝑖𝑛𝑠𝑡𝑟𝑒𝑓 (4.21)

A logical instance is either an association between a new logical instance identifier and
a set of instance declarations (an in-place instance made with the linst constructor),
or it is an association of a new logical instance identifier with a logical instance from a
library (constructed using the linstlib constructor).

𝑙𝑖𝑛𝑠𝑡𝑑𝑒𝑐𝑙𝑠 ∶∶= 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍 𝑙𝑖𝑛𝑠𝑡𝑑𝑒𝑐𝑙 𝑙𝑖𝑛𝑠𝑡𝑑𝑒𝑐𝑙𝑠𝐼𝑛𝑑
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙱𝚊𝚜𝚎 (4.22)

The category linstdecls is a list of objects that may appear in a logical instance definition.

𝑙𝑖𝑛𝑠𝑡𝑑𝑒𝑐𝑙 ∶∶= 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙻𝚒𝚗𝚜𝚝 𝑙𝑖𝑛𝑠𝑡
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙻𝚕𝚒𝚋 𝑙𝑙𝑖𝑏
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙷𝚋𝚘𝚡 𝑏𝑜𝑥𝑖𝑑 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑠 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑠 𝑓𝑟𝑒𝑞 𝑢𝑝𝑟𝑜𝑔𝑟𝑎𝑚
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙼𝚎𝚖𝚏𝚋 𝑚𝑒𝑚𝑓𝑏𝑖𝑑 ℎ𝑡𝑦𝑝𝑒𝑟𝑒𝑓 𝑡𝑡𝑓𝑙
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙼𝚎𝚖𝚋𝚏 𝑚𝑒𝑚𝑏𝑓𝑖𝑑 ℎ𝑡𝑦𝑝𝑒𝑟𝑒𝑓 𝑡𝑡𝑓𝑙
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝚃𝚢𝚙𝚎 𝑡𝑦𝑝𝑒𝑎𝑛𝑦
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙾𝚋𝚜 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓𝑠
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙼𝚊𝚗𝚒𝚏 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓𝑠
| 𝚕𝚒𝚗𝚜𝚝𝚍𝚎𝚌𝚕𝙵𝙸𝙵𝙾 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓

(4.23)

A logical instance’s declarations and definitions may be one of nine kinds, as given by

100

the disjoint union defined by linstdecl. The linstdeclLinst constructor signifies a nested
logical instance, while linstdeclLlib introduces a library that can only be referenced at
the scope of this logical instance or a contained scope. The linstdeclHbox constructor
builds a harmonic box definition: its name is contained in boxid, its (local) input and
output memories are referred to by the lists memfbids and membfids respectively, the fre-
quency of the harmonic box is described by a freq object, and the code executed on each
invocation of the box by uprogram. linstdeclMemfb defines the input memories of the
box, associating an appropriate identifier with a harmonic datatype and a time to or
from live. linstdeclMemfb does the same for output memories. linstdeclType intro-
duces a type, which can be a plain, untimed or harmomic type. linstdeclObs refers
to those input memories that observe the environment of the logical instance. This can
include memories from enclosed instances that are directed to observe the environment
without interference from the present logical instance. linstdeclManif does the same
as linstdeclObs but applies to output memories to be manifested in the environment.
linstdeclFIFO defines a connecting an output memory to an input memory. It may
link local memories as well as the exposed interfaces of nested memories.

𝑙𝑙𝑖𝑏 ∶∶= 𝚕𝚕𝚒𝚋 𝑖𝑑 𝑙𝑙𝑖𝑏𝑑𝑒𝑐𝑙𝑠 (4.24)

An llib associates an identifier with a logical library definition, which is a list of logical
library definitions.

𝑙𝑙𝑖𝑏𝑑𝑒𝑐𝑙𝑠 ∶∶= 𝚕𝚒𝚋𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍 𝑙𝑖𝑏𝑑𝑒𝑐𝑙 𝑙𝑖𝑏𝑑𝑒𝑐𝑙𝑠𝐼𝑛𝑑
| 𝚕𝚒𝚋𝚍𝚎𝚌𝚕𝙱𝚊𝚜𝚎 (4.25)

The category llibdecls is a list of the types of definitions permitted in a logical library.

𝑙𝑖𝑏𝑑𝑒𝑐𝑙 ∶∶= 𝚕𝚒𝚋𝚍𝚎𝚌𝚕𝙻𝚒𝚗𝚜𝚝 𝑙𝑖𝑛𝑠𝑡
| 𝚕𝚒𝚋𝚍𝚎𝚌𝚕𝙻𝚕𝚒𝚋 𝑙𝑙𝑖𝑏 (4.26)

The libdecl category is a disjoint union of the two types of definitions permitted in a log-
ical library: further nested libraries or logical instances. These structures are mutually
inductive.

𝑏𝑜𝑥𝑖𝑑 ∶∶= 𝚋𝚘𝚡𝙸𝚍 𝑖𝑑 (4.27)

A boxid is the identifier type of harmonic boxes. This singleton is retained for the same
reason given for varid and typeid.

𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑠 ∶∶= 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚜𝙸𝚗𝚍 𝑚𝑒𝑚𝑓𝑏𝑖𝑑 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑠
| 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚜𝙱𝚊𝚜𝚎 (4.28)

The category memfbids is a list of input memories.

𝑚𝑒𝑚𝑓𝑏𝑖𝑑 ∶∶= 𝚖𝚎𝚖𝚏𝚋𝙸𝚍 𝑖𝑑 (4.29)

The type of input identifiers is given by memfbid. It is another singleton type wrapping

101

the base identifier definition.

𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑠 ∶∶= 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚜𝙸𝚗𝚍 𝑚𝑒𝑚𝑏𝑓𝑖𝑑 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑠
| 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚜𝙱𝚊𝚜𝚎 (4.30)

The category membfids is a list of output memories.

𝑚𝑒𝑚𝑏𝑓𝑖𝑑 ∶∶= 𝚖𝚎𝚖𝚋𝚏𝙸𝚍 𝑖𝑑 (4.31)

The type of output identifiers is given by membfid.

ℎ𝑡𝑦𝑝𝑒𝑟𝑒𝑓 ∶∶= 𝚑𝚝𝚢𝚙𝚎𝚛𝚎𝚏 𝑙𝑖𝑏𝑑𝑒𝑐𝑙𝑠 𝑡𝑦𝑝𝑒𝑖𝑑 (4.32)

An htyperef is a harmonic type (typeid) qualified by a (possibly empty) library reference
(libdecls).

𝑡𝑡𝑓𝑙 ∶∶= 𝚝𝚝𝚏𝚕 𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 (4.33)

A time from live is given by a positive intconst, while a time to live is given by a negative
one. It becomes a member of the ttfl category when the ttfl constructor is applied to
this integer.

𝑡𝑦𝑝𝑒𝑎𝑛𝑦 ∶∶= 𝚝𝚢𝚙𝚎𝚊𝚗𝚢𝚃𝚢𝚙𝚎 𝑡𝑦𝑝𝑒𝑑𝑒𝑓
| 𝚝𝚢𝚙𝚎𝚊𝚗𝚢𝚄𝚝𝚢𝚙𝚎 𝑢𝑡𝑦𝑝𝑒𝑑𝑒𝑓
| 𝚝𝚢𝚙𝚎𝚊𝚗𝚢𝙷𝚝𝚢𝚙𝚎 ℎ𝑡𝑦𝑝𝑒𝑑𝑒𝑓

(4.34)

The disjoint union of any of the kinds of data type is given by typeany

𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓𝑠 ∶∶= 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚛𝚎𝚏𝚜𝙸𝚗𝚍 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓 𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓𝑠
| 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚛𝚎𝚏𝚜𝙱𝚊𝚜𝚎 (4.35)

The list memfbidrefs holds references to input memories that may have been declared in
a nested instance.

𝑚𝑒𝑚𝑓𝑏𝑖𝑑𝑟𝑒𝑓 ∶∶= 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚛𝚎𝚏𝙻𝚘𝚌𝚊𝚕 𝑚𝑒𝑚𝑓𝑏𝑖𝑑
| 𝚖𝚎𝚖𝚏𝚋𝚒𝚍𝚛𝚎𝚏𝙻𝙸𝚗𝚜𝚝 𝑖𝑑 𝑚𝑒𝑚𝑓𝑏𝑖𝑑 (4.36)

The category memfbidref is the disjoint union of local and nested input memory ref-
erences. The constructor memfbidrefLInst signifies the nested version, qualified by a
reference to a nested instance.

𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓𝑠 ∶∶= 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚛𝚎𝚏𝚜𝙸𝚗𝚍 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓 𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓𝑠
| 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚛𝚎𝚏𝚜𝙱𝚊𝚜𝚎 (4.37)

The category membfidrefs is the same as memfbidrefs, except that it is for output memories
rather than inputs.

𝑚𝑒𝑚𝑏𝑓𝑖𝑑𝑟𝑒𝑓 ∶∶= 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚛𝚎𝚏𝙻𝚘𝚌𝚊𝚕 𝑚𝑒𝑚𝑏𝑓𝑖𝑑
| 𝚖𝚎𝚖𝚋𝚏𝚒𝚍𝚛𝚎𝚏𝙻𝙸𝚗𝚜𝚝 𝑖𝑑 𝑚𝑒𝑚𝑏𝑓𝑖𝑑 (4.38)

The category membfidref is the same as memfbidref, except that it is for output memories

102

rather than inputs.

𝑙𝑖𝑛𝑠𝑡𝑟𝑒𝑓 ∶∶= 𝚕𝚒𝚗𝚜𝚝𝚛𝚎𝚏 𝑙𝑙𝑖𝑏𝑟𝑒𝑓𝑐𝑜𝑚𝑝 𝑖𝑑 (4.39)

The category linstref qualifies a logical instance reference (id) with a logical library.
The logical library may be inside another library, hence the composite list of library
identifiers of llibrefcomp

𝑙𝑙𝑖𝑏𝑟𝑒𝑓𝑐𝑜𝑚𝑝 ∶∶= 𝚕𝚕𝚒𝚋𝚛𝚎𝚏𝚌𝚘𝚖𝚙𝙸𝚗𝚍 𝑖𝑑 𝑙𝑙𝑖𝑏𝑟𝑒𝑓𝑐𝑜𝑚𝑝
| 𝚕𝚕𝚒𝚋𝚛𝚎𝚏𝚌𝚘𝚖𝚙𝙱𝚊𝚜𝚎 (4.40)

The category llibrefcomp is a composite library identifier, used for dereferencing nested
logical libraries.

4.2.2.3 Expression (untimed box) language top level

𝑢𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ∶∶= 𝚞𝙿𝚛𝚘𝚐𝙳𝚎𝚌𝚕𝚜 𝑢𝑑𝑒𝑐𝑙𝑠 (4.41)

The uprogram category is the syntactic container of instances of the expression language.

𝑢𝑑𝑒𝑐𝑙𝑠 ∶∶= 𝚞𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍 𝑢𝑑𝑒𝑐𝑙𝑠 𝑢𝑑𝑒𝑐𝑙
| 𝚞𝚍𝚎𝚌𝚕𝚜𝙱𝚊𝚜𝚎 (4.42)

The category udecls is a list of the permitted declarations and definitions of the expres-
sion language.

𝑢𝑑𝑒𝑐𝑙 ∶∶= 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚌𝚕 𝑣𝑎𝑟𝑑𝑒𝑐𝑙
| 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚏 𝑣𝑎𝑟𝑑𝑒𝑓 (4.43)

The udecl category is the disjoint union of variable declarations and definitions. For
simplicity, we do not allow type declarations here.

𝑣𝑎𝑟𝑑𝑒𝑐𝑙 ∶∶= 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚅𝚊𝚛 𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚
| 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝙵𝚞𝚗 𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 (4.44)

A variable declaration can either be a primitive (data-valued) variable or a function-
valued variable.

𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ∶∶= 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖 𝑣𝑎𝑟𝑖𝑑 𝑡𝑦𝑝𝑒 𝑡𝑦𝑝𝑒 (4.45)

The category fundeclprim associates a variable identifier with the argument and return
type of the function respectively.

𝑣𝑎𝑟𝑑𝑒𝑓 ∶∶= 𝚟𝚊𝚛𝚍𝚎𝚏𝚅𝚊𝚛 𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 𝑒𝑥𝑝𝑟
| 𝚟𝚊𝚛𝚍𝚎𝚏𝙵𝚞𝚗 𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 𝑣𝑎𝑟𝑖𝑑 𝑒𝑥𝑝𝑟 (4.46)

A vardef object is the disjoint union of a plain variable or function definition. In the

103

first case, under the constructor vardefVar, an expression is associated with the variable
name and type of the vardeclprim. In the second case, under the constructor vardefFun,
an expression is associated with the variable name, argument and return type of the
fundeclprim. The expression may refer to an argument varid, bound on invocation to the
argument type given by fundeclprim.

𝑒𝑥𝑝𝑟 ∶∶= 𝚎𝚡𝚙𝚛𝙿𝚊𝚝𝚝 𝑝𝑎𝑡𝑡
| 𝚎𝚡𝚙𝚛𝙲𝚘𝚗𝚜𝚝𝚛 𝑐𝑜𝑛𝑠𝑡𝑟
| 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙 𝑣𝑎𝑟𝑖𝑑 𝑒𝑥𝑝𝑟

(4.47)

An expr is the disjoint union of a pattern expression, a constructor expression or an
application expression. In the last case, the varid is the name of the function to which
the evaluated inner expr is to be applied.

𝑝𝑎𝑡𝑡 ∶∶= 𝚙𝚊𝚝𝚝𝙸𝚗𝚍𝚎𝚡 𝑣𝑎𝑟𝑖𝑑 𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 (4.48)

A pattern consists of a varid, which identifies a piece of data in the environment, and a
list of record members and positional parameters (a datresolvelist), which disassembles
a composite type of mutually nested records and tuples.

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ∶∶= 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙸𝚗𝚍 𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡
| 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙱𝚊𝚜𝚎 (4.49)

The datresolvelist is a list of datresolve components.

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ∶∶= 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙿𝚘𝚜 𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡
| 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝚅𝚊𝚛𝚒𝚍 𝑣𝑎𝑟𝑖𝑑 (4.50)

Each datresolve is either a positional parameter of a tuple (constructed under datRe-

solvePos) or a named record field constructed under datResolveVarid.

𝑐𝑜𝑛𝑠𝑡𝑟 ∶∶= 𝚌𝚘𝚗𝚜𝚝𝚛𝙱𝚊𝚜𝚎 𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡
| 𝚌𝚘𝚗𝚜𝚝𝚛𝚃𝚞𝚙 𝑒𝑥𝑝𝑟𝑡𝑢𝑝
| 𝚌𝚘𝚗𝚜𝚝𝚛𝚁𝚎𝚌 𝑒𝑥𝑝𝑟𝑟𝑒𝑐

(4.51)

The category constr is the disjoint union of a Boolean (base type) constant, a tuple
formed from a tuple of expressions of the exprtup category, and a record formed from a
record of expressions of the exprrec category.

𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ∶∶= 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙸𝚗𝚍 𝑒𝑥𝑝𝑟𝑡𝑢𝑝 𝑒𝑥𝑝𝑟
| 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙱𝚊𝚜𝚎 (4.52)

The exprtup category specifies a list of expr expressions.

𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ∶∶= 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙸𝚗𝚍 𝑒𝑥𝑝𝑟𝑟𝑒𝑐 𝑣𝑎𝑟𝑖𝑑 𝑒𝑥𝑝𝑟
| 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙱𝚊𝚜𝚎 (4.53)

The exprrec category specifies a list of expressions, each expr being indexed by a varid

104

label. The order of the record components in the list is not material.

4.3 Approach to the semantics

In approaching the static semantics, we use predicate subtyping constructions in gen-
erating a static environment. This ensures that a compiler, when traversing the abstract
syntax tree, produces either:

• An object which, when interpreted by the dynamic semantics, only gives termi-
nating and correct results; or

• The inconsistent environment object. Obtaining this as a result of the compilation
process indicates that a static semantic rule was violated. Obtaining it as a result
of looking up an identifier in an environment indicates that the environment in
question did not contain a mapping for that identifier. This is the expected result
when making a new declaration (the environment should not already contain a
contradictory one), but it indicates an error when the identifier is expected to have
been previously defined.

These inconsistent environment elements of semantic objects are loosely equiva-
lent to exceptions in an operational formulation, or something analogous to ‘bot-
tom’ in a denotational style. In the present formulation, this ‘bottom’ value in
each semantic variable is a constant: if one wanted explicitly to specify a func-
tional specification of compilation error reporting, one would want to convert it
into a category that could carry useful information about semantic errors.

The static semantics therefore give, in effect, a direct specification of a strongly spec-
ified (although very inefficient) compiler. The inefficiency is not important, since one
can always later optimize and prove equivalence. The dynamic semantics provide a
similar route to an interpreter.

Proposition types in the premises of a rule (which are the result of testing equality
after pattern matching on the return result of a function) are available to be recast as
proof terms in the conclusion implicand. Usually proof should be straightforward in
these cases, because we arrange that the inductive structure of predicates matches the
recursive structure of concrete functions.

4.4 Semantic domain

The semantic domain serves two purposes. The first is to provide concrete data types
over which the static and dynamic semantics can operate. The second is to contain the
semantics themselves through the use of predicates and dependent types. For example,

105

the environment of declared variables is a parameter to the environment of defined vari-
ables. This is expressed in the predicate specification of the definition environment by
giving the declaration environment as an argument to the this polyadic predicate. This
predicate is used to form a parametrized 𝜎-type, in which the concrete structure of the
definition environment is absorbed into the 𝜎-type, while the declaration environment
(and others) form parameters. This ensures that it is impossible by construction to build
nonsensical concrete structures, and this in turn allows primitive recursive operational
rules to be constructed (as given in appendix C). These operational rules are existential
proof that the predicates describe computable functions.

In giving the example of variable declaration and definition environments, we have
just described how the semantic domain can be made to contain the static semantics.
The same can be done for the dynamic semantics. Here, in understanding the depen-
dent typing, it is useful to think of the physical idea of an action. A physical ‘action’
is some relation that can predict the future of a system given its state at a particular
instant. If, instead of considering the position and velocities of solid bodies (in a New-
tonian system, say), we substitute the global state variable of a computational system,
then we use the system state at time 𝑡 as a dependent type argument to the state at time
𝑡 + 𝛿𝑡. In , that 𝛿𝑡 is the lowest common multiple of all harmonic components in an
instance, that is, the frequency of that instance. If the system evolves deterministically
without external input, then this type of coordination state at time 𝑡 + 𝛿𝑡 has only one
inhabitant; otherwise, the particular value that is taken at 𝑡 + 𝛿𝑡 is a function of an input
state that is external to the instance in question. These concepts generalize into a
succession of coordination states, each one being added to a trace object that has depen-
dent type at the time 𝑡, and which generates a new trace object with the coordination
object for 𝑡 + 𝛿𝑡 forming its final dependent argument. An input stream supplies enough
extra information at each step to make each transition deterministic. The semantics of
state transition are contained in the predicate that must be supplied in the constructor of
the trace object, which axiomatizes the relation between the old and new coordination
states. The type of the trace is dependent in the type of the stream, and this is what gives
rise to our notion of typed reality, in which, for each distinct input stream, there is one
inhabitant of the trace.

The following sections detail the types used in the semantic domain. In the discus-
sion that follows we will frequently refer to ‘types’ in different contexts, sometimes in
the same sentence. This is unavoidable when using types to define type systems: the
meaning of each use can be inferred from the context; to keep referring to ‘object’ and
‘subject’ types or similar terminology would necessitate an increase in verbosity vitiat-
ing any hoped-for increase in clarity.

106

4.4.1 Typography

We adopt the following conventions for semantic objects and environments (the latter
is a subset of the former containing mappings of identifiers to other semantic objects):

1. The same letter is used for every font to represent types, variables and enclosing
categories of the same definition (subscripts render the letter to which they are
attached a different letter for these purposes). Where a bare syntactic category
is used in a definition of the semantic domain (shown in an italic typeface), it
only appears with a quantifier if an instance of that category must be referred to
in the same definition. In semantic rules, we achieve the same effect by picking
convenient letters for syntactic categories and subscripting them with the name of
the category in order to make their type clear.

2. 𝙼𝚘𝚗𝚘𝚜𝚙𝚊𝚌𝚎 font is used for singleton types.

3. 𝐼𝑡𝑎𝑙𝑖𝑐 𝑅𝑜𝑚𝑎𝑛 font is used for variables that range over consistent types, and for the
names of objects from the abstract syntax.

4. 𝐁𝐨𝐥𝐝 𝐑𝐨𝐦𝐚𝐧 font is used for variables that range over a consistent type and the
opposite inconsistent type.

5. 𝒮𝒸𝓇𝒾𝓅𝓉 font is used for the type of consistent or inconsistent objects, except𝒫 ,
which is reserved for indicating a power set type.

6. 𝔉𝔯𝔞𝔨𝔱𝔲𝔯 font is used for the union type of consistent and inconsistent objects cor-
responding to the same semantic entity.

7. 𝖲𝖺𝗇𝗌 𝗌𝖾𝗋𝗂𝖿 font is used for the names of predicates. The subscript ‘𝖯𝗋𝗈𝗉’ indicates
that it has the type of logical propositions.

8. ⊤ denotes truth, ⟂ denotes falsity. Both together indicate that the object under
consideration can take either consistent or inconsistent values.

9. ⨆ defines a union of types.

10. ∅ defines or denotes an empty type; ∈ denotes type membership analogously to
the usual set-theoretic usage.

11. The construction ∏
. . .
. . .

denotes a product type, in which entries higher in the

pile of types may be referenced by entries lower in the pile as dependent argu-
ments in parametrized 𝜎-types. For convenience and clarity, the members of these
product types are sometimes given names.

107

12. The construction
⎧⎪
⎨⎪⎩

𝑥 ∈ . . . ∶
𝖷𝖯𝗋𝗈𝗉(𝑥)

⎫⎪
⎬⎪⎭

denotes a predicate sub-type, or 𝜎-type.

13. → denotes a total mapping from a domain on the left to a co-domain on the right;
← denotes a dependent type. Such types are restricted to type-parametrized 𝜎-
types that are only allowed to be dependent in the arguments of their defining
predicates. This restriction ensures that the semantics do not have to be imple-
mented in a dependently typed logic: one with predicates (and preferably pred-
icate sub-types) will do. Types given to the left of leftwards (type) arrows may
be dependent in any number of arguments to the right. The parameters can be in-
ferred from the previous definitions of those types and the meta-variable name in-
ference rules. An exception to this occurs when the dependent type is dependent
in two quantities of the same type (whose variables are differentiated by prime
symbols), in which case the ambiguity is resolved by a statement in parentheses
of which one is meant: the variable on the right of the equality symbol shows
which of these variables of the same type is to be assigned to the variable on the
left.

14. Instances of dependent types can be explicitly instantiated in their type parame-
ters. This is indicated by giving the base dependent type with the instantiating
arguments supplied in parantheses, with the rightmost type parameter of the de-
pendent type being given first.

15. Concrete instances of dependent types are given as fractions, with the variable
name given as the ‘numerator’ (its type can be inferred by looking up the script
typeface version of the character), and the ‘denominator’ providing the depen-
dent type arguments, with the leftmost argument appearing first. Rather than
have a stack of ‘fractions’ for dependent arguments which are themselves depen-
dent, all dependent arguments are flattened into a single denominator, with the
dependency of these arguments following the right-to-left rule described above.

16. A full stop (.) indicates dereferencing of a field of a product type. If an explict
name for the field is not given in that product type, it can be inferred from the
standard meta-variable equivalent of the type by changing the font as described
above.

17. The coordination language can accommodate arbitrary expression languages. This
means that higher order types become first order entities in the semantics of the
coordination language: these higher order types are the semantics of a particu-
lar expression language that is being used in a particular box in the coordination

108

language. We use the construction 𝑋⊤: 𝒳 in the meta-variable column of the se-
mantic domain tables to indicate that the script letter is one of these higher types
giving the encoding of the semantics of the expression language; the ordinary
typeface equivalent is the meta-variable used for a member of this type. The in-
terpretation of the expression language semantics encoding is given by function
parameters in other coordination language structures. This becomes clear as the
coordination language is presented.

18. The parametrized expression language semantics requires two final pieces of no-
tation. We use 𝜏 to denote a higher order type giving an expression language en-
coding in definitions, and we subscript it with the script letter we use to represent
that type as a meta-variable when we need a label to define that meta-variable’s
type. This sounds confusing, but becomes clear when the coordination language
semantic domain table is examined. Similarly, we use 𝜅 to stand for a predicate
on a higher-order 𝜏 type. The 𝜋 operator is subscripted by a type to show that an
instance of a 𝜎-type following it in parentheses is being stripped of its outer pred-
icate, thus yielding the underlying concrete (as subscripted) type of its argument.

Although the typography is intricate, it permits a reasonably conventional presen-
tation whilst allowing the type-theoretical information to be conveyed in compact no-
tation. Also to this end, to keep the semantics as concise as possible, we have adopted
further conventions on omitting arguments, either because they can be inferred from
dependent types, or because the type and variable have the same label modulo the font.
We explain these as we encounter them.

4.4.2 Semantic domain common to coordination and expression lan-
guages

The coordination language and expression language communicate through a common
type system, and this type system is reflected in objects in the semantic domain that are
common to both.

4.4.2.1 Simple type environment static semantic object

Meta-variable or
constant

Type name Type definition

𝑈⊤, 𝚄⊤∅ 𝒰⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑢 ∈ ∏ 𝑡 ∈ 𝒫𝑡𝑦𝑝𝑒𝑖𝑑 ∶
𝑡 → 𝑡𝑦𝑝𝑒 ∶

𝖳𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉(𝑢)

⎫⎪⎪
⎬⎪⎪⎭

𝚄⟂ 𝒰⟂ ∅

109

Meta-variable or
constant

Type name Type definition

𝐔⊤⟂ 𝔘⊤⟂ 𝒰⊤ ⨆ 𝒰⟂

This object is a semantic wrapper to the syntactic pre-type object type. This pre-type
on its own would not be semantically usable as its meaning is implicitly dependent on
what other declarations have been made. In the construction below, we first express a
mapping of type identifiers to pre-type objects as the product of the power set of type
identifiers and a total function of elements of this power set to pre-types. The explicit
use of a power set here ensures that we can recover a set of keys from the mapping,
which we could not do if we used a bare partial function. The 𝜎-type we create using
this map object specifies a predicate (𝖳𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉(𝑢)) ensuring that references to type
identifiers within a type object refer only to types that are in the mapping. There is a
meta-variable shown for this whole structure; there is also a constant referring to the
empty mapping. The empty mapping is a consistent structure, and it is subscripted as
such according to the conventions described in section 4.4.1.

4.4.2.2 Simple type static semantic object

Meta-variable or constant Type name Type definition

𝑇⊤ 𝒯⊤ ←𝒰⊤
𝑡 ∈ 𝑡𝑦𝑝𝑒 ∶
𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉(𝑈⊤, 𝑡)

𝚃⟂ 𝒯⟂ ∅

𝐓⊤⟂ 𝔗⊤⟂ ←𝒰⊤ 𝒯⊤(𝑈⊤) ⨆ 𝒯⟂

This is the full type object, which is dependent on a pre-type environment. If this object
can be formed, it asserts that the pre-type of the 𝜎-type is valid in the environment
given, and therefore the corresponding pre-type could be consistently added to the type
environment provided that a non-duplicate identifier be chosen. This proposition is
specified by 𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉(𝑈⊤, 𝑡).

4.4.2.3 Simple type pre-data static semantic object

Meta-variable or constant Type name Type definition

𝐷- 𝒟- ∐

𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡
𝒟-𝑡𝑢𝑝
𝒟-𝑟𝑒𝑐

110

Meta-variable or constant Type name Type definition

𝐷-𝑡𝑢𝑝 𝒟-𝑡𝑢𝑝
𝑛
∏
𝑖=
𝒟-𝑖

𝐷-𝑟𝑒𝑐 𝒟-𝑟𝑒𝑐 ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒟-

This is the raw data object corresponding to the full type object, lacking the intrinsic typ-
ing that is added in the type of the full data object. The negative subscript differentiates
it from the full type, indicating that there is something missing from the full specifica-
tion. The three definitions are mutually inductive. The first is the ordinary type object,
ranging over base types, tuples and records. The second and third definitions are for
tuples and records respectively. We use the same power-set and total function approach
as before in defining the mappings of records.

4.4.2.4 Simple type data static semantic object

Meta-variable or
constant

Type name Type definition

𝐷 𝒟← 𝒯⊤ ←𝒰⊤

⎧⎪
⎨⎪⎩

𝐷- ∶
𝖣𝖺𝗍𝖺𝖶𝖥𝖯𝗋𝗈𝗉𝑈⊤,

𝑇⊤
𝑈⊤
, 𝐷-

⎫⎪
⎬⎪⎭

This is the data object corresponding to the full type object, as qualified by the necessary
types and dependent arguments. The 𝜎-type is dependent in both type environment
and full type object (which is itself dependent in the type environment). The depen-
dent parameters are implicit in the type definition, since the meaning of their names
corresponds with the type signature. According to our typographic conventions, we
use the fraction construction to stress that the type object is dependent in the type envi-
ronment. This is necessary, since in later examples, multiple variables of the same type,
differentiated by their ‘prime’ symbols, will be present in the same rule. The proposi-
tion 𝖣𝖺𝗍𝖺𝖶𝖥𝖯𝗋𝗈𝗉𝑈⊤,

𝑇⊤
𝑈⊤
, 𝐷-, used in constructing the 𝜎-type, asserts that the concrete

pre-data object is well formed given its asserted type, which is correct in its type envi-
ronment by construction, since it is dependent in it.

4.4.2.5 Untimed oid type environment static semantic object

111

Meta-variable or
constant

Type name Type definition

𝑈𝑈⊤, 𝚄𝑈⊤∅ 𝒰𝑈⊤ ←𝒰⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑢 ∈ ∏ 𝑡 ∈ 𝒫𝑡𝑦𝑝𝑒𝑖𝑑 ∶
𝑡 → 𝒯⊤(𝑈⊤)

∶

𝖴𝖮𝗂𝖽𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉(𝑈⊤, 𝑢)

⎫⎪⎪
⎬⎪⎪⎭

𝚄𝑈⟂ 𝒰𝑈⟂ ∅

𝐔𝑈⊤⟂ 𝔘𝑈⊤⟂ ←𝒰⊤ 𝒰𝑈⊤(𝑈⊤) ⨆ 𝑈𝑈⟂

This object is the environment for untimed types. The underlying product type is
a mapping of type identifiers to complete types dependent in a pre-type environment.
Its predicate (𝖴𝖮𝗂𝖽𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉(𝑈⊤, 𝑢)) ensures that the types to which the mapping is
made are restricted to types that are defined by instantiating a type identifier, that these
type identifiers are present in the pre-type environment, and all of the types in that
environment can be elevated to full simple types if their self-mapping is removed from
that environment.

4.4.2.6 Untimed type static semantic object

Meta-variable or
constant

Type name Type definition

𝑇𝑈⊤ 𝒯𝑈⊤ ← 𝒰𝑈⊤ ←𝒰⊤

⎧⎪
⎨⎪⎩

𝑡 ∈ 𝑡𝑦𝑝𝑒𝑖𝑑 ∶
𝗎𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉𝑈⊤,

𝑈𝑈⊤
𝑈⊤

, 𝑡

⎫⎪
⎬⎪⎭

𝚃𝑈⟂ 𝒯⟂ ∅

𝐓𝑈⊤⟂ 𝔗𝑈⊤⟂ ←𝒰𝑈⊤ ←
𝒰⊤

𝒯𝑈⊤𝑈⊤,
𝑈𝑈⊤
𝑈⊤

 ⨆ 𝒯𝑈⟂

This is the full untimed -qualified type object. It states that an untimed with the
given type identifier is well formed in the environment of the type and oid type envi-
ronments. Both this fully qualified object, and its simple type analogue that we have
already introduced, are objects whose existence is implied if an object can be inserted or
has just been removed from a corresponding environment. The environment provides
enough consistency guarantees itself, and the predicate of these stand-alone full types
is in fact implied by such membership of the environment. We cannot, however, embed
the full type directly in the environment because it would cause a type to be a parameter
of itself: such structures are contradictory because they lack a base case . The predicate
𝗎𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉𝑈⊤,

𝑈𝑈⊤
𝑈⊤

, 𝑡 asserts that the untimed type identifier t actually corre-

112

sponds to an type defined in the untimed type environment (itself dependent
on the plain type environment). We can tell the difference between untimed and
plain type environments by the presence and absence of the subscript ‘U’ respectively.

4.4.2.7 Harmonic oid type environment static semantic object

Meta-variable
or constant

Type name Type definition

𝑈𝐻⊤, 𝚄𝐻⊤∅ 𝒰𝐻⊤ ←𝒰𝑈⊤ ←
𝒰⊤

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ℎ ∈ ∏
𝑡 ∈ 𝒫𝑡𝑦𝑝𝑒𝑖𝑑 ∶
𝑡 → 𝒯𝑈⊤𝑈⊤,

𝑈𝑈⊤
𝑈⊤

 × 𝑓𝑟𝑒𝑞
∶

𝖧𝖮𝗂𝖽𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉𝑈⊤,
𝑈𝑈⊤
𝑈⊤

, ℎ

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

𝚄𝐻⟂ 𝒰𝐻⟂ ∅

𝐔𝐻⊤⟂ 𝔘𝐻⊤⟂ ←
𝒰𝑈⊤ ←𝒰⊤

𝒰𝐻⊤𝑈⊤,
𝑈𝑈⊤
𝑈⊤

 ⨆ 𝒰𝐻⟂

This object defines harmonically timed types. These consist of untimed types
combined with a frequency, thus defining an infinite set of equally spaced instances
in time at which the untimed value may be instantiated. This could be thought of as
a kind of dependent typing in which the time value of each slice of data constitutes
another parameter to the timed type. However, this would complicate the formaliza-
tion, and so we do not introduce time-dependent typing. The pattern of the harmonic
type environment otherwise follows that of its untimed cousin exactly. The predicate
𝖧𝖮𝗂𝖽𝖤𝗇𝗏𝖶𝖥𝖯𝗋𝗈𝗉𝑈⊤,

𝑈𝑈⊤
𝑈⊤

, ℎ states that the harmonic type h is well-formed in its type
environment: that is, the untimed type from which it is built is present in the un-
timed type environment.

4.4.2.8 Harmonic type static semantic object

Meta-variable or constant Type name Type definition

𝑇𝐻⊤ 𝒯𝐻⊤ ← 𝒰𝐻⊤ ←𝒰𝑈⊤ ←
𝒰⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑡 ∈ 𝑡𝑦𝑝𝑒𝑖𝑑 ∶
𝗁𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉
𝑈⊤,

𝑈𝑈⊤
𝑈⊤

, 𝑈𝐻⊤
(𝑈𝑈⊤,𝑈⊤)

, 𝑡

⎫⎪⎪
⎬⎪⎪⎭

𝚃𝐻⟂ 𝒯𝐻⟂ ∅

𝐓𝐻⊤⟂ 𝔗𝐻⊤⟂ ←𝒰𝐻⊤ ←𝒰𝑈⊤ ←
𝒰⊤

𝒯𝐻⊤𝑈⊤,
𝑈𝑈⊤
𝑈⊤

, 𝑈𝐻⊤
(𝑈𝑈⊤,𝑈⊤)

 ⨆
𝒯𝐻⟂

113

This is the full timed -qualified type object, as qualified both by a predicate on the
type identifier of interest and by a function that maps timed type indentifiers to untimed
types (as resolved from the untimed type and simple type environments, which are also
arguments). Again, this follows exactly the same pattern as the untimed cousin, except
with an extra dependent parameter. The predicate 𝗁𝗍𝖶𝖥𝖨𝗇𝖤𝗇𝗏𝖯𝗋𝗈𝗉𝑈⊤,

𝑈𝑈⊤
𝑈⊤

, 𝑈𝐻⊤
(𝑈𝑈⊤,𝑈⊤)

, 𝑡
provides that the type identifier t dereferences a harmonic type in the harmonic type
environment.

4.4.2.9 The type environment

Meta-variable or constant Type name Type definition

𝐸𝑇⊤ ℰ𝑇⊤ ∏

𝒰⊤
𝒰𝑈⊤(𝑈⊤)
𝒰𝐻⊤𝑈⊤,

𝑈𝑈⊤
𝑈⊤

𝙴𝑇⟂ ℰ𝑇⟂ ∅

𝐄𝑇⊤⟂ 𝔈𝑇⊤⟂ ℰ⊤ ⨆ ℰ⟂

The type environment contains all of the plain, untimed and harmonic type
mappings. The less dependent components index the more dependent components,
but the overall type of the type environment has no type dependencies.

4.4.3 Coordination language

4.4.3.1 Untimed box variable mapping

Meta-variable or
constant

Type name Type definition

𝐴𝐵 𝒜𝐵 ← ℰ𝑇⊤ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒯𝑈⊤(𝐸𝑇⊤.𝑈⊤, 𝐸𝑇⊤.𝑈𝑈⊤) × ℕ ×ℕ

This semantic category associates a variable name in the environment of the expres-
sion language instance (within a box) with an untimed type, along with two natural
numbers that designate the minimum and maximum length of a tuple of this type that
can be processed by the box language during one invocation of the expression. In all
cases in this development, the minimum and maximum are further constrained to be
equal, since the example expression language used only deals with fixed size data types.
The environment objects use ‘dot’ notation to dereference the components of the overall
type environment object; we omit the explicit indication of type dependency, since this

114

can be inferred from the structure of the overall object.

4.4.3.2 Expression language static semantic object meta-type

Meta-variable or constant Type name Type definition

𝑋⊤: 𝒳 𝜏𝒳 𝜏 ← 𝒜𝐵
′ ←𝒜𝐵 ← ℰ𝑇⊤

We now give the type for an expression language static semantic object for the first time,
using the notation we have described for higher-order semantic types. This is the type
of expression languages, not the type of a particular expression language, whose meta-
variable is written𝒳 . 𝜏 is the type of types, and the subscript𝒳 in the type name shows
that the complete type name refers to the type of expression language types. In the
type definition there are two variable type mappings (dependent on a type environment
ℰ𝑇⊤). One is for input (𝒜𝐵), the other for output (𝒜𝐵

′).

4.4.3.3 Expression type box binding

Meta-variable or
constant

Type name Type definition

𝐷 𝒟 ←𝒜𝐵 ← ℰ𝑇⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑟 ∈ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝐷-

∶

𝖾𝗑𝗉𝗋𝖣𝖺𝗍𝖯𝗋𝗈𝗉𝐸𝑇⊤,
𝐴𝐵
𝐸𝑇⊤

, 𝑟

⎫⎪⎪
⎬⎪⎪⎭

The static semantic object of the expression language is required to have a single record
for its input type and a single record for its output type. These are ordinary records
over and belonging to the simple type system, while the signature of an untimed box is
given in terms of a set of sequences of -qualified values associated with it. Each such
sequence is related to a variable identifier using an associative mapping. This requires a
binding that establishes a bijective relationship between this set of elevated types in the
coordination environment and the function over record types provided by the expres-
sion language. This relationship is described by the predicate 𝖾𝗑𝗉𝗋𝖣𝖺𝗍𝖯𝗋𝗈𝗉𝐸𝑇⊤,

𝐴𝐵
𝐸𝑇⊤

, 𝑟,
which generates a 𝜎-type over maps in the basic type system values as parametrized
by the map of associations (the ‘UM’ subscript is for ‘untimed map’): we give this
enriched type of base data below, prior to defining the form of the untimed expression
language object. A refinement of this approach, which we leave to further work, might
include allowing a state variable to be kept between invocations. This would enable us
to use an arbitrary coordination language in place of an expression language, running
it in bursts and keeping its state between bursts in the state variable.

115

4.4.3.4 Untimed box expression language semantic predicate

Meta-variable or
constant

Type name Type definition

𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉 𝜅𝖾𝗑𝗉𝗋𝖲𝖾𝗆 ← 𝜏𝒳 ←
𝒜𝐵

′ ←𝒜𝐵 ← ℰ𝑇⊤
𝜅 ← 𝒟

𝐴𝐵
𝐸𝑇⊤

= 𝐴𝐵′

𝐸𝑇⊤
 ←

𝒟
𝐴𝐵
𝐸𝑇⊤

= 𝐴𝐵
𝐸𝑇⊤

 ← 𝒳 (𝐸𝑇⊤, 𝐴𝐵, 𝐴𝐵′)

This (higher order) type gives the type of predicate defining the subset of encodings that
are valid for a particular input and output signature and raw expression language. This
is further parametrized on the input and output values, thus giving a relation on first
order quantities, making the relation directly intelligible to the coordination semantics
of . The equalities in parentheses, giving explicit dependent type arguments to the
types of untimed data, are needed because there are two different box bindings present
(one not primed, one primed) for input and output bindings.

4.4.3.5 Untimed box expression language result

Meta-variable or
constant

Type name Type definition

𝐷 𝒟 ←
𝜅𝖾𝗑𝗉𝗋𝖲𝖾𝗆 ← 𝜏𝒳 ←
𝒜𝐵

′ ←𝒜𝐵 ← ℰ𝑇⊤

𝜎𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉
𝑋⊤

𝐴𝐵′𝐴𝐵𝐸𝑇⊤
, 𝐷
𝐴𝐵𝐸𝑇⊤

 ←

𝒟
𝐴𝐵
𝐸𝑇⊤

= 𝐴𝐵
𝐸𝑇⊤

 ←
𝒳 (𝐸𝑇⊤, 𝐴𝐵, 𝐴𝐵′)

This object gives the type of output data as parametrized by the input data and the
semantics of the language. The ‘O’ appended to the subscript in the name of the data
object signifies that it is an input-qualified output type.

4.4.3.6 Untimed box expression language

116

Meta-
variable
or
constant

Type
name

Type definition

𝐴 𝒜 ←
𝒜𝐵

′ ←
𝒜𝐵 ←
ℰ𝑇⊤

∏

𝜏𝒳
𝜅𝖾𝗑𝗉𝗋𝖲𝖾𝗆(𝐸𝑇⊤, 𝐴𝐵, 𝐴𝐵′,𝒳)

𝗂𝗆𝗉𝗅𝖤𝗑𝗂𝗌𝗍𝗌𝖯𝗋𝗈𝗉 ∶ ∃impl,

impl ∈

𝒳 (𝐸𝑇⊤, 𝐴𝐵, 𝐴𝐵′) →
𝒟

𝐴𝐵
𝐸𝑇⊤

= 𝐴𝐵
𝐸𝑇⊤

 →
𝒟

𝐸𝑇⊤,
𝐴𝐵
𝐸𝑇⊤

, 𝐴𝐵
′

𝐸𝑇⊤
,𝒳 (𝐸𝑇⊤,𝐴𝐵,𝐴𝐵′)𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉

 𝑋⊤
𝐴𝐵′𝐴𝐵𝐸𝑇⊤

, 𝐷
𝐴𝐵𝐸𝑇⊤

The untimed box expression language is defined by the Cartesian product of three things.
First, it contains a static semantic object type. Second, it has a predicate on that static
semantic object, input and output types, and data that expresses the big-step semantics
as a relation between inputs and outputs. Third, it provides proof of existence of an
implementation, which can be discharged by providing a total function that produces
inhabitants of the result type (a 𝜎-type over outputs, parametrized by inputs).

4.4.3.7 Memory specification object

Meta-variable or
constant

Type name Type definition

𝑀 ℳ← ℰ𝑇⊤ ∏

𝑓𝑟𝑒𝑞
𝒯𝐻⟂(𝐸𝑇⊤.𝑈⊤, 𝐸𝑇⊤.𝑈𝑈⊤, 𝐸𝑇⊤.𝑈𝐻⊤)
ℤ
ℕ
ℕ

The memory specification object combines a frequency, a harmonic type, a time to and
from live as a signed integer, and (for the purposes of the present implementation for
reasons discussed in appendix A.5.8.2) a minimum and maximum memory length. It
is dependent in the type of a full type environment, to ensure that the types referred to
are fully defined.

4.4.3.8 Memory specification object map by variable identifier

117

Meta-variable or constant Type name Type definition

𝑀MV ℳMV ← ℰ𝑇⊤ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → ℳ (𝐸𝑇⊤)

This map gives a set of variable identifiers and, for each, specifies a memory to which it
refers.

4.4.3.9 Raw memory data object

Meta-variable or constant Type name Type definition

𝑁 𝒩
𝑛
∏
𝑖=
𝒟-𝑖 ×ℕ

The raw memory data object is a tuple of data values, each being associated with a nat-
ural number, which specifies a unique time when interpreted according to a frequency
(this interpretation is added in the complete memory data object below).

4.4.3.10 Memory data by variable identifier

Meta-variable or
constant

Type name Type definition

𝑁MV 𝒩MV ←ℳMV ← ℰ𝑇⊤
𝑤 ∈ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶

𝑣 → 𝒩 ∶

𝗆𝖾𝗆𝖬𝖺𝗉𝖶𝖥𝖯𝗋𝗈𝗉𝐸𝑇⊤,
𝑀MV

𝐸𝑇⊤
, 𝑤

This object specifies a map of memory data objects by variable identifier, and ensures
that each such memory matches the corresponding memory type in the map of memory
types (supplied in one of the type parameters to the map of memories).

4.4.3.11 Harmonic box binding specification

118

Meta-
variable
or
constant

Type
name

Type definition

𝐵 ℬ ←
ℳMV

′ ←
ℳMV ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝒜𝐵

′ ←
𝒜𝐵 ←
ℰ𝑇⊤

∏

𝜅𝖻𝗈𝗑𝖬𝖾𝗆𝖥𝗋𝖾𝗊𝖢𝗈𝗆𝗉𝖺𝗍𝖨𝗇𝐸𝑇⊤,
𝑀MV

𝐸𝑇⊤
, 𝑓

𝜅𝖻𝗈𝗑𝖬𝖾𝗆𝖥𝗋𝖾𝗊𝖢𝗈𝗆𝗉𝖺𝗍𝖮𝗎𝗍𝐸𝑇⊤,
𝑀MV

′

𝐸𝑇⊤
, 𝑓

𝜅𝖻𝗈𝗑𝖬𝖾𝗆𝖢𝗈𝗆𝗉𝖺𝗍𝖨𝗇𝐸𝑇⊤,
𝑀MV

𝐸𝑇⊤
, 𝐴𝐵𝐸𝑇⊤

𝜅𝖻𝗈𝗑𝖬𝖾𝗆𝖢𝗈𝗆𝗉𝖺𝗍𝖮𝗎𝗍𝐸𝑇⊤,
𝑀MV

′

𝐸𝑇⊤
, 𝐴𝐵

′

𝐸𝑇⊤

𝜅𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖨𝗇𝐸𝑇⊤,
𝑀MV

𝐸𝑇⊤
, 𝑓, 𝐴𝐵𝐸𝑇⊤

 ←

𝒟(𝐸𝑇⊤, 𝐴𝐵) ← 𝒩MV𝐸𝑇⊤,
𝑀𝑀𝑉
𝐸𝑇⊤

𝜅𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖮𝗎𝗍𝐸𝑇⊤,
𝑀MV

′

𝐸𝑇⊤
, 𝑓, 𝐴𝐵

′

𝐸𝑇⊤
 ←

𝒩MV𝐸𝑇⊤,
𝑀MV

′

𝐸𝑇⊤
 ← 𝒟(𝐸𝑇⊤, 𝐴𝐵′)

𝖼𝗈𝗇𝗏𝖨𝗇𝖤𝗑𝗂𝗌𝗍𝗌𝖯𝗋𝗈𝗉 ∶

∃impl, impl ∈
𝒩MV𝐸𝑇⊤,

𝑀MV

𝐸𝑇⊤
 →

𝜎𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖨𝗇𝖯𝗋𝗈𝗉
𝑁MV

𝑀MV𝐸𝑇⊤

𝖼𝗈𝗇𝗏𝖮𝗎𝗍𝖤𝗑𝗂𝗌𝗍𝗌𝖯𝗋𝗈𝗉 ∶

∃impl, impl ∈
𝒟𝐸𝑇⊤,

𝐴𝐵⊤′

𝐸𝑇⊤
 →

𝜎𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖮𝗎𝗍𝖯𝗋𝗈𝗉
𝐷𝑈𝑀

𝐴
′
𝐵⊤,𝐸𝑇⊤

The harmonic box language wraps an untimed box language within a temporal wrapper
that specifies mappings between the timed () types of the coordination language
and the untimed types of an untimed box language. It consists of the definitions
of the types of six predicates, which are used to constrain the untimed boxes that can
be instantiated within a harmonic box in a semantically consistent way. The first two
predicates restrict the input and output maps of memory specifications with respect
to a box frequency. This is needed because, although the frequency of the memory
map as a whole is determined by the lowest common multiple of frequencies, in a fully
general case, a harmonic box may have some other frequency. For present purposes,
however, these predicates are used to ensure that a box frequency is an integral multiple

119

of the frequency of these memory maps. This precludes complications to the semantics
that would arise from variable minimum numbers of time slices being available in each
memory (the variability would be caused as the boxes fell in and out of phase with the
memory maps). The next two predicates ensure that input and output memory maps,
as qualified by the phase restricting predicates, are compatible with the untimed box
input and output interfaces. The final two predicate types define the acceptable data
value produced from a particular input memory and the acceptable output memory
produced from an output data type. The object of the two conversion functions is to find
the single inhabitant of the 𝜎-types derived from these predicates. The last two elements
of the hamonic box binding are the type of existential proof of a function generating such
𝜎-types satisfying these last two predicates from suitably constrained inputs.

4.4.3.12 Harmonic box (untimed box content version)

Meta-
variable or
constant

Type name Type definition

𝐻𝑈⊤ ℋ𝑈⊤ ←
ℳMV

′ ←
ℳMV ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
ℰ𝑇⊤

∏

𝒜𝐵
𝒜𝐵

′

𝒜 𝐸𝑇⊤,
𝐴𝐵
𝐸𝑇⊤

, 𝐴𝐵
′

𝐸𝑇⊤

ℬ 𝐸𝑇⊤,
𝐴𝐵
𝐸𝑇⊤

, 𝐴𝐵
′

𝐸𝑇⊤
, 𝑓, 𝑀MV

𝐸𝑇⊤
, 𝑀MV

′

𝐸𝑇⊤

𝐴.𝒳 𝐸𝑇⊤,
𝐴𝐵
𝐸𝑇⊤

, 𝐴𝐵
′

𝐸𝑇⊤

𝐴.𝒳 (𝐸𝑇⊤, 𝐴𝐵, 𝐴𝐵′) → 𝒟
𝐴𝐵
𝐸𝑇⊤

= 𝐴𝐵
𝐸𝑇⊤

 →

𝒟

⎛
⎜
⎜
⎜
⎝

𝐴.𝒳 , 𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉
𝐸𝑇⊤,

𝐴𝐵
𝐸𝑇⊤

, 𝐴𝐵
′

𝐸𝑇⊤𝑋⊤
𝐴𝐵′𝐴𝐵𝐸𝑇⊤

, 𝐷
𝐴𝐵𝐸𝑇⊤

⎞
⎟
⎟
⎟
⎠

𝒩MV𝐸𝑇⊤,
𝑀MV

𝐸𝑇⊤
 → 𝜎𝐵.𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖨𝗇𝖯𝗋𝗈𝗉

𝑁MV

𝑀MV𝐸𝑇⊤

𝒟𝐸𝑇⊤,
𝐴𝐵⊤′

𝐸𝑇⊤
 → 𝜎𝐵.𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖮𝗎𝗍𝖯𝗋𝗈𝗉

𝐷𝑈𝑀
𝐴
′
𝐵⊤,𝐸𝑇⊤

A harmonic box contains the program that is to be run each time the box is executed.
It is dependent in the type of the type environment, its frequency of execution, and the
specification of its input and output memories. The product type of its specification
binds the input and data maps to plain data types for the use of the expression lan-
guage (𝒜𝐵 and𝒜𝐵

′). It also fixes the untimed box expression language and its temporal

120

binding, the untimed box language specification 𝒜 , and the specification of how the
input and output memories and plain data types are mapped to each other (ℬ). 𝒜.𝒳
is a static semantic object for the expression language 𝒜 . The final three components
are implementations of the expression language with the input and output conversion
functions.

4.4.3.13 Input memory specification object map by memory identifier

Meta-variable or constant Type name Type definition

𝑀 ℳ ← ℰ𝑇⊤ ∏ 𝑜 ∈ 𝒫(𝒪𝑚𝑒𝑚𝐹𝐵) ∶
𝑜 → ℳ (𝐸𝑇⊤)

This object maps input memory object identifiers to memory specification objects. The
s are indicated as belonging to -box memory s.

4.4.3.14 Output memory specification object map by memory identifier

Meta-variable or constant Type name Type definition

𝑀 ℳ ← ℰ𝑇⊤ ∏ 𝑜 ∈ 𝒫(𝒪𝑚𝑒𝑚𝐵𝐹) ∶
𝑜 → ℳ (𝐸𝑇⊤)

This object maps output memory object identifiers to memory specification objects. In
contrast to the similar input memory map, the s are indicated as belonging to box-
 memory s.

4.4.3.15 Harmonic box with memory identifier binding

Meta-variable or
constant

Type name Type definition

𝐻𝑂⊤ ℋ𝑂⊤ ←
ℳ ←
ℳ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
ℰ𝑇⊤

∏

ℳMV(𝐸𝑇⊤)
ℳMV

′(𝐸𝑇⊤)
ℋ⊤𝐸𝑇⊤, 𝑓,

𝑀𝑀𝑉
𝐸𝑇⊤

, 𝑀𝑀𝑉
′

𝐸𝑇⊤

𝑖 ∶ 𝑀𝑀𝑉
𝐸𝑇⊤

↔ 𝑀𝑀𝑂𝐼
𝐸𝑇⊤

𝑜 ∶ 𝑀𝑀𝑉
′

𝐸𝑇⊤
↔ 𝑀𝑀𝑂𝑂

𝐸𝑇⊤

121

The harmonic box object with its memory identifier binding provides the mapping from
the map of memories as plain variables (this is what the memories look like from the
inside of the box) with the corresponding -indexed memory specifications, as they
are viewed from the outside of the box. The memories are dependent arguments,
along with the box frequency and type environment, while the variable maps are hidden
inside the product, along with the harmonic box specification and a bijective map of
variables to s for input and output memories. The harmonic box specification object
does not have a ‘U’ subscript because it need not in general be restricted to a harmonic
box implementation that wraps an untimed box language. The final two arguments of
the untimed harmonic box are the input and output conversion functions. These are not
specified in the box binding B, which only requires proof of their existence.

4.4.3.16 Logical instance signature

Meta-variable or constant Type name Type definition

𝐼𝑆⊤ ℐ𝑆⊤ ∏

ℰ𝑇⊤
ℳ(𝐸𝑇⊤)
ℳ(𝐸𝑇⊤)

The logical instance signature is the type environment, together with a mapping of in-
put and output memory s to memory specifications dependent on that type environ-
ment.

4.4.3.17 Logical instance closure signature

Meta-variable or
constant

Type name Type definition

𝐼𝐶⊤ ℐ𝐶⊤ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶

𝑜 → ℐ𝑆⊤ × ∏ 𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶
𝑜 → ℐ𝑆⊤

The signature of a logical instance closure is a map of logical instance identifiers to a
map of logical instance signatures. It declares which instances must be supplied by
the environment in order to form a complete logical instance closure, in which every
instance is fully specified without any free parameters.

4.4.3.18 Logical instance and logical library raw static semantic object

122

Meta-
variable or
constant

Type name Type definition

𝐼⊤ ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∏

ℰ𝑇⊤
ℳ(𝐼𝑆⊤.𝐸𝑇⊤ ⊕ 𝐸𝑇⊤)
ℳ(𝐼𝑆⊤.𝐸𝑇⊤ ⊕ 𝐸𝑇⊤)

ℎ𝑏𝑜𝑥𝑒𝑠 ∶ ∏

𝑜 ∈ 𝒫(𝒪ℎ𝑏𝑜𝑥) ∶

𝑜 → ∏

∀𝑓 ∶ 𝑓𝑟𝑒𝑞
ℳ

′(𝐼𝑆⊤.𝐸𝑇⊤ ⊕ 𝐸𝑇⊤)
ℳ

′(𝐼𝑆⊤.𝐸𝑇⊤ ⊕ 𝐸𝑇⊤)

ℋ𝑂⊤
⎛
⎜
⎝

(𝐼𝑆⊤.𝐸𝑇⊤ ⊕ 𝐸𝑇⊤), 𝑓
𝑀

′

𝐼𝑆⊤.𝐸𝑇⊤⊕𝐸𝑇⊤
, 𝑀

′

𝐼𝑆⊤.𝐸𝑇⊤⊕𝐸𝑇⊤

⎞
⎟
⎠

𝑜𝑏𝑠 ∶ ∏ 𝑜, 𝑜
′ ∈ 𝒫(𝒪𝑚𝑒𝑚𝐹𝐵) ∶

𝑜 ↔ 𝑜′

𝑚𝑎𝑛𝑖𝑓 ∶ ∏ 𝑜, 𝑜
′ ∈ 𝒫(𝒪𝑚𝑒𝑚𝐵𝐹) ∶

𝑜 ↔ 𝑜′

𝑓𝑖𝑓𝑜𝑠 ∶ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒪𝑚𝑒𝑚𝐵𝐹 × 𝒪𝑚𝑒𝑚𝐹𝐵

𝑙𝑖𝑛𝑠𝑡𝑛𝑒𝑠𝑡 ∶ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶

𝑜 → ∏

ℐ𝐶⊤
ℐ𝑆⊤(ℐ𝐶⊤)
ℐ⊤(𝐼𝐶⊤, 𝐼𝑆⊤)

𝑙𝑖𝑏𝑙𝑖𝑛𝑠𝑡𝑠 ∶ ∏ 𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶
𝑜 → 𝒪𝑙𝑖𝑛𝑠𝑡

𝑙𝑖𝑛𝑠𝑡𝑡𝑡𝑓𝑙 ∶ ∏ 𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶
𝑜 → ℤ

𝑛𝑒𝑠𝑡𝑙𝑖𝑏𝑠 ∶ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑙𝑖𝑏) ∶

𝑜 → ∏

ℐ𝐶⊤
ℰ𝑇⊤
ℒ(𝐼𝐶⊤, 𝐸𝑇⊤)

𝐿⊤ ℒ⊤ ←ℐ𝐶⊤ ∏

ℰ𝑇⊤

𝑙𝑖𝑛𝑠𝑡𝑠 ∶ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶

𝑜 → ∏

ℐ𝐶⊤
ℐ𝑆⊤
ℐ⊤(𝐼𝐶⊤, 𝐼𝑆⊤)

𝑛𝑒𝑠𝑡𝑙𝑖𝑏𝑠 ∶ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑙𝑖𝑏) ∶

𝑜 → ∏

ℐ𝐶⊤
ℰ𝑇⊤
ℒ(𝐼𝐶⊤, 𝐸𝑇⊤)

Logical instances and libraries form a mutually dependent hierarchy, as described in
chapter 3. The raw objects we specify here invite qualification by consistency predi-
cates, but, as with many predicates, we leave filling these out to further work, since

123

we have prioritized progressing to operational semantics in order to achieve a working
interpreter, according to the stated methodology.

We now briefly describe the members of these Cartesian products in the order they
appear. Logical instances are dependent in the type of their signature and closure signa-
ture; logical libraries are dependent in the type of an instance closure signature sufficient
to completely define all recursively nested instances and libraries.

The logical instance contains the usual type environment object, along with maps
of local input and output memory specifications that are dependent on the exclusive
sum of the local signature type environment and the locally declared type environment:
in other words, those type environments must not contain overlapping key sets. The
hboxes field is a mapping of box identifier s to harmonic boxes, which are specified
with another product in order to contain the necessary dependent type arguments for
each box. The obs field contains a set of s exposed to the outside world and a set of
s inside the scope of the local instance, which might be locally defined memories, or
the memories exposed by nested instances. A bijective mapping is given between these
two sets. The manif field does the same for ‘manifestations’, or output memories. The fifo
field is a mapping from a name for the to the Cartesian product of an output memory
and an input memory. The linstnest is a map of nested instances; liblinsts is a map of local
instance identifiers to the library-qualified instance which is being instantiated to define
that instance. linstttfl is a map which moves the timescale within an instance backwards
or forwards relative to the enclosing instance. This becomes essential when multiple
instances of the same specification are pipelined, where the temporal semantic value of
their inputs and outputs clearly shifts, but from the inside of the instance, we of course
wish the semantics to remain self-consistent and invariant. The nested instance does not
‘know’ that it is being deceived as to the real wall-clock time. nestlibs are just the nested
libraries that are only available within that instance or other instances or libraries it
encloses.

Logical libraries contain a type environment, a map of nested logical instances and
a map of nested logical libraries.

4.4.3.19 Time object

Meta-variable or constant Type name Type definition

𝑡 𝓉 ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ℕ

The time object is a natural number counting ticks since time zero. The rate of the ticks
is determined by the frequency in the dependent type of the time.

124

4.4.3.20 Memory data by input memory object identifier

Meta-variable or
constant

Type name Type definition

𝑁 𝒩 ←ℳ ←
ℰ𝑇⊤

𝑝 ∈ ∏ 𝑜 ∈ 𝒫(𝒪𝑚𝑒𝑚𝐹𝐵) ∶
𝑜 → 𝒩 ∶

𝗆𝖾𝗆𝖬𝖺𝗉𝖮𝗂𝖽𝖶𝖥𝖯𝗋𝗈𝗉𝐸𝑇⊤,
𝑀
𝐸𝑇⊤

, 𝑝

This is the version of the input map for memories indexed by s.

4.4.3.21 Input stream

Meta-variable or
constant

Type name Type definition

𝑆 𝒮 ← 𝓉 ←ℳ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ← ℰ𝑇⊤

∐
∅
𝒩𝑀𝑂𝐼⊤𝐸𝑇⊤, 𝑓,𝑀𝑀𝑂𝐼⊤, 𝑡

This object describes a coinductive input stream.

4.4.3.22 Memory data by output memory object identifier

Meta-variable or
constant

Type name Type definition

𝑁 𝒩←ℳ ← ℰ𝑇⊤
𝑝 ∈ ∏ 𝑜 ∈ 𝒫(𝒪𝑚𝑒𝑚𝐵𝐹) ∶

𝑜 → 𝒩𝑀𝑂𝑂
∶

𝗆𝖾𝗆𝖬𝖺𝗉𝖮𝗂𝖽𝖶𝖥𝖯𝗋𝗈𝗉𝐸𝑇⊤,
𝑀
𝐸𝑇⊤

, 𝑝

This is the version of the output map for memories indexed by s.

4.4.3.23 Time-agnostic coordination dynamic semantic object

125

Meta-variable or
constant

Type name Type definition

𝐶⊤ 𝒞⊤ ←ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∏

𝒩((𝐼𝑆⊤.𝐸𝑇⊤) ⊕ 𝐸𝑇⊤,𝑀)
𝒩((𝐼𝑆⊤.𝐸𝑇⊤) ⊕ 𝐸𝑇⊤,𝑀)

𝑐𝑜𝑜𝑟𝑑𝑛𝑒𝑠𝑡 ∶ ∏

𝑜 ∈ 𝒫(𝒪𝑙𝑖𝑛𝑠𝑡) ∶

𝑜 → ∏

ℐ𝐶⊤
ℐ𝑆⊤
ℐ⊤
𝒞⊤(𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤)

The time-agnostic coordination dynamic semantic object consists of a map of input
memories, a map of output memories, and a map of nested dynamic coordination ob-
jects.

4.4.3.24 Time-qualified coordination dynamic semantic objects

Meta-
variable or
constant

Type name Type definition

𝐶Boxes⊤ 𝒞Boxes⊤ ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝓉 ← ℐ⊤ ←ℐ𝑆⊤ ←ℐ𝐶⊤

𝜎𝖡𝗈𝗑𝖾𝗌𝖯𝗋𝗈𝗉𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤, 𝑓⊤, 𝑡⊤

𝐶MemBF⊤ 𝒞MemBF⊤ ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝓉 ← ℐ⊤ ←ℐ𝑆⊤ ←ℐ𝐶⊤

𝜎𝖬𝖾𝗆𝖡𝖥𝖯𝗋𝗈𝗉𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤, 𝑓⊤, 𝑡⊤

𝐶FIFOs⊤ 𝒞FIFOs⊤ ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝓉 ← ℐ⊤ ←ℐ𝑆⊤ ←ℐ𝐶⊤

𝜎𝖥𝖨𝖥𝖮𝗌𝖯𝗋𝗈𝗉𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤, 𝑓⊤, 𝑡⊤

𝐶InnerFIFOs⊤ 𝒞InnerFIFOs⊤ ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝓉 ← ℐ⊤ ←ℐ𝑆⊤ ←ℐ𝐶⊤

𝜎𝖨𝗇𝗇𝖾𝗋𝖥𝖨𝖥𝖮𝗌𝖯𝗋𝗈𝗉𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤, 𝑓⊤, 𝑡⊤

𝐶MemFB⊤ 𝒞MemFB⊤ ← ∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ←
𝓉 ← ℐ⊤ ←ℐ𝑆⊤ ←ℐ𝐶⊤

𝜎𝖬𝖾𝗆𝖥𝖡𝖯𝗋𝗈𝗉𝐼𝐶⊤, 𝐼𝑆⊤, 𝐼⊤, 𝑓⊤, 𝑡⊤

These objects are 𝜎-types that use a predicate on the time-agnostic coordination object to
signify that particular stages of execution are enabled. 𝐶Boxes⊤ is the coordination state
between the execution of -box memories and boxes. The predicate𝖡𝗈𝗑𝖾𝗌𝖯𝗋𝗈𝗉 requires
that the state of box input memories for runnable boxes is ready to be read and that the
state of output memories is ready to be written. 𝐶MemBF⊤ is the coordination state be-
tween the execution of boxes and box- memories. The predicate𝖬𝖾𝗆𝖡𝖥𝖯𝗋𝗈𝗉 requires
that all boxes connected to the memory that are scheduled to have appended values
have written them, and that all s that could have read values that are about to be

126

deleted have read them. 𝐶FIFOs⊤ is the coordination state between the execution of box-
 memories and s. The predicate 𝖥𝖨𝖥𝖮𝗌𝖯𝗋𝗈𝗉 requires that the box- memories
are ready to be read and the -box memories are ready to be written, so that all s
within scope are ready to be executed. 𝐶InnerFIFOs⊤ is the coordination state of nested
logical instances that are ready for inner execution. The predicate 𝖨𝗇𝗇𝖾𝗋𝖥𝖨𝖥𝖮𝗌𝖯𝗋𝗈𝗉
requires that those box- memories that are not exported to an enclosing instance are
ready for execution. Those memories that have been exported and thus already pro-
cessed are already in the box- memory-enabled state. 𝐶MemFB⊤ is the coordination
state betweeen the execution of s and -box memories. The predicate 𝖬𝖾𝗆𝖥𝖡𝖯𝗋𝗈𝗉
requires that all s connected to memories that are scheduled to have appended val-
ues have done so, and that all boxes that could have read values that are about to be
deleted have read them. These execution steps are described further in appendix C.3.

Versions of the coordination state variable prefixed by a ‘𝜇’, such as 𝜇𝐶FIFOs, indi-
cate a map of coordination objects indexed by a local logical index identifier. This is
a shorthand for the type of coordnest in the concrete structure of each (time agnostic)
coordination type.

4.4.3.25 Trace dynamic semantic objects

Meta-
variable or
constant

Type name Type definition

TrBoxes⊤ 𝒯𝓇Boxes⊤ ← 𝒞Boxes⊤ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ← 𝓉 ← ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∏

𝐶MemBF⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤MemBF⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤𝐶MemBF⊤

TrMemBF⊤ 𝒯𝓇MemBF⊤ ← 𝒞MemBF⊤ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ← 𝓉 ← ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∏

𝐶FIFOs⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤FIFOs⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤𝐶FIFOs⊤

TrFIFOs⊤ 𝒯𝓇FIFOs⊤ ← 𝒞FIFOs⊤ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ← 𝓉 ← ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∐

∅

∏

𝐶MemFB⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤MemFB⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤𝐶MemFB⊤

127

Meta-
variable or
constant

Type name Type definition

TrMemFB⊤ 𝒯𝓇MemFB⊤ ← 𝒞MemFB⊤ ←
∀𝑓 ∶ 𝑓𝑟𝑒𝑞 ← 𝓉 ← ℐ⊤ ←
ℐ𝑆⊤ ←ℐ𝐶⊤

∏

𝑡
′
⊤
𝑓⊤ 𝐶Boxes⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡
′
⊤

Boxes⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡
′
⊤𝐶Boxes⊤

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓⊤
, 𝑡

′
⊤
𝑓⊤

These objects contain sequences of time-qualified coordination objects to form execution
traces. In each case, the type definition is the Cartesian product of the current coordina-
tion state and the next part of the trace (until infinity or the end of the execution). Trace
structures are therefore co-inductive. This trace is implicitly a 𝜎-type: in each step, there
is also given in each constructor a predicate that captures the dynamic semantics; we
describe them now.

4.4.3.25.1 Boxes step predicate description The predicate required in building
a trace with a boxes state at its head is a relation over 𝐶Boxes⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
and 𝐶MemBF⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
. In each

case, the instance 𝐼⊤ with frequency 𝑓 defines the static scope of the object, and is present
among the dependent arguments in the case of both coordination objects. All memory
states remain the same, except for the box- memories of those to which have been
added the products of a box execution. The only boxes (or inner coordination states)
that are executed are for which

𝑓box
∣ 𝑡current.

4.4.3.25.2 Box-FIFO step predicate description Enabled memories at a partic-
ular instant have a simple relation between 𝐶MemBF⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
and 𝐶FIFOs⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
. Each activated

memory discards values that have expired and can no longer be read. In an implemen-
tation, the operation also involves copying data received in the last memory cycle from a
write buffer to a read buffer. The activated memories are those for which

𝑓MemBF
∣ 𝑡current.

4.4.3.25.3 FIFOs steppredicatedescription At present, s in are restricted
to execute at the same frequency of their connected memories, which must be the same.
The predicate over 𝐶FIFOs⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
and 𝐶MemFB⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤
works similarly to the boxes predicate, ex-

cept there is no computational content, and values that are new on this time slice in the
box- memory at the ‘in’ end of each activated are instead just appended to the
-box memory at the ‘out’ end of each . In further work, this would be refined
so that s themselves had associated state variables, as the current arrangement re-

128

quires buffers of indeterminate length in -box memories to accommodate s of
different lengths. Again, as with boxes, the s activated at any instant are those for
which

𝑓FIFO
∣ 𝑡current.

4.4.3.25.4 FIFO-box step predicate description The relation between 𝐶MemFB⊤
𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡⊤

and 𝐶Boxes⊤

𝐼𝐶⊤𝐼𝑆⊤𝐼⊤𝑓⊤𝑡
′
⊤

is exactly the same as for the box- memory execution, except that

another set of memories are involved, and that this time the next enabled step (boxes
enabled) is at the next time slice 𝑡

′
⊤ occurs

𝑓 after 𝑡⊤.

4.4.4 Expression language

In defining an expression language, the aim is to produce a member of the type of ex-
pression languages. The object of the present section is to provide the type of the static
semantic object, which is a parameter to the type of the big-step expression predicate,
and which is given as a Curried argument to a correct interpreter of the expression
language. We do not define the big-step predicate here, since, according to our stated
methodology, we have prioritized the operational semantics, which give rise directly to
an interpreter. The idea is that the predicate can be developed by progressively adding
to its structure, and the interpreter modulo code extraction (and concomitant discarding
of predicates) is unchanged in each increment towards this goal.

In the expression language semantic domain, we also provide additional structures
to cope with inconsistent ‘null’ objects and the union of these with their concrete cousins.
These are only necessary for the static semantics, which we provide in appendix C.

4.4.4.1 Simple type and function type static semantic object

Meta-variable or constant Type name Type definition

𝚈⟂ 𝒴⟂ ∅

𝑌⊤ 𝒴⊤ ← 𝒰⊤ ∐ 𝑡𝑦𝑝𝑒𝑡𝑦𝑝𝑒 × 𝑡𝑦𝑝𝑒
𝐘⊤⟂ 𝔜⊤⟂ 𝒴⊤(𝑈⊤) ⨆ 𝒴⟂

The first inhabitant of the semantic domain is the expression language’s elaborated type
system. This aggregates the syntactic definition of simple types and function types
within a co-product. The expression language type system is first order, in which func-
tional ‘types’ are an external construction over the raw type system. There exists for
each such type a minimal set of type identifiers which define the environments within

129

which the type is well-formed.

4.4.4.2 Variable and function type environment static semantic object

Meta-variable or constant Type name Type definition

𝚁⟂ ℛ⟂ ∅

𝑅⊤ ℛ⊤ ← 𝒰⊤ ∏ 𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒴⊤(𝑈⊤)

𝐑⊤⟂ ℜ⊤⟂ ℛ⊤(𝑈⊤) ⨆ ℛ⟂

The variable and function type environment specifies which identifiers are bound to the
declarations of types and functions in the environment, and the types that are associated
with each such identifier.

4.4.4.3 Expression static semantic object

Meta-variable or
constant

Type name Type definition

𝙺⟂ 𝒦⟂ ∅

𝐾⊤ 𝒦⊤ ←ℛ⊤ ←𝒴⊤ ←
𝒰⊤

∐

𝒬⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤

𝒞⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤

∏

𝑣𝑣𝑎𝑟𝑖𝑑
𝑈

′

⊤
𝒯⊤𝑈

′

⊤

𝒦⊤𝑈
′

⊤,
𝑅⊤
𝑈
′
⊤
, 𝒴

′
⊤

𝑈
′
⊤
 𝑇⊤
𝑈
′
⊤

𝐊⊤⟂ 𝔎⊤⟂ 𝒦⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤ ⨆ 𝒦⟂

The expression static semantic object defines expressions that can be reduced to data,
given a definition closure that is consistent with its environment. An expression de-
composes into three different kinds of object: patterns, constructors and function appli-
cations.

4.4.4.4 Pattern static semantic object

130

Meta-variable or constant Type name Type definition

𝚀⟂ 𝒬⟂ ∅

𝑄⊤ 𝒬⊤ ←ℛ⊤ ←𝒴⊤ ←𝒰⊤ 𝑣𝑎𝑟𝑖𝑑 ×𝒥⊤

𝐐⊤⟂ 𝔔⊤⟂ 𝒬⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤ ⨆ 𝒬⟂

The pattern object consists of a variable identifier which refers to a variable in the current
execution environment closure, and a list of pattern elements that recurses through the
structure of the data object in order to reference the wanted component.

4.4.4.5 Pattern list static semantic object

Meta-variable or constant Type name Type definition

𝙹⟂ 𝒥⟂ ∅

𝐽⊤ 𝒥⊤ ←𝒴⊤ ← 𝒰⊤
𝑛
∏
𝑖=
∐ 𝑣𝑎𝑟𝑖𝑑ℕ

𝑖
𝐉⊤⟂ 𝔍⊤⟂ 𝒥⊤ ⨆ 𝒥⟂

The pattern element is a co-product of either a variable name (for dereferencing a record
parameter) or a natural number (for dereferencing a tuple element by positional param-
eter).

4.4.4.6 Constructor static semantic object

Meta-variable or
constant

Type name Type definition

𝙲⟂ 𝒞⟂ ∅

𝐶⊤ 𝒞⊤ ←ℛ⊤ ←𝒴⊤ ←
𝒰⊤

∐

𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡
𝑛
∏
𝑖=
𝒦⊤𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤ 𝑖

∏
𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒦⊤𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤

𝐂⊤⟂ ℭ⊤⟂ 𝒞⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤ ⨆ 𝒞⟂

The constructor object has three branches: it can construct a new object out of a base
type, a tuple of expressions or an identifier-indexed map of expressions.

131

4.4.4.7 Variable and function definition static semantic object

Meta-variable or
constant

Type name Type definition

𝚉⟂ 𝒵⟂ ∅

𝑍⊤ 𝒵⊤ ←ℛ⊤ ←
𝒴⊤ ←𝒰⊤

∐

∏
𝒯⊤(𝑈⊤)
𝒟⊤𝑈⊤,

𝑇⊤
𝑈⊤

∏ 𝒦⊤𝑈⊤,
𝑅⊤
𝑈⊤
, 𝑌⊤𝑈⊤

∏

𝑣𝑣𝑎𝑟𝑖𝑑
𝑈

′

⊤
𝒯⊤𝑈

′

⊤

∏

𝑣𝑣𝑎𝑟𝑖𝑑
𝑈

′

⊤
𝒯⊤𝑈

′

⊤

𝒦⊤𝑈
′

⊤,
𝑅⊤
𝑈
′
⊤
, 𝒴

′
⊤

𝑈
′
⊤
 𝑇⊤
𝑈
′
⊤

𝐙⊤⟂ ℨ⊤⟂ 𝒵⊤𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤ ⨆ 𝒵⟂

This object defines variables (whether reduced already or not) and functions (built-in
and user-defined). The dependent arguments express the requirement for the defini-
tions to be well-formed in their environment. These arguments also affect the meaning
of the definition, where it references values and functions defined outside its own scope.

4.4.4.8 Variable and function environment static semantic object

Meta-variable or constant Type name Type definition

𝚆⟂ 𝒲⟂ ∅

𝑊⊤ 𝒲⊤ ←ℛ⊤ ←𝒰⊤ ∏
𝑣 ∈ 𝒫(𝑣𝑎𝑟𝑖𝑑) ∶
𝑣 → 𝒵⊤𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑅⊤𝑈⊤

𝐖⊤⟂ 𝔚⊤⟂ 𝒲⊤𝑈⊤,
𝑅⊤
𝑈⊤
 ⨆ 𝒲⟂

This environment is an associative array of definitions, indexed by variable identifiers.
To be well-formed, each member of this structure must match a structure in the dec-
laration map of the dependent arguments. If this object is subscripted ‘Cmplt’, every
such declaration is defined; if subscripted ‘Clos’, it is a closure, composed of a stack of
variable and function environments.

132

4.5 Further detail

Please see appendix C.1 for the concrete syntax of and appendix C.2 for the expres-
sion language static semantics: this adequately demonstrates our points about how we
choose to approach static semantics. Since we do not have a compiler, to design static
semantics for the coordination language at this stage would be an otiose exercise, and
they are therefore omitted.

4.6 Reference interpreter

The structural operational semantics given in appendix C.3 give a direct specification of
a reference interpreter, which can be constructed by rendering each rule as a function in
a proof assistant or functional programming language. The entry point to the interpreter
is the execution step of the super-step execution cycle. The conclusion of rules are
pattern-matched by these functions, and call the functions corresponding to the rules
invoked in the premises. In the rest of this thesis, we first translate these semantic rules
into functions of a proof assistant, and then use the code extraction facilities of the proof
assistant to export executable functional code, which we compile. Finally, we use the
resulting reference interpreter to run our example programs, so that we can evaluate
the results and draw conclusions, before demonstrating the scalability of the system
with a much more involved scenario.

4.7 Soundness, completeness and bisimilarity properties

Soundness and completeness generally refer to establishing static truths. For logics,
this involves quantification over valid arguments of the logic; for programming lan-
guages, these properties quantify over valid input programs, or over time. In the case
of a logic, we want to know whether any argument that follows the rules of that logic is
true (sound) and whether all truths can be proved (complete). In the case of a program-
ming language, we are interested in whether its static semantics admit only programs
that evolve in ways permitted by the dynamic semantic rules (sound), and whether all
such valid programs are admitted by the static semantics (complete). The two questions
are related, where ‘truth’ in the case of logic is exchanged for producing absurd states
that are not addressed by the dynamic semantics. In the case of languages in which
the application of dynamic semantic rules involves a non-deterministic choice, such as
where there is a choice of reduction orders, one can also choose to interpret soundness
as meaning that any set of non-deterministic choices results in the same end state (as-
suming that the process halts) and completeness as referring to whether the language

133

is Turing-complete or not.
This raises two questions: the first is concerned with obtaining a more precise defi-

nition of these prohibited absurd states of the dynamic semantics; the second asks what
the relationship is between this static idea of soundness and completeness on the one
hand, and the dynamic one, on the other. We will address these in turn, as in each
case a discussion of the issues leads immediately to seeing how we axiomatize the rel-
evant properties with our formalization of and set about demonstrating them. In
each case, the problems can be — and often are — phrased in terms of type-checking, al-
though this is not the only way of setting up the problem. The issues can also be thought
of more generally in terms of accepting automata, as described in section 2.1.

4.7.1 Soundness

What are these absurd states that we are trying to avoid? They include such things as
the dynamic semantics looking up missing or mis-typed definitions in an environment,
or relying on a property of a program that does not turn out to hold true. In general,
this is a difficult but uninteresting task, and in our approach to formalizing , we use
a technique of deeply embedding our language in a logic that makes it easier: we derive
soundness directly from the soundness of the formalizing logic, which in our case is the
Calculus of (Co-)inductive Constructions implemented by Coq. We define a run-time
semantic domain that is built using 𝜎-types, and which therefore contains propositions.
We employ a method using dependent typing in which an encoding of an type
parametrizes a Coq type to form another Coq type. This final type has an underlying
data structure that is restricted by the parametrized predicate of a parametrized 𝜎-type
to take values that are within the type. It is impossible by construction to build
an absurd state of the kind that we are trying to avoid by demonstrating soundness.
The compiled static semantic object is a Curried argument to an interpreter function,
which produces a native function in the logic that can only build objects of the dynamic
semantic domain that are correct by construction. If we discharge all admitted lemmas
necessary to make this work, then we can prove soundness of the language, up to the
strength of our belief that Coq is a sound logic (that is, it only allows us to prove truths).
This approach works because we insist that the static semantic object can only be built
if it is annotated with cost information that proves termination in a particular instance,
so the fact that the logic must terminate, but the language, in the general case does not,
does not generate an impossibility.

Static soundess is therefore shown by writing the semantic rules over a predicate-
carrying ‘static semantic object’. We proceed by writing down each rule using a predi-
cate relation over environment, implicant and implicand, and can show consistency by
finding an executable function that witnesses its computability. The computablility of

134

the top-level relation, which relates the abstract syntax tree to the static semantic object,
follows inductively from all of the subsidiary rules, which all have function analogues.
The question of what this function does if an invalid program is detected is dealt with
below when we discuss completeness. In appendix B, we develop a style of giving se-
mantic rules that allows predicate terms, but which is more generic than a specific logic
such as Coq. However, precisely because it is generic and not actually a logic in itself,
it does not conclusively prove anything on its own, which is why we go on to formalize
the same structures in Coq.

Dynamic soundness follows directly from the fact that our interpreter function is
written in the primitive-recursive language of Coq, and we take on trust that Coq is
sound. Coq and constructive logics of its kind are special cases among proof tools, be-
cause its embodiment of the Curry-Howard isomorphism and type system that encom-
passes both concrete and propositional types unifies logical deductions and concrete
execution into the same semantics. If we regard the predicate characterization of the se-
mantics as canonical, then we must also prove that the predicate is injective if we want
to be sure that any function inhabiting the type is sound, in that it produces the same
answer for the same input arguments.

In summary, then, we can only show soundness up to the soundness of the formal-
izing logic. This might at first seem a sleight of hand: we do not anywhere explicitly
axiomatize soundness as some proposition that we seek to prove. It is not a sleight of
hand; since we are relying on Coq’s own idea of soundness to demonstrate soundness
of , we would have to axiomatize Coq within Coq to obtain a semantic handle on
soundness in this context, and Tarski and Gödel prevent us from doing so without intro-
ducing extra logical axioms. It is reasonable for present purposes to take Coq as being
a sound system, since the Coq system is generally accepted to be sound, and to enquire
whether it acutally is sound beyond this would take us into philosophical questions
that we outlined in chapter 2, the further pursuit of which is outside the purview of this
thesis.

4.7.2 Completeness

H is at first sight statically complete because we insist that any box language in
must come with enough annotations to construct a proof of termination. How, then,
can be Turing-complete? The answer is that the proof of termination we have dis-
cussed is the proof of termination of a slice of an execution. A box that can suspend its
state (trivially possible through the use of a feedback), can continue a calculation in-
definitely, and need never halt, as state traces are coinductive structures. H can
thus be made Turing-complete by using a box language whose semantics are unaware of
the suspension of execution into time slices, and where that particular box language is

135

Turing-complete. If such Turing-complete box languages are given semantic access to an
infinite temporal modality, they cannot themselves be statically complete, as that would
imply a solution to the halting problem. H is therefore statically complete but for
any box languages that axiomatize infinite time and are Turing-complete. Dynamically,
 is Turing-complete in that it can axiomatize gates in a simple expression lan-
guage, and thus function as a complete hardware description language: but it can only
simulate the executions of Turing complete languages when exported from a tool like
Coq, because the cofixpoints needed to do so are not executable inside Coq: if they were,
Coq would have to be logically unsound.

If, then, is reduced to a degenerate case in which the only allowed box language
is one dealing with expressions — a hardware description language — this ver-
sion of does not fall foul of the ‘but for’ condition above, so how can it be both
statically sound and complete? The issue here is the semantic distinction between hard-
ware description and ordinary programming languages. The key difference between a
hardware description language and an ordinary programming language is that a hard-
ware description language does not contain arbitrary functions or return results asyn-
chronously; rather, it describes (possibily infinite) system histories. The question of
whether it terminates or not is therefore not a question that makes sense: it is axioma-
tized through a coinductive constructor to have the possibility never to terminate, and
as such is capable of simulating Turing-complete programs that may never terminate
either. As we hinted in chapter 2, this makes us prefer a definition of dynamic com-
pleteness that is axiomatized physically, in the spirit of Gandy and Sieg. If we follow this
line of thought, we might say that a physically complete language can be viewed as one
that can emulate any (deterministic) part of physics that we choose up to some limit of
discretization; we gain access to such arguments for the present work through the ob-
servation that can model arbitrary systems of clocked gates, what we know
about computer architecture, the Church-Turing conjecture, and the kinds of physical
simulations that can be constructed using computers.

4.7.3 Bisimilarity

Most interesting dynamic properties can be shown by axiomatizing them, defining a
bisimilarity predicate, and then showing that the language produces only executions
that match the axiomatization, according to the bisimilarity predicate. This includes
application-specific properties whose predicates reference an embedding of some other
problem domain in a common logic. To take an example that is reflexive in , we
often want to know that two programs are bisimilar. In the case of the parallel
composition example, we want to know that the traces of two example programs on
their own map exactly to the combined trace of the composition. The same goes for the

136

replication example, except that in this case, we may be able to show under an interpre-
tation function that the two are equivalent, notwithstanding that one or more replicas
may diverge from the trace that is ‘correct’. Timing properties may also be displaced
in a systematic way, in a discretized version (up to some rational-numbered frequency)
of our rubber sheet analogy. The replication example again shows this in action, and
we revisit what bisimilarity proofs in these cases look like in the context of the traces
presented in chapter 6.

4.8 Summary

We have now seen how can be described by a predicate-loaded semantic domain.
We have also formalized the semantics in a structural operational semantic style in ap-
pendix C.3, providing an inhabitant of the type of interpreters, existential proof of which
is needed by the semantic domain in order to establish soundness. In chapter 5, we will
remove the remaining semantic ambiguities by embedding in a fully formalized
theory. In the constructive logic of Coq, the result is particularly convenient, since the
type hierarchy of Coq enables us automatically to extract an interpreter from the for-
malization of the operational semantics, discarding proof terms. In Isabelle, we would
have to work directly with predicates, which makes extraction a little more difficult, al-
though plenty of tools exist to assist with this process. We have also discussed the formal
properties that should exhibit and how they are demonstrated, and explained how
bisimilarity predicates over different programs can be constructed. We extend this
in the next chapter, in which, after presenting our formalization in Coq, we address how
arbitrary properties may be specified over an signature in a suitably general logic.

137

Chapter 5

Semantics and interpreter in Coq

Throughout this thesis, we have been developing our exposition of with increasing
degrees of formality. In chapter 3, we described the language intuitively and informally.
In chapter 4, we presented the language in terms of a predicate-loaded semantic domain;
we detailed the operational semantic rules in appendix C.3. The use of predicates and
dependent types was, however, informal, in that we did not give enough information to
fully axiomatize the logic, or to check the soundness of the semantics mechanistically.
We now substantially close this remaining informality by rendering in the logic of
a proof assistant. We thus attempt to remove informality and its concomitant uncertainty
to the maximum practical extent with the deductive reasoning tools that are currently
available. A simple example showing how the notations used in chapter 4 and appendix
C.3 relate to the kind of rendering in Coq we see in this chapter can be found in appendix
B.

There is, with some variations, a correspondence between Coq modules and lan-
guage modules. In section 3.3 and Figure A.3 we gave a description of the structure of
, which is mirrored in the Coq modules. In this chapter, in section 5.4, we give an
outline of each of these statically parametrized parts of the language: they collectively
set up the basic data structures needed by the coordination language, including the ob-
jects that define the types of harmonic and untimed box languages. We then go on in
section 5.5 to describe the coordination language module functor (which is designed to
be instantiated by the static module parameters), and explain how the semantic rules
given in appendix C.3 are rendered in Coq. Finally, in section 5.6, we discuss our exam-
ple expression language.

5.1 Choice of embedding for HBCL

The raw structures over which logical formulæ and sentences range have no meaning
other than our intuitive grasp of them as rules for building objects, from which may
arise the notion of types. It is this meaninglessness that enables such structures to be

139

checked by inanimate machines, slavishly testing that structures are well-formed, that
formulæ are grammatically correct and that rules of inference are legitimately applied.
In formalizing a language like , we therefore make a number of choices, picking
a basic logic, a spatio-temporal ontology, a style of semantic representation, and a way
of constructing an interpreter or simulator. None of these choices is canonical, but we
think there are good reasons for all of them, which we now describe.

If we espouse a structuralist philosophy, our ideal response to this lack of canonicity
should be to use many axiomatizations, not only of our ontology and language, but
of the logics within which we reason about them. If we accept the grand challenge of J.
Strother Moore, it is surely an inevitable corollary that multiple axiomatizations must be
the lynchpin of verified and verifying systems in heterogeneous logics. An abundance
of structure morphisms would allow us to know that every one is talking about the same
system, amounting to a kind of super-equivalence class by human labelling.

5.1.1 Choice of logic and proof assistant

We choose the Calculus of (Co-)inductive Constructions [56, 87, 152] and version 8.3 of
the Coq proof assistant [68] as our logic and proof assistant respectively.

The choice is first narrowed by our previous decision to adopt an intuitionistic and
dependently typed logic in the way we specified the semantics. Why use an intuition-
istic logic? Intuitionistic logics work well with the verification of functional programs:
the Curry-Howard isomorphism means that concrete functions can be shadowed by
propositional counterparts that construct proofs for everything that the program can
construct. Executable programs do not have a computational equivalent of an excluded
middle, and so intuitionistic logic’s apparent lack of power in this regard is not a prob-
lem. The ability of a unified type system that includes propositional types also makes
it possible to use 𝜎-types, which carry proof terms with the concrete types: this is very
useful in giving a type-theoretic characterization to compiled objects and executions
where semantically inadmissible structures are not members of the relevant type. The
extraction mechanism from this kind of logic is straightforward: the propositional com-
ponents of these types are stripped away leaving correct code.

Having decided to use an intuitionistic, or constructive, logic, Coq is chosen because
it is the most well-developed and widely understood tool available in this paradigm.

5.1.2 Choice of ontology and temporal logic

A coinductive type dependently typed on an axiomatization of time gives us temporal
modality, and axiomatization of object identifiers gives us unique designation. These
are the only concepts in reality to which needs to make reference, and so it is attrac-
tive not to use unnecessary layers of embedded modal logics. There is only one physical

140

reality,1 and labelling it consistently is vital if the strong specifications we wish to pro-
duce of physical systems are going to be useful in the physical world.

5.1.3 Choice of semantic representation

The deep embedding and type-theoretical semantics we have discussed in this chapter
accord with the separation of Pre- from full . By specifying nothing about
computation in Pre-, we allow the formalizing logic to access directly, and quantify
over, the ontology of programs. This leads to the possibility of reasoning about an
arbitrary application domain in a proof assistant, treating Pre- as if it were a header
file in a programming language. An application domain predicate derived from such a
process may then be used to constrain the behaviour of an program, where the logic
in which the predicate is stated is the common denominator. This behaviour in such a
predicate characterization can be specified completely independently of the full
function that implements it. Indeed, any other language that satisfied the ontological
signature with hard bounds on execution resources would do equally well, as long as
it, as interpreted by its semantics, satisfied the predicate of the application.

In summary, we have an ontologically sound means of referring to the subject of
a specification: it is this that facilitates the comprehensive decoupling of specification
and implementation. Either can be freely mixed using suitable morphisms. As we be-
gan to advance in chapter 2, this, with its potential to use multiple axiomatizations in
multiple logics, is a much more flexible method than using monolithic languages for
programming, specification and implementation.

5.2 Specification in Coq: methods and constraints

Our workflow with Coq is first to formalize an abstract sytnax tree, followed by a se-
mantic domain and then the operational semantics. The operational semantics are ren-
dered as functions, which implies that the top-level function should be an executable
interpreter for the the language being formalized. We refer to this interpreter in what
follows as the reference interpreter. It is not an interpreter that has an efficient execu-
tion time for a given program, but it is ideal for prototyping a language, because its
operation mirrors the operational semantics extremely closely. Optimized interpreters
with bisimilar behaviour could be added later. Given that boxes are designed to
be realized on parallel hardware, and to stress that the monolithic interpreter is not the
preferred run-time environment, we sometimes prefer to call the interpreter a simulator.

We do not execute our interpreter within Coq, but use the extraction facilities to ex-
port an OCaml program, which allows us to use the OCaml debugger. In the presence

1This is itself an axiom, but not a controversial one, unless we espouse the most exotic of cosmological
theories.

141

of bugs and admitted lemmas, a function in Coq cannot be guaranteed to do what we
expect, or even to terminate, but there is no mechanism to extract debugging informa-
tion. OCaml [162] is a multi-paradigm language supporting functional programming.
It has a long history, but the only relevant part of that history here is that recent versions
of Coq are written in OCaml, and many of its standard libraries mirror corresponding
OCaml structures. Both Coq and OCaml are flagship projects of .2 OCaml is the
best-supported language for code export in Coq, although there is still some mismatch
between the type systems and module semantics of Coq and OCaml, which cause us
some problems in chapter 6. When code is exported from Coq, proof terms are stripped
away. Coq’s type system is subdivided into ‘Sorts’. The Set Sort is that of concrete ob-
jects, of the kind that can be exported into an ordinary programming language such as
OCaml. The Prop Sort is the type of logical propositions, which are discarded when
code is exported. There is also an automatically managed tower of ‘Type universes’, in
which are defined the types of more complex objects that may contain predicates over
objects in Set or other Type Sorts. This unification of concrete and propositional types
within a single system is powerful. Proofs are functions like any others, except that
they belong in the impredicative Prop Sort. This is the Curry-Howard isomorphism in
action [172].

OCaml is ordinarily a strictly evaluated language, meaning that sub-expressions are
evaluated as soon as they appear in the execution path. However, OCaml also provides a
construction for ‘lazy’ evaluation, where sub-expressions are only evaluated when their
parent expressions are dereferenced in the execution path. This structure is needed
when Coq exports cofixpoints, which are functions that may execute indefinitely. If
the ‘lazy’ evaluation mechanism did not exist, the use of cofixpoints would cause non-
terminating computations.

5.2.1 Termination, well-foundedness and consistency

Turing-complete languages enable one to write non-terminating functions. This can be
a problem in logical systems: if it were possible to write down recursive functions that
never terminated without providing some proof that this could not happen, the logic
would be inconsistent. Different logics approach this problem in different ways, but Coq
avoids the problem by making its ability to express computation Turing-incomplete. In
particular, recursive functions are required to be primitive recursive. Fixpoints are re-
quired to have a parameter which is structurally smaller on each recursive call. This
is achieved by forming the recursive argument from within a match on a constructor.
Often, Coq can determine this parameter itself, but sometimes it cannot, and so we oc-
casionally give it explicitly, using the {struct a} notation. This tells Coq that on each

2Institut National de Recherche en Informatique et en Automatique, France.

142

call of the fixpoint, each ‘a’ is structurally smaller than it was on the last invocation. This
is known as a syntactic guard condition.

The primitive recursive restriction can be a problem in expressing certain functions,
where there is no obvious structural recursion, but yet we know the function must termi-
nate. The answer to these problems lies in an accessibility predicate. Rather than a fixpoint
reducing structurally on a concrete argument, it can reduce structurally in the size of a
proof object. This is done by establishing a total order on the object involved in each re-
duction step, instantiating an accessibility predicate Acc on this total order, and flagging
this up as the reducing argument to the fixpoint in question using the struct keyword.3

Using this technique, we can simulate Turing-complete languages within Coq, but only
for those inhabitants of such languages that come with a termination proof.

5.2.2 Key Coq programming paradigms

5.2.2.1 Maps, records or associative arrays

The terms ‘map’, ‘record’ and ‘associative array’ are synonyms, and we use them inter-
changeably. In our propositional calculus example, our environment of previously in-
ferred formulæ was implemented as a list. The formulæ were anonymous, which meant
that the prover algorithm had to perform a monotonous search to find appropriate in-
ferences. In a programming language, we need to bind definitions to identifiers, which
requires that we use associative arrays.

The associative arrays needed to implement records and environment types are not
a native part of Coq, but are axiomatized and implemented in libraries. As the inductive
structure of an associative array implementation is not canonical, most relations we use
in proofs have to be proved as morphisms over equivalence classes of associative array
structures. Since the definition of an associative array admits an arbitrary number of
implementations, the standard Coq Module Type of a map hides the structure of imple-
mentations. This causes us problems with strict positivity and module structure, which
we review below.

5.2.2.2 Strict positivity

Coq has a strict positivity requirement when defining inductive types, which constrains
our design choices. In the definition of inductive types, or a set of mutually inductive
types, recursive references to the types being defined must be ‘strictly positive’. In prac-
tice, this allows us to place such references anywhere in a definition except as dependent
parameters to one of the types, or as a parameter to an object which itself forms a depen-

3Coq provides some extra syntactic sugar to help with this, though we prefer not to use it, as it can
obscure what is going on, and can involve constructing unnecessary record arguments, since some of these
features require the fixpoint to have only one argument.

143

dent parameter to the type we are defining: a type cannot parametrize itself. If it could,
Coq’s logic would be inconsistent. We can pass a reference to the type being inductively
defined to parametrize a reference to another inductive type, but not to a function type,
because Coq tacitly unwraps the definition of this referenced type into the current def-
inition. This unwrapping is only possible with inductive types. Maps are important
structures that are parametrized in the type of their elements. An important effect of
this is that, where we want to include a map of the type being defined within its own
definition, we have to use the concrete implementation of a map, rather than its func-
tional characterization from a module parameter, so that Coq’s type-checker will tacitly
inline it. Another more general implication of the strict positivity requirement is that
we cannot reference a 𝜎-type of a particular proposition from within the definition of
that proposition. This necessitates that we adopt a design pattern in which we keep the
propositional and concrete components of inductive types separate.

5.2.2.3 Module design in Coq

There are two basic classes of object in Coq’s module system: Modules and Module Types.
Any object can be defined in both a Module and a Module Type, but any object that is de-
fined in a Module that is declared to be of a particular Module Type must define every
object in that Module Type. If the object was defined in the Module Type, then the defini-
tion in the Module must be exactly the same as that in the Module Type. More usefully,
Module Types can declare, but not define Parameters and Axioms, which are convention-
ally in the Coq ‘Sorts’ of concrete types and propositions respectively, although Coq
treats the keywords synonymously. In addition, Modules and Module Types can extend
other Modules and Module Types. This amounts to a kind of subtyping, in which sub-
types may add more declarations or definitions to their parent types. This subtyping is
not true subtyping, being a syntactic rather than a semantic feature. Module functors
allow modules to be parametric in the types of other modules.

The abstraction involved in a Module Type is very similar to the interface abstractions
of many ordinary programming languages, where a Module Type may look similar to
a Java Interface or Abstract Class, or a C header file. However, there are also some
crucial differences, given that we are operating in a proof assistant’s type system that
also includes truth-valued semantics. As even types have types in Coq’s rich system of
dependent types, we can do things that are not possible in ordinary languages, even
those with type variables or ‘generic types’.4

The paradigm used by Coq’s Standard Library utilities usually entails defining a
Module Type with a parameter t of type Type, which requires an implementing module

4Although Brady’s new language, Idris [36], is a programming language that does have dependent
types.

144

to provide a concrete type.5 The user of the library then instantiates objects of this type.
An interface of the kind familiar from ordinary programming languages is then given
in terms of function types, and axioms are stated about how the structure that is the
main subject of the module is affected by each interface function, and the behaviour of
those functions. This gives rise to the informal use of the term ‘module signature’ to
refer to a Module Type. These may make use of inductive types in the Prop sort. Any
complete implementation is then expected to provide proofs in terms of the structure
and function implementations that satisfy the axioms over the concrete types. Usually
there is only one main concrete type per Module, but this is not always the case.

This paradigm is elegant, but there are two details which cause us problems, owing
to our use of nested associative arrays. The main type of a module is built from a raw
concrete inductive type and a predicate. However, this substructure is hidden and only
the resulting composite type is exposed by the Standard Library Module Types. This
has the consequence that we cannot separate out the predicate and incorporate it into
the further predicate of an object that instantiates one of these Standard Library types,
without destroying the Module Type abstraction. If we use a Standard Library map
(associative array) in a mutually nested way, we also fall foul of Coq’s strict positivity
requirement, since the abstract type of this unified object is a function. We would like
to recast the Module Type interface of the Standard Library to separate out the concrete
inductive type from its predicate, but this is not possible either, because Coq lacks the
syntax and semantics necessary to declare a parameter as being restricted to an inductive
type.

Listing 5.1: The raw coordination object
Inductive CoordStateRaw : Type :=
| CoordStateRaw make :

InMemModBox.MDatTimeMapRaw → OutMemModBox.MDatTimeMapRaw
→
LInstMapModRaw.t (CoordStateRaw) → CoordStateRaw.

Extracting a definition from the next chapter, we can see how the nested map problem
arises in the type of the raw coordination state in Listing 5.1 (the raw map is only visible
because we have instantiated the Standard Library module functor with a specific imple-
mentation and have used the <: operator to make the implementation visible beneath

5Since Types can have arguments in Type, Coq differentiates these types into ordered type universes:
this information is not usually available to the Coq user. It can cause problems when Coq cannot work
out how to assign a non-circular ordering to types, which typically occurs in developments with complex
dependencies and multiple Type arguments. As well as the Type ‘Sort’, Coq also has predicative Set and
impredicative Prop Sorts. The Set Sort is suitable for specifying inductive types without dependent argu-
ments. Our extensive use of 𝜎-types means that Coq must maintain a very large graph of type universes.
The lack of explicit type universe polymorphism [174] in Coq has led to a situation (which we discuss
in section 6.1 and section 6.9) in which Coq cannot unify the type parameters of our assembled module
functors, so that full module assembly has to wait until after code is exported into OCaml.

145

its Module Type interface). The map LInstMapModRaw.t, which has been instantiated in
the type of its keys by a module functor, requires the argument CoordStateRaw to give
the type of its elements. However, CoordStateRaw is the very type we are defining, so
we are close to falling foul of the strict positivity requirement if Coq cannot unfold the
definition of the inductive map. We now explain in more detail why this is a problem.

The issue of predicate separation arises with almost any data structure in Coq more
complex than a list, where some sort of predicate is necessary to check that the under-
lying data structure is well formed. For instance, the Standard Library implementation
of the unordered map library (that we use repeatedly) is implemented as a list of pairs,
and the predicate is necessary to ensure that there are no duplicate entries. With more
sophisticated implementations, the predicates can become quite involved. When we
embed the Standard Library in our nested structure, even putting aside the module
problem, we cannot embed the full type with its predicate, because it becomes a param-
eter of itself, and violates Coq’s strict positivity requirement.

The problem of defining a nested structure using the type of associative array imple-
mentations arises because this dependent type looks the same as a function, which can
of course include arbitrary 𝜆 terms. However, if Coq knows that this self application is
of a dependent inductive type — as opposed to a plain function — then Coq can see that
there is no inconsistency, and the nesting is permitted. To maintain a proper separation
of map interface from implementation, the interface of the Standard Library map would
not only need to include separate treatment of the underlying type and predicate, but
also allow type parameters in Module Types to be declared as inductive. Unfortunately,
Coq and its Standard Library do not facilitate either of these things, so at present we
are forced to make the underlying list implementation visible to our specification of a
nested logical instance, which is not ideal.

The richness of the dependent type system and the semantics of module parameters,
which allow early parameters to be given to later parameters, cause problems in code
export, when the type system or module system in the target executable language have
more restrictive semantics. We return to this subject in chapter 6, when we see that Coq’s
export facilities to OCaml result in verbose module signatures and some odd type casts.

5.2.2.4 Cofixpoints

The use of coinductive types and cofixpoints occurs only once in our formalization,
where our use of them axiomatizes infinite time. Fixpoints, by contrast, are pervasive.
Our single use of cofixpoints is nevertheless extremely important, because it allows us
to quantify over executions of arbitrary length.

Cofixpoints are duals of fixpoints. Instead of recursing on ever-smaller objects, cofix-
points recurse on ever-larger objects. In order to ensure that definitions of cofixpoints

146

respect this property, they have their own syntactic guard condition. It restricts recur-
sive calls, so that self-invocations may only occur under a constructor of a coinductive
type. Instances of coinductive types may be infinitely large, but may be finite if a base-
case constructor of the coinductive type is provided. The combination of these two
features can cause problems when we know that a subset of a cofixpoint’s possible in-
vocations produces finite branches of the coinductive result type. When we translate the
execution of nested instances into Coq, we would like to use the same super-step
functions in the nested invocations as in the top-level, but we know from the opera-
tional semantics that nested invocations are only considered in short bursts: otherwise,
they would starve for lack of input. We know that the structure of a nested instance
will lead it always to produce a member of the finite subset of the coinductive type of
execution traces, but we cannot use a cofixpoint for this, as there is no mechanism to
convince Coq’s type-checker that this particular case of deferred evaluation will actu-
ally terminate. The syntactic guard conditions of fixpoints and cofixpoints are mutually
incompatible. Coq assumes that a cofixpoint is executed in a lazy evaluation style, and
will not unfold the function from within a fixpoint environment, because, from the per-
spective of the calling fixpoint, it could produce a non-terminating execution which, if
accepted by Coq, would undermine the strong normalization6 and hence consistency of
the logic.

The solution to this problem that we will use in the next chapter involves factoring
out each branch of the mutally recursive fixpoint/cofixpoint, and instantiating it sep-
arately in fixpoint and cofixpoint forms. This allows us to avoid code duplication, but
enables us to satisfy Coq’s various syntactic guard conditions. Coq performs a kind of
reduction in which it takes the separate definitions of the arms of the mutually recursive
functions inline (Coq calls this 𝛿-reduction) before type-checking the whole fixpoint or
cofixpoint and the respective syntactic guard conditions.

5.2.2.5 Admitted lemmas in refinement proofs

These are lemmas that construct the necessary predicate to a 𝜎-type, using information
unpacked from predicates in the previous coordination object and inferences from the
structure of the function. However, because they have been admitted, not all relevant
truth terms have been passed to them, and so we know that in their present form they
cannot be proved. The ‘NOT EOUGH ARGS’ in the name of the lemma reminds us of this.
That we have a lemma that we know is not true is not as frightening as it sounds, because
every time we extract the code, Coq reminds us of axioms that have not been proven,
including this one. This programming paradigm is necessary when our code carries
proof, as without it, it would be impossible to extract a working prototype before the

6Term reductions always terminate, and terminate with the same result.

147

entire code base had been proven correct. We consider it is better to have placeholder
lemmas of the ‘NOT EOUGH ARGS’ than to rely on side lemmas to show correctness — lem-
mas that would be easier to forget about when hardening the system for a production
environment by removing all propositional axioms. Some functions would not even
type-check if we relied on side lemmas, because there would not be enough informa-
tion in some functions’ inner scopes to convince Coq of well-founded recursion. Coq
reminds us that we have admitted lemmas in a development when we try to export
code: a textual search for ‘NOT EOUGH ARGS’ lemmas and the command ‘Admitted’ tells
us where to find them. It is worth remarking that the admit tactic (the action of which
is to introduce a suitable axiom) often does not work because the tactic gives it every
possible argument it can find: when the context is within a fixpoint, this includes the
one whose size is decreasing, which results in Coq detecting that the fixpoint guard
condition has been violated. This problem remains undetected until the command ‘De-

fined.’ is entered, since the guard condition is only checked at the point where the
type-checking kernel is invoked, not by the tactic code.

5.3 Linkbetweenoperational semantics andCoq functions

The operational semantics as given in appendix C.3 are closely related to the Coq func-
tions given in this chapter, in the same way that the Coq functions given for the propo-
sitional calculus example followed their semantic rule counterparts. We cross-reference
the main rules in the text, and provide them in tabulated form in appendix D.2 and ap-
pendix D.3. The low level functions in Coq diverge from the way that the operational
semantics are given. This is because the operational semantics in Coq must provide
enough detail to be executable, whereas the objective of the semantic style of appendix
C.3 was to provide an intelligable summary, which elided some details. In addition,
the semantic style of appendix C.3 provides a functional form of associative arrays and
higher order mapping functions. Such forms can only be implemented indirectly in
Coq, which causes further divergence. Finally, the Coq formalization uses a number of
extra function arguments for convenience and efficiency at run-time, rather than deduc-
ing them from the static semantic object: this diverges from the rules of appendix C.3,
which deal with this information implicitly.

5.4 Static formalization parameters

There are two possible ways we could understand ‘static’ in this context. Given that we
are dealing with Coq, which has a rich module semantics, the static parameters can be
seen as instances of a type of module that are parameters to module functors. However,
module semantics have no special status in the underlying logic of Coq, since modules

148

can be syntactically unfolded into module-less Coq (albeit with unwieldy and repeti-
tious structures). There is nothing about modules that cannot be expressed in suitable
dependent types, which removes repetition both syntactically and semantically. Coq
module functors are largely a software engineering convenience, and we use them be-
cause many of the standard libraries of Coq that originated in the Compcert project
expect this style of programming. The second way of understanding ‘static’ parame-
ters in our language is more natural: the formalization or means of formalizing deeply
embedded type systems, identifier spaces, box languages and restrictions on temporal
semantics are fixed across a particular version of . To change any of these means to
change the version of .

This can be contrasted with dynamic parameters of the language, such as box lan-
guages, which are first order objects in . It so happens that the static parameters of
 have been matched with static module parameters in Coq in the present formal-
ization, but the choice is essentially arbitrary: in a logic such as Isabelle/, there are
no module semantics, as Isabelle theories are not modules, and cannot be, owing to de-
coupling of logic and meta-logic in Isabelle — theories are contained at the meta-logic
level.

5.4.1 Pre-HBCL, full HBCL, and the type of box languages

As we discussed above, the most general outer shell of is contained in Pre-,
which is a collection of inputs and outputs, the relationships between which may be
characterized by predicates. It provides the ontology of the environment: that envi-
ronment provides input streams that completely determine the evolution of a particu-
lar instance. Full provides a mechanism to fully specify designated output
memories in terms of those inputs over time, with reference to a single clock, canonically
international atomic time (). Full is not the only language that could adequately
specify these relationships. However, it maintains a high level of generality by further
stratifying itself into two more abstraction layers, as defined by harmonic box languages
and untimed box languages. The nested case of can be viewed as a special recursive
case of a harmonic box, but in order to produce a tractable mutual induction scheme in
Coq, the nested case is treated outside the harmonic box framework. There is no reason
why a completely different coordination language could not also be embedded in a har-
monic box, given an appropriate type system mapping. Similarly, the Church-Turing
thesis implies that we could also embed within another language.7

The untimed box language record corresponds with the abstract type of untimed
box languages given in the semantic domain in section 4.4.3.6.

7Albeit in a sandboxed ontology, unless we provide an ontology of the enclosing coordination language
and an ontological ‘bridge’ to that of the encapsulated instance.

149

Listing 5.2: The type of untimed box languages
Record UExprLang := {

CTDT : Type;
CTDTP : ProtoT → CTDT → Prop;
costB : CostBase TypeS CTDT CTDTP DataR DataP;
AST : Set;
parse : Encoding → AST;
sso : InpOutpTypes CTDT CTDTP → InpOutpTypes CTDT CTDTP →

Type;
compile (itypes otypes : InpOutpTypes CTDT CTDTP) :

option (sso itypes otypes);
reduce (itypes otypes : InpOutpTypes CTDT CTDTP) :

sso itypes otypes →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP itypes) →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP otypes)

}.

CTDT and CTDTP are the Coq types of the data structure that parametrize the cost function
for the expression language. CTDT is the concrete type and CTDTP is the predicate that
constrains its structure to a meaningful subset. These fields are present for future use,
since the cost function we use is, at present, flat. costB is the function that operates on
this data. Again, in the implementation we provide, this is flat over the type-space.
AST is the abstract syntax tree, which formalizes the syntactic types shown in section 4.2
as Coq Inductive types.

The interesting fields of Listing 5.2 are sso and reduce. sso stands for ‘static seman-
tic object’, and has a type of the Type Sort, dependent in the fingerprint of the untimed
 types of its inputs and outputs, and statements of the computational potential of
each. reduce is a function that executes a program encoded in the sso. When sso is
absorbed as a Curried argument into reduce, we have a Coq function that directly im-
plements the program in an arbitrary language. It is guaranteed to terminate since it is
a primitive recursive function in the logic of Coq, but it can nonetheless express a set of
terminating inhabitants of a Turing-complete language. The sso can only be successfully
compiled (i.e., compile gives its option argument in Some as opposed to None) if the par-
ticular program carries adequate proof of termination by appropriate cost annotations,
which a compile function can use to generate proofs of well-founded recursion. The
coordination language is oblivious to the choice of untimed box or expression language
(there may not be one at all if the harmonic box directly implements a temporally aware
expression language). As far as the formalized coordination language is concerned, the
reduction function is an ordinary Coq function.

The compile field of UExprLang has the Coq type of a compilation function, turning
an instance of the abstract syntax into an option type wrapping a static semantic ob-
ject. We do not implement this function in this development, but compile examples by
hand. The compilation paradigm is that of the proof-checker whose formalization is
given in appendix B. The option modifying the sso type enables the compiler to return
something (None) when the abstract syntax tree it is parsing disobeys the static semantic

150

rules.
The Coq representation of the binding of harmonic box languages to untimed box

languages is a synthesis corresponding to the abstract type of harmonic box languages
given in the semantic domain in section 4.4.3.11 and section 4.4.3.12. This composite
object is less flexible than the two separate objects, because it assumes all harmonic box
languages will consist of bindings to untimed languages. Given that we only have one
untimed box language, our example expression language, the contraction makes the
implementation simpler.

Each harmonic box has a signature that connects some of the instance inputs to out-
puts (these may be nested and/or not exposed in the instance’s interface). The idea is
that an overall predicate for an instance ensures that there are no unconnected mem-
ories, or memories that are connected more than once. Each harmonic box contains a
complete description of the relevant box language and the particular program in that
box language. This is inefficient in an implementation, but it mirrors the semantics
cleanly and could be optimized later. If exported to a pure functional language, the
compiler language is likely to remove the redundancy in any case.

Listing 5.3: The type of harmonic box languages
Record HBoxAbs := {

uexprlang : ubox.UExprLang;
boxfreqcorrectin : Freq →

ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop;
boxfreqcorrectout : Freq →

ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop;
IOtypePredIn : ∀(f : Freq)

(freqm : sig (boxfreqcorrectin f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop;

IOtypePredOut : ∀(f : Freq)
(freqm : sig (boxfreqcorrectout f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop;

convertInp : ∀
(f : Freq)(tf : TTime f)
(memvarmap : InMemModBox.otm.t ipm.Varid)
(ttypes : sig

(fun tmap ⇒
∃ vm,

InMapVaridConvertPred boxfreqcorrectin f memvarmap vm tmap))
(utypes : InpOutpTypes),
InTypePredConvert uexprlang boxfreqcorrectin f (proj1 sig ttypes) utypes
IOtypePredIn memvarmap →
InMemModBox.MDatBoxTime MDataInst.ReadEnabled
(proj1 sig ttypes) f tf →
option (sig (ubox.UDataPSTMatchesInpOutpTypes utypes));

convertOutp : ∀
(f : Freq)(tf : TTime f)
(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttypes : sig

(fun tmap ⇒ ∃ vm,
OutMapVaridConvertPred boxfreqcorrectout f varmemmap tmap vm))

(utypes : InpOutpTypes (ubox.CTDTP uexprlang)),
OutTypePredConvert uexprlang boxfreqcorrectout f (proj1 sig ttypes)
utypes IOtypePredOut varmemmap →
sig (ubox.UDataPSTMatchesInpOutpTypes utypes) →
OutMemModBox.MDatBoxTime MDataInst.WriteEnabled (proj1 sig ttypes) f tf

151

}.

Listing 5.3 shows the harmonic box binding. This binding is a parameter to the static
semantic object of a harmonic box, which is the object that is directly held by the coor-
dination language and called to compute harmonic boxes. uexprlang is the expression
language bound by this HBoxAbs. boxfreqcorrectin and boxfreqcorrectout are pred-
icates that restrict the input and output memory maps respectively. For the specific
binding of type HBoxAbs that we will go on to define, these predicates restrict the box
frequency to an integral multiple of each of the memory frequencies in the map. This
ensures that boxes obtain the same number of pieces of data on each time slice. The re-
striction is necessary because our type system does not have types of dynamically vari-
able size. IOtypePredIn and IOtypePredOut define a relation over the Cartesian product
of, in the first case, input memories and input data type to the untimed box, and in the
second case, output data type from the untimed box and output memories. This de-
fines the semantics of the functions that perform these conversions in predicate form.
convertInp converts its argument from a map of data with harmonic types into a
piece of data defined over untimed types, while convertOutp performs the inverse
operation. The other fields are predicates that ensure that the conversion functions are
not asked to convert incompatible types.

5.4.2 HBCL module design in Coq

The modular design of in Coq follows the structure of the language shown in Figure
A.3, repeated for convenience in Figure 5.1. Following the opposite direction of the
dependency arrows, progressive modules accumulate more and more arguments in the
module types on which they depend. This design removes arbitrary choices about type
system embeddings and identifiers from the coordination language specification and
implementation, treating them instead as parameters with the type of identifier and type
system embeddings. The module types do, however, specify how elements of the type
system are to be implemented: types are to be sized, and the type of data of these sized
types is intrinsically typed through Coq’s dependent typing.

The workflow has usually involved writing concrete modules and then abstracting
them into module types. This is an incomplete process, especially in the case of the
harmonic box and coordination modules, and there are at present many concrete def-
initions in module types that could be designed out in any further work. We view
the production of a working prototype interpreter as a priority, reflecting the opera-
tional semantics. If further work permits, more detail can be added to the structure of
predicates in parametrized 𝜎-types; the function types whose co-domains form these
strong types might then be factored out into module types or records that contain no

152

(a) Identifier specification
Ids

(b) OID specification
OIDs

(c) Plain type system
UTypeSys

(d) OID type system
UTypeSysOid

(e) Harmonic type system
HTypeSys

(f) Untimed box language
UBox

(g) Harmonic box language
HBox

(j) Instantiation module
Model instance

(h) Coordination model
Coord

(i) Coordination interpreter
CoordInterp

Figure 5.1: Structure of full HBCL

153

concrete functions. This would define the type of correct interpreters, dependent and
thus parametrized in the arbitrary choices about identifiers and type systems in the
foundational modules. In this way, all constructible interpreters would be constrained
to be correct. These correspond to predicates of the semantic domain in section 4.4.
It would also be much easier to reason about abstract properties of the language us-
ing such a predicate characterization than with reference to operational rules. However
these rules, realized in functions, are nonetheless essential existential proof that the type
of implementations is inhabited.

We give detailed listings of important definitions from the key concrete modules,
along with selected module types in appendix D.

5.5 Formalization of the coordination language

This section gives the details of how the coordination language of full is imple-
mented in Coq. First, we explain in detail how the super-step described in section
4.4.3.25 and given in more operational detail in appendix C.3 maps to the Coq code.
We then present the code for the rest of the semantic rules involved in the coordination
language, before presenting the semantics of the harmonic box binding.

Again, the full Coq sources take up a considerable amount of space, so we have given
the main rules in appendix D.5, and illustrate our discussion here with much smaller
gobbets.

The core of the coordination semantics of full is contained in the super-step.
We now unpack the functions that implement each substep. Those mutually recursive
functions referred to in each phase of this four-fold step are given as parameters to ordi-
nary functions. This enables the same semantics to be instantiated in both fixpoint and
cofixpoint forms for the nested and global levels of respectively.

5.5.1 Section variables

Each substep of the super-step takes some common parameters. These are set up as
variables using Coq’s sectioning mechanism. Within these sections these variables are
taken as undefined parameters, which are elevated to parameters of every defined term
that uses them on closure of the section. For this reason, these variables are declared
once, but are accessible to all of the super-step substeps. They are given in Listing 5.4.

Listing 5.4: The Section variables
Variable f : Freq.
Variable linstsig : LInstSignature f .
Variable instTypeScopeMap : LInstMapMod.t LInstSignatureRaw.
Variable lissolib : LibClos instTypeScopeMap.
Variable lisso : Lisso f linstsig instTypeScopeMap lissolib.

154

The frequency with which the step is taken is given by ‘f’. ‘linstsig’ is an instance
signature. It has an underlying raw inductive type beneath a 𝜎-type definition, and
presents the types of exposed input and output memories on the instance interface.
The frequency qualification is a parameter to the inductive predicate of the underlying
𝜎-type, which confirms that the frequency given is the lowest common multiple of the
individual member frequencies. Aggregate frequencies are important in determining
the resolution with which the instance must be stepped, since any activity occurring
between each tick of the associated clock can be compressed into the state space transi-
tion of the instance signature frequency. instTypeScopeMap is a map of instance signa-
tures indexed by instance identifiers. This is the set of instances to which the instance
in question may refer, concrete instantiations of which must be provided in a closure
object if the instance in question is itself to be fully specified without re-exporting the
same dependencies. lissolib is that closure. Finally lisso is the instance itself, carry-
ing as dependent arguments all of the objects we have just mentioned. This allows us
to recruit Coq’s type system to ensure that logical instances have the correct type and
temporal properties for the uses to which they are to be assigned. The entry point to the
interpreter is a Coq function to which this static semantic object is applied as a Curried
argument, producing another function that takes an input stream and from it generates
a trace of the system history.

5.5.2 FIFO step and entry point

Rule C.133, which implements execution, is realized in Coq in Listing D.18. The
implementation in Coq departs slightly from the rule C.133, in that nested s are not
processed until the next nested box step. We now examine this piece by piece. Listing 5.5
shows how FIFOsStepCoordImpl encapsulates a fixpoint and its accessibility predicate.

Listing 5.5: The shape of the FIFO step
Definition FIFOsStepCoordImpl(t : TTime f)

(mti : InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig))))

(cstate :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap

lissolib lisso))
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig))))
:
((sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib

lisso)) × InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig))))%type.
refine (

let fix FIFOsStepCoordImplInner(f’ :)(t’ : TTime f’)(linstsig’ :)
(instTypeScopeMap’ :)(lissolib’ :)(lisso’ :)
(mti’ : InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig’))))
(cstate’ :

sig (CoordStateInnerFIFOsEnabled f’ t’ linstsig’ instTypeScopeMap’
lissolib’ lisso’))(cstate’Acc : Acc CoordStateRecSizeLT (‘ (‘cstate’)))

155

{ struct cstate’Acc } :
((sig (CoordStateInnerMemFBEnabled f’ t’ linstsig’ instTypeScopeMap’

lissolib’ lisso’)) ×
InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig)))
)%type :=

[Inner fixpoint definition omitted]
in

FIFOsStepCoordImplInner f t linstsig instTypeScopeMap lissolib
lisso mti cstate

).
Defined.

The arguments to FIFOsStepCoordImpl include the variables declared in Listing 5.4. ‘t’
is the present time slice. It is a natural number that counts ticks at the rate given by its
dependent argument f. mti is a map of input memory states, satisfying the signature
linstsig. The argument implied by the ‘ ’ is the frequency of the input memory (‘

(InstSigInputMems (‘linstsig))). InstSigInputMems is just a convenience to extract
this from the signature.

cstate accommodates the object that holds the entire state space of the instance. It
is a 𝜎-type of a 𝜎-type. The inner object is qualified by a predicate that ensures that
it is statically well-formed. By this, we mean that every memory matches the static
signature according to the memory identifiers, and the same for nested instances. The
mapping between static and dynamic maps of this sort is strictly bijective. The temporal
predicate in the outer 𝜎-type, CoordStateFIFOsEnabled, makes the lists of time-stamped
values in each memory compatible with each other and with the time t. This outer
predicate is unique to each super-step substep. In the case of the step, the inner -
box memories must be enabled for the current time slice. There is no mention of trace
objects in rule C.133 or FIFOsStepCoordImpl. Trace objects are added in the super-step
assembly phase, which is dealt with in rule C.128, rule C.129, rule C.130, rule C.131 and
rule C.132, and in section 5.5.7. mtoNest is a convenience, containing no information that
cannot be garnered from cstate. The output is a product of the next coordination state
object and the input memories that need to be dealt with by nested instances. Here, the
approach diverges from that given in rule C.133. Rule C.133 does not need this extra data
for nested inputs, because it updates the coordination state objects in-place in a single
invocation of the rule. The interpreter as presently realized instead defers these updates
to the in-place objects until the nested instances are run, hence the need to keep track
of this information in a product type. As further work, it is envisaged that this would
be removed, which explains why the rule is structured as a fixpoint decreasing on the
size of the instance definition. This is why arguments in the inner fixpoint are primed—

they would change as the nested structure is traversed, with the instance being replaced
by the relevant inner instance. We now examine Listing D.18 in digestible gobbets.

156

Listing 5.6: The coordination object deconstruction matches

match cstate’ as cstate’ return = cstate’ → with
| exist csstatic cstp ⇒ fun J : cstate’ = exist csstatic cstp ⇒

match csstatic as csstatic return = csstatic → with
| exist csr cssp ⇒ fun J0 ⇒

match csr as csr return = csr → with
| CoordStateRaw make mti” mto’ csn
⇒
fun J1 ⇒

Listing 5.6 shows how the raw underlying coordination state object is unwrapped from
its 𝜎-types and then itself deconstructed.

The matched variables that emerge from this deconstruction process (in a context
where necessary facts about them can be proved) are the input memory map mti’’, the
output memory map mto’, and the nested coordination state map csn.

Listing 5.7: Deconstruction of the logical instance object

match (‘lisso’) with
LInstSSORaw make fmi’ fmo’ fmil fmol fmin fmon
fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts
insttshiftmap libmapsigmap ⇒

The logical instance object contains several arguments, which we describe in turn. First,
there are a number of frequencies. These are not strictly necessary, since they are ag-
gregate (lowest common multiple) functions of the frequencies of memories specified
within the instance object. They are there to improve the efficiency of the code, since to
delve into the object for these frequencies every time they were needed would be unnec-
essarily computationally intensive. fmi’ is the overall input frequency of the instance
interface; fmo’ is the overall output frequency. fmil is the overall input frequency of lo-
cally defined memories; fmol does the same for locally defined outputs. Similarly, fmin
is the overall input frequency of nested memories whose interfaces are exposed to the
enclosing instance in question; fmondoes the same for nested outputs. These frequencies
are needed in order to determine if local and/or nested operations need to be run on a
particular input tick, whose frequency is the lowest common multiple of both input and
output memories of local and nested memories. Similarly, the overall frequency of the
instance (f’’’) is the lowest common multiple of all input and output frequencies. This
is the same as the lowest common multiple of fl and fn, which are the lowest common
multiples of both input and output local and nested memories respectively.

mfi’ and mfo’ are the static specification maps for the locally defined input and out-
put memory maps. mfin and mfon do the same for the nested case. boxmap is the map
of local harmonic boxes. This specifies the computational element of the instance that

157

is not due to nested instances.

obs and manif map the declared input and output memories of the instance respec-
tively (which are unqualified identifiers) to identifiers that may be qualified by a nested
instance. This ensures that how the instance uses nested interfaces is an implementation
detail hidden from the user of the instance. The idea is that the user specifies the de-
sired behaviour using a predicate, implementations of which are bisimilar modulo that
predicate.

fifos associate output memories to input memories, thus specifying s. The tem-
poral properties of those s are implicit in the memories at either end. The same
connection logic that applies to boxmap also applies to fifos.

nestlinsts is a map of one-off nested instances. That is, they are directly defined
and instantiated in the same place by their parent instance, and cannot be instantiated
more than once or by any other instance. typeinsts is a map of instances that are spec-
ified elsewhere in an instance library. The library may be local or defined somewhere
else. The libraries may be nested. The search semantics for libraries involve first look-
ing in the local library, and then stepping back out of successive scopes and searching
again, until either the instance definition is found, or the search fails at global scope.
These resolution semantics ensure that no reference need be made to the absolute of
the instance definition, and hence resolution semantics are invariant regardless of the
prepended or instance environment.

instsigdat is a map that associates a signature and a set of dependencies with each
required library instance. The signature ensures that a resolved library will fit the use
to which it is put; the set of instance dependencies is required to establish the instances
that may parametrize each such library instance’s behaviour, and which need to be in-
cluded in the closure of the current instance. This allows instances to be functors of other
instances. libinsts is the local library of instances. insttshiftmap makes it possible to
shift the time frame of the instantiated instances. This is necessary because, for exam-
ple, if an instance occurs twice in a pipeline, the offsets from the current time for any
particular time slice will be different in each case: older values will be considered by the
second instance in the pipeline at the same time the newer values are being considered
by the first instance in the pipeline. The time shift allows these delay semantics to be
expressed from the point of view of the instance that itself instantiates the pipeline, but
allows, by introducing a clock skew, the semantics inside the nested pipeline instances
to be oblivious to this. This allows these inner instances to be instantiated in arbitrary
temporal contexts. These facilities are used extensively in chapter 6.

libmapsigmap gives the signature of each map in the library. This could be derived
from the library itself, but is present as a convenience to execution and proof.

158

Listing 5.8: Resolution of nest-qualified instance inputs
let mtiNestResolved :=

exist (inMemBoxMapKeys (resolveObsInstQual obs)
(‘ (mti’)))

in

This operation makes use of helper functions to recast the input memories so that those
that are exposing some interface from a nested instance have the outer label derefer-
enced to the nested instance-qualified one.

Listing 5.9: Prepending of local inputs

let localUpdatedMti :
InMemModInst.MDatMapTime fmil mfi’ :=
let localMtiChanges :=

FilterInputMapLocal mtiNestResolved
in
mtiPrepend (‘ (ttimeConv fmil f’ t’))

(exist (InMemModInst.MDatMapFreqTimePred
mfi’)

mti”) localMtiChanges
in

In order to prepend local inputs, the memories are filtered to isolate those that are due
for execution on the current cycle. The new data values can then be prepended to the
list of values that are already in the memory. We need to do this because the core
step does not process inputs that originate outside the scope of the instance.

Listing 5.10: Local FIFO execution
let (newLocMap, newNestMap) :=

let nestedUpdatedMti :=
let nestedMtiChanges :=

FilterInputMapNested (‘linstsig’)
mtiNestResolved
in
(exist (InMemModInst.MDatMapFreqTimePred

mfin) (‘nestedMtiChanges))
in

processFIFOs f’ t’ fmil fmin
mfi’ mfin localUpdatedMti nestedUpdatedMti
linstsig’ instTypeScopeMap’ lissolib’
lisso’ cstate’
(VaridMapMod.elements fifos)
in

First the nested inputs are updated in a similar way to the local ones, then the function
processFIFOs is called to step the local s. This moves values from box outputs to
inputs as soon as they become available. A future implementation might keep explicit
state for s, as is discussed in appendix C.3.2 and section 6.9.3. The -processing

159

function returns local and nested input maps separately, since the nested map must be
retained until it can be fed to the relevant nested box for deferred processing when it
launches its own -step. This awkwardness is another reason why we would now
prefer to update all memories in-place, to avoid passing round the supplementary ar-
guments that do not appear in the semantic rules.

Listing 5.11: Nested FIFO execution

let newNestedCoordStates :
LInstMapMod.t CoordStateRaw :=
let csnmok :

LInstMapModPred.NoDupType csn :=
in
(LInstMapMod.Build t csnmok)
in

This is a null operation, as we are currently not updating nested inputs. We should
observe, however, that the scope of such an operation is the updating of nested inputs
following memory dereferencing: movement of the only takes place during the
nested invocation of a box, not a , and at that point the local code executes.

Listing 5.12: Construction of the new raw coordination state object

let newCSR := CoordStateRaw make
(InMemBoxWPties.update

(‘localUpdatedMti) (‘newLocMap))
mto’
(LInstMapMod.this

newNestedCoordStates)
in

The construction of the new raw coordination state object involves re-combining the
constituent maps, which have now been updated with new input values.

Listing 5.13: Construction of the new strong coordination object

let csStaticStrong := exist
(CoordStateStaticPred f’

linstsig’ instTypeScopeMap’
lissolib’ lisso’) newCSR

in
let newUpdatedNestData :=

exist
(InMemBoxWPties.update (‘mti)

(‘newNestMap))
in
(exist

(CoordStateInnerMemFBEnabled
f’ t’ linstsig’
instTypeScopeMap’ lissolib’
lisso’) csStaticStrong ,

newUpdatedNestData
)

160

In Listing 5.13, we construct the new strong version of the coordination object, together
with predicates for static and dynamic well-formedness. We admit the proofs for our
stubbed-out predicates. The dynamic predicate has moved on to the -box-enabled
state, the precondition for the next substep of the super-step to happen. This next step is
not dependent on matching any further data from the input stream, so the four substeps
can be thought of as being compressible into a single super-step. We retain the four
separate phases for clarity and for reasons explained in section 5.5.3.

Listing 5.14: Match ends and supply of the equality proof
end

end eq refl
end eq refl

end eq refl

Finally, as each match concludes, we supply the equality proofs for each match.

5.5.3 FIFO-box memory step

Rule C.134, which transforms the -box memory from a writable into a readable form
and throws away stale values, is realized in Coq in Listing D.20. We now break this down
and examine it.The basic structure of the function, extraction of the coordination state
object and application of temporal filters are essentially the same as in section 5.5.2, so
we start by looking at memory execution.

Listing 5.15: Memory execution
let mtiMemsExecuted :=

InMemModBox.otm.map executeMem mtiMemTimeMapActiveSubset
in
let mtoMemsExecuted :=

OutMemModBox.otm.map executeMem mtoMemTimeMapActiveSubset
in

Memory execution involves reversing the list in a call to executeMem under a standard
higher-order map function over the map of memories and throwing away stale values.
The simplicity of this operation raises the question of why it is not incorporated in either
the substantive box or execution steps. The reason is that we might later want to add
a double-buffered memory in conjunction with a modified realization that stores its
own state. Such a memory would need to be flushed at a moment when it is guaranteed
not to conflict with a read or write by a box or . Even if not using a double buffer,
some kind of temporal firewall is needed to produce a witness to the physical recon-
figuration of data implicit in throwing away stale values. We also wish to stress that
memories function independently of boxes or s, triggered only by the global clock.

161

While we could devise a bisimilar formalism that subsumed all steps (including double-
buffered memories and the box step) into the driving step, this would obscure the
time-triggered semantics. It would therefore not be a good canonical presentation.

Listing 5.16: Memory execution update
let mtiRawNew :=

InMemBoxWPties.update (mti) mtiMemsExecuted
in
let mtoRawNew :=

OutMemBoxWPties.update (mto) mtoMemsExecuted
in

The memory update integrates the changed memories into the map that holds the mem-
ories that were not scheduled to change on this cycle, following the same pattern as the
 step of section 5.5.2.

Listing 5.17: Construction of the new coordination state object
let newCoordStateRaw :=

CoordStateRaw make mtiRawNew mtoRawNew csn
in
let newCoordStateRawStrongStatic :

sig (CoordStateStaticPred f’ linstsig’
instTypeScopeMap’ lissolib’ lisso’) :=

exist newCoordStateRaw
(depCoordStateStaticPredProcessNestedCSMapNOT ENOUGH ARGS

)
in
exist (CoordStateBoxesEnabled f’

(tNext t’)
linstsig’ instTypeScopeMap’ lissolib’
lisso’) newCoordStateRawStrongStatic

(depCoordStateOuterFIFOsEnabledProcessNestedCSMapNOT ENOUGH ARGS
)

The construction of the strong (𝜎-type) dynamic coordination object is the same as in
the case, but with two differences.

The first difference is that two admitted lemmas appear suffixed ‘NOT EOUGH ARGS’,
indicating that the lemmas will need to be supplied with more arguments from the
current context before they can be proved.

The second difference is that the time of the next step is modified by tNext, because
the next step being invoked is the box step, which by definition is the first thing to occur
in a new time slice.

The equality proofs are the same as for the case.

5.5.4 Box step

The box step executes all of the harmonic boxes in the current logical instance and all its
nested instances, reading values from the input (-box) memories and writing values

162

to the output (box-) memories. It was described by rule C.135, and is realized in Coq
in Listing D.21, while rule C.136 is covered by StepFunc in Listing D.22. We now look at
each part in turn.

Listing 5.18: The box step package
Definition traceBoxesGenNFP(t : TTime f)

(currState :
sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap lissolib

lisso))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(traceNestBoxesGenFunc : ∀ fn

(csFIFOsEnabled :
sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateInnerFIFOsEnabled))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig)))),
(sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateOuterFIFOsEnabled) ×
sig (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))

((InstSigOutputMems (‘linstsig))))
)%type)

(traceMemBFGenFunc : ∀
csMemBFEnabled
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig)))),
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib
lisso csMemBFEnabled

)
:
(TraceBoxesEnab f t linstsig instTypeScopeMap lissolib lisso currState
)%type.

[Function body omitted]
Defined.

The function traceBoxesGenNFP in Listing 5.18 packages the complete box execution
step, which drives the execution of locally declared boxes, and those nested within fur-
ther logical instances. The features of note are the function parameters traceNestBox-

esGenFunc and traceMemBFGenFunc. These are instantiated in the fixpoint and cofixpoint
in which they are used by supplying the name of the function itself. We have by con-
vention named this sort of function with the suffix ‘NFP’ for ‘no fixpoint’ to emphasize
that the definition does not by itself set up complete recursion over the coinductive type
of traces. The mtiNest parameter carries the new input values for nested boxes. If the
code is modified to update nested inputs in-place, this argument may be removed.

The match of the exist constructor of the 𝜎-type and the deconstruction of the in-
stance object are identical to those in section 5.5.2.

Listing 5.19: Frequency and time proofs
let fLocalDivPrf : FreqDivide fl f :=

in let instsigInDivPrf :
FreqDivide (InstSigFreqMemIn (‘linstsig)) f :=
in let fmiDivPrf : FreqDivide fmil f :=

in let fmoDivPrf : FreqDivide fmol f :=

163

in let prfnxtim : isNextTimeStep fl (‘ (ttimeConv fl f t fLocalDivPrf))
(tNext (‘ (ttimeConv fl f t fLocalDivPrf))) :=
tNextIsNextTimeStep

The first five terms in Listing 5.19, suffixed DivPrf, are proof terms required by time
conversion functions. Time values are represented as natural numbers of ticks of a clock
running at the frequency that is a dependent argument to the time. When a time must
be supplied that is on a different frequency base, it must be converted to a different
number of ticks in order to represent the same time. This conversion function requires a
proof that the one frequency divides the other exactly; if it did not, the conversion could
not be guranteed to give sensible results. prfnxtim certifies that tNext t is the next tick
after t. This follows from the definition of tNext.

Listing 5.20: Box step predicate
in let boxesStepPred : BoxesStep.StepSSOPred

fl fmil fmol mfi mfo hboxmap :=

The box step predicate strengthens the input and output maps for the box by providing
proof that the input and output memory maps for the local boxes are coherent in the
context of the current time. This is to be inferred from the coordination state dynamic
predicate, which is present at this scope.

Listing 5.21: Instance time and frequency consistency proofs
in let lissoLeibLoc : FreqMemsInLissoLeib

fl fmil fmol mfi mfo
(‘ lisso) := in
let lissoLeibNest :

FreqNestInLissoLeib fn
(‘ lisso) := in

The proof terms of Listing 5.21 are needed to show the equivalence of the consistency
of the frequencies in the environment, as indexed by frequency as a dependent argu-
ment, and the concrete frequency matched in the instance. This inelegance is needed
for the convenience of matching on a frequency that is implicit in the structure of the in-
stance definition object, but would be computationally expensive to extract. We would
consider its removal in a future reference interpreter.

Listing 5.22: Invocation of nested boxes evaluation
let nb := (traceNestBoxesGenFunc f

(currStateNestBoxes t currState f)) mtiNest
in

In Listing 5.22, the parameter containing the nested box function is invoked, producing

164

a trace which is in a coinductive type, but of a finite length: the nested instance can
only run until it blocks on input from the enclosing instance. Coq’s syntactic guard
conditions force us to provide this function in a fixpoint version.

Listing 5.23: Memory map time conversions
let tfl := (‘ (ttimeConv fl f t fLocalDivPrf)) in

let tfl’ := (tNext (‘ (ttimeConv fl f t fLocalDivPrf))) in
let tti := (‘ (ttimeConv fmil f t fmiDivPrf)) in

let tti’ := (‘ (ttimeConv fmil f (tNext t) fmiDivPrf)) in
let tto := (‘ (ttimeConv fmol f t fmoDivPrf)) in

let tto’ := (‘ (ttimeConv fmol f (tNext t) fmoDivPrf)) in

Listing 5.23 handles the time conversions for the frequencies of input and output maps.

Listing 5.24: Inner map extraction
let mti :=

(mtiCurrStateMti
fl fmil fmol t mfi mfo currState lissoLeibLoc)

in let mto :=
(mtiCurrStateMto

fl fmil fmol t mfi mfo currState lissoLeibLoc) in
let nestCSR := (currStateNestBoxes t currState fn)

The definitions of Listing 5.24 access the input, output and nested maps from the coor-
dination object.

Listing 5.25: Execution of local boxes
in let outp :=

BoxesStepImpl.StepFunc fl fmil fmol
tfl tfl’ tti tti’ tto tto’
mfi mfo (exist boxesStepPred)
(tNextIsNextTimeStep) (exist

(boxesPre fmil tti mfi mti))
in

Listing 5.25 invokes the local box execution function, producing output memories. We
return to it in Listing 5.30.

Listing 5.26: Prepending the box output
let outpPrepended :=

mtoPrepend fmol fmol (‘ (ttimeConv fmol f t))
mfo mfo mto (‘ (‘outp))
in

Listing 5.26 prepends the outputs generated by Listing 5.25 to the relevant memories in
the local maps. Some of these memories — the ones that were not scheduled to run in
this tick — will be unaffected by this procedure.

165

Listing 5.27: Construction of the new strong map of nested instance states
let nestCSR’ := (exist (‘ (fst nb))) in

Listing 5.27 shows the map that results from Listing 5.22 being strengthened with the
necessary predicate to make it a valid nested map of the current instance.

Listing 5.28: Construction of the coordination state object at current scope
let cstateNext := (buildCurrStateMemBF fl fn fmil

fmol t tfl’ tti’ tto’ mfi mfo mti outpPrepended
nestCSR’) in

Listing 5.28 makes the new coordination state for the current instance out of the original
local input map, the new local output map, and the new nested map.

Listing 5.29: Construction of the new trace object
let traceBF :=

let mtoResolved :=
exist (outMemBoxMapKeys (resolveManifInstQualRev manif)

(‘ (‘ (snd nb))))
in
traceMemBFGenFunc cstateNext (‘ (snd nb))
in let bsteppre := in let bsteppost := in

TraceBoxesStep
f t linstsig instTypeScopeMap lissolib lisso fl fn
fmil fmol tfl tfl’ t
(‘ (ttimeConv (InstSigFreqMemIn (‘linstsig)) f t

instsigInDivPrf)) tti tti’ tto tto’ mfi mfo
(exist boxesStepPred) mti mto mti outpPrepended
nestCSR nestCSR’ prfnxtim bsteppre bsteppost currState cstateNext

traceBF

Listing 5.29 makes a new trace by wrapping cstateNext from Listing 5.28 around the old
trace, using the inductive constructor of the coinductive box trace type. This is the only
constructor of this type: the only terminal constructor is in the trace type, but this
is accessible from the box trace type because the trace types are mutually coinductive,
and could be reduced to a single non-coinductive type if we dispensed with building
separate trace types for the explict substeps of our super-step.

Listing 5.30: Local box step function
Definition StepFunc(f fmi fmo : Freq)

(t t’ : TTime f CoordPhase)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(stepSSO : BoxesStep.StepSSO f fmi fmo mfi mfo)
(nexttimeprf : isNextTimeStep f t t’)
(instate : sig (InMemModInst.MDatMapModeReadPred ti mfi)) :
sig (BoxesStep.StepPred

f fmi fmo t t’ ti ti’ to to’ mfi mfo stepSSO nexttimeprf instate).

166

The local box step function executes all of the harmonic boxes local to the logical in-
stance. We now review its arguments. f, fmi and fmo are the familiar overall frequency,
input memory map frequency and output memory map frequency respectively. They
are again conveniences, these frequencies being a function of the memory maps in ques-
tion. The times t, ti and to all refer to the time of the present slice, couched in terms
of their respective frequencies. The primed versions of these variables correspond to
the next time slice: they are needed because the time of the memories updated after
execution is incremented to the next time slice, and the predicates over these memories
need to be qualified by these new times. Again, these arguments are conveniences, since
they can be derived from the current time. We prefer this approach rather than using
the tNext function, since the former approach is in better accord with the declarative
style suggested by a predicate-driven style of programming. mfi and mfo are the input
and output specification maps for the memories that are connected to the boxes being
stepped. stepSSO is a composite 𝜎-type, that provides a map of harmonic box specifi-
cations, together with identifier-mapping information to bind their interfaces to their
environment. nexttimeprf ensures the relationship between the time values in scope is
what we have just described. Finally, instate is the state of the input memories before
execution. Boxes do not in general keep internal state between invocations, although
this is a possible extension project. The only exception to this is the nested box situa-
tion, which is treated in this formalization as a separate class of object. See section 5.5.5
for a description of how this works.

Listing 5.31: Box-processing fixpoint
let fix processBoxesMapAsList

(dl : list (ipm.boxidPred.PredidDecidable.t ×
(HBoxSSONonDep × InMemModBox.otm.t Varid × VaridMapMod.t HBCL OidMemBF)))

(inclprf : SetoidList.inclA (@BoxTypeIdMapMod.eq key elt) dl
(BoxTypeIdMapMod.elements

((‘ (stepSSO))))
) { struct dl }
: OutMemModBox.MDatTimeMapRaw :=
match dl as dl return = dl → with
| nil ⇒ fun ⇒ OutMemModBox.otm.empty
| (hbx :: dl’)%list ⇒ fun J : dl = (hbx :: dl’)%list ⇒

let
accumMap : OutMemModBox.MDatTimeMapRaw :=
processBoxesMapAsList dl’
in
OutMemBoxWPties.update
(accumMap)
(stepOneBox t ti to mfi mfo instate hbx)

end eq refl
in

The box-processing function renders the map of boxes as an (arbitrarily ordered) list,
and goes through each box in turn, updating the overall memory map to reflect each

167

box execution. This use of lists satisfies the well-foundedness requirement, because re-
cursive calls decrease structurally on the size of the list. The drawback of this approach
is that it loses logical generality of the operation, which is more satisfactorily viewed
as belonging to the ‘map reduce’ paradigm of functional programming: this could be a
future refinement, using the unordered fold function of the Standard Library map inter-
face. However, this solution breaks down when we try and use the same technique with
nested maps. The computation for each box is triggered in processBoxesMapAsList by
the invocation of stepOneBox. We start to review this function shortly in Listing 5.34. The
term inclprf allows us to conclude that properties of the map in which each list element
must be found, and which imply things about each such element, are also properties that
hold over each sub-list derived from that map.

Listing 5.32: Raw output subset construction
let outputSubsetRaw : OutMemModInst.MDatMapTime fmo mfo := exist

(processBoxesMapAsList (BoxTypeIdMapMod.elements
(

(‘ (stepSSO))))

(inclReflBoxid))

in

outputSubsetRaw is built by invoking processBoxesMapAsList.

Listing 5.33: Strong output subset construction
let outputSubset := exist outputSubsetRaw in

exist (BoxesStep.StepPred
f fmi fmo t t’ ti ti’ to to’ mfi mfo stepSSO nexttimeprf instate)

outputSubset

Listing 5.33 shows the requirement to establish the temporal correctness of the memories
following their updates by box execution. In common with many such book-keeping
propositions, we have admitted them in the Coq code without proof.

Listing 5.34: Single box step variables
Variables f fmi fmo : Freq.
Variable t : TTime f .
Variable ti : TTime fmi.
Variable to : TTime fmo.
Variable mfi : InMemModInst.MDatFreqMap fmi.
Variable mfo : OutMemModInst.MDatFreqMap fmo.
Variable stepSSO : BoxesStep.StepSSO f fmi fmo mfi mfo.
Variable instate : sig (InMemModInst.MDatMapModeReadPred ti mfi).
Variable hbx : boxidPred.PredidDecidable.t ×

(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF)).

Hypothesis inprf : SetoidList.InA (@BoxTypeIdMapMod.eq key elt) hbx
(BoxTypeIdMapMod.elements (‘stepSSO)).

168

These variables form the arguments to stepOneBox and its supporting helper functions
and lemmas. They have the same meanings as in StepFunc, although the variable hbox

is new. This is the specification of the particular harmonic box that stepOneBox is to
process.

Listing 5.35: Single box step harmonic box matches
Definition stepOneBox : OutMemModBox.MDatTimeMapRaw.

match (snd hbx) as hbxt return = hbxt → with
| (Build HBoxSSONonDep hbf hbfi hbfo hbinmem hboutmem hbsso,

inmemmap, outmemmap) ⇒
fun J ⇒

match hbsso as hbsso return = hbsso → with
| exist hbraw hbpred ⇒ fun J1 ⇒

The first match of Listing 5.35 unpacks the indexed form of the harmonic box static se-
mantic object into the arguments doing the indexing and the dependent type that those
arguments index. It also deconstructs the product type that holds the information for
binding the harmonic box’s variables to its environment. This paradigm of unpacking
the indexing arguments to a dependent type built from a parametrized 𝜎-type occurs
repeatedly in this development. It is a convenient way to build a prototype. These index-
ing arguments are implicit in the harmonic box itself, and it would be neater to recover
them (insofar as they are needed only as arguments to other predicates) from a single
predicate that was constant across the map, reducing the number of redundant matches
in the exported code. Even so, there are substantial benefits to containing harmonic
boxes in a heavily indexed type such as this, since any inhabitant of this dependent type
(parametrized on the properties of its environment) can more easily be guaranteed to
produce terminating functions when they are supplied to the evaluation machinery. It
is this that makes worthwhile the apparent inconveniences of heterogeneous dependent
types in maps. This sort of indexing is in a similar spirit to that used by Chlipala in his
intrinsic embeddings of lamda calculi in Coq [46, 48]. The second match of Listing 5.35
extracts the raw data object from the 𝜎-type in the ordinary way, making the predicate
accessible to proofs involved in constructing the next 𝜎-type.

Listing 5.36: Single box step time conversions
let thb := ‘ (ttimeConv hbf t)

in
let thfi := ‘ (ttimeConv hbfi ti)

in
let thfo := ‘ (ttimeConv hbfo to)

in

The time conversions of Listing 5.36 recast the current time into the clock frequencies of

169

the subsets of the input and output memory maps that are used by the harmonic box in
question (thfi and thfo), and the overall harmonic box frequency (thb).

Listing 5.37: Strong input map recovery
let inp :

InMemModBox.MDatBoxTime MDataInst.ReadEnabled
(InMemModBox.otm.map MDataTypeInst.MDFE boxMemDat (‘mfi)) hbfi thfi :=
exist (‘ ((‘instate)))
in

Listing 5.37 recovers the 𝜎-type version of the input map, so it is suitable for feeding as
an argument to the invocation of a harmonic box execution.

Listing 5.38: Single box step computation result
let hboxresult := HBoxStep hbf thb thfi

thfo

hbinmem hboutmem inmemmap outmemmap
(InMemModBox.otm.map (MDataTypeInst.MDFE boxMemDat) (‘mfi))
(OutMemModBox.otm.map (MDataTypeInst.MDFE boxMemDat) (‘mfo))
hbsso inp
in (‘ (‘ hboxresult))

Listing 5.38 constructs the result of the harmonic box computation by calling HBoxStep.
HBoxStep is a helper function of the harmonic box that binds arguments in the form spec-
ified by the harmonic box language given in the harmonic box static semantic object. In
the current implementation, this in turn immediately binds the types of arguments and
results to an untimed box language, which in turn wraps our basic expression language.
Temporal data is stripped off when an untimed box language is used, and re-added ac-
cording to static rules when the output is bound back into the harmonic box environ-
ment. Further detail of the harmonic box formalization can be found in section 5.4 and
appendix D.1.7.

5.5.5 Nested box step

Rule C.139 is realized in Coq in Listing D.25. We now look at this in more detail.

Listing 5.39: The FIFO function variable
Variable traceFIFOsGenFunc : ∀

f linstsig instTypeScopeMap lissolib
lisso t

csInnerFIFOsEnabled
(mti : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig))))
,

170

TraceFIFOsEnab f t linstsig instTypeScopeMap
lissolib lisso
csInnerFIFOsEnabled.

The -processing function is set out as a section variable in Listing 5.39. This is in-
stantiated by the fixpoint version of that function, since in a nested context, instance
executions must always terminate. In the present version of the formalization, where
input memories are given as parameters in nested cases (as opposed to being modified
in-place by an enclosing instance), the stream of input data given is restricted to finite
instances of the input data stream coinductive type.

Listing 5.40: The nested box processing entry point

Definition traceNestBoxesGenNFP(fn : Freq)(t : TTime f)
(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateInnerFIFOsEnabled))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig)))) :
(sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateOuterFIFOsEnabled) ×
sig (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))

((InstSigOutputMems (‘linstsig))))
)%type.

The nested box function takes two interesting arguments, as well as the familiar fre-
quency and time parameters, and the -processing variable of Listing 5.39. These are
nestCSR, which is the map of nested coordination objects, and mtiNest, which is the in-
put data for each of these coordination states. The return type is the Cartesian product
of the new coordination state map (wrapped by a suitable predicate) and the output
data that will be used by the next step at the scope of the parent instance. The latter
term is a convenience that can be derived entirely from the former.

Listing 5.41: Set-up of the nested box processing fixpoint

let fix processNestedInst
(l dl : list (HBCL OidLInst × (CSTempCorrectND × TTFL)))
(inclprf : SetoidList.inclA (@LInstMapMod.eq key elt) dl l)
(inprf : boxesEnabNestPred t l)
(mapsofar : LInstMapMod.t CSTempCorrectND)
(outdatsofar : OutMemModBox.MDatTimeMapRaw)
: ((LInstMapMod.t CSTempCorrectND) × OutMemModBox.MDatTimeMapRaw)%type :=
match dl as dl return = dl → with
| nil ⇒ fun ⇒ (mapsofar, outdatsofar)
| cons (v, (cs, ttfl)) m’ ⇒ fun J : dl = cons (v, (cs, ttfl)) m’ ⇒

Listing 5.41 sets up the inner fixpoint that traverses the map of nested instances and
processes each one in turn. The same issues of list independence that we discussed in
Listing 5.31 apply here.

171

Listing 5.42: Recursive call of nested box processing fixpoint

let mnew := processNestedInst
l m’ (inclNest inclprf J)

inprf mapsofar outdatsofar in

Listing 5.42 invokes the processing of the nested boxes and assigns the updated map to
mnew.

Listing 5.43: Setting up the new nested coordination state

let csnew :=
match TTseqb (ttimeTTFLAdjust f (tPrev t) ttfl)

(CSTempCorrectND t cs)
as ttseqb return

= ttseqb → with

Listing 5.43 declares the new nested coordination state object being dealt with on this
recursive call (its type is inferred from the definition that follows). The execution path
immediately splits according to whether the current time slice enables the nested in-
stance or not. This is an equality test. We could equally well derive this information
statically from the instance specification object by comparing the clocks in the frequency
domain.

Listing 5.44: The beginning of the active match clause

| true ⇒ fun J0 : TTseqb
(ttimeTTFLAdjust f (tPrev t) ttfl)
(CSTempCorrectND t cs) = true ⇒
let csbp := (inprf (v, (cs, ttfl)))

in

Listing 5.44 is the beginning of the case of the match where the nested object is enabled
in the current temporal scope. It sets up some proof terms that capture the context of
the match: this is essential in order to be able to build a strong object in this context.

Listing 5.45: Input map filter

let mtiNest” :=
FilterInputMapNestedInst v
(‘ (CSTempCorrectND linstsig cs)) mtiNest
in

The input map filter selects those nested inputs that are qualified by the identifier of
the present nested coordination object, extracts only those and removes the prepended
indentifier, thus transforming it into an input map at the local scope of the nested in-
stance.

172

Listing 5.46: Inner trace instantiation
let fTrace :=

(traceFIFOsGenFunc
(CSTempCorrectND f cs)
(CSTempCorrectND linstsig cs)
(CSTempCorrectND instTypeScopeMap cs)
(CSTempCorrectND lissolib cs)
(CSTempCorrectND lisso cs)
((CSTempCorrectND t cs))
(exist (CoordStateInnerFIFOsEnabled (CSTempCorrectND f cs)

((CSTempCorrectND t cs))
(CSTempCorrectND linstsig cs)
(CSTempCorrectND instTypeScopeMap cs)
(CSTempCorrectND lissolib cs)
(CSTempCorrectND lisso cs))

(CSTempCorrectND CS cs) csbp)
)
mtiNest”
(exist (OutMemModBox.otm.empty)) in

Listing 5.46 shows the definition of fTrace, which is the section of execution trace that
describes the behaviour of the nested coordination object for the period until its next
invocation. This may include the generation of further levels of nested traces, although
the trace information is actually thrown away when each level of nesting returns, giving
just the final coordination state reached at the end of the trace. The accessors suffixed
‘ND’ are used to restore the dependent type from the non-dependent container (a map
cannot store unindexed heterogeneous dependent types). This method is convenient,
but as explained in the discussion of Listing 5.35, it is not optimal.

Listing 5.47: Extraction of result from inner trace
let newcs := (processSubInstFinite

cs (inprf (v, (cs, ttfl))
(inprfNest inclprf J)
(ttseqCorr v cs ttfl t J0))

fTrace) in

Listing 5.47 calls processSubInstFinite, whose single job is to mine to the bottom of the
nested trace fragment and retrieve the final coordination state and the extracted output
map.

Listing 5.48: Non-dependent nested instance construction

({| CSTempCorrectND f := CSTempCorrectND f cs;
CSTempCorrectND t :=
(starvationLongstop cs);
CSTempCorrectND linstsig :=
CSTempCorrectND linstsig cs;
CSTempCorrectND instTypeScopeMap :=
CSTempCorrectND instTypeScopeMap cs;
CSTempCorrectND lisso := CSTempCorrectND lisso cs;
CSTempCorrectND CS := (‘ (fst newcs))

|}, (snd newcs))

173

In Listing 5.48, newcs from Listing 5.47 is re-established as the necessary 𝜎-type, depen-
dent in the necessary arguments of its predicate.

Listing 5.49: Match for non-active nested instances
| false ⇒ fun ⇒

(cs, exist (OutMemModBox.otm.empty))
end eq refl

Listing 5.49 deals with the case where the nested coordination instance being consid-
ered is not scheduled to run during this time slice. It therefore outputs the original
coordination state object and an empty output map. Finally, in Listing 5.49, the match
structure for selecting active nested objects ends and the usual equality proof, eq refl,
is supplied.

Listing 5.50: Transformation of nested keys
in let vLiblessStrong := exist liblessInst v
in let extKeysLifted := outMemBoxMapKeys

(concatInstMemBF vLiblessStrong) (‘ (snd csnew))
in

The definitions of Listing 5.50 recast the identifier space of the nested instance back into
the identifier space of the enclosing instance.

Listing 5.51: Accession of new nested instance to map
((LInstMapMod.add v (fst csnew) (fst mnew)),

(OutMemBoxWPties.update (snd mnew) extKeysLifted)
)

end eq refl

Listing 5.51 adds the new nested map to the nested coordination state, overwriting the
old state. This is the last operation of the map-processing fixpoint.

Listing 5.52: Invocation of the map-processing fixpoint
in let processRaw :=

let linstttflmap :=
match (‘lisso) with

LInstSSORaw make
ttflinstmap ⇒ ttflinstmap

end in
let linstttflmapOK := in

processNestedInst
(LInstMapMod.elements (combineLInstMapModMaps (‘nestCSR) linstttflmap

linstttflmapOK))
(LInstMapMod.elements (combineLInstMapModMaps (‘nestCSR) linstttflmap

linstttflmapOK))
(inclRefl)
(coordStateMapBoxesNest t linstttflmap fn (‘nestCSR) (“nestCSR))
(LInstMapMod.empty)

174

(OutMemModBox.otm.empty)
in

In Listing 5.52, processNestedInst is invoked following the preparation of some sub-
sidiary definitions. ttfllinstmap is the insttshiftmap argument we described with
reference to Listing 5.7. The linstttflmapOK predicate states that the map extracted
from the static instance object is well formed. This is necessary in order to be able to
convince Coq that the map is of the correct type to be considered a Standard Library
map. This is an instance of the paradigm we described in section 5.2.2.3: predicates and
raw types have to be stored separately and recombined where necessary for functions
that expect composite arguments.

Listing 5.53: New predicate for nested coordination objects
let processPred : InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib lisso

CoordStateOuterFIFOsEnabled (fst processRaw) := in

Listing 5.53 ensures that the resulting map, after all update operations, is well-formed.

Listing 5.54: Construction of the nested step completion object
let mtoExtTimeStrong := exist (snd processRaw) in

let mtoExtStrong := exist (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))
(InstSigOutputMems (‘linstsig))) mtoExtTimeStrong in

(exist (fst processRaw) processPred, mtoExtStrong)

Listing 5.54 does the same as Listing 5.53, but for the assisting output map. Both are
then packaged up in a Cartesian product and returned.

5.5.6 Box-FIFO memory step

Rule C.141, which transforms the box- memory from a writable into a readable form
and throws away stale values, is realized in Coq in Listing D.24. It is almost identical to
the -box step discussed in section 5.5.3, in that its essential task is to reverse the list
and throw away stale values. We therefore do not examine it again here.

5.5.7 Super-step assembly

In appendix C.3.1, we have given an account of the operation of the program super-step
in terms of formal semantic rules. We now show how the component substeps we have
reviewed in this section are combined into a single mutually recursive fomalization. In
appendix C.3.1, we have described how the five parts of the super-step are defined indi-
vidually, and in section 5.5.2, section 5.5.3, section 5.5.4, section 5.5.5 and section 5.5.6 we
showed how these are rendered in Coq in such a way as to allow us to convince the type-
checker that the structure is well-founded. In our explanation of Listing 5.46 in section

175

5.5.5, we introduced the reason why we need both cofixpoint and fixpoint versions of
the same structures. These are instantiated in Listing D.26 by supplying other member
functions of the (co)fixpoint as arguments to the individual substeps. In checking that
the whole (co)fixpoint meets the required guard conditions, Coq first makes the neces-
sary substitutions of definitions (𝛿-reductions). In the case of the cofixpoint, Coq checks
that recursive calls are under a constructor; in this case, the accessibility predicates are
not needed and are trivially satisfied. In the fixpoint version, the accessibility predi-
cates are needed, and the nested case requires nested fixpoints. The resulting function
is listed in Listing D.27. The instantiated fixpoint is itself a parameter to the instantiation
of the cofixpoint.

5.6 Formalization of the example expression language

The expression language uses the same approach to the compilation of a ‘static’ semantic
object, though at present we do not have a compiler and perform this process by hand.
The static semantic object has a dependent type that, when Curried as an argument to
a reduction function, yields a Coq function that reduces the main function of that static
semantic object (as applied to its intrinsically typed data) according to the semantics of
Coq.

The key to formalizing the expression language is in handling structures that are ex-
pressive enough to produce non-termination, but nevertheless compile into Coq func-
tions that guarantee to terminate in Coq’s primitive recursive, strongly normalizing exe-
cutable logic. As we saw with the coordination language, it is often not trivial to identify
how a fixpoint will reduce structurally in its argument. H’s basic expression lan-
guage repeatedly uses a design pattern in which higher order map functions are used,
both on lists and record types. This occurs in the look-up of data values and functions
by their names from environment scopes, and also in the processing of patterns and the
construction of new types over tuples and records. The solution to finding a termination
proof term with an appropriately decreasing size lies in determining ordering relations
on sized types and computational potential, which can then be used in producing an
accessibility predicate. The full power of sized types is not needed in the present imple-
mentation, since data types have sizes that are fixed at compile-time.

5.6.1 Sized types

The idea of ‘sized types’was coined by Hughes et al. [112]. When we first formalized our
type system, we envisaged sized types would be necessary in order to show termination.
Since then, we have found it is possible to define a total ordering on the sizes of inductive

176

predicates that are parametrized by associative arrays.8 This implies that sized types are
strictly unnecessary for the present type system, and some of our later predicates in the
same paradigm reflect this new method. However, sized types would still be necessary
for any extensions to types of indeterminate size, where they would be required to make
linkages between the computational costs of functions, these costs being parametrized
in the sizes of types. For simplicity, we have used concrete Coq types for sizes. Since
sizes do not have a computationally useful content (and neither do costs) it would be
preferable in future to move them into the Prop sort.

5.6.2 Cost functions

Our need for cost functions is very limited, given that our demonstration expression
language does not have control flow structures. Our cost structures are thus toys com-
pared to the power tools that a language such as Hume has available to it [114,115,131].
However, the ability of our expression language freely to call named functions means
that, without cost data, there is no way to prove termination. There is a limitation of Coq
in play here. It is difficult to satisfy well-foundedness over nested calls to a map func-
tion, unless we modify the map interface to pass a proof term that reduces in size with
each call and shows well-foundedness. An alternative approach is to modify the type of
the function itself on recursive calls, so that it operates on a 𝜎-type with a reduced size
ceiling. This involves re-casting the data on each recursive call to a lower ‘potential ceil-
ing’, which is inefficient, and utterly redundant when code is exported from Coq. We
would prefer the former option for a map function with a richer interface. However,
since it was impractical and incidental to our subject matter to produce modified ver-
sions of Coq’s standard libraries, we have settled for the latter approach, which though
inefficient, works adequately.

Finally, we observe that in the binding of our expression language to the coordina-
tion language, cost data is not preserved. This is left to further work.

5.6.3 Structure of the formalization

The structure of the expression language formalization follows the rules given in ap-
pendix C.4. We provide comprehensive listings of the definitions in appendix D.6 and
via the table in appendix D.3. The number of admitted lemmas in the expression lan-
guage is low, with all of the most important proof terms fully proven. We do not print
most proof scripts, but supply a sample in Listing D.36.

8We solved this problem when we later implemented nested coordination state objects in the coordina-
tion language.

177

5.7 Provable properties

The kinds of properties that we can prove in this system fall into two categories. First,
there are proofs that a program (that is, instance specification) in satisfies some
predicate over the coordination state trace space, quantified over all possible input streams.
Second, we could prove that a generic transformation of an program preserves
these properties, both in the case of a transformation that is reflexive in , such as a
replication transformation, and in the case of a physical implementation. We shall illus-
trate all of these points using the replicated multiplier example that we gave in section
3.6, using a category diagram and some Coq code.

In Listing 5.55, we have written down a simple specification of what a multiplier
does over a Peano axiomatization of natural numbers. We arrived at this by adapting
the executable (fixpoint) definitions of addition and multiplication from the Coq Stan-
dard Library. In this purely propositional specification, we do not say anything about
executability: to prove that the relation is computable, the simplest way would be to use
the fixpoint version of the same specification as a witness relating the arguments to the
result.

Listing 5.55: An axiomatization of multiplication

Inductive Plus(n m l : nat) : Prop :=
| Plus0 : n = 0 → l = m → Plus n m l
| PlusS : (∃ p : nat, ∃ q : nat,

S p = n → l = S q → Plus p m q) → Plus n m l.
Inductive Mult(n m l : nat) : Prop :=
| Mult0 : n = 0 → l = 0 → Mult n m l
| MultS : (∃ p : nat, ∃ q : nat,

S p = n → Plus m q l → Mult p m q) → Mult n m l.

To understand how this kind of specification can be related to an specification, we
make use of the category diagram in Figure 5.2. The diagram is laid out as a chain of
morphisms. The digram is in two rows: this is purely so that it can be printed large
enough to see what is happening. Within each of these rows, the diagram has a ladder-
like structure. Along the top edge of the ladder, we see a number of different axiomati-
zations of natural numbers. As we move from left to right, these become decreasingly
intuitive. On the left-hand, most intuitive side, we have a Peano axiomatization. n and
m are the two numbers we want to multiply, and l is the result. The injective relation
Mult specifies an injection whose (non-unique) result l is the product of each (unique)
pair of arguments n and m. The next vertical arrow to the right represents the same
relation, but over a binary axiomatization of natural numbers, which again are an inte-
gral part of the Coq Standard Library. The question is, how do we know the predicate
that we could write called Mult(binary) is the same relation as Mult(nat)? The answer
lies in what we claim with the double-ended horizontal arrows. These arrows represent

178

another relation (both top and bottom happen to be the same one). It is a bijection be-
tween the Peano axiomatization of natural numbers and the binary axiomatization of
natural numbers. To use the category- or type-theoretic terminology, the injections of
the vertical arrows are monomorphisms, while the vertical arrows are isomorphisms.
The double-ended arrow signifies the bijection.

The diagram gives us an easy way to visualize the key property that we are inter-
ested in, which is difficult to read in Coq. The property is that the relation Mult(nat) is
the same relation as the transitive concatenation of Eq(Peano, binary), Mult(binary) and
Eq(binary, Peano). We can therefore state as a theorem that there is a structure morphism
between the two Mult relations with respect to the equivalence relationship between the
axiomatizations over which they are defined. A proof of this theorem then allows us to
conclude that any inhabitant of the Mult(binary) relation has an equivalent inhabitant
of the Mult(nat) relation. This is an extremely important property, because it allows us
to make conclusions about ‘mathematically pure’ statements of problems from the ugly
but mechanistically efficient and reliable implementation of axiomatizations such as the
binary one of natural numbers: it would be completely impractical to multiply natural
numbers by adding n to itself by repeated applications of the succession constructor m
times, even though this is a much better way of axiomatizing what is meant by natural
number multiplication. In the logic domain, this is analogous to the way that we can
become convinced that a theorem is true by witnessing the mechanistic application of
a proof-checking algorithm.

The rest of Figure 5.2 shows how this argument proceeds transitively to , includ-
ing a reflexive transformation in to a replicated version. The equivalence relation
between replicated and non-replicated versions is an interpretation function — in this
case, voters — of the three replicated states. For completeness, it also shows how this
can be carried into the physical domain, whereupon the difference in time instants be-
tween the arguments of the multiplication and results (which are added at the
stage) are changed to intervals in continuous time, matching the rubber sheet abstrac-
tion we discussed in chapter 3. The further to the right in the diagram we look, the less
the relation contained in the vertical arrow has to do with multiplication, and the more
it has to do with the semantics in physics, until at the far right of the equation, all of the
‘multiplicationness’ of the relation has been pushed into the arrangement of the state
of matter in space that represents the initial conditions of the multiplication and the
interpretation of the result. There is more than a little structuralist philosophy driving
this way of looking at things: the structure of multiplication is directly linked within a
logic between quasi-Platonic mathematical entities on the left to physical entities on the
right, linked only by laws of Nature.

Finally, we observe that the horizontal arrows in Figure 5.2 which are only leftwards-
pointing are surjective relations, or epimorphisms. They are a formalized version of

179

nat (Peano)
𝑛,𝑚

𝑙

Mult(nat)

N (binary)
𝑛,𝑚

𝑙

Mult(binary)

bit field type (binary)
𝑛,𝑚

𝑙

Mult(bit field)

Untimed OID type
𝑛,𝑚

𝑙

Mult(Untimed
OID type)

Timed OID type
𝑛,𝑚

𝑙

Mult(Timed
OID type)

Memory OID type
𝑛(𝑡), 𝑚(𝑡)

𝑙(𝑡 + 𝑡)

Mult(Memory
OID type)

Memory OID type
𝑛,,(𝑡), 𝑚,,(𝑡)

𝑙,,(𝑡 + 𝑡)

ReplMult
(Memory
OID type)

EDA blocks
𝑛,,[𝑡, 𝑡 + 𝛿𝑡],
𝑚,,[𝑡, 𝑡 + 𝛿𝑡]

𝑙,,[𝑡 + 𝑡, 𝑡 + 𝛿𝑡 + 𝑡]

Physical
semantics
(EDA blocks)

Materials in space
𝑛,,[𝑡, 𝑡 + 𝛿𝑡],
𝑚,,[𝑡, 𝑡 + 𝛿𝑡]

𝑙,,
[𝑡 + 𝑑𝑡, 𝑡 + 𝛿𝑡 + 𝑑𝑡]

Physical
semantics
(Maxwell's
equations,
quantum
mechanics)

Figure 5.2: Multiplier category diagram

what we have previously called ‘interpretation functions’. Whereas the multiplication
of binary-represented natural numbers is the same relation as the concatenation of the
Eq(binary, Peano), Mult(Peano) and Eq(Peano, binary), one cannot recover the semantics of
physics by going via a multiplication relation in the same way.

The most important practical implication of this approach for the kinds of properties
we can show with specifications is that, with axiomatized in a general logic,
we can show equivalences of this kind with any axiomatization we choose, be it an ax-
iomatization of the laws of Nature (physics), or an axiomatization of a priori synthetic
objects (mathematics, at least from a Kantian perspective). This is not possible with
monolithic specification tools such as Event-B or +, which contain their own special-
ized logics and deductive systems that are not general enough to axiomatize arbitrary
concepts. In chapter 6, we consider a small part of this category diagram, showing
emperically the surjective interpretation relation between the ordinary and replicated
multipliers — a relation that is reflexive in . We also see how similar relations can
be constructed over specifications composed into more complex systems, such as the
parallel composition example.

5.8 Summary

The formalization of ’s structural operational semantics as a Coq function enables
us to test programs by supplying suitably encoded static semantic objects as Cur-

180

ried arguments to it. The resulting functions can then be executed by applying them to
input streams: the semantics in this form have become an executable interpreter.
The formalization produces traces which are amenable to inspection. It would be pos-
sible to take a predicate defined over some application-specific domain and a Pre-
signature and attempt to prove that the trace, as produced by the interpreter, satisfied
the predicate. In practice, it would be easier to use the predicate characterization of the
semantic domain of to prove that a particular static semantic object gave rise to an
execution that satisfied the predicate, because it is much easier in Coq to prove things
by induction over predicates than to prove things over the structure of functions. The
structure of functions is only evident in a Coq proof by studying the inductive struc-
ture of the data on which they operate, and it is easier to do this when this structure is
closely matched with an inductive predicate which can be pattern-matched by a proof.
It is therefore desirable in further work to strengthen the predicates of the semantic do-
main so that the interpreter witnesses an injective predicate of that domain. This would
involve repeated application of the technique of parametrized 𝜎-types that we devel-
oped in the context of the predicate calculus example in appendix B, and which we
have partially applied in the context of our coordination and expression languages.

We have advanced two of the hypotheses of the thesis in this chapter. We have ob-
tained soundness of up to the soundness of Coq, essentially for free, by supplying
for each inductive predicate characterization of a semantic rule, a Coq function. This
proceeds inductively over our rules, such that the top level rule has an executable Coq
analogue. If we disregard admitted lemmas, then the strong normalization of Coq guar-
antees that the static semantic object can only be built from conforming abstract syntax
trees; it also ensures that dynamic executions of terminate, through the existence of
the Coq function that proves the constructability of the dynamic semantics, as given by
induction over the predicate characterization of the dynamic semantic rules. We have
also seen in our discussion of Figure 5.2 that our choice of a deep embedding style for
 over an axiomatization of its ontology gives us a very flexible way to express mor-
phisms of arbitrary properties with relation to arbitrary deep embeddings of languages
or physical laws.

181

Chapter 6

Results of the canonical examples
and an illustrative case study

In this chapter, we describe how our first programs have been built, and present
the results of simulating them with the reference interpreter developed in chapter
5.

The canonical examples have been compiled manually, constructing the relevant
static semantic objects by hand. This involved translating the text of programs into
Coq source code, providing an inhabitant of the static semantic object in the semantic
domain for each program. Most of the lemmas required to build the static semantic ob-
ject are omitted. As a consequence, the termination guarantee given by the interpreter
function and static semantic object does not strictly hold, since there is always a possi-
bility that the static semantic object may be inconsistent. In the interests of proceeding
to executable examples with reasonable speed, we have exported the static semantic
objects coded in Coq into OCaml, along with the entire coordination language and ex-
pression language. We have then proceeded to debug the resulting programs using
the OCaml debugger. The Coq extraction tool is for the most part extremely reliable1.
However, the semantic mapping of Coq to OCaml module semantics is problematic,
unpleasantly verbose, and causes the debugger to have problems with type unification,
because the Coq module system is more expressive than the OCaml module system.2

The conversion of terms in Coq’s dependent type system into terms in OCaml’s non-
dependent type system requires Coq’s code export function to use the ‘Obj.magic’ cast
of OCaml. Although the calls Coq makes to these casts are safe, their presence is an-
other symptom of semantic mismatch. The result of these mismatches is that debugging
is more painful than it should be, although we have developed methods to cope with
this. The issue is discussed further in section 6.1 and section 7.3.

The process of specifying, formalizing and executing is shown in Figure 6.1.

1Although we did find a bug, which we note in appendix D.1
2The Haskell code export facility cannot handle some of our module uses at all.

183

Lexing and
concrete syntax

rules

HBCL program
as raw text

Abstract Syntax
Tree

HBCL program
as parsed into

AST

Operational
semantics
domain

Operational
semantics

HBCL program
as logical

instance in
domain

Coq inductive
types

Coq HBCL
Interpreter

HBCL program
SSO in Coq

Pre-HBCL
input stream in

Coq

Output trace in
Coq

OCaml
inductive types

OCaml HBCL
Interpreter

HBCL program
SSO in OCaml

Pre-HBCL
input stream in

OCaml

Output trace in
OCaml

Output trace in
XML

Figure 6.1: Commuting diagram of HBCL formalization and execution

The diagram flows from top left to bottom right. Each column contains the full set of
 structures formalized in a particular way. Each row shows the full set of formaliza-
tion structures as it applies to a single structure. The programs in the middle
row are hand-compiled as far as the Coq column, before everything in the Coq column
is exported to OCaml and linked into a test rig.

Before designing , we experimented with finite versions of similar example sce-
narios using the model-checker [25]. The reference implementation we have pro-
duced here works in a similar way to a (näıve) model checker, in that it processes and
considers the whole state space on each time step. The crucial difference with a model-
checker is that by formalizing in Coq, we can use Coq to quantify statically over
arbitrary infinite domains of programs using deductive reasoning. Using our deep
embedding, we can obtain the soundness of directly from the soundess of Coq. If
we represent particular programs and their static semantic objects in Coq, then we might
also reason about the behaviour of these particular programs. If we wanted, we could
even reason about programs using model-checking paradigms formalized within Coq,
but we could never reason about deductive systems from within model-checkers. Our
implementation can always be made more efficient (and just as robust) by proving mor-
phisms, and any deductive conclusions reached about a program with respect to the
operational semantics-inspired reference interpretation will then follow for any such
implementation refinement.

184

6.1 Code export and compilation

A small amount of OCaml code has been written to print the values of traces. Since
traces are produced by a cofixpoint generating a coinductive type, Coq’s code export
facilities wrap this with OCaml’s special ‘lazy’ constructors. The print function takes an
argument as to how long a trace is required (essential with an infinite input stream) and
has to deconstruct the result object carefully to avoid precipitating a non-terminating
execution.

The OCaml printing functions are necessary to provide a way to inspect the traces.
Coq is a pure logic, and does not handle such side-effects as causing state to be output to
a screen. The printing functions produce output data in two modes: a crude text mode
and an mode. The mode is required so that the results can be programmatically
filtered using standard tools, since the most complex examples produce extremely large
(gigabyte) files, which clearly cannot be printed as they are. The provision of printing
functions is particularly difficult for the purposes of debugging the OCaml output by
Coq. Since the implementation still contains many admitted lemmas, there were in-
evitably bugs. Unfortunately, the way that Coq’s module system mapped to OCaml’s
module system made accessing this data extremely difficult. Coq’s module system is
richer than OCaml’s, and OCaml cannot automatically unify types under module func-
tor application in the way Coq can.

This had two difficult consequences for debugging. First, the facility in OCaml’s
debugger that registers printing functions could not be used for any definition under
a functor. Second, to build these printing functions at all, it was necessary to generate
patch files to add printing functions to the exported Coq files, as this was the only way
to achieve the necessary type unification. This was a time-consuming process, since the
debugger could not be used for the task. Every change to a printing function call had
to be applied to a patch file, and any change to the Coq code necessitated re-exporting
to OCaml and applying these patches. All of this suggests that, if Coq’s module system
is to be used to its full power (and we have suggested in the previous chapter that the
module system may not actually confer all the advantages that first appear), then OCaml
is not a very suitable target extraction language. Unfortunately, it is the best supported
extraction language in Coq.3

The most significant problem we found in exporting code from Coq to OCaml was
that we had to treat the coordination and expression languages separately, and instan-
tiate the expression language in the coordination language with OCaml glue code. This
seems impossible to excise without either removing the use of modules (the pre-compilation
of which reduces the ability of an invoking Coq module to adjust the universe hierar-
chy), or using explicit type universe polymorphism. This has been proposed by Sozeau

3Exporting into Haskell produces a ‘not yet implemented’-type exception.

185

et al. [174], but the idea has yet to be integrated into the main Coq distribution.
The rest of this section presents the traces produced when the interpreter function

of chapter 5 is evaluated using the examples’ static semantic objects and suitable in-
put streams. We illustrate this hand-compilation process in relation to the examples of
chapter 3 in appendix E.

6.2 Trace table production

The trace tables are produced directly from executions of the extracted OCaml, with
the traces post-processed by , TEXML and LATEX. In the case of the multiplier and
replicated multiplier, the traces were so large that a hybrid and Java SAX approach
was adopted. We summarize the examples below.

Program scenario Listing Purpose

Negator of section
3.5.1

Listing 6.1 Tests negator box program: a single box

Parity of section
3.5.2

Listing 6.2 Another test of a single box, needed for
the composite examples.

Parallel
composition of
section 3.5.2

Listing 6.3 A test of the composition of negator
and parity boxes without interaction.
We consider what the structure of the
resulting trace, compared with each
trace of the negator and parity boxes
individually, tells us about the
composition and timing properties of
.

Pipeline of section
3.5.4

Listing 6.4 A test of negator and parity boxes, with
negator output fed to parity input

Checksum of
section 3.5.3

Listing 6.5 A test of an example with a single box
with feedback

Checksum pipeline
of section 3.5.5

Listing 6.6 A test of an example with box feedback
passing through a further box.

Table 6.1: Conformational examples

We have shown traces in a diagramatic notation, as a series of snapshots of coordi-
nation state. Boxes are colour-coded to show which super-step coordination state they
are in, according to the following pattern

186

Colour Preceding step Succeeding step

Blue Box- memory step F step

Green F step F-box memory step

Yellow F-box memory step Box step

Red Box step Box- memory step

Table 6.2: Coordination state colour code

Inside each coordination state, the dark grey box on the left contains input memories,
that on the right contains output memories, and a dark grey box straddling the whole
width of a coloured box contains nested memories. If, in the case of a particular example,
one of these boxes is empty, it is omitted. Coloured boxes show the aggregate (lowest
common multiple) frequency of the components it contains, and the current time, at
the scope of the box, as a rational number with the denominator corresponding to this
frequency. Individual memories are shown as light grey boxes, with their names in
the top left. Sequences of time slices within these memories are shown as white boxes
within them. They give their frequency, the time to which the value relates, and the data
payload. In the nested case, nested instances are shown as white boxes, with the name
of the instance in the top left. They contain coordination state boxes which recursively
follow the same colour and layout scheme.

All sequences start and end with pre- step (blue) coordination states. The initial
state of the system is a pre- state because nothing can happen before some input
is received. The sequence ends on such states because it is the last state that is fully
determinable by the previous . The coinductive trace object is terminated with the
empty post- step coordination state constructor: this is triggered by a match on a
similar end marker for the input stream. While both these data types are coinductive
and thus can go on infinitely, this does not rule out finite cases, given that we have in
both instances provided a non-inductive final constructor.

6.3 Single box examples

We first consider the negator box and parity box. The parity box is very similar to the
negator box, except that it introduces a memory operating at a different frequency.

Listing 6.1(i): The single negator box trace
freq: Hz; time: s

.MemFB.posIn .MemBF.negOut

187

The blue box shown in Listing 6.1(i) indicates the coordination state at time 0 seconds,
for the state between a box- memory step and a step. The frequency and time
value are shown at the top left of the box. This type of step is always shown as a blue
box. Within the blue box are two dark grey boxes: the box on the left is where all the
input memories are displayed; the box on the right is where all the output memories ap-
pear. Individual memories are shown as lighter grey boxes, with their names appearing
at the top left of each memory. Both of these memories are empty during this time slice.
The coordination state object also carries a container for nested instances, but we do not
show it when it is empty: we shall meet this structure shortly.

Listing 6.1(ii): The single negator box trace (cont.)
freq: Hz; time: s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T)) .MemBF.negOut

The green box shown in Listing 6.1(ii) advances the time to the state between a
step and a -box memory step. The wall clock time has not advanced: it is still at
0 seconds. There is no need to allow time to pass between the four sub-steps of the
execution cycle since they are notionally separated by infinitessimally small amounts
of time: it is the sequence of steps that is important, and that sequence is always the
same. Within Listing 6.1(ii), the .MemFB.posIn memory has advanced during the
step, and a new piece of data has been added. This data slice was supplied by the input
stream that parametrizes the whole execution. I/O streams are processed on the
step. Where nested instances occur, these exposed streams are either re-exported to the
environment or hooked up to new s outside the scope of the instance. Within the
instance, the semantics are the same regardless of whence the input comes or whither
the output flows. The memory slice is shown within the memory that accommodates
it as a white box on the grey background of the memory of which it is part. Again, the
frequency is given, along with a time of validity for the piece of data. This time is at a
static offset from the current instance time, as determined by the declared time to or
from live of the memory, and in the case of this memory, this offset is nil. For data such
as Booleans, which do not have an obvious ‘meaning’ outside an instance, the choice
of these offsets is not important, but the relative offsets between these times of validity
for a local instance is important. The situation is rather different when the data value is
strongly typed in the physical environment: in this case times from live naturally relate
to observed quantities at the system boundary, which become further from ‘live’ with
every passing tick of the clock; times to live relate to quantities destined for some actua-
tor where the offset can be thought of as representing a deadline. In the former case, the

188

labelled time of validity is the time at which the observation nominally took place, and
in the latter case, the time of validity is the time at which the value should nominally be
manifested to the part of the system environment labelled by the relevant .

Listing 6.1(iii): The single negator box trace (cont.)
freq: Hz; time: s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T)) .MemBF.negOut

Listing 6.1(iii) shows the coordination state between the -box step and the box step.
These steps are always coloured yellow. Nothing happens at the moment for this step,
because there is only one value in the input memory and nothing in the output memory
yet. We shall shortly see what happens during this step when the memories are fully
populated.

Listing 6.1(iv): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

Listing 6.1(iv) shows the coordination state between the box step and the next box-
memory step. The clock has advanced to one second for this step, since the box step
is notionally the first thing to happen in each time slice. We can also see that there is
now some output data. As expected, each output bit is the logical negation of the corre-
sponding input bit. The time of validity is two cycles beyond the current time, reflecting
the fact that the memory has a time-to-live of two cycles. The temporal semantics of this
particular box are fixed such that the output always determines a value whose validity
is two cycles in advance of the box’s current time.

Listing 6.1(v): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

In Listing 6.1(v) we can see that nothing has happened, since we only have one value in
each memory.

189

Listing 6.1(vi): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

In Listing 6.1(vi) a new data slice has been added, with the time of the next box exe-
cution as its time of validity (since the time to or from live for this memory is zero). The
new value is prepended to the list.

Listing 6.1(vii): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

Listing 6.1(vii) shows the result of having executed the -box memory. Now that
we have two values in the memory, something can be seen to happen: the order of the
values in the memories has changed (this is only visible in the input memory here since
the output memory still only has one value). This indicates that the memory has flushed
anything that happened to it in the step and is now ready to be read by a box step.
There is nothing canonical about using list reversal to indicate this: it just happens to be
convenient to show it this way for the purposes of the reference implementation.

Listing 6.1(viii): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

.MemBF.negOut

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (F,F,F)

Listing 6.1(viii) shows the coordination state between the box step and the next box-
 memory step. The negated value from the latest piece of data has been prepended
to the output list with a time of validity of the fourth cycle, which again respects the
static time-to-live of two cycles.

190

Listing 6.1(ix): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

In Listing 6.1(ix) both memories have been reversed. This means that the box- mem-
ory is now ready to be read by a and the -box memory is ready to be written by
a .

Listing 6.1(x): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

In Listing 6.1(x) another new data slice has been added from the input stream. There are
now two stale values in the input memory. When the current time goes past the time
to or from live-adjusted time of validity of a value, plus the (also statically specified)
retention time, then such values are lopped from the list. The need to specify a reten-
tion time is a consequence of the passive nature of data transfer in the execution model.
Data are observed as opposed to messages passed, the latter being an active process on
the part of both sender and recipient. The memory declares for how long values will be
observable and the or box implementation is constructed accordingly. The reason
we do not just assume that any value will be read immediately it apparently becomes
valid is that, in a fully general case, and with state variables for s,4 a box or may
execute with a different frequency from the memories to which it is connected, leading
to a phase difference in the length of buffer required. In this case, lengths can be stati-
cally inferred where both connecting boxes and s are in scope, while memories on an
instance interface would require a kind of temporal polymorphism to accommodate the
different frequency range of s that might be connected. See section 6.8.5 for further
discussion on this point.

4See the discussion of Listing 6.4(iv) and section 6.9.3.

191

Listing 6.1(xi): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (F,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (F,F,F)

Listing 6.1(xi) shows the result of having executed the -box memory. As in Listing
6.1(vii), this is shown by list reversal.

Listing 6.1(xii): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (F,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (F,F,F)

Listing 6.1(xii) shows the results of another box step. The observations follow the same
pattern as for Listing 6.1(viii): another value (that valid at three cycles) has been negated
and appended to the output memory, with a time value two steps in advance (valid at
five cycles). This static offset of 2 cycles reflects the difference in the input memory’s
time-from-live value (0) and the output memory’s time-to-live value (2), as given in the
 program.

Listing 6.1(xiii): The single negator box trace (cont.)
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

The sequence ends with Listing 6.1(xiii), where we can see by the list reversal that an-
other box- memory execution has taken place.

Listing 6.2(i): The single parity box trace
freq: Hz; time: s

.MemFB.datIn .MemBF.parOut

192

The situation in Listing 6.2(i) is identical to that in Listing 6.1(i), where no data has yet
been processed from the input stream.

Listing 6.2(ii): The single parity box trace (cont.)
freq: Hz; time: s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T) .MemBF.parOut

The situation in Listing 6.2(ii) is very similar to that in Listing 6.1(ii), except that we
see the data type is now a triple of Booleans as opposed to a pair of one Boolean and an
inner Boolean pair.

Listing 6.2(iii): The single parity box trace (cont.)
freq: Hz; time: s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T) .MemBF.parOut

The situation in Listing 6.2(iii) is identical to that in Listing 6.1(iii).

Listing 6.2(iv): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing 6.2(iv) reveals some differences when compared with the situation in Listing
6.1(iv). First, the output data type is clearly different, with the result being a pair con-
taining the original input together with a computed parity bit. Second, the frequency
of the data is double that of the input memory and of the box (although the frequency
of the memory is the same), so the box has to generate two pieces of data (on average,
although in this case the number is constant). We have defined the box binding in this
instance to put the value of the same expression obtained from the box’s input into
two consecutive temporal slices of output. The time-to-live requirement is given for the
whole memory, and is again two cycles to ‘live’, so the earliest value must be valid at the
current time (1 cycle) plus the time-to-live (two cycles). The value valid at 6 cycles on
the higher frequency clock meets this requirement at 3 cycles on the clock of its owning
memory.

193

Listing 6.2(v): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing 6.2(v) shows the usual list reversal of memory execution for box- memories,
with an effect visible in the output memory, now that it has two values.

Listing 6.2(vi): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

A new value is added in the step of Listing 6.2(vi).

Listing 6.2(vii): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Again, Listing 6.2(vii) shows the expected list reversals, this time happening on the -
box memory step.

Listing 6.2(viii): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Another box step is visible in Listing 6.2(viii). The two new output values are again
identical, save in their times of temporal validity, which cover the period of the slower
owning memory.

194

Listing 6.2(ix): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

Listing 6.2(ix) shows list reversal, in the same way as Listing 6.2(v) and Listing 6.1(ix).

Listing 6.2(x): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

Listing 6.2(x) shows that another value has been obtained from the input stream and
prependend to the input data list, following the pattern of Listing 6.2(vi) and Listing
6.1(x).

Listing 6.2(xi): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (F,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing 6.2(xi) shows a further memory reversal on -box memory execution.

195

Listing 6.2(xii): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (F,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((F,T,T),F)

freq: Hz; valid at: /s ((F,T,T),F)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing 6.2(xii) shows another set of output values produced as a result of box execu-
tion. Again, the time has been incremented immediately before this step.

Listing 6.2(xiii): The single parity box trace (cont.)
freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((F,T,T),F)

freq: Hz; valid at: /s ((F,T,T),F)

The sequence ends with Listing 6.2(xiii).

6.4 Parallel composition example

Listing 6.3(i): The parallel composition of a negator and parity box
freq: Hz; time: s

.LInst.nInst
freq: Hz; time: s

.MemFB.posIn .MemBF.negOut

.LInst.pInst

freq: Hz; time: s

.MemFB.datIn .MemBF.parOut

196

In Listing 6.3(i) we see for the first time a nested instance (or two of them). The columns
for input and output memories for the enclosing instances are not shown, since they
would be empty. The dark grey box immediately inside the blue box accommodates all
the nested instances for the enclosing instance. Each instance appears in a white box,
labelled with its local name. Inside the white box is a new nested coordination state ob-
ject: it has a colour just like the top level boxes. The blue colour highlights the fact that
the nested coordination state is also between box- memory and steps. The mem-
ories inside the negator and parity instances shown are familiar from the stand-alone
negator and parity examples: in fact, we reused precisely the same code. The local times
of the inner and outer instances can both be seen to be zero.

Listing 6.3(ii): The parallel composition of a negator and parity box (cont.)
freq: Hz; time: s

.LInst.nInst
freq: Hz; time: s

.MemFB.posIn .MemBF.negOut

.LInst.pInst

freq: Hz; time: s

.MemFB.datIn .MemBF.parOut

Listing 6.3(ii) shows that the outer step has advanced to the post- step state, but
the states of the inner instances are still at the pre- stage. Inner instances are only
ever shown at the pre- stage. The input stream to the global cofixpoint (at ‘enclosing
scope’) contains data for both nested instances, but it is carried as a collateral argument
to the top-level execution steps until the box step. It is during the box step that all four
steps of the inner instances are processed. There are two ways to avoid these collateral
arguments. First, we could have cached the memory from the environment locally and
re-read it when the inner instance executed. This would clutter the state space with
duplicate values and extra memory reads and writes that are not part of the semantics,
so such an approach is not well fitted to a reference interpreter that is trying directly to
implement the operational semantics. Second, we could have updated the inner mem-
ory immediately. This is a more attractive solution, but further qualitatively different
coordination states would be needed to differentiate between, on the one hand, when
all memories have executed but for those that are exported to the environment, and on
the other, when all memories have executed. If we were later to implement mutually
recursive heterogeneous coordination languages as we discuss in section 7.4.2, then the
requirement for data opacity would win out and we would adopt the first approach. For

197

the sake of clarity, both of these added complexities have been avoided, and we settle
for collateral arguments and deferred input memory updates.

Listing 6.3(iii): The parallel composition of a negator and parity box (cont.)
freq: Hz; time: s

.LInst.nInst
freq: Hz; time: s

.MemFB.posIn .MemBF.negOut

.LInst.pInst

freq: Hz; time: s

.MemFB.datIn .MemBF.parOut

In Listing 6.3(iii), it can be seen that nothing happens during the local -box mem-
ory execution step, because there are no local memories. Again, execution of the nested
memories is deferred until the nested instances are run.

Listing 6.3(iv): The parallel composition of a negator and parity box (cont.)
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing 6.3(iv) shows the result of the first boxes step at the enclosing scope. There are no
local boxes to execute, but the boxes step triggers the execution of the nested instances,
which, from the outside, have the same behaviour as any other boxes, save that we al-
low them to keep state.5 The result of this execution is that the inner instances advance
until they run out of input. Given that the inner instances are operating at the same

5In a fully general case we would allow any boxes to keep state between executions, but we avoid this
complication at present.

198

frequency as the enclosing instance, this means that in this case they run for one four-
fold cycle. The state of the inner instances is now identical to the state of the negator
box when it was at enclosing scope (at Listing 6.1(v)) and the parity box when it was at
enclosing scope (at Listing 6.2(v)). The boxes are not connected, hence no internal s
are declared or have operated in the parallel composition example.

Further cycles of this execution are shown in appendix F.1. By comparing the con-
struction of this trace, and that of the individual traces of the negator and parity boxes,
we can see how the parallel composition example maps to each of the negator box ex-
ample and the parity box example individually. To consider the negator box, we can
construct a coinductive predicate over both traces, where there is one propositional con-
structor, which takes the current coordination state (say, for 𝑡 = 0), for both scenarios,
and a proposition that the state of the negator example is equal to the nested negator
box in the parallel composition example. We can see by inspection that this property
holds for each time slice that we show, and that it also holds for the parity box example.

6.5 Two pipelined boxes example

Listing 6.4(i): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn
.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F) .MemBF.parOut

In Listing 6.4(i) we see the first example of a . The scenario has been initialized
with some pre-existing data to prevent data starvation. The semantics can deal with
starvation, producing null temporal data, but we do not explore this until we reach the
realistic examples in section 6.8. We can see that the output of the negator instance con-
tains a value that will be copied to the on the next execution, while the input of
the parity instance contains a value that will be used by the next parity box execution
step. We avoided using data with negative time values, and so we have started this exe-
cution with the wall clock set to two elapsed cycles. Nevertheless, negative time values
are allowed in the model, and we see why they are in fact essential in section 6.8.

199

Listing 6.4(ii): The pipeline example (cont.)
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn
.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F) .MemBF.parOut

Listing 6.4(ii), like Listing 6.3(ii) shows no change because there are no local boxes and
execution of the inner instances’ steps occurs within the nested box execution. Again,
input values from the environment are being passed as collateral arguments, but this is
not visible in the trace.

Listing 6.4(iii): The pipeline example (cont.)
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn
.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F) .MemBF.parOut

Again, in Listing 6.4(iii) we do not expect to see anything change.

200

Listing 6.4(iv): The pipeline example (cont.)
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

Listing 6.4(iv) shows all the changes that have taken place as a result of the four in-
ner sub-steps of the inner instance executions. The has copied the next available
value from the output of the negator box to the input of the parity box, while a new in-
put value has been read from the environment to feed the input of the negator box. The
boxes in both instances have executed, with new computed values being added to the
output memories. Fs are implemented in a stateless way, with any new value from
the input being immediately copied to the output upon execution. This
is equivalent to a more realistic semantics that keeps state for s, thus dealing with
the fact that some values may be in transit in the middle of the during a tick,
and not manifest at either input or output memory. We would anticipate converting
the reference semantics to this model in further work, so that resource reasoning about
the size of memories can be respected: in the present implementation, input memories
have a size without bound depending on the length of the feeding — a coupling
between instance and external implementation that is undesirable.

Further cycles of this execution are shown in appendix F.2. The pipeline example
makes a further useful point about timing. The reason two apparently arbitrary boxes
can be composed is because their outward-facing memories that are connected by a
 are callibrated according to the same clock, regardless of how each of the negator
and parity box might be implemented. In constructing an implementation in a discrete
substrate, there is perfect temporal alignment. In a more physical implementation, we
would need to use the rubber sheet abstraction and interval arithmetic over the proba-
bility distributions of clock divergence to construct the . Nevertheless, because there
is a single temporal frame of reference, it is only the timing of this that an imple-
mentation of the two composed instances must concern itself with: the pairwise partial

201

orders of any other memories can be discarded.

6.6 Simple feedback example

Listing 6.5(i): The simple checksum example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn

.MemBF.checkOutDoublePair

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

In Listing 6.5(i) we see the initial state of the checksum example. This is the first ex-
ample with feedback, and has a connecting checkOutTriple to checkIn. As with
the example in section 6.5, the state has been pre-initialized, while the other two
memories are empty, since no input has been read. The in this example is longer,
as is implicit in the larger difference in times to and from live in the corresponding
program’s memory specifications (the difference is now four rather than two cycles).
This extra latency allows us to use the same checksum box when we later insert a nega-
tor box into the pipeline, without rewriting the boxes.

Listing 6.5(ii): The simple checksum example (cont.)
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (T,(T,T))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

Listing 6.5(ii) shows the result of a box execution at top level, containing the result of
a full four-sub-step cycle at the nested level. It can be seen that the feedback has

202

operated, with the value that was in the checkoutTriple memory being copied to the
checkIn memory. In the same step, input was read from the environment into datIn,
and the box executed, producing more checksummed data.

Further execution rounds following the same pattern can be seen in appendix F.3.

6.7 Feedback with pipeline example

Listing 6.6(i): The checksum pipeline example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (F,(F,F))

.MemBF.checkOutTriple

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (F,(F,F))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

In Listing 6.6(i), we see the first example with two s. One takes an output of the
checksum box and sends it to the negator; the other connects the output of the negator
to the feedback input of the checksum. The result is a different checksum to that seen
in section 6.6. Both s have been initialized.

203

Listing 6.6(ii): The checksum pipeline example (cont.)
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (T,T,T)

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (F,(F,F))

freq: Hz; valid at: /s (F,(F,F))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

In Listing 6.6(ii), both boxes and both s have executed, in just the same way as in
section 6.6. In these examples, it is apparent that the times to and from live for each
memory can become difficult to manage, since to have them correspond with what we
intuitively expect, we either have to hard-code offsets to ensure that values flow without
having their temporal component abruptly reset, or have an output that mysteriously
produces a value that is less old than its input. The latter approach has been adopted
so far and is not entirely satisfactory; nor is the former solution completely adequate,
because it means that boxes cannot be reused without trivial re-writes. The resolution of
this problem is time-shifting semantics, whereby instances have their wall-clock times
permanently displaced from the enclosing instance. This has been implemented for
, and we meet this behaviour in the scalable examples of section 6.8. One can en-
visage a further development of this whereby time can also be multiplied by constants,
compressing the latency difference between input and output. We leave this to further
work.

Further execution rounds following the same pattern can be seen in appendix F.4.

204

6.8 More involved examples

We now present a set of progressive examples leading to a reasonably complex case
involving three replicated multipliers operating in parallel, with fan-outs and voting.
The use of to represent hardware in this way specifies an architecture in which
gate propagation delay is amortized by a clocked flip-flop. In this sense, in com-
bination with the bit field expression language might be thought of as an architecture-
neutral specification mechanism, where we restrict the logic cells of the to
synchronous interactions. We also meet the time-shifting semantics of whole instances
for the first time. This is observable in the differing wall-clock time of nested instances
when compared to their enclosing instances. Internally to an instance, semantics are
invariant with respect to this local wall-clock time. Externally, the temporal expecta-
tions of a memory are shifted by the static displacement of the instance. In printing
the time values of nested instances, the printing functions re-construct the time using
the same OCaml code (exported from Coq) that resolves displacement within the in-
terpreter. Time is not stored in the coordination object itself because it is superfluous
information: it is statically and intrinsically typed into the dependent type of the coor-
dination object, and can be fully inferred from the static semantic object for the program
and the wall-clock time of the top-level instance.

The examples below all use a library of boxes implementing some basic gates and
fan-out operations. The instances with logical operations such as and in their
names implement this operation with their inputs as the arguments to the operations in
question and their single output representing the outcome of the function. The fan-outs
copy their inputs to each set of outputs. We list the library containing these instances in
appendix E.1.

6.8.1 Half adder

The code for the half adder is given in Listing 6.7. It is shown diagramatically in
Figure 6.2. The adder sums binary digits, and has the following truth table:

memInA memInB sumOut carryOut

0 0 0 0

0 1 1 0

1 0 1 0

0 1 1 1

Table 6.3: Half adder truth table

205

hAdderTest:hAdderLib.hAdderInst
linst

memInA:commonDat.tDatBool64

Mfb

memInB:commonDat.tDatBool64

Mfb

sumOut:commonDat.tDatBool64

Mbf

carryOut:commonDat.tDatBool64

Mbf

fanoutInst1:boolBoxLib.fanout2Inst
linst

inMem:commonDat.tDatBool64

Mfb

fanoutA:commonDat.tDatBool64

Mbf

fanoutB:commonDat.tDatBool64

Mbf

fanout2

hbox

fanoutInst2:boolBoxLib.fanout2Inst
linst

inMem:commonDat.tDatBool64

Mfb

fanoutA:commonDat.tDatBool64

Mbf

fanoutB:commonDat.tDatBool64

Mbf

fanout2

hbox

xorGateInst:boolBoxLib.xorGateInst
linst

inAMem:commonDat.tDatBool64

Mfb

inBMem:commonDat.tDatBool64

Mfb

xorOut:commonDat.tDatBool64

Mbf

xorGate

hbox

andGateInst:boolBoxLib.andGateInst
linst

inAMem:commonDat.tDatBool64

Mfb

inBMem:commonDat.tDatBool64

Mfb

andOut:commonDat.tDatBool64

Mbf

andGate

hbox

Figure 6.2: Half adder

206

Listing 6.7: The half adder

1 llib hAdderLib
2
3 linst hAdderInst {
4
5 linst fanoutInst1 : boolBoxLib.fanout2Inst;
6 linst fanoutInst2 : boolBoxLib.fanout2Inst;
7 linst xorGateInst : boolBoxLib.xorGateInst (1);
8 linst andGateInst : boolBoxLib.andGateInst (1);
9

10 observe {
11 fanoutInst1.memIn as memInA;
12 fanoutInst2.memIn as memInB;
13 }
14
15 manifest {
16 xorGateInst.xorOut as sumOut;
17 andGateInst.andOut as carryOut;
18 }
19
20 fifo fanoutInst1.fanoutA to xorGateInst.memInA;
21 fifo fanoutInst2.fanoutA to xorGateInst.memInB;
22 fifo fanoutInst1.fanoutB to andGateInst.memInA;
23 fifo fanoutInst2.fanoutB to andGateInst.memInB;
24
25 }
26 }

207

Listing 6.8(i): The half adder example
freq: Hz; time: s

.LInst.hAdderInst
freq: Hz; time: s

.LInst.andGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut

.LInst.fanoutInst1
freq: Hz; time: s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

.LInst.fanoutInst2
freq: Hz; time: s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

.LInst.xorGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut

In Listing 6.8(i) can be seen the entire state space of the half adder. For the first time
in this example, we have not initialized the state space, so it appears that starvation will
occur when boxes and s operate. This does not happen, because s tolerate miss-
ing data by ignoring it, and boxes generate null outputs if inputs are missing or null.6

This gives rise to two desirable properties: first, the often complex systems of s are
self initializing; second, such semantics lend themselves to a development where we
might simulate faults in which data is lost. There is no danger of such semantics pro-
ducing nonsensical values, since the production of a null value is not a value at all, and
the length of time a scenario takes to initialize or recover from a transient fault is a static

6The precise behaviour of boxes in these cases depends on the binding of the relevant box language to
the coordination language.

208

property of the system. This behaviour has a similar effect to the *-matching pattern of
Hume. The semantics have a different emphasis, however, because only ex-
pects to match nulls under system start-up or fault conditions. Our expression language
is not aware of nulls. Our binding of the expression language to the coordination
language, through our untimed box language abstraction, does not call the expression if
a null input is present, but instead immediately generates a null output, short-circuiting
the expression language altogether. The binding framework is flexible enough to
accommodate language bindings where the untimed box language does deal with null
values, and does so more gracefully. More elaborate embedded untimed box languages
could make use of this.

We can also see in Listing 6.8(i) that the and gates have negative wall-clock
times. This follows from the fact that they have a time from live, and the static offset for
a time-from-live at time zero is negative.

209

Listing 6.8(ii): The half adder example (cont.)
freq: Hz; time: /s

.LInst.hAdderInst
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut
freq: Hz; valid at: s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.xorGateInst
freq: Hz; time: s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut
freq: Hz; valid at: s

Listing 6.8(ii) shows the situation after one round of sub-steps, including the nested
box step with the top-level clock at one cycle. The gates can be seen to have produced
null values as expected, while the fan-out boxes have asserted the correct outputs, ready
for execution in the next step.

210

Listing 6.8(iii): The half adder example (cont.)
freq: Hz; time: /s

.LInst.hAdderInst
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s T

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

Listing 6.8(iii) shows the next execution round, in which the step at one cycle and
boxes step at two cycles have taken place. The fan-out outputs have been copied to the
gate inputs, and this time the gates have been able to operate on some real data, to pro-
duce non-null outputs. The output gives a sum value of zero, while the output
gives a carry output of one. The half adder thus gives the expected output of the input

211

data (namely both bits one), that is zero in the units and carry one. The answer to the
sum has a ‘valid at’ time of one cycle, the same as the input data two cycles earlier with
the same time of one cycle. The time-shifting semantics of boxes have enabled us to
give sensible meanings to these abstract data. While different parts of a coherent set of
output data may emerge from different sub-instances and at different times, the offsets
between these times are constant. In the case of our arithmetic examples, these outputs
are the various significant bits of a binary number. Since the input memories of har-
monic boxes are also statically determined, we know immediately how these outputs
relate to previous inputs.

Further execution rounds are shown in appendix F.5. Data from following time slices
produces the expected results. For example, we can see for the data valid at two cycles
that zero and zero make zero with zero carry.

6.8.2 Full adder

Listing 6.9: The full adder

1 llib fAdderLib
2
3 linst fAdderInst {
4
5 linst hAdderInst1 : hAdderLib.hAdderInst;
6 linst hAdderInst2 : hAdderLib.hAdderInst (2);
7 linst orGateInst : boolBoxLib.orGateInst (4);
8
9 observe {

10 hAdderInst1.memInA as memInA;
11 hAdderInst1.memInB as memInB;
12 hAdderInst2.memInB as memInCarry;
13 }
14
15 manifest {
16 hAdderInst2.sumOut as sumOut;
17 orGateInst.orOut as carryOut;
18 }
19
20 fifo hAdderInst1.sumOut to hAdderInst2.memInA;
21 fifo hAdderInst1.carryOut to orGateInst.memInA;
22 fifo hAdderInst2.carryOut to orGateInst.memInB;
23
24 }
25 }

The full adder is the last example for which it is practical to show the full state space
in graphical form: it can be found in appendix F.6. The arithmetic works as expected,
according to the following truth table.

212

memInCarry memInA memInB sumOut carryOut

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 6.4: Full adder truth table

The headings in the truth table correspond to the observed and manifested values
of the program. The full adder is the first example having nested instances that are
themselves nested. We show the conformation in Figure 6.3, with half adders instanti-
ated. We do not show the inside of the half adders: only its functional specification is
important. The time shift semantics (shown by the figures in brackets after the logical
instance definitions of lines 6 and 7) produce the expected results, with each instance
appearing to exist in a world with its own definitive wall-clock time. The instance has
knowledge of the time shifts of instances nested within itself, but is ignorant of how its
own time frame is mediated by any intervening boxes between itself and the real wall-
clock of international atomic time (or the simulated global time of our simulation). This
effect can be seen in the hAdderInst2 instance within each full adder coordination object.

This example is only well-formed when inside a closure in which a half adder with
the required signature is defined. The whole example is compiled at the same library
scope as the half adder library, which has the effect that the implementation resolution
routine finds the half adder implementation of section 6.8.1.

Other implementations would be possible, for example, one in which the entire com-
putation was done in a single expression step in only one box. If such an implementation
were placed between any other half adder implementation in the library hierarchy and
the gates-as-boxes example, then it would be the implementation that would be implicit
in the program.

This kind of resolution technique is quite unusual in that it does not follow the ‘im-
port’-style directives of many programming languages for dealing with structure and
selecting implementations. The choice is deliberate, because it is envisaged that once a
program is uploaded to an ontology of programs, this (monotone) process results in a

213

fAdderTest:fAdderLib.fAdderInst
linst

memInA:commonDat.tDatBool64

Mfb

memInB:commonDat.tDatBool64

Mfb

memInCarry:commonDat.tDatBool64

Mfb

sumOut:commonDat.tDatBool64

Mbf

carryOut:commonDat.tDatBool64

Mbf

hAdderInst1:hAdderLib.hAdderInst
linst

memInA:commonDat.tDatBool64

Mfb

memInB:commonDat.tDatBool64

Mfb

sumOut:commonDat.tDatBool64

Mbf

carryOut:commonDat.tDatBool64

Mbf

hAdderInst2:hAdderLib.hAdderInst
linst

memInA:commonDat.tDatBool64

Mfb

memInB:commonDat.tDatBool64

Mfb

sumOut:commonDat.tDatBool64

Mbf

carryOut:commonDat.tDatBool64

Mbf

orGateInst:boolBoxLib.orGateInst
linst

inAMem:commonDat.tDatBool64

Mfb

inBMem:commonDat.tDatBool64

Mfb

orOut:commonDat.tDatBool64

Mbf

orGate

hbox

Figure 6.3: Full adder

214

fAdderInst1

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst2

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst3

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst4

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst5

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst6

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst7

memInB

memInA

memInCarry sumOut

carryOut

fAdderInst8

memInB

memInA

memInCarry sumOut

carryOut

boolSink

memIn

zeroSource

bOut

Figure 6.4: Structure of a cascade adder

program that is both immutable and not reliant on finding a root namespace in which to
resolve something. Library closures are formed when no instances within that library
refer to definitions that require any ancestors in the library tree.

6.8.3 Cascade adder

The cascade adder strings together eight full adders in the fashion illustrated in Figure
6.4. We can see how each of the eight bits corresponding to an eight-bit binary number
feed their output carry bit to the input carry bit of the next (and more significant) bit.
The first carry is supplied with a source of zeros, and the last carry is connected to a
sink of Boolean values. H memories must always be connected on both sides. The
least significant bits are in the full adder instances with the lowest numbers. The aim
is not to construct an efficient adder (cascade adders have poor latency) but to show an
eightfold increase in the scale of a recognizable example. Important parts of the trace
for the cascade adder are shown in appendix F.7. The listing shows the input states after
one cycle. These can be seen as the two input memories of the first half adder of each
full adder. These values are followed by the states of the sum and carry outputs as they
emerge at five cycle intervals over 40 cycles. These static offsets can be seen in the full
adder instantiations from lines 5 to 14 in Listing 6.10. The names correspond with the
boxes in Figure 6.4. The observed and manifested memories specified in lines 16 to 29
show the aliases with which each instance is observed or manifested. To maintain the
clarity of Figure 6.4, we have not added these export aliases to the diagram. As with the
half and full adders, matching of inputs to outputs is evident in the fact that ‘valid at’
values are the same for a particular calculation notwithstanding the cascaded delays of
more significant bits as they wait for the less significant carry bit to become available.
It can be seen in Listing F.7 that the calculation for the value input after one cycle is
01111111 + 10000000 = 11111111, or 127 + 128 = 255 in base 10. The outputs are read
from the gate outputs of the second half adder of each full adder. The selection
of boxes shown in Listing F.7 was obtained by filtering the boxes of interest from the
output trace using an stylesheet, followed by generation of the tables using further

215

stylesheets to produce LATEX via TEXML .

Listing 6.10: The cascade adder

1 llib cAdderLib
2
3 linst cAdderInst {
4
5 linst fAdderInst1 : fAdderLib.fAdderInst;
6 linst fAdderInst2 : fAdderLib.fAdderInst (5);
7 linst fAdderInst3 : fAdderLib.fAdderInst (10);
8 linst fAdderInst4 : fAdderLib.fAdderInst (15);
9 linst fAdderInst5 : fAdderLib.fAdderInst (20);

10 linst fAdderInst6 : fAdderLib.fAdderInst (25);
11 linst fAdderInst7 : fAdderLib.fAdderInst (30);
12 linst fAdderInst8 : fAdderLib.fAdderInst (35);
13 linst zeroSource : sourceSinkLib.source0Inst (1);
14 linst boolSink : sourceSinkLib.sinkInst (40);
15
16 observe {
17 fAdderInst1.memInA as memIn1A;
18 ...
19 fAdderInst8.memInA as memIn8A;
20 fAdderInst1.memInB as memIn1B;
21 ...
22 fAdderInst8.memInB as memIn8B;
23 }
24
25 manifest {
26 fAdderInst1.sumOut as sumOut1;
27 ...
28 fAdderInst8.sumOut as sumOut8;
29 }
30
31 fifo zeroSource.bOut to fAdderInst1.memInCarry;
32 fifo fAdderInst1.carryOut to fAdderInst2.memInCarry;
33 ...
34 fifo fAdderInst7.carryOut to fAdderInst8.memInCarry;
35 fifo fAdderInst8.carryOut to boolSink.memIn;
36
37 }
38 }

6.8.4 Multiplier

The structure of the multiplier is illustrated in Figure 6.5. Each arrow represents a sep-
arate . The multiplier makes use of source and sink boxes, given in the library of
Boolean source and sink boxes listed in appendix E.2. The multiplier also uses a feature
that we have not yet seen, namely a library nested within the scope of an instance. This
has the effect on making that library visible only to the local instance and any other li-
braries or instances declared within it. We make use of this feature for 8-fold fan-out

216

memIn1A

memIn2A

memIn3A

memIn4A

zeroFanout1Inst1

bOut

zeroFanout1Inst2

bOut

zeroFanout1Inst4

bOut

zeroFanout1Inst3

bOut

sinkFanout2Inst

memIn

sinkFanout3Inst

memIn

zeroFanout2Inst

bOut

sinkFanout1Inst

memIn

zeroFanout3Inst

bOut

fanoutInst3

fanoutInst2

fanoutInst1

memIn1B memIn2B memIn3B memIn4B

zeroPMult4Inst

bOut

mOut1 mOut2 mOut3 mOut4 mOut5 mOut6 mOut7 mOut8

cAdderInst1

cAdderInst2

cAdderInst3

pMultInst1

pMultInst2

pMultInst3

pMultInst4

fanout1A

fanout2A

fanout3A

fanout4A

fanout5A

fanout6A

fanout7A

fanout8A

fanout1B

fanout2B

fanout3B

fanout4B

fanout5B

fanout6B

fanout7B

fanout8B

memIn1

memIn2

memIn3

memIn4

memIn5

memIn6

memIn7

memIn8

fanout1A

fanout2A

fanout3A

fanout4A

fanout5A

fanout6A

fanout7A

fanout8A

fanout1B

fanout2B

fanout3B

fanout4B

fanout5B

fanout6B

fanout7B

fanout8B

memIn1

memIn2

memIn3

memIn4

memIn5

memIn6

memIn7

memIn8

fanout1A

fanout2A

fanout3A

fanout4A

fanout5A

fanout6A

fanout7A

fanout8A

fanout1B

fanout2B

fanout3B

fanout4B

fanout5B

fanout6B

fanout7B

fanout8B

memIn1

memIn2

memIn3

memIn4

memIn5

memIn6

memIn7

memIn8

memIn1B

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

pMult1

pMult2

pMult3

pMult4

pMult5

pMult6

pMult7

pMult8

memIn1B

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

pMult1

pMult2

pMult3

pMult4

pMult5

pMult6

pMult7

pMult8

memIn1B

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

pMult1

pMult2

pMult3

pMult4

pMult5

pMult6

pMult7

pMult8

memIn1B

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

pMult1

pMult2

pMult3

pMult4

pMult5

pMult6

pMult7

pMult8

1A 2A 3A 4A 5A 6A 7A 8A
1B

2B

3B

4B

5B

6B

7B

8B
1 2 3 4 5 6 7 8

1A 2A 3A 4A 5A 6A 7A 8A
1B

2B

3B

4B

5B

6B

7B

8B
1 2 3 4 5 6 7 8

1A 2A 3A 4A 5A 6A 7A 8A
1B

2B

3B

4B

5B

6B

7B

8B
1 2 3 4 5 6 7 8

Figure 6.5: Structure of multiplier

and partial multiplier instances, which we do not intend to re-use anywhere else. Had
we declared these libraries directly within the multLib library rather than inside the
multInst instance, then these inner libraries would have been accessible from outside
the instance definition, and outside the multLib library by qualifying the library name
as multLib.fanout8Lib.fanout8Inst or (had we dispensed with the intervening library
container) multLib.fanout8Inst.

Listing 6.11: The four-bit multiplier: inline fan-out library

1 llib multLib {
2
3 linst multInst {
4
5 llib fanout8Lib {
6
7 linst fanout8Inst {
8

217

9 linst bFanout2Inst1 : boolBoxLib.fanout2Inst;
10 ...
11 linst bFanout2Inst8 : boolBoxLib.fanout2Inst;
12 }
13
14 observe {
15
16 bFanout2Inst1.memIn as memIn1;
17 ...
18 bFanout2Inst8.memIn as memIn8;
19 }
20
21 manifest {
22
23 bFanout2Inst1.fanoutA as fanout1A;
24 ...
25 bFanout2Inst8.fanoutA as fanout8A;
26
27 bFanout2Inst1.fanoutB as fanout1B;
28 ...
29 bFanout2Inst8.fanoutB as fanout8B;
30 }
31 }

Listing 6.11 gives the definition of the 8-bit two-fold fan-out as the parallel composition
of eight 1-bit two-fold fan-outs.

Listing 6.12: The four-bit multiplier: inline partial multiplier library

1 llib pMultLib {
2
3 linst pMultInst {
4
5 linst fanout2Inst1 : boolBoxLib.fanout2Inst;
6 linst fanout2Inst2 : boolBoxLib.fanout2Inst (1);
7 linst fanout2Inst3 : boolBoxLib.fanout2Inst (1);
8 linst fanout2Inst4 : boolBoxLib.fanout2Inst (2);
9 ...

10 linst fanout2Inst7 : boolBoxLib.fanout2Inst (2);
11
12 linst andInst1 : boolBoxLib.andGateInst (3);
13 ...
14 linst andInst8 : boolBoxLib.andGateInst (3);
15
16 observe {
17
18 andInst1.memInA as memIn1A;
19 ...
20 andInst8.memInA as memIn8A;
21
22 fanout1Inst1.memIn as memIn1B;
23 }
24
25 manifest {
26

218

27 andInst1.andOut as pMult1;
28 ...
29 andInst8.andOut as pMult8;
30 }
31
32 fifo fanout2Inst1.fanoutA to fanout2Inst2.memIn;
33 ...
34 fifo fanout2Inst3.fanoutB to fanout2Inst7.memIn;
35 fifo fanout2Inst4.fanoutA to andInst1.memInB;
36 ...
37 fifo fanout2Inst7.fanoutB to andInst8.memInB;
38 }
39 }

The multiplier’s inline partial multiplier library is shown in Listing 6.12. It carries out
a 1 bit eight-fold fan-out using a pipeline of two-fold fan-outs. For each output from
the fan-out assembly, the pipeline is three fan-outs long. The whole fan-out system uses
seven two-fold fan-outs in total.

The resulting eight copies of the single input bit are then sent to eight gates,
which multiply this number by each of the eight bits of the second argument to the par-
tial multiplier. The partial multiplier is instantiated four times, and a set of source and
sink boxes together with 8-bit parallel fan-outs then arrange the necessary bit-shifting of
the first multiplier arguments, so that it can be partially multiplied with each of the four
bits of the other multiplier argument in turn. The results of these partial multipliers are
then added together in a cascaded pipeline of three cascade adders.

Listing 6.13: The four-bit multiplier: concrete part of definition

1 linst fanoutInst1 : fanout8Lib.fanout8Inst (1);
2 linst fanoutInst2 : fanout8Lib.fanout8Inst (2);
3 linst fanoutInst3 : fanout8Lib.fanout8Inst (3);
4
5 linst zeroFanout1Inst1 : sourceSinkLib.source0Inst;
6 ...
7 linst zeroFanout1Inst4 : sourceSinkLib.source0Inst;
8 linst sinkFanout1Inst : sourceSinkLib.sinkInst (2);
9

10 linst zeroFanout2Inst : sourceSinkLib.source0Inst (1);
11 linst sinkFanout2Inst : sourceSinkLib.sinkInst (3);
12
13 linst zeroFanout3Inst : sourceSinkLib.source0Inst (2);
14 linst sinkFanout3Inst : sourceSinkLib.sinkInst (4);
15
16 linst pMultInst1 : pMultLib.pMultInst (2);
17 linst pMultInst2 : pMultLib.pMultInst (3);
18 linst pMultInst3 : pMultLib.pMultInst (4);
19 linst pMultInst4 : pMultLib.pMultInst (4);
20 linst zeroPMult4Inst : sourceSinkLib.source0Inst (3);
21
22 linst cAdderInst1 : cAdderLib.cAdderInst (7);

219

23 linst cAdderInst2 : cAdderLib.cAdderInst (12);
24 linst cAdderInst3 : cAdderLib.cAdderInst (17);
25
26 observe {
27
28 fanout1Inst.memIn1 as memIn1A;
29 ...
30 fanout1Inst.memIn4 as memIn4A;
31 pMultInst1.memIn1B as memIn1B;
32 ...
33 pMultInst4.memIn1B as memIn4B;
34 }
35
36 manifest {
37
38 cAdderInst3.sumOut1 as mOut1;
39 ...
40 cAdderInst3.sumOut8 as mOut8;
41 }
42
43 fifo zeroFanout1Inst1.bOut to fanoutInst1.memIn5;
44 ...
45 fifo zeroFanout1Inst4.bOut to fanoutInst1.memIn8;
46
47 fifo zeroFanout2Inst.bOut to fanoutInst2.memIn1;
48 ...
49 fifo fanoutInst1.fanout7B to fanoutInst2.memIn8;
50 fifo fanoutInst1.fanout8B to sinkFanout1Inst.memIn;
51
52 fifo zeroFanout3Inst.bOut to fanoutInst3.memIn1;
53 ...
54 fifo fanoutInst2.fanout7B to fanoutInst3.memIn8;
55 fifo fanoutInst2.fanout8B to sinkFanout2Inst.memIn;
56
57 fifo fanoutInst1.fanout1A to pMultInst1.memIn1A;
58 ...
59 fifo fanoutInst1.fanout8A to pMultInst1.memIn8A;
60
61 fifo fanoutInst2.fanout1A to pMultInst2.memIn1A;
62 ...
63 fifo fanoutInst2.fanout8A to pMultInst2.memIn8A;
64
65 fifo fanoutInst3.fanout1A to pMultInst3.memIn1A;
66 ...
67 fifo fanoutInst3.fanout8A to pMultInst3.memIn8A;
68
69 fifo zeroPMult4Inst.bOut to pMultInst4.memIn1A;
70 ...
71 fifo fanoutInst3.fanout7A to pMultInst4.memIn8A;
72 fifo fanoutInst3.fanout8A to sinkFanout3Inst.memIn;
73
74 fifo pMultInst1.pMult1 to cAdderInst1.memIn1A;
75 ...
76 fifo pMultInst1.pMult8 to cAdderInst1.memIn8A;
77
78 fifo pMultInst2.pMult1 to cAdderInst1.memIn1B;
79 ...
80 fifo pMultInst2.pMult8 to cAdderInst1.memIn8B;

220

81
82 fifo cAdderInst1.sumOut1 to cAdderInst2.memIn1A;
83 ...
84 fifo cAdderInst1.sumOut8 to cAdderInst2.memIn8A;
85
86 fifo pMultInst3.pMult1 to cAdderInst2.memIn1B;
87 ...
88 fifo pMultInst3.pMult8 to cAdderInst2.memIn8B;
89
90 fifo cAdderInst2.sumOut1 to cAdderInst3.memIn1A;
91 ...
92 fifo cAdderInst2.sumOut8 to cAdderInst3.memIn8A;
93
94 fifo pMultInst4.pMult1 to cAdderInst3.memIn1B;
95 ...
96 fifo pMultInst4.pMult8 to cAdderInst3.memIn8B;
97 }
98 }

Listing 6.13 gives the rest of the definition of the multiplier. The labelled memories and
instances correspond to the labels in Figure 6.5. The instance computes the multipli-
cation by summing, using three cascade adders, four partial multiples of the ‘A’ input
bits by each of the ‘B’ input bits in turn. The output of each fan-out is progressively bit-
shifted so that each partial multiple has the correct significance in the sum. The source
and sink boxes provide that no memories are left dangling as a result of the skew be-
tween inputs and outputs introduced by the bit-shifting.

The inputs and outputs of the multiplier trace have been filtered into appendix F.8.
This example is very substantially more complicated than any of the preceding ones,
instantiating several previous instance definitions as well as defining new ones. The re-
sulting state space gives rise to very large (hundreds of megabytes) raw traces. This
is too large to be processed easily by a document object model () driven stylesheet.7

We therefore extended the filtration system using a small Java Class. The Java Class
broke up each trace serially into top-level coordination state objects using the SAX in-
terface. It then converted each coordination state object into a object, before finally
applying an stylesheet to each such object and reassembling the results of each
transformation into a filtered trace. This filtered trace was suitable to be converted back
into LATEX through TEXML . This process is somewhat ad hoc, but in performing these
tasks programmatically, we can offer a high level of assurance that the graphical rep-
resentation properly shows what is in the original trace without fear of the errors that
would invevitably occur in performing this process manually. To do any better than this
would involve verifying a type-setting program.

We see from Listing F.8 that the result of the input presented with one cycle on the
7 3.0 contains features for dealing with streaming data, but there are not yet any open source

 3.0 processors available.

221

top-level wall-clock is 1011 × 0111 = 01001101, or 11 × 7 = 77 in base 10.

6.8.5 Triple modular redundancy (TMR) replicated multiplier

The replicated multiplier is illustrated in Figure 6.6.
The first part of the instance definition gives another inline library. This is a four-

bit three-fold fan-out library, instantiating four of the single bit three-fold fan-outs in a
parallel composition. It is shown in Listing 6.14.

Listing 6.14: The replicated four-bit multiplier: inline fan-out library

1 llib replMultLib {
2
3 linst replMultInst {
4
5 llib fanout4x3Lib {
6
7 linst fanout4x3Inst {
8
9 linst bFanout3Inst1 : boolBoxLib.fanout3Inst;

10 ...
11 linst bFanout3Inst4 : boolBoxLib.fanout3Inst;
12
13 observe {
14
15 bFanout3Inst1.memIn as memIn1;
16 ...
17 bFanout3Inst4.memIn as memIn4;
18 }
19
20 manifest {
21
22 bFanout3Inst1.fanoutA as fanout1A;
23 ...
24 bFanout3Inst4.fanoutA as fanout4A;
25
26 bFanout3Inst1.fanoutB as fanout1B;
27 ...
28 bFanout3Inst4.fanoutB as fanout4B;
29
30 bFanout3Inst1.fanoutC as fanout1C;
31 ...
32 bFanout3Inst4.fanoutC as fanout4C;
33 }
34 }
35 }

The replicated multiplier makes use of the single-bit three-input Boolean voter library,
listed in appendix E.3, whose truth table is as follows:

222

inMemA inMemB inMemC voter3Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 6.5: Voter truth table

We do not have a means to simulate faults to put this voter to the test: we leave that
to further work.

This voter is instantiated eight times in the three-input voter library given in Listing
6.15.

Listing 6.15: The replicated four-bit multiplier: inline voter library

1 llib voter8x3Lib {
2
3 linst voter8x3Inst {
4
5 linst bVoter3Inst1 : votersLib.voter3Inst;
6 ...
7 linst bVoter3Inst8 : votersLib.voter3Inst;
8
9 observe {

10
11 bVoter3Inst1.memInA as memIn1A;
12 ...
13 bVoter3Inst8.memInA as memIn8A;
14
15 bVoter3Inst1.memInB as memIn1B;
16 ...
17 bVoter3Inst8.memInB as memIn8B;
18
19 bVoter3Inst1.memInC as memIn1C;
20 ...
21 bVoter3Inst8.memInC as memIn8C;
22 }
23
24 manifest {
25
26 bVoter3Inst1.voter3Out as voter1;

223

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

rmOut1

rmOut2

rmOut3

rmOut4

rmOut5

rmOut6

rmOut7

rmOut8

fanoutInst1

fanoutInst2

multInst1

multInst2

multInst3

voterInst

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1A

memIn2A

memIn3A

memIn4A

memIn1B

memIn2B

memIn3B

memIn4B

mOut1

mOut2

mOut3

mOut4

mOut5

mOut6

mOut7

mOut8

memIn1

memIn2

memIn3

memIn4

fanout1A

fanout2A

fanout3A

fanout4A

fanout1B

fanout2B

fanout3B

fanout4B

fanout1C

fanout2C

fanout3C

fanout4C

memIn1

memIn2

memIn3

memIn4

fanout1A

fanout2A

fanout3A

fanout4A

fanout1B

fanout2B

fanout3B

fanout4B

fanout1C

fanout2C

fanout3C

fanout4C

memIn1A

memIn2A

memIn3A

memIn4A

memIn5A

memIn6A

memIn7A

memIn8A

memIn1B

memIn2B

memIn3B

memIn4B

memIn5B

memIn6B

memIn7B

memIn8B

memIn1C

memIn2C

memIn3C

memIn5C

memIn7C

memIn8C

voter1

voter2

voter3

voter4

voter5

voter6

voter7

voter8

memIn4C

memIn6C

Figure 6.6: Structure of replicated multiplier

27 ...
28 bVoter3Inst8.voter3Out as voter8;
29 }
30 }
31 }

The replicated multiplier instantiates the multiplier of section 6.8.4 three times, and
declares two new local instance types to construct an 8-bit voter and two 4-bit three
fold fan-outs for each of the three multipliers. This can be seen in Listing 6.16. It is all
linked together with yet more s. We remark that, while our voter is a single point of
failure, all single points of failure inside an design may be eliminated if we apply
overlapping replication transformation to a program section so that voters are replicated
and attached to the next stage of replicating logic. This is not a new observation: it goes
back to von Neumann’s idea of ‘restoring organs’ [189].

Listing 6.16: The replicated four-bit multiplier: concrete part of definition

1 linst fanoutInst1 : fanout4x3Lib.fanout4x3Inst;
2 linst fanoutInst2 : fanout4x3Lib.fanout4x3Inst;
3
4 linst multInst1 : multLib.multInst (1);

224

5 linst multInst2 : multLib.multInst (1);
6 linst multInst3 : multLib.multInst (1);
7
8 linst voterInst : voter8x3Lib.voter8x3Inst (57);
9

10 observe {
11
12 fanoutInst1.memIn1 as memIn1A;
13 ...
14 fanoutInst1.memIn4 as memIn4A;
15
16 fanoutInst2.memIn1 as memIn1B;
17 ...
18 fanoutInst2.memIn4 as memIn4B;
19 }
20
21 manifest {
22
23 voterInst.voter1 as rmOut1;
24 ...
25 voterInst.voter8 as rmOut8;
26 }
27
28 fifo fanoutInst1.fanout1A to multInst1.memIn1A;
29 ...
30 fifo fanoutInst1.fanout4A to multInst1.memIn4A;
31
32 fifo fanoutInst2.fanout1A to multInst1.memIn1B;
33 ...
34 fifo fanoutInst2.fanout4A to multInst1.memIn4B;
35
36 fifo fanoutInst1.fanout1B to multInst2.memIn1A;
37 ...
38 fifo fanoutInst1.fanout4B to multInst2.memIn4A;
39
40 fifo fanoutInst2.fanout1B to multInst2.memIn1B;
41 ...
42 fifo fanoutInst2.fanout4B to multInst2.memIn4B;
43
44 fifo fanoutInst1.fanout1C to multInst3.memIn1A;
45 ...
46 fifo fanoutInst1.fanout4C to multInst3.memIn4A;
47
48 fifo fanoutInst2.fanout1C to multInst3.memIn1B;
49 ...
50 fifo fanoutInst2.fanout4C to multInst3.memIn4B;
51
52 fifo multInst1.mOut1 to voterInst.memIn1A;
53 ...
54 fifo multInst1.mOut8 to voterInst.memIn8A;
55
56 fifo multInst2.mOut1 to voterInst.memIn1B;
57 ...
58 fifo multInst2.mOut8 to voterInst.memIn8B;
59
60 fifo multInst3.mOut1 to voterInst.memIn1C;
61 ...
62 fifo multInst3.mOut8 to voterInst.memIn8C;

225

63 }
64 }

The inputs and outputs of the replicated multiplier trace have been filtered into ap-
pendix F.9. The same results can be seen as in section 6.8.4: we read off a value of 77.
This time, the inputs and outputs can be seen in the fan-out and voter instances. For the
sake of simplicity, we have realigned the cascade of information coming from the mul-
tiplier, so that all input and output is read off with 58 cycles showing on the top-level
wall-clock. Long s exist between the least significant bits coming from the cascade
adders at the output of the multipliers and inputs of the voter boxes. It would be pos-
sible to optimize this away if the outputs of the replicated multiplier were to be fed to
similarly cascaded inputs.

It can be seen that the signature of the replicated multiplier is almost exactly the
same as that of the single multiplier: the only difference is that the latency is greater to
accommodate the fan-out and voting stages.

To show how the bisimilarity of this trace to the non-replicated version can be es-
tablished, we can construct a similar argument to that which we gave in the context of
the parallel composition example. This time, we have a more interesting interpretation
function. As we consider a coinductive predicate over both traces, the propositional
term that we need to add in the constructor of this predicate (corresponding to the con-
structors of each step of the respective traces) is one that axiomatizes the interpretation
function. In this simple case, the interpretation function is a two-out-of-three voter,
so we can construct the bisimulation predicate if any two of the nested replicated mul-
tipliers are equal to the state of the non-replicated multiplier for the coordination states
corresponding to the relevant time slice. This is precisely the same logic as implemented
in the computable voter function that processes the outputs of the replicated multipli-
ers. We can use this bisimulation predicate to define a set of acceptable witnesses to the
unreplicated multiplier that is satisfied even if we inject faults into the underlying imple-
mentation, as long as no more than one fault occurs at a time. The memory holding the
voter output in the replicated example is the same as the interpretation of the final set of
multiplier outputs, because the executable voter logic is identical to a two-out-of-three
predicate. We observe by inspection of the traces that these properties hold.

We note that nothing in the interpretation function requires that each replicated mul-
tiplier be implemented in the same way, or on the same hardware. As long as the s
from the individual multipliers to the fan-outs and voter boxes can be constructed with-
out violating the boundary conditions on the ‘rubber sheet’ model, a bisimilarity predi-
cate can be constructed in the way outlined, with temporal displacements or an entirely
different multiplier design. In terms of Figure 6.6, we can partition the replicated mul-

226

tiplier specification and apply different morphisms to different parts.
It would be desirable in further work to find ways of sharing signatures in such cases

that were exactly the same, without adding explicit boxes for temporal padding. This
might be done by constructing more subtle time-shifting semantics on memories, where
a kind of temporal memory polymorphism could be enabled by the use of varying buffer
lengths or parametrizable outward-facing buffer capacities. This complexity of passive
observation/manifestation semantics is the price we pay for avoiding the transactional
drawbacks of message-passing specification approaches.

6.8.6 Scale metrics

Finally, we present some measures of the relative scale of our programs.

Program
scenario

Number
of
boxes

Number
of
s

H
pro-
gram
LOC

Coq
AST
LOC

Execution
time
(user-
mode
seconds)

Feedbacks Deepest
nesting
level

Negator 1 0 23 1,090 0.04 0 0

Parity 1 0 32 1,184 0.05 0 0

Parallel
composi-
tion

2 0 20 405 0.10 0 1

Pipeline 2 1 16 375 0.11 0 1

Checksum 1 1 36 1,773 0.11 1 (direct) 1

Checksum
pipeline

2 2 17 430 0.18 1 (indi-
rect)

1

Half adder 4 4 26 786 0.31 0 2

Full adder 9 11 25 805 0.71 0 3

Cascade
adder

74 97 57 1,882 89.77 0 4

Multiplier 316 381 283 9,641 805.17 0 5

Replicated
multiplier

964 1191 190 6,174 5,388.85 0 6

Table 6.6: Program statistics

227

The timings are user-mode times obtained from running programs under the time

program on Linux at the bash shell. The comparatively low line counts for the exam-
ples with very large numbers of boxes are a result of the instantiation by reference of
previously defined components.

The most important observation about the program statistics is that the complexity
(in terms of total number of boxes and s in an example) increases rapidly for only
modest increases in the amount of code. The ability to do this comes from the nesting
semantics. We can see that, if we chose to prove something about a particular
program (embedded in Coq), then nesting would enable us to gain similar productivity
in the proof domain. The other interesting observation is that the execution time is
not linearly related to the number of boxes and s, but increases more quickly than
that. This is likely to be due in large part to the way the implementation is structured,
where the static instance definition object is consulted in its entirity for each time step;
as the instance object becomes larger, it takes longer to retrieve the relevant box or
specification for each part of a coordination step increment.

6.9 Possible technical improvements

In writing and using the implementation, a number of technical matters have been
identified that it would be worthwhile to address in further work.

6.9.1 Use of tactic language

Our proofs have in general used scripts of simple tactics and ‘tacticals’.8 Coq has a tac-
tic language called ‘Ltac’, and in further work we would use this much more, as our
proofs using simple tactics are hard to follow and often repetitious. Chlipala [48] has
advocated an approach to using tactics in Coq where every proof is generated by a sin-
gle invocation of one customized higher-order tactic. This is an elegant paradigm, and
compensates for one of the disadvantages of Coq compared to Isabelle-like proof assis-
tants: Isabelle encourages proofs to be structured in the way that one would expect to
read them in a non-automated setting, while Coq’s functions-as-proofs paradigm means
that proofs can be almost impossible to understand by inspection. In future work, we
would adopt the pattern advocated by Chlipala. Although this method would at first
be even more time-consuming than the approach we have employed, we expect that in
the end it would make the task quicker and easier. It would also help us to close the
remaining admitted lemmas in the expression language, and, after adding more stru-
ture to predicate terms in the coordination language, to discharge the resultant proof
obligations and purge its admitted lemmas. If we were to attempt to do this without us-

8‘tacticals’ in Coq are simple compositions of tactics.

228

ing more sophisticated proof tactics, the scripts would become intractably long-winded
and difficult to follow.

6.9.2 Compiler

We have compiled programs by hand in the present work, to produce inhabitants
of static semantic objects for each program in Coq code. These were subsequently
extracted to OCaml by Coq and compiled using the OCaml compiler. Hand compila-
tion has been used because the interesting features of the language are contained in the
idea of a static semantic object Curried to an interpreter function to create an executable
 function deeply embedded in the host logic. It has therefore not been a priority
to develop a verified compiler. However, with the most advanced examples we have
demonstrated, hand compilation became an extremely repetitious and error-prone pro-
cess, and any further development will require a compiler. We have envisaged from the
beginning that the compiler would be a direct implementation of the static semantics.
The static semantic object is correct by construction, so the presence of a ‘bottom’ static
semantic object indicates a failed compilation where the static semantics have been vi-
olated and it is thus impossible to produce a correct static semantic object.

A further desirable step after generating a compiler would be the production of a
debugging tool allowing real-time tracing and stepping. It is not reasonable to ask a
user to identify bugs solely from large trace files.

6.9.3 Refinement of semantics

Separate state variables for s are a priority, in order to decouple fully the space re-
quirements of memories from the latency of the s to which they are connected, and
in order to remove the need for explicit minimum and maximum buffer length param-
eters in the specification of memories.

It would also be useful to explore a dual version of the semantics in which s no-
tionally executed before boxes. This would save us from having to increment the clock in
the middle of a nested instance invocation, and would therefore be tidier. There would
be a bijective mapping between the traces generated by such semantics and those pro-
duced by the current version.

Our ‘time-shifting’ semantics have proved powerful. It would be productive to ex-
tend them to perform more general temporal transformations on logical instances, mul-
tiplying their clock frequencies by constants, as well as translating them as we do at
present.

Finally, we might wish to change how we express the dynamic semantics governing
how memories from nested instances are accessed. The reference semantics allow
outer boxes to see inside and perform I/O directly on nested boxes, while the interpreter

229

written in Coq avoids this. The matter is one of trading concision of dynamic seman-
tics for data opacity in nested instances. If we introduce mutually nested coordination
languages, the latter consideration would probably win out, resulting in a larger coor-
dination state object in the reference semantics. This would not affect the efficiency of
implementations, since they would be engineered to optimize out these referential indi-
rections (bisimilarly), resulting in an interpreter more like our current reference design
in Coq in this respect.

6.9.4 Recasting modules into records

We have already observed several drawbacks involved with using Coq’s module sys-
tem. The ugliest problem we have found is that the Standard Library map axiomati-
zation and implementations are statically parametric in the type of their keys. In our
development, a large number of our data maps have multiple but similar instantiations
with different types of keys — in particular, the maps of input and output memories.
The Standard Library requires that a Standard Library module be instantiated statically
and separately for each type, which is extremely cumbersome. These difficulties could
be addressed by recasting our static modules in the paradigm of the Ext-lib [55] library,
using dependently typed records and type-classes. A version of Coq that featured uni-
verse polymorphism according to the proposals of Sozeau et al. [174] would also assist
with some of these problems. We would also welcome a version of Coq in which it was
syntactically and semantically possible to differentiate between function and dependent
inductive types.

6.9.5 Higher-order functions with proofs

We have repeatedly used a paradigm where a property of an associative array implies
properties of each member of that array. This has usually been implemented by recurs-
ing over a list of (key, element) pairs, which is ugly, and we would like to factor this
out into a higher-order functional construction. Where we have been able to use map
functions from the Standard Library, we have had to write tortuous predicates to con-
vince Coq that the resulting functions terminate. It would be advantageous to develop a
new map function that takes care of this design pattern in a way that is hidden from the
calling code, being parametrized in the relationship between a predicate over the map
and a predicate over its members. This would involve extending the Standard Library
associative arrays (maps) or the Ext-lib equivalents.

6.9.6 Removal of convenience arguments

It would be desirable to neaten our reference interpreter by removing those extra ar-
guments to functions that made its creation easier. This process is already evident in

230

the inference of nested clocks from static information. More work in this vein would
also make the syntax of the Coq functions used more closely resemble the more infor-
mal semantic rules, addressing the issues we identified in section 5.3. Although this
would make the reference interpreter more inefficient at run-time, this is a price worth
paying, given that the reference interpreter is intended to give conviction to the opera-
tional semantic rules by mirroring their structure as closely as possible, rather than to
be deployed to real implementations of instances. The boxes of are designed
to specify parallel computation, and any serialized simulation in a single thread of exe-
cution will always be disproportionately slow.

6.9.7 Unification of fixpoint and cofixpoint versions of semantics

The desirable goal of unifying fixpoint and cofixpoint versions of the semantics would
only be possible if Coq provided more flexible syntax for the cofixpoint guard condition
in terminating cases. However, there is no immediate prospect of any changes to the way
Coq formalizes recursion over coinductive structures.

6.10 Summary of points demonstrated

In total, the entire development, including all runnable code, proof and examples amounts
to 81,654 lines of Coq code. The hand-compilation of programs is evident in the
Coq files bearing the names of their respective examples. There are several files for
each example, with instance signatures and harmonic boxes separated from the main in-
stance declarations. In addition, test rigs are written as functors using Coq’s Sectioning
mechanism, permitting instance closures to be expressed conveniently in a shallow em-
bedding style.

This chapter has demonstrated the detailed behaviour of the set of examples that
we have been discussing throughout the thesis, as well as explaining how a much more
complex example works. It has shown how the time-stamped values being observed
and manifested work in practice.

We have shown how bisimilarity predicates can be constructed directly over equiva-
lent traces, advancing one of our main hypotheses. By showing how bisimulation pred-
icates that we discussed in chapter 5 can be constructed by inspection of traces, we have
advanced our claim that the use of a single coordinate system for anything written in
the language makes the description of these objects much easier than forming similar
predicates over more directly physical implementations. We can make transformations
such as the replication transformation of the multiplier reflexively in , which leaves
the ‘rubber sheet’ implementation as a final step that can be performed when reflex-
ive transformations have been completed. This transitive argument allows us to defer

231

difficult but uninteresting considerations of partial orders.
We learnt in producing these traces that the export workflow from Coq in the pres-

ence of admitted lemmas can be extremely difficult to debug, and that they can be dif-
ficult to read. The general limitation of model-checking also applies, in that coverage
of the design and state space is limited. However, the traces give a far better intuitive
grasp of and how arguments about the language are constructed than is possible
with a a set of theorems over the the predicate characterization of the language.

232

Chapter 7

Conclusions and further work

7.1 Principal contributions

In realizing a language that meets the aspirations we have set, a number of existing
ideas have been extended. It has also been necessary to introduce some novelties and
innovations. This section summarizes them against the hypotheses stated in section 1.2.

7.1.1 Absolute time

7.1.1.1 Ontology of global clocking and coordinate system

H defines a computation as a function of timed observations in a coordinate system in
spacetime. Observations are axiomatized over an identifier space, such as / object
identifiers, and a type system. Our conception of ‘ semantics’, which we derive from
this, is a novelty. H is a ‘harmonic’ language, with every component operating at
some rational-numbered frequency. The periodic structure provides temporal firewalls
between each ‘box’ containing a computation. This means, that in principle, lends
itself to resource use analyses that are orthogonal between instances.

7.1.1.2 Ontology observation semantics

Ontology observation semantics have a particular importance in tolerating faulty imple-
mentations. Pre- is an axiomatization of observation semantics. It comprises that
part of that defines the names, types and frequencies of periodic observations and
manifestations of values: it defines the ontology of the subject matter of the specifica-
tion.

233

7.1.2 Deep embedding

7.1.2.1 Dependent type-theoretical semantics

We seek an equivalence class of executable specifications over functions with different
structures but which compute the same output for each input: in other words, we want
the predicate defining the relation over domain and co-domain to be provably sound
and compatible with an appropriate axiomatization of completeness. We also want an
inhabitant of the function type derived from this predicate as a witness proving that it
is computable, and we use this to discharge the soundness proof. This type-theoretic
approach has further advantages in its potential to show interesting morphisms between
reflexive transformations in , the correctness of implementations as witnesses to
 specifications, and even, in extremis, the equivalence of different axiomatizations,
potentially as embedded in different logics.1 It also becomes trivially possible to give a
type for a compiler or interpreter: we would like any inhabitant to be a valid tool of the
relevant type.

The use of dependent type-theoretical semantics has enabled the treatment of em-
bedded box languages as first class quantities. The paradigm of forming these types us-
ing parametrized 𝜎-types to create semantic objects is extremely powerful. The dynamic
semantics are formed from a predicate characterization of legitimate evolutions over a
domain, where the semantics of a particular instance are fixed by a dependent type in
the static semantic object of a program, which is itself dependent in its input/output sig-
nature. A type of implementations is given, which is the type of function that produces
evolutions that comply with the predicates, as incorporated into appropriate 𝜎-types.
The result of all this is a specification of a coinductive ‘type’ for part of physical reality,
whose single inhabitant, uniquely determined by an observed coinductive input stream,
corresponds to the history of real-world events as they unfold.

7.1.2.2 Polarization of specification languages into formal logics and ontol-
ogy

Through the comparison of Table 2.1 and our arguments regarding predicates and mor-
phisms in chapter 5, we have established that the decoupling of predicate and deductive
machinery found in specification languages from a sparse ontology produces an econ-
omy of formalisms and a clarity of expression for predicate properties.

1Carrying forward section 2.9, we amplify this point in section 7.4.5, asking how the limits of confidence
in tools and formalisms developed in this way have been and might be approached in a limit, as constrained
by Gödel’s incompleteness theorem and limitations of logic. To this end, we propose further research.

234

7.1.3 Ease of proof

7.1.3.1 Formalization in a proof assistant

To increase our conviction in the effectiveness of the semantics, we have deeply embed-
ded the language in Coq.

7.1.3.2 Working simulation and proof

A partially verified interpreter is provided that takes as arguments the static type of
a program and a set of input streams, and which produces execution traces. Two sets
of progressive examples are provided and hand-compiled into the necessary static se-
mantic objects. The first set of five examples shows that the basic operations of parallel
composition, pipelining and feedback are easy to do with . Such structures exhibit
(deterministic) concurrency, signal processing, memory, and a coordination analogue
of recursion. The second set of examples uses even simpler expressions inside execution
boxes, but dramatically increases the number and complexity of s to demonstrate the
scalability of the language. The simple expression language provided with the coordi-
nation language amounts to a kind of hardware description language that can be viewed
as a particularly degenerate subset of . This set of examples culminates in a repli-
cated pipelined multiplier that is designed to give a taste of how the language is adapted
to specifying for fault-tolerant implementations. If all lemmas are discharged, the ex-
istence of the interpreter immediately gives the soundness of the language, up to the
consistency of the formalizing logic. Without discharging all the lemmas, the working
interpreter provides a convincing, if not conclusive, means to show consistency proper-
ties by an empirical analogue of proof by reflection.

We have produced demonstrations of working simulations with good cover-
age of scenarios, both in terms of conformation and complexity. This constitutes good
evidence that the language concept that we have presented works in practice.

7.2 Ancillary contributions

In addition to the main contributions, the work has produced the following unusual
features and insights:

7.2.1 Separation of coordination and expression constructions: box
languages as parameters

The separation of coordination languages and expression languages is not new, but
our parametrization of a timed coordination language on another arbitrary language
is novel. Our type-theoretical semantics gives a higher-order type of harmonic box lan-
guages that fit into a harmonic box. Bindings of untimed box languages to harmonic box

235

languages can be given, and expression languages can be embedded in untimed box lan-
guages. These two abstraction layers between coordination and expression languages
are novel. So, too, is the treatment of a self-nested coordination language, obtained
when a binding of itself is provided as a harmonic box language. While nested coordi-
nation languages are not new, potentially heterogeneous nested coordination languages
are a new development.

Full introduces a means to specify the computation of an instance, elaborating
on its Pre- signature. It also provides the full semantics of nesting, whereby internal
instances run for short bursts while they will not block on lack of input. Issues of binding
of untimed and harmonic box languages are addressed in full . The specification of
these box languages and their bindings are dynamic parameters of which, when
provided, turn full into an executable language.

A simple box language is provided. Box languages may, in a fully general case, be
arbitrary languages2, which may be coordination languages in their own right. Box
languages are first order objects in the formalization of the coordination language; we
claim nothing special about the expression language presented, save that it satisfies this
novel paradigm. Nested instances can be regarded as a special recursive case of a box
language.3 In this thesis, we provide and bind an expression language as a degenerate
case. This language is a simple combinatorial logic language over tuples and records of
bits, but is expressive enough to show all the key features of the full coordination
language.

7.2.2 Formalization of FIFOs

The way in which we formalize s is unusual. They are defined by reference to ob-
servations driven by a clock only. In accordance with the philosophy of observation
semantics, there is no hand-shaking at either end of the . The length of each is
defined implicitly by the temporal offset of memories at either end of the pipe.

Our formalization of s is key to our ability to dispense with message passing as
a means of inter-box communication. They are clocked independently of the memories
they are connected to, and, as long as input data is supplied, offer values for observation
at their output ends which have a known ‘time of validity’ and a known offset compared
with the time of validity expected at their inputs. It is the difference in the time-to-live or
time-from-live parameters of the memories at each end of a that determines its
length. Fs are able to start without initialization, and recover from transient missing
data, because any absent data value on input is converted to a null value on output.

2Provided, if expressive enough to admit non-termination, they come with program-by-program proofs
of termination.

3Indeed, it would be possible to instantiate Pre- in a version of full which lacked this nesting,
or conversely, involved mutual recursion with some other coordination language. This non-canonicity of
full is one of the reasons it is separated from Pre-.

236

This kind of timed based on absolute timings and axiomatically constant latency
offers a data transmission mechanism that has a higher level of abstraction and greater
temporal coherence than the packetized abstractions used in, say, synchronous optical
networking protocols.

7.2.3 Agents and entropy

H is a concurrent language with no ‘agents’. The coordination language presented
in this thesis advances the idea that ‘agency’ has no place in a coordination language
that is meant to specify, as opposed to model a concurrent system. This does not mean
that it is not possible to program applications in that behave quasi-autonomously,
but that apparent autonomy must always be a consequence of hidden entropy that is a
parameter to the program: either explicitly as a stream of binary (Shannon) entropy,
or implicitly in the ordering of data in a program’s input streams. H programs are
deterministic functions from how the world can be observed to what must become ob-
servable if the causative relationship specified by the program is to be realized. Entropy
is observed like any other input. This approach has some interesting and even alarming
corollaries that we touch on later.

Familiar models of concurrency, such as as process calculi [108], the Actor model
[106] and — more recently — bigraphs [141] model autonomous agents. In a practical
 development, such models would be useful in producing implementations that
are witnesses to an trace, or as a high level modelling tool for designing a parallel
application that is implemented on an substrate. This forms an ‘entropy sandwich’
that is explored further in appendix A.4.1.

7.2.4 Instance and library closure semantics

H makes extensive use of re-usable components, and makes use of a ‘library’ abstrac-
tion in order to do this. This much is unremarkable. However, an unusual feature of
 is that it can definitively express instance functors, nuanced instance visibility, and
library resolution without dependence on a root namespace for library invocations. It
does all this with only two syntactic constructs for each type of instance (logical, hard-
ware and configuration).

7.3 Critical evaluation

7.3.1 Evaluation of hypotheses

7.3.1.1 Ontology of global clocking and coordinate system

In section 3.1 we introduced the idea of a synchronous language that is not, in general,
capable of defining its own local clock along with its programs or hardware descriptions,

237

but instead depends on some pre-existing clock in the real world. The language uses the
clock and observable quantities to prescribe the evolution of events as parametrized by
what is observed. The resulting specifications are not executable programs in the nor-
mal sense, but rather witnesses to ‘executions’ produced by physics if the specification
is accurately implemented. This means that when we ‘execute’ a program on an ‘inter-
preter’ we are doing so in a simulated reality — an ontological sandbox. Our claim was
that this approach offered advantages in terms of clarity, composability, and that it was
especially amenable to replication transformations. We now evaluate these claims.

The point of adding object identifiers to data types and observable quantities that are
unique from a practical perspective by grafting them into a generally recognized des-
ignation schema is unabiguous: that much is obvious. The question is, is this extreme
clarity useful? We have demonstrated this to a limited extent, but when the examples are
of components such as arithmetic units, the advantages are largely untapped, because
the various components of an arithmetic unit are usually in practical terms under the
control of a single clock in any event. It is difficult to construct an implementation of the
kind of safety-critical system to which we would like to apply this approach, since such
systems are inherently extremely costly, and the time taken to design a realistic applica-
tion is out of proportion to what one person working alone can achieve in a reasonable
time. However, we do note that the importance of knowing exactly which aircraft has
which transponder fitted to it, or which nuclear fuel rod a particular calculation con-
cerns, are uncontroversially important: the benefit of an approach like that of is
that by placing all of the logical properties directly in the hands of a proof assistant, that
proof assitant can provide a unified semantics of all elements of an application domain.

In spite of these problems, the clarity of has been shown in the replicated
transformation example, in which a reflexive transformation within the deterministic
rational-numbered time model that uses allowed us to produce a replicated trans-
formation very quickly and easily, abstracting over the implementation details. In ex-
plaining how predicates can be constructed over output traces, we illustrated our point
about witnesses of executions, which can tolerate temporal and spatial skews as long as
causation boundary conditions are respected and morphisms can be shown.

Composability is rather easier to demonstrate, as the principles can be shown with
simple examples. In the case of the parallel and pipelined composition examples, and
in that of the replication example, we showed how predicates can be constructed over
traces to demonstrate a one-to-one correspondence between two separate traces of two
separate examples and one trace of those instances combined.

238

7.3.1.2 Use of deep embedding

The use of a deep embedding enabled us to reason in chapter 3 about how our system
might be implemented beyond the reference interpreter. In chapter 5, we developed the
idea of how morphisms can be used to reason across multiple domains, from natural
numbers to physical reality. While to reason about concrete physical implementations
and continuous time formalisms went beyond the scope of this project, the fact that a
deep embedding enables one to frame these questions in a precise formalism is in itself
valuable. This can never be achieved in the monolithic specification systems that
differentiates itself against, because such systems have a logical framework designed
around the axiomatization of the problem space that they are trying to address. Event-
B or + are not suitable for linking truths about abstract mathematics or physics with
arbitrary computation models or language semantics.

We also note that, while we have factored the traditional domain of specification
languages into pure formal logics and ontologies, we are still taking the correctness of
the logic’s deductive system and implementation on trust. We cannot reap the full ben-
efits of maximum possible certainty (within the limitations of Gödel) in the consistency
and correctness of a particular proof assistant’s kernel until and unless we use a proof
assistant that is fully formalized in itself or another.

7.3.1.3 Soundness and completeness properties

In chapter 5, we showed how the structure of our formalization, using directly exe-
cutable functions over 𝜎-types, allowed us to infer directly the soundness and complete-
ness of our language up to that of Coq. In chapter 6, we showed this empirically.

One weakness that emerges from the deep embedding approach is that, since sound-
ness of the subject language () is derived directly from that of the formalizing proof
tool (Coq), the semantics of the statement of consistency are problematical without ax-
iomatizing Coq in Coq. This has been tried experimentally in the literature, but there
are no production systems that formalize Coq itself in this way. Given enough time,
our view is that the deep embedding is ultimately superior to a shallow one, because
it enables quantification over everything of interest, even the proof assistant itself. True,
there are incompleteness problems that contain the scope of what can be said about a
formalizing logic within itself, but to address the consistency of a target language by
addressing the consistency of the formalizing logic is a general approach, that once,
obtained, can work for any language.

7.3.2 Use of Coq

Formalizing a programming language in a proof assistant is a very time-consuming pro-
cess. Unusually, in this project, we opted to formalize the language before using it. This

239

decision has had some positive and some negative consequences. On the positive side, it
has allowed the dependent type theory to influence how we approached setting out the
semantics: this provided insights into the level of parametrization achievable in spec-
ifying semantics that we might not otherwise have gained. It also obviates distracting
arguments about which kind of semantic style is preferable. Further, it has driven our
investigations more deeply into the issues of what specification is, what a specification
language should achieve, and what a host logic can achieve when reasoning about such
a language. Most importantly, it has motivated an economy of formalisms in general.
We do not try to embed a semantic style or a temporal logic or a formal ontology: we
deal directly with a thin axiomatization layer of observation points in space-time. This
economy of ‘helper’ formalisms has led us to an understanding of the business of for-
malizing logics and ontologies of the physical world in a mutually inductive system.
Pre- provides only this ontology: the proof assitant’s logic is adequate to describe
any computation based on this ontology; full is a convenience that helps us do so
concisely. The economy of Pre- presents a narrow interface for any other extended
physical ontology that we might like to formalize and reason about in the same proof
assistant.

Kernels of individual proof checkers, as well as axiomatizations of the world and of
specifications, are a potential weak point in arbitrarily reliable verified systems. This
has unearthed the idea of a drive to capture our intuition of a system in a formal logic
with an arbitrarily high level of reliability, within the confines of our understanding
of Gödel’s incompleteness theorems. This is an end point for the present thesis and a
departure point for further ideas for research. In the absence of a formalization-driven
development, it is unlikely we would have come across these insights.

On a purely practical level, developing a new language with a tool such as Coq has
been a very slow process. We describe here the particular difficulties we have had with
Coq. Some difficulties with individual tools and languages, such as Coq and OCaml, are
peculiar to the systems in question, but the problems of working with partially verified
code in a proof assistant are more generally applicable to any deductively verified pro-
gram in any proof assitant. As a result, the impetus inevitably shifted during the course
of the research from fully proving every lemma to producing a working interpreter to
develop the language. We believe it is more useful to have a complete partially verified
interpeter than a fully verified fragment of one. This, in turn, introduced delays of its
own, because we had to debug through the obfuscation of code export into OCaml. As
we discovered in chapter 6, OCaml and Coq have syntactic and semantic mismatches
(mostly to do with dependent typing and module parameter types) that conspire to
make this an exceptionally frustrating process. The OCaml debugger will not work with
certain Coq module functors unless the OCaml is heavily patched after extraction. Coq
itself currently lacks universe polymorphism (except in some experimental versions),

240

which has forced us to keep harmonic boxes and coordination modules apart until after
they have been exported into OCaml. Correcting code in Coq, followed by Coq com-
pilation, export, OCaml patching and looking through OCaml printing functions, is a
painful process.

7.4 Further work

In this chapter, we made a number of observations about how, and the extent to which,
the work in this thesis advances our main hypotheses. The highest priority would be
to fully prove admitted lemmas, and further press the practical points about physical
implementations through a selection of fully proven morphisms. This amounts to a very
substantial amount of work, with a large overlap with the field of verified compilers. To
obtain higher levels of assurance regarding the correctness of a proof assistant itself
is an even larger undertaking. Additional static analysis of co-inductive bisimulation
predicates is also desirable, along with formalized tools to further underline our points
about replication and other reflexive transformations. Finally, as we discussed in
detail in section 6.9, a compiler would be needed in order to write larger examples, and
the embedding of at least one more sophisticated functional box language would allow
these examples to operate at a higher level of abstraction. We now describe a number
of improvements that could be made that further these priorities. The final two sets of
headings involving persistent state and multiple axiomatizations would be helpful in
making into a realistic production-prototype system with the maximum amount
of interoperability with other proof tools, but do not play a central part in furthering the
claims of the present work.

7.4.1 Hardware formalization

7.4.1.1 Hardware simulation

We would like to expand the scope of the implementation so that hinsts and cinsts
can be simulated, including mobile hardware configurations, physical faults and chang-
ing configurations. This is a complex task but one that could be built up incrementally
with successive transformations from big-step semantics of box languages to small-step
semantics of implementations. It suggests that an eventual connection with deductively
verified hardware would be desirable, situating such work in the emerging discipline of
verified stacks. The simulation of hardware would enable robust reasoning about the
resilience of computations in the presence of faults.

241

7.4.1.2 Plesiochronous implementation tolerance

H respects a single unified global clock. Although we can agree that such a clock
exists (as a weighted average of Cæsisum reference clocks), the uncertainty principle
means that we can never know with complete precision when a tick of the clock occurs,
still less arrange that it be propagated with complete accuracy. Thus practical imple-
mentations must tolerate clock skew. Communications engineers are familiar with the
plesiochronous and synchronous digital hierarchies ([7] and [179]/ [8]).
These offer ways of arranging the clocking rates of diverse communications networks so
that serial links do not produce data at a rate that cannot be accepted by onward links on
account of the onward link being clocked at a fractionally slower rate. Plesiochronous
networks allow progressively larger amounts of padding in a hierarchy of progressively
faster links to deal with these different clock rates, while synchronous networks rely on
atomic time standards to ensure universal clock composability. In synchronous net-
works, the hierarchy of network elements is not needed to ensure consistent clocking,
and complex network topologies can be created with ease.

For our purposes, this terminology is very unhelpful. At first sight, our formalism
looks a little like a synchronous communications network, but synchronous communi-
cations networks are all about harmonizing clock rates, not absolute times and latencies.
At the same time, the idea that a synchronous network is completely synchronous is a
little misleading, as no two clocks can be perfectly synchronized. Two atomic clocks can
operate a synchronized network in practice because a second is defined in relation to
the properties of the electron quantum states of Cæsisum atoms. These properties are
constants of physics, and thus there will be no long term frequency drift between two
atomic clocks,4 although there will be long term drift in absolute time recorded because
of thermodynamic uncertainties and the ‘random walk’ effect. Our model requires ab-
solute knowledge of time in our fixed coordinate system in spacetime, and so in practice,
our network of clocks must exist in a hierarchy derived from the reference clocks.5

This is the same principle as that involved in how the Network Time Protocol ()
[163] of [5] networks operates, except without the relatively large queueing uncertain-
ties of using a packet-switched network for this purpose. Within a clock distribution
network, elements close to each other will have smaller drifts with respect to each other
than with respect to remoter elements. This amounts to a plesiochronous network of
absolute time, as opposed to the usual understanding of a plesiochronous network of fre-
quencies. Ensuring that this plesiochronous network has a state space that is a witness
to the theoretical synchronous state space of ’s coordinate system is an engineering

4In the same relativistic frame.
5The clock ensemble as a whole will gradually migrate from the time axis in the reference frame, but

this drift is unknowable and too small to be of any engineering concern. It does not affect the mutual
consistency of systems relying on the absolute time, which all reference the same clock ensemble.

242

challenge that in practice will require the development of some sophisticated tools. This
forms another area of further work.

7.4.2 Mutual recursion of coordination languages

Given that we have a system for binding arbitrary box languages to boxes, we
would like to explore the embedding of a heterogeneous expression or coordination lan-
guage in an box. It would then be possible to consider the mutual nesting of such
languages. For example, if we explored this with Hume, we might investigate embed-
ding Hume in the box language abstraction, and within a Hume box in hierarchical
Hume [93].

7.4.3 Reliability engineering tools

We have asserted that is an ideal substrate for reliability engineering to an arbi-
trarily low probability of failure, especially of critical control systems. While we have
demonstrated with a simple expression language that reduces to a hardware de-
scription language, if we substitute a full language for this combinatorial Boolean lan-
guage, will yield a much higher granularity of computation, in the pure functional
paradigm of a language like Haskell. This should allow the synchronous fault tolerance
techniques of stand-alone computers to be extended to sychronous distributed comput-
ing. We now discuss the tools needed to make this a practical reality.

7.4.3.1 Automated replication

The replication transformation of section 6.8.5, with its insertion of fan-outs and vot-
ers, is a simple process and could be easily automated. Through combining this with
overlapping replication regions, single points of failure can be completely eliminated by
replicating both voters and fan-outs. It is necessary to be mindful of the considerations
of section 7.4.4 in doing this: these may add complexity to the replication transforma-
tions, involving the insertion of extra code beyond fan-outs and voters.

7.4.3.2 Fault injection, and stochastic analysis tools

In section 6.8.5, we saw a triple-modularly redundant multiplier with voters. In order
to demonstrate that this arrangement provides the degree of resilience we expect, we
would need a mechanism to inject faults into the system. Once mapping logic to hard-
ware, we would also require stochastic analysis tools to compute the overall reliability
of a system given the mappings to hardware that had been made. If a piece of hardware
failed, or a local disturbance such as a data centre burning down occurred, the resilience
of the system would depend on the geographical distribution of replicas (with a direct

243

trade-off against latency) and the amount of sharing of physical nodes among logical
processes. This would require analysis using Bayesian networks [134], dynamic fault
trees [69], Markov models [117] or similar abstractions. Such models would need to
be embedded in a proof assistant if we wanted to verify the consistency of the statis-
tical treatment. A further extension to such tools would include a realistic treatment
of how multiple sensors of analogue quantities on the system boundary can be recon-
ciled, carrying the removal of single points of failure into the domain of the physical
environment. The method by which multiple sensors and actuators are reconciled is
an application-specific matter, but one for which it may be possible to provide some
generic tools for useful design patterns.

7.4.3.3 Automated evolutionary tuning of fault tolerance transformations

A natural progression from a stochastic analysis tool is an heuristic process for finding a
mapping of logic to hardware under reliability constraints. The level and combination of
replication processes are factors in this — so too are the mappings of components or use
of hardware of different known reliabilities. The dispersal of replicas in space can also
be varied. Since there are so many factors with complicated patterns of interaction, an
evolutionary approach may well be the most effective at finding efficient configurations
for a given target reliability.

7.4.3.4 Interface to asynchronous reliable systems

At the boundary with an aysnchronous reliable system, steps must be taken to ensure
that the single points of failure can be removed, just as they can within an devel-
opment. Where an interface to a robust system operating by asynchronous consensus
is concerned, an aysnchronous consensus protocol must operate on the boundary of
the domain so that an agreement on the arrival ordering of data can be reached.
Again, it would be possible to develop tools to do this, perhaps implementing common
aysnchronous consensus routines in .

7.4.3.5 Graphical design tools

It is sometimes difficult to visualize programs, which makes a three-dimensional
visualization tool desirable. Such a tool would be particularly useful in understanding
the mappings of logical instances to hardware instances. It would also be helpful to
be able to reduce a logical instance to a two-dimensional form, so that a replication
transformation could be projected into the third dimension. This would emphasize the
fact that the witness of the original program is obtained by a construction function over
the various replicas, projected back onto a two-dimensional canvas.

244

7.4.4 Persistent state HBCL

One of the reasons for the choice of a pure functional paradigm is that it allows the
meta-model to enforce very strong state consistency guarantees. This differentiates the
present approach to fault tolerance redundancy from that adopted in a functionally im-
pure language like Erlang, or an abstract machine-based methodology, such as the B-
method. Where replication is concerned, the presence of persistent state in will
require some extra implementation complexity, described in the following paragraphs,
to prevent divergent latent state being built up by accident, but still in a way that hides
these issues from the application programmer.

7.4.4.1 Feedbacks

Process feedbacks are essential. As a pure computational issue, they are needed be-
cause they are a coordination analogue to expression recursion, and hence essential
for coordination languages generally. From a control systems perspective, we can give
a less abstract example: without feedbacks it is impossible to integrate with respect to
time, something which almost any real-time control system needs to do. However, if we
transform cyclic sections of programs that are then subjected to faults, the states of
different replicas will diverge. Compound faults may lead to there being no workable
interpretation of the aggregate state.

There are two ways to deal with this. Either we can prohibit replication transforma-
tions of cyclic areas of graphs, insisting that at least two overlapping transformations be
used instead, or we can introduce a repair mechanism. The former is problematical if
we want to cater for the geographical distribution of replicas, as the latencies of synchro-
nizing every cycle may be too great compared to the size of the cycle itself. In the latter
case, we could arrange for this to work transparently to the programmer, by monitor-
ing tracer s automatically generated by the replication transformation. These would
vote on and judge supposedly identical feedback values ex post facto. If voting produced
a null value, the offending cycle could be suspended and reset using the healthy cycles.
During the reset period, the faulty cycle would have to cache new input data and then
catch up from the image recovered from a healthy cycle, which would always be a few
cycles out-of-date. This would add a good deal of complexity, but there are no reasons
why it should be impossible; indeed, a pure solution should be possible as part of
a replication transformation.

However many precautions of this sort are taken, there is always a risk that too many
failures will mean that state is irrecoverably lost. In this case, a supervisor process for
monitoring system health could reset all replicas at the same time with null data. Some
fail-safe applications should be designed to recover gracefully from these situations in
a way that safely restores control. This is the responsibility of the application program-

245

mer.

7.4.4.2 Off-line state extension

The system is also extensible to one that keeps persistent state, even when all replicas are
suspended. In this case, a pair of s may be connected to a persistent storage device
with constant-time look-up. Again, repair must be triggered on recoverable divergences,
and reset or recalculation must be triggered on irreparable state divergences. It may
also be desirable in this case for a supervisor process to run periodic consistency checks
that are again transparent to the application programmer. All this adds another very
considerable complication, but again, there is no reason why it could not be done, and
done reflexively in as part of a replication transformation.

7.4.5 Multiple axiomatizations

The autonomous agent as an entity controlled by unobservable randomness raises ques-
tions about the computability of the brain and what it means to simulate consciousness.
Much ink has been spilt on this topic, and we do not have any immediate plans to add
to this. We prefer to focus future efforts on how we intuit the subject matter of computa-
tions from the viewpoint of multiple axiomatizations, treating consciousness (whatever
that is) as a given, which allows us to choose whether we find an axiomatization of a
system convincing or not.

There is an inevitable corollary of the elimination of single points of failure, which
is that the formalization, formalizing logic and proof-checker should all be replicated as
well, and equivalences be shown. This approach ultimately requires the formalization
of one logic in another, or itself, and the axiomatization of parts of physics and of hard-
ware descriptions in the same ‘common denominator’ logic. It then necessitates the
proving of very many equivalences and morphisms, before permuting the logics and
using a different one as ‘common denominator’. Bootstrapping such a process without
running into serious Gödel problems is an enormous challenge, whose parameters we
discussed when we examined proof assistants in section 2.9.2 and following sections.
We believe that by viewing the formalization of logic in physics as the primitive step (as
opposed to physics in logic,6 which is how the subject is always set up) we might situate
the locus of incompleteness in a more intuitively comfortable place, namely our belief in
the consistency of the laws of physics. Such a view hypothesizes a dual of Gödel’s incom-
pleteness theorems, one in which the inevitable incompleteness of human observations
of all possible observations of the physical world is a limitative result in physics and cos-
mology, rather than in logic. Such a duality would assert that we cannot know that logic

6Specifically, first order logic and set theory.

246

is any more consistent than our experience allows us to know physics to be consistent and
complete. This idea is bold and deserves to be properly investigated.

Multiple axiomatizations would also allow us to formalize fully the type system and
semantics of the style in which we presented semantic rules in appendix C. It is diffi-
cult to keep such formalizations synchronized with the Coq formalization. Since the
informal presentation is easier to understand than the Coq axiomatization, we ought to
consider proving the two equivalent: otherwise, there is a risk that a presentation as
understood on the page diverges from the formal model we use for reasoning.

7.5 Summary

We have developed as a recognizable programming language: we have provided
syntax and semantics, and developed an implementation, some example programs and
tested the results. Yet is a formulation or a formalization of a paradigm of engineer-
ing that is independent of a language or an attempt to formalize it. It is a way of speci-
fying structured logical relationships between what happens in some restricted part of
reality and something we would like to make happen in reality. It does this by axiomatiz-
ing reality in a single consistent frame of reference. Specifications of the mathematical
relationships between observations and manifestations of values in such a schema are
expressions of human free will. These are expressions to which engineers strive to give
effect: we hope that we have provided a compelling new language for describing them.

247

References

[1] IEEE Standard 1076-2008 VHDL Language Reference Manual.

[2] IEEE Standard 1364-2001 Verilog® Hardware Description Language.

[3] IEEE Standard 1666-2011 for Standard SystemC® Language Reference Manual.

[4] ISO/IEC Standard 13568: Information Technology — Z formal specification no-
tation — Syntax, type system and semantics.

[5] Internet Protocol: Internet Program: Protocol Specification, September
1981. RFC 791.

[6] occam® 2.1 reference manual. SGS-Thomson Microelectronics Limited, 1995. First
published 1988 by Prentice Hall International (UK) Ltd as the occam 2 Reference
Manual.

[7] ITU G.705: Series G: Transmission systems and media, digital systems and net-
works – Characteristics of plesiochronous digital hierarchy (PDH) equipment
functional blocks, 2000.

[8] ITU G.783: Series G: Transmission systems and media, digital systems and net-
works: Digital terminal equipments – Principal characteristics of multiplexing
equipment for the synchronous digital hierarchy, 2006.

[9] Embedding, n. in online, March 2014. Oxford Unviersity Press. Accessed 2
June 2014.

[10] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University
Press, 1996.

[11] Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[12] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
Open Extensible Tool Environment for Event-B. In Zhiming Liu and Jifeng He,
editors, Formal Methods and Software Engineering, volume 4260 of Lecture Notes in
Computer Science, pages 588–605. Springer Berlin Heidelberg, 2006.

[13] Gul Agha and Prasanna Thati. An algebraic theory of actors and its application
to a simple object-based language. In Olaf Owe, Stein Krogdahl, and Tom Lyche,
editors, From Object-Orientation to Formal Methods, volume 2635 of Lecture Notes in
Computer Science, pages 26–57. Springer Berlin Heidelberg, 2004.

249

[14] Gul A. Agha. Actors: A Model Of Concurrent Computation In Distributed Systems.
PhD thesis, Massachusetts Institute of Technology, 1985. Published as MIT Arti-
ficial Intelligence Laboratory Technical Report 844.

[15] Jesse Alama, Kasper Brink, Lionel Mamane, and Josef Urban. Large Formal Wikis:
Issues and Solutions. In JamesH. Davenport, WilliamM. Farmer, Josef Urban,
and Florian Rabe, editors, Intelligent Computer Mathematics, volume 6824 of Lec-
ture Notes in Computer Science, pages 133–148. Springer Berlin Heidelberg, 2011.

[16] Kartik Anand, Ginestra Bianconi, and Simone Severini. Shannon and von Neu-
mann entropy of random networks with heterogeneous expected degree. Phys.
Rev. E, 83:036109, Mar 2011.

[17] Joe Armstrong. The development of Erlang. In Proceedings of the second ACM SIG-
PLAN international conference on Functional programming, ICFP ’97, pages 196–203,
New York, NY, USA, 1997. ACM.

[18] Richard T. W. Arthur. Natural Deduction: An Introduction to Logic with Real Argu-
ments, a Little History, and Some Humour. Broadview Press, 2011.

[19] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich, and Steve Zdancewic. Mechanized Metatheory for the Masses: The
PM Challenge. In Joe Hurd and Tom Melham, editors, Theorem Proving in
Higher Order Logics, volume 3603 of Lecture Notes in Computer Science, pages 50–65.
Springer Berlin Heidelberg, 2005.

[20] Henk P. Barendreght. The Lamdba Calculus, its Syntax and Semantics, volume 40
of Studies in Logic: Mathematical Logic and Foundations. College Publications, 2012.
This is a re-publication of the original out-of-print 1984 North-Holland edition, of
which there is also a 1985 revised edition.

[21] Henk Barendregt and Herman Geuvers. Proof-assistants using dependent type
systems. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, Handbook of Automated Reasoning, chapter 18, pages 1149–1238.
North-Holland, Amsterdam, 2001.

[22] Bruno Barras. Coq en Coq. Rapport de recherche RR-3026, INRIA, 1996. In French.

[23] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets. Vieweg Verlag, second
edition, 2002.

[24] Timothy Bays. On Floyd and Putnam on Wittgenstein on Gödel. The Journal of
Philosophy, 101(4):197–210, 2004.

[25] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer-Verlag London,
2008.

[26] Paul Benacerraf. What numbers could not be. The Philosophical Review, 74(1):47–73,
1965.

250

[27] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive into
equational specifications. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume
5674 of Lecture Notes in Computer Science, pages 131–146. Springer Berlin Heidel-
berg, 2009.

[28] Stefan Berghofer and Tobias Nipkow. Executing Higher Order Logic. In Paul
Callaghan, Zhaohui Luo, James McKinna, Robert Pollack, and Robert Pollack, edi-
tors, Types for Proofs and Programs, volume 2277 of Lecture Notes in Computer Science,
pages 24–40. Springer Berlin Heidelberg, 2002.

[29] J. A. Bergstra and J. W. Klop. Algebra of communicating processes. In Proceed-
ings of the CWI Symposium on Mathematics and Computer Science, Amsterdam, 1986.
Centrum voor Wiskunde en Informatica, North Holland.

[30] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment: Coq’Art: The Calculus of Inductive Constructions, chapter 7, pages 187–210.
Springer, 2004.

[31] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2001.

[32] Jean-Paul Bodeveix and Mamoun Filali. Type Synthesis in B and the Translation of
B to PVS. In Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson,
editors, ZB 2002:Formal Specification and Development in Z and B, volume 2272 of
Lecture Notes in Computer Science, pages 350–369. Springer Berlin Heidelberg, 2002.

[33] Armelle Bonenfant, Christian Ferdinand, Kevin Hammond, and Reinhold Heck-
mann. Worst-case execution times for a purely functional language. In Implemen-
tation and Application of Functional Languages, volume 4449/2007 of Lecture Notes in
Computer Science, pages 235–252. Springer Berlin / Heidelberg, 2007.

[34] George Boole. An Investigation of the laws of thought, on which are founded the mathe-
matical theories of logic and probabilities. London: Walton and Maberly; Cambridge:
MacMillan and Co., 1854. Reissued by Cambridge University Press 2009 in the
Cambridge Library Collection series.

[35] F. Boussinot and R. De Simone. The language. Proceedings of the IEEE,
79(9):1293–1304, 1991.

[36] Edwin Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming, 23:552–593,
9 2013.

[37] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31:560–599, June 1984.

[38] J. Richard Büchi. Symposium on decision problems: On a decision method in
restricted second order arithmetic. In Patrick Suppes Ernest Nagel and Alfred
Tarski, editors, Logic, Methodology and Philosophy of Science Proceeding of the 1960

251

International Congress, volume 44 of Studies in Logic and the Foundations of Mathe-
matics, pages 1–11. Elsevier, 1966.

[39] Peter Calvert and Alan Mycroft. Petri-nets as an intermediate representation for
heterogeneous architectures. In Emmanuel Jeannot, Raymond Namyst, and Jean
Roman, editors, Euro-Par 2011 Parallel Processing, volume 6853 of Lecture Notes in
Computer Science, pages 226–237. Springer Berlin / Heidelberg, 2011. 10.1007/978-
3-642-23397-5 22.

[40] Luca Cardelli and AndrewD. Gordon. Mobile ambients. In Maurice Nivat, editor,
Foundations of Software Science and Computation Structures, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer Berlin Heidelberg, 1998.

[41] Luca Cardelli, Simone Martini, JohnC. Mitchell, and Andre Scedrov. An exten-
sion of System F with subtyping. In Takayasu Ito and AlbertR. Meyer, editors,
Theoretical Aspects of Computer Software, volume 526 of Lecture Notes in Computer
Science, pages 750–770. Springer Berlin Heidelberg, 1991.

[42] Nicholas J Carriero, David Gelernter, Timothy G Mattson, and Andrew H Sher-
man. The Linda alternative to message-passing systems. Parallel Computing,
20(4):633–655, 1994.

[43] Antonio Cau and Willem-Paul de Roever. A dense-time temporal logic with
nice compositionality properties. In Franz Pichler and Roberto Moreno-Díaz,
editors, Computer Aided Systems Theory — EUROCAST’97, volume 1333 of Lec-
ture Notes in Computer Science, pages 123–145. Springer Berlin / Heidelberg, 1997.
10.1007/BFb0025039.

[44] Francesco Cesarini and Simon Thompson. Erlang Programming. Sebastopol, CA:
O’Reilly Media, Inc., 2009.

[45] Krishnendu Chatterjee, Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan,
Christoph M. Kirsch, Claudio Pinello, and Alberto Sangiovanni-Vincentelli. Log-
ical reliability of interacting real-time tasks. In DATE ’08: Proceedings of the confer-
ence on Design, automation and test in Europe, pages 909–914, New York, NY, USA,
2008. ACM.

[46] Adam Chlipala. Parametric higher-order abstract syntax for mechanized seman-
tics. In Proceeding of the 13th ACM SIGPLAN international conference on Functional
programming, ICFP ’08, pages 143–156, New York, NY, USA, 2008. ACM.

[47] Adam Chlipala. A verified compiler for an impure functional language. In Pro-
ceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’10, pages 93–106, New York, NY, USA, 2010. ACM.

[48] Adam Chlipala. Certified Programming with Dependent Types. 2011. Version refer-
enced is that of 17 January 2011, accessed on that date at http://adam.chlipala.
net/cpdt/.

[49] N. Chomsky. Three models for the description of language. Information Theory,
IRE Transactions on, 2(3):113–124, 1956.

252

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

[50] Alonso Church. An unsolvable problem of elementary number theory. In Mar-
tin Davis, editor, The Undecidable, pages 89–107. Dover, 2004. Reprinted from The
American Journal of Mathematics, 1936, Vol. 58, pp. 345–363 in collection pub-
lished by Raven Press Books,1965; re-published in Dover edition.

[51] William Douglas Clinger. Foundations of Actor Semantics. PhD thesis, Mas-
sachusetts Institute of Technology, May 1981. Published as Technical Report 633.

[52] Paul Cockshott, Lewis Mackenzie, and Greg Michaelson. Computation and its lim-
its. Oxford University Press, 2012.

[53] Mark Colyvan. An Introduction to the Philosophy of Mathematics. Cambridge Uni-
versity Press, 2012.

[54] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial
time and log squared space. In Proceedings of the eleventh annual ACM symposium
on Theory of computing, STOC ’79, pages 338–345, New York, NY, USA, 1979. ACM.

[55] coq-ext-lib developers. coq-ext-lib repository. Public git repository. https://
github.com/coq-ext-lib/coq-ext-lib, accessed 18 June 2014.

[56] T. Coquand and Gérard Huet. The calculus of constructions. Technical Report
RR-0530, INRIA, May 1986.

[57] Solange Coupet-Grimal. An Axiomatization of Linear Temporal Logic in the Cal-
culus of Inductive Constructions. Journal of Logic and Computation, 13(6):801–813,
2003.

[58] John Darlington and Mike Reeve. A a multi-processor reduction machine for
the parallel evaluation CF applicative languages. In FPCA ’81: Proceedings of the
1981 conference on Functional programming languages and computer architecture, pages
65–76, New York, NY, USA, 1981. ACM.

[59] René David and Hassane Alla. Discrete, Continuous and Hybrid Petri Nets. Springer-
Verlag, second edition, 2010.

[60] Jim Davies and Steve Schneider. A brief history of Timed CSP. Theoretical Computer
Science, 138(2):243–271, 1995.

[61] Jared Curran Davis. A Self-Verifying Theorem Prover. PhD thesis, The University of
Texas at Austin, 2009.

[62] René Descartes. A discourse on the method of correctly conducting one’s reason and
seeking truth in the sciences. Oxford University Press, 2006. Translated with an
introduction and notes by Ian Maclean.

[63] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97–117, 1985.

[64] E. Dijkstra. In reply to comments. Letter in EW Dijkstra archive, no. 1058,
University of Texas at Austin, 1989. http://www.cs.utexas.edu/users/EWD/
transcriptions/EWD10xx/EWD1058.html Accessed 3 June 2014.

253

https://github.com/coq-ext-lib/coq-ext-lib
https://github.com/coq-ext-lib/coq-ext-lib
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1058.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1058.html

[65] Edsger Dijkstra. Guarded commands, non-determinacy and a calculus for the
derivation of programs. In Friedrich Bauer, E. Dijkstra, A. Ershov, M. Griffiths,
C. Hoare, W. Wulf, and Klaus Samelson, editors, Language Hierarchies and Inter-
faces, volume 46 of Lecture Notes in Computer Science, pages 111–124. Springer Berlin
/ Heidelberg, 1976.

[66] Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong. Automatic Ver-
ification of Erlang-Style Concurrency. In Francesco Logozzo and Manuel Fähn-
drich, editors, Static Analysis, volume 7935 of Lecture Notes in Computer Science,
pages 454–476. Springer Berlin Heidelberg, 2013.

[67] Emanuele D’Osualdo, Jonathan Kochems, and Luke Ong. Soter: an automatic
safety verifier for erlang. In Proceedings of the 2nd edition on Programming systems,
languages and applications based on actors, agents, and decentralized control abstractions,
AGERE! ’12, pages 137–140, New York, NY, USA, 2012. ACM.

[68] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Christine Paulin-
Mohring, and Benjamin Werner. The Coq Proof Assistant User’s Guide, version
5.6. Technical Report 134, Institut National de Recherche en Informatique et en
Automatique, December 1991.

[69] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Dynamic fault-tree models for fault-
tolerant computer systems. Reliability, IEEE Transactions on, 41(3):363–377, Sep
1992.

[70] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the
second ACM SIGPLAN international conference on Functional programming, ICFP ’97,
pages 263–273, New York, NY, USA, 1997. ACM.

[71] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. Journal of Computer and System Sciences,
30(1):1 – 24, 1985.

[72] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited:
on branching versus linear time temporal logic. J. ACM, 33:151–178, January 1986.

[73] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: branching
time logic strikes back. Science of Computer Programming, 8(3):275 – 306, 1987.

[74] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6-7):467–488, 1982.

[75] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[76] Juliet Floyd and Hilary Putnam. A Note on Wittgenstein’s “Notorious Paragraph”
about the Gödel Theorem. The Journal of Philosophy, 97(11):pp. 624–632, 2000.

[77] Juliet Floyd and Hilary Putnam. Bays, Steiner, and Wittgenstein’s “Notorious”
Paragraph about the Gödel Theorem. The Journal of Philosophy, 103(2):pp. 101–110,
2006.

254

[78] Abraham A. Fraenkel. The notion “definite” and the independence of the axiom
of choice. In Jean van Heijenoort, editor, From Frege to Gödel: A Source Book in
Mathematical Logic, 1879–1931, pages 284–289. Harvard University Press, 1967.

[79] Gottlob Frege. Begriffsschrift, a formula language, modeled upon that of arith-
metic, for pure thought. In Jean van Heijenoort, editor, From Frege to Gödel:
A Source Book in Mathematical Logic, 1879–1931, pages 1–82. Harvard University
Press, 1967.

[80] N.E. Fuchs. Specifications are (preferably) executable. Software Engineering Journal,
7(5):323–334, 1992.

[81] Masahiro Fujita. Model checking and equivalence checking. In D. K. Pradhan and
I. G. Harris, editors, Practical design verification. Cambridge University Press, 2009.

[82] Robin Gandy. Church’s thesis and principles for mechanisms. In Jon Barwise,
H. Jerome Keisler, and Kenneth Kunen, editors, The Kleene Symposium, volume
101 of Studies in Logic and the Foundations of Mathematics, pages 123–148. Elsevier
North-Holland, Inc., 1980.

[83] Mauro Gaspari and Gianluigi Zavattarom. An Algebra of Actors. Technical Report
UBLCS-97-4, Department of Computer Science, University of Bologna, May 1997.

[84] Simon J. Gay and Rajagopal Nagarajan. Communicating Quantum Processes. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’05, pages 145–157, New York, NY, USA, 2005. ACM.

[85] H. Geuvers. Proof assistants: History, ideas and future. Sadhana, 34:3–25, 2009.
10.1007/s12046-009-0001-5.

[86] Herman Geuvers and Rob Nederpelt. N.G. de Bruijn’s contribution to the for-
malization of mathematics. Indagationes Mathematicae, 24(4):1034–1049, 2013. In
memory of N.G. (Dick) de Bruijn (1918–2012).

[87] Eduarde Giménez. Codifying guarded definitions with recursive schemes. In Pe-
ter Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs,
volume 996 of Lecture Notes in Computer Science, pages 39–59. Springer Berlin Hei-
delberg, 1995.

[88] Kurt Gödel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems I. In Martin Davis, editor, The Undecidable, pages 4–38. Dover
Publications Inc., 2004. Corrected republication of 1965 edtion of Raven Press
Books, Ltd. Translated by E. Mendelson from original German in Monatshefte für
Mathematik und Physik, vol 38 (1931) pp. 173–198.

[89] M. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer, 1979.

[90] Mike Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic.
Technical report, University of Cambridge Computer Laboratory, 2001.

255

[91] A. Gravell and P. Henderson. Executing formal specifications need not be harmful.
Software Engineering Journal, 11(2):104–110, 1996.

[92] Gudmund Grov. Reasoning about Correctness Properties of a Coordination Program-
ming Language. PhD thesis, Heriot-Watt University, Edinburgh, March 2009.

[93] Gudmund Grov and Greg Michaelson. Hume box calculus: robust system devel-
opment through software transformation. Higher-Order and Symbolic Computation,
23(2):191–226, 2010.

[94] Gudmund Grov, Robert Pointon, Greg Michaelson, and Andrew Ireland. On
Hume Scheduling. Technical report, Heriot-Watt University, 2007.

[95] Florian Haftmann. From Higher-Order Logic to Haskell: there and back again.
In Proceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation and program
manipulation, PEPM ’10, pages 155–158, New York, NY, USA, 2010. ACM.

[96] Kevin Hammond, Greg Michaelson, and Robert Pointon. The Hume Report, Ver-
sion 1.1. Technical report, School of Computer Science, University of St Andrews,
2007.

[97] Lin Han, Francisco Escolano, Edwin R. Hancock, and Richard C. Wilson. Graph
characterizations from von Neumann entropy . Pattern Recognition Letters,
33(15):1958–1967, 2012.

[98] John Harrison. Towards self-verification of HOL Light. In Ulrich Furbach and
Natarajan Shankar, editors, Proceedings of the third International Joint Conference, IJ-
CAR 2006, volume 4130 of Lecture Notes in Computer Science, pages 177–191, Seattle,
WA, 2006. Springer-Verlag.

[99] Ian Hayes and C. B. Jones. Specifications are not (necessarily) executable. Softw.
Eng. J., 4(6):330–338, November 1989. Pub. Institution of Electrical Engineers for
Institution of Electrical Engineers and British Computer Society.

[100] Eric C. R. Hehner. A Practical Theory of Programming. Department of Computer
Science, University of Toronto, 2012-7-28 edition edition, 2012. First Edition pub-
lished by Springer-Verlag Publishers, New York, 1993.

[101] T.A. Henzinger, C.M. Kirsch, E. Marques, and A. Sokolova. Distributed, Modular
HTL. In Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, pages 171 –180,
1-4 2009.

[102] Thomas Henzinger, Christoph Kirsch, and Slobodan Matic. Schedule-carrying
code. In Embedded Software, volume 2855 of Lecture Notes in Computer Science, pages
241–256. Springer Berlin / Heidelberg, 2003.

[103] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto:
a time-triggered language for embedded programming. In Proceedings of the IEEE,
pages 166–184. Springer-Verlag, 2001.

[104] Carl Hewitt. Actor model of computation: Scalable robust information systems.
arXiv.org (Cornell University Library) eprint, (arXiv:1008.1459), 2014. Version 32.

256

[105] Carl Hewitt and Henry Baker. Laws for communicating parallel processes. In
Bruce Gilchrist, editor, International Federation for Information Processing. Congress
(7th : 1977 : Toronto): Information processing 77 :proceedings of IFIP Congress 77,
Toronto, August 8-12, 1977, volume 7, pages 987–992. International Federation for
Information Processing, Amsterdam; Oxford: North-Holland Publishing Com-
pany, 1977.

[106] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd international joint conference on
Artificial intelligence, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kauf-
mann Publishers Inc.

[107] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[108] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, August 1978.

[109] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall In-
ternational Series in Computer Science. Prentice Hall, 1998.

[110] Tony Hoare. The Verifying Compiler: A Grand Challenge for Computing Re-
search. In Görel Hedin, editor, Compiler Construction, volume 2622 of Lecture Notes
in Computer Science, pages 262–272. Springer Berlin Heidelberg, 2003.

[111] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books,
1979.

[112] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’96, pages 410–423, New York,
NY, USA, 1996. ACM.

[113] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems. Int. J. Softw. Tools
Technol. Transf., 9(3):213–254, 2007.

[114] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static
determination of quantitative resource usage for higher-order programs. SIG-
PLAN Not., 45(1):223–236, 2010.

[115] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and Martin
Hofmann. “Carbon Credits” for Resource-Bounded Computations Using Amor-
tised Analysis. In Ana Cavalcanti and Dennis Dams, editors, FM 2009: Formal
Methods, volume 5850 of Lecture Notes in Computer Science, pages 354–369. Springer
Berlin / Heidelberg, 2009.

[116] Juvenal. Satire 6. Cambridge Greek and Latin Classics. Cambridge University
Press, 2014.

257

[117] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelligence,
101:99–134, 1998.

[118] Paul H. J. Kelly. Functional Programming for Loosely-Coupled Multiprocessors. Re-
search Monographs in Parallel and Distributed Computing. The MIT Press, 1989.

[119] Stephen C. Kleene. Recursive predicates and quantifiers. In Martin Davis, editor,
The Undecidable: Basic Papers on Undecidable Propostions, Unsolvable Problems and
Computable Functions, pages 255–287. Dover, 2004. Reprinted from Transactions of
the American Mathematical Society, 1943, Vol. 53, No. 1, pp. 41–73 in collection
published by Raven Press Books, 1965; collection re-published in Dover edition.

[120] H. Kopetz. Sparse time versus dense time in distributed real-time systems. In
Distributed Computing Systems, 1992., Proceedings of the 12th International Conference
on, pages 460–467, June 1992.

[121] Hermann Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, 2003.

[122] Robbert Krebbers and Freek Wiedijk. A Formalization of the C99 Standard in
HOL, Isabelle and Coq. In JamesH. Davenport, WilliamM. Farmer, Josef Urban,
and Florian Rabe, editors, Intelligent Computer Mathematics, volume 6824 of Lecture
Notes in Computer Science, pages 301–303. Springer Berlin Heidelberg, 2011.

[123] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[124] Leslie Lamport. Using time instead of timeout for fault-tolerant distributed sys-
tems. ACM Trans. Program. Lang. Syst., 6:254–280, April 1984.

[125] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16:872–923, May 1994.

[126] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[127] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and System, 4(3):382–401, July
1982.

[128] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52:107–115, July 2009.

[129] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reason-
ing, 43:363–446, 2009. 10.1007/s10817-009-9155-4.

[130] M. Llorens, J. Oliver, J. Silva, and S. Tamarit. Generating a Petri net from a
CSP specification: A semantics-based method. Advances in Engineering Software,
50(0):110 – 130, 2012.

258

[131] Hans-Wolfgang Loidl and Steffen Jost. Improvements to a Resource Analysis for
Hume. In Marko van Eekelen and Olha Shkaravska, editors, Foundational and Prac-
tical Aspects of Resource Analysis, volume 6324 of Lecture Notes in Computer Science,
pages 18–33. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-15331-0_2.

[132] M. Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and Giu-
liana Franceschinis. Modelling with Generalized Stochastic Petri Nets. John Wiley and
Sons, 1995. Version accessed is a revised electronic version of the book down-
loaded from http://www.di.unito.it/~greatspn/GSPN-Wiley/ on 10 June 2010.

[133] Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of a series of lectures
given in Padova, June 1980. 1984.

[134] H. F. Martz, R. A. Waller, and E. T. Fickas. Bayesian reliability analysis of series
systems of binomial subsystems and components. Technometrics, 30(2):143–154,
1988.

[135] David May. Occam. SIGPLAN Not., 18(4):69–79, April 1983.

[136] David May. The XMOS XS1 Architecture. XMOS Limited, 2009. http://www.xmos.
com/download/public/The-XMOS-XS1-Architecture%28X7879A%29.pdf. Accessed
on 18 June 2014.

[137] T. F. Melham. Higher Order Logic and Hardware Verification. Number 31 in Cam-
bridge Tracts ion Theoretical Computer Science. Cambridge University Press,
1993.

[138] L.F. Menabrea. Sketch of the Analytical Engine invented by Charles Babbage Esq.
from the Bibliotèque Universelle de Génève, No. 82, October 1842. In Richard
Taylor, editor, Scientific memoirs, selected from the transactions of foreign academies of
science and learned societies, and from foreign journals, volume 3, chapter 29, pages
666–731. Richard and John E. Taylor, 1843. Translated and with notes by Augusta
Ada King, Countess of Lovelace.

[139] R. Milner. A calculus of communicating systems. Technical Report ECS-LFCS-86-
7, University of Edinburgh, August 1986. First published by Springer Verlag as
Vol. 92 of Lecture Notes in Computer Science.

[140] Robin Milner. Elements of interaction: Turing award lecture. Commun. ACM,
36(1):78–89, January 1993.

[141] Robin Milner. The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge, 2009.

[142] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I. Information and Computation, 100(1):1–40, 1992.

[143] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
II. Information and Computation, 100(1):41–77, 1992.

[144] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

259

http://www.di.unito.it/~greatspn/GSPN-Wiley/
http://www.xmos.com/download/public/The-XMOS-XS1-Architecture%28X7879A%29.pdf
http://www.xmos.com/download/public/The-XMOS-XS1-Architecture%28X7879A%29.pdf

[145] J Strother Moore. A Grand Challenge Proposal for Formal Methods: A Verified
Stack. In Bernhard K. Aichernig and Tom Maibaum, editors, Formal Methods at
the Crossroads. From Panacea to Foundational Support, volume 2757 of Lecture Notes
in Computer Science, pages 161–172. Springer Berlin Heidelberg, 2003.

[146] Magnus O. Myreen and Jared Davis. A verified runtime for a verified theorem
prover. In Marko Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk,
editors, Interactive Theorem Proving, volume 6898 of Lecture Notes in Computer Sci-
ence, pages 265–280. Springer Berlin Heidelberg, 2011.

[147] Matthew Naylor and Colin Runciman. The Reduceron: Widening the von Neu-
mann Bottleneck for Graph Reduction Using an FPGA. In Implementation and Ap-
plication of Functional Languages, volume 5083/2008 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2008.

[148] Isaac Newton. The Principia. University of California Press, 1999. Translated by I.
Bernard Cohen and Anne Whitman, assisted by Julia Budenz. Contains Guide to
Newton’s Principia by I. Bernard Cohen.

[149] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle HOL: A Proof
Assistant for Higher-Order Logic. Number 2283 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2011.

[150] Ulf Norell. Towards a practical programming language based on dependent type the-
ory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

[151] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated Deduc-
tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[152] Christine Paulin-Mohring. Inductive definitions in the system Coq rules and
properties. In Marc Bezem and JanFriso Groote, editors, Typed Lambda Calculi
and Applications, volume 664 of Lecture Notes in Computer Science, pages 328–345.
Springer Berlin Heidelberg, 1993.

[153] Giuseppe Peano. The principals of arithmetic, presented by a new method. In
Jean van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931, pages 83–97. Harvard University Press, 1967.

[154] Roger Penrose. The Road to Reality. Vintage Books, 2005.

[155] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition: New York:
Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol. 1, 1966, pp. Suppl.
1, translated by C. F. Greene.

[156] Simon L. Peyton Jones, Chris Clack, John Salkild, and Mark Hardie. GRIP—A
high-performance architecture for parallel graph reduction. In Proc. of a confer-
ence on Functional programming languages and computer architecture, pages 98–112,
London, UK, 1987. Springer-Verlag.

260

[157] Gordon Plotkin. A Powerdomain Construction. In SIAM J. Comput., volume 5,
pages 452–487. 1976.

[158] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57, 311977-nov.2 1977.

[159] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover, 2006. Orginally
published by Almqvist & Wiksell, 1965.

[160] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential pro-
cesses. In Laurent Kott, editor, Automata, Languages and Programming, volume 226
of Lecture Notes in Computer Science, pages 314–323. Springer Berlin Heidelberg,
1986.

[161] Claus Reinke. Haskell-coloured petri nets. In Implementation of Functional Lan-
guages, volume 1868/2000 of Lecture Notes in Computer Science, pages 165–180.
Springer Berlin / Heidelberg, 2000.

[162] Didier Rémy and Jérôme Vouillon. Objective ml: An effective object-oriented ex-
tension to ml. Theor. Pract. Object Syst., 4(1):27–50, January 1998.

[163] RFC5905. Network time protocol version 4: Protocol and algorithms specification,
June 2010.

[164] RODIN. Rodin project homepage.

[165] Victor Rodych. Wittgenstein’s inversion of gödel’s theorem. Erkenntnis, 51(2-
3):173–206, 1999.

[166] Carlo Rovelli. Relational quantum mechanics. International Journal of Theoretical
Physics, 35(8):1637–1678, 1996.

[167] John Rushby. A comparison of bus architectures for safety-critical embedded sys-
tems. Technical report, Computer Science Laboratory, (CSL), Stanford Research
Institute (SRI) International, September 2001.

[168] Steve Schneider. Concurrent and Real-Time Systems: The CSP Approach. John Wiley
& Sons, Ltd, 2000.

[169] Eckehard Schnieder, Mourad Chouikha, Stefan Einer, and Michael Meyer
zu Hörste. Basysnet – an integrated approach for automated control system de-
velopment. In Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and Her-
bert Weber, editors, Petri Net Technology for Communication-Based Systems, volume
2472/2003 of Lecture Notes in Computer Science, pages 352–362. Springer-Verlag
Berlin Heidelberg, 2003.

[170] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(3 and 4):379–423 and 623–656, July/October 1948.

[171] W. Sieg. Calculation by man and machine: Conceptual analysis. In Wilfried
Sieg, Richard Sommer, and Carolyn Talcott, editors, Reflections on the Foundations
of Mathematics: Essays in Honor of Solomon Feferman, number 15 in Lecture Notes
in Logic. A.K. Peters, Ltd for the Association for Symbolic Logic, 2002.

261

[172] M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume
149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.

[173] Matthieu Sozeau. Subset coercions in coq. In Thorsten Altenkirch and Conor
McBride, editors, Types for Proofs and Programs, volume 4502 of Lecture Notes in
Computer Science, pages 237–252. Springer Berlin / Heidelberg, 2007. 10.1007/978-
3-540-74464-1_16.

[174] Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq.
Unpublished. Accessed at http://mattam.org/research/publications/drafts/
univpoly.pdf on 22 March 2014, 2014.

[175] Martin Strecker. Formal Verification of a Java Compiler in Isabelle. In Andrei
Voronkov, editor, Automated Deduction—CADE-18, volume 2392 of Lecture Notes in
Computer Science, pages 63–77. Springer Berlin Heidelberg, 2002.

[176] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Al-
gebraic and Discrete Methods, 6(2):306–318, 1985.

[177] Alfred Tarski. Logic, Semantics, Metamathematics: Papers from 1923-38, chapter VIII:
The concept of truth in formalized languages, pages 152–278. Hackett Publishing,
1983. Translated by J. H. Woodger.

[178] Frank Stephen Taylor. Parallel functional programming by partitioning. PhD the-
sis, Imperial College of Science, Technology and Medicine, University of London,
1996.

[179] Telcordia Technologies. Synchronous Optical Network (SONET) Transport Sys-
tems: Common Generic Criteria. Technical Report GR-253, Telcordia Technolo-
gies, 2009.

[180] C. Tofts. A temporal calculus of communicating systems. Technical Report ECS-
LFCS-89-104, University of Edinburgh, December 1989.

[181] Chris M. N. Tofts. Timing concurrent processes. Technical Report LFCS report
ECS-LFCS-89-103, Laboratory for Foundations of Computer Science, Department
of Computer Science, University of Edinburgh, December 1989.

[182] Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. Producing certi-
fied functional code from inductive specifications. In Chris Hawblitzel and Dale
Miller, editors, Certified Programs and Proofs, volume 7679 of Lecture Notes in Com-
puter Science, pages 76–91. Springer Berlin Heidelberg, 2012.

[183] David Trachtenherz. Formal semantics of modular time refinement in AF.
Computer Science - Research and Development, pages 1–20, 2011. 10.1007/s00450-011-
0148-2.

[184] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and Distributed Haskells.
Journal of Functional Programming, 12:469–510, 7 2002.

[185] A. Trybulec. The MIZAR-QC/6000 Logic Information Language. ALLC Bulletin:
Association for Literary and Linguistic Computing, 6(2):136–140, 1978.

262

http://mattam.org/research/publications/drafts/univpoly.pdf
http://mattam.org/research/publications/drafts/univpoly.pdf

[186] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. In Proceedings of the London mathematical society, volume 42, pages
230–265, 1936.

[187] A. M. Turing. Systems of logic based on ordinals. Proceedings of the London Math-
ematical Society, s2-45(1):161–228, 1939.

[188] D. A. Turner, J. Fairbairn, D. Park, P. Wadler, B. A. Wichmann, and M. H. Rogers.
Functional programs as executable specifications [and discussion]. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sci-
ences, 312(1522):pp. 363–388, 1984.

[189] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In C. E. Shannon and J. McCarthy, editors, Automata Stud-
ies, number 34 in Annals of Mathematical Studies, pages 43–98. Princeton Univer-
sity Press, 1956.

[190] J. von Neumann. First draft of a report on the EDVAC. Annals of the History of
Computing, IEEE, 15(4):27–75, 1993.

[191] John von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton
University Press, 1955. Translated by Robert T. Beyer.

[192] Ludwig Wittgenstein. Remarks on the Foundations of Mathematics. Basil Blackwell,
1978. Third edition. Translated by G. E. M. Anscombe.

[193] Hector Zenil, editor. A Computable Universe. World Scientific, 2013.

[194] Ernst Zermelo. Investigations in the foundations of set theory I. In Jean van Hei-
jenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931,
pages 199–215. Harvard University Press, 1967.

263

Appendix A

Design of HBCL

A.1 Design space of HBCL

Full is intended to define the desired behaviour of computation systems as viewed
from the outside, using computable functions for prototyping a specification. This serves
two other purposes beyond prototyping. First, the prototype function can go on to form
part of the existential proof that the causative relationship given by the specification
is realizable by a Turing-equivalent computer, when we characterize that relation as a
predicate in an embedding of Pre- in a host logic. Second, it can act as a starting
point for realizing a practical implementation by stepwise refinement.

It is not especially helpful to think of as a language for hardware design or as a
piece of software. Unlike most hardware designs, correctness is defined in relation to a
(single) external clock, rather than an arbitrarily drifting internal quartz oscillator. Unlike
a software design, it is a direct prescription of something that can be made to happen in
the real world, not a set of instructions for refining the behaviour of a particular abstract
or physical machine. The specification may be realized by stepwise refinement using
any combination of hardware or software. As a corollary of this approach, we deny that
anything described with has agency. Agents exist beyond the system boundary, and
their behaviour, including any component of randomness, is a parameter observed by
an specification and interpreted deterministically. This is a fundamental difference
between and methods that use process calculi to frame high level specifications.

A.2 OID semantics

A.2.1 Why OID semantics and an ontological approach?

One of the design objectives of was not only to formalize the logical specification
language, but also to consider how one might formalize its relationship to human intu-
ition, and to do so with an extremely thin layer of ontological formalization: we do not
wish to digress into the selection of formal ontologies, or worse, become embroiled in

265

epistemological debates. Why this approach? Specification is ultimately a human ac-
tivity. Computers may assist in specifying something, but specification is about minds
communicating, ideally in the most structured way possible, their prescriptive views for
how some part of the informational or physical worlds should evolve, and then being
able to record what is agreed with convincing authority.

To cite a concrete example, consider a box with wheels, containing a motor, a brake,
microprocessor, a start button, and some supporting systems. Suppose it is desired
to specify that, if the button is pressed (by whatever agency) in some particular time
interval, the box will move with some prescribed kinetic profile within prescribed tol-
erances. If one wishes to specify this system in natural language, one might write a
lengthy report, containing some engineering designs and some pieces of code in a com-
puter language. However, some key issues, such as how one can uniquely refer, within
the logic, to instances of these boxes and their position in time and space, are likely to be
specified in an ad hoc way, if at all. The specification might refer to serial numbers, some
arbitrary time base, and some arbitrary spatial coordinate system. All these are barriers
to interoperability, since different organizations will choose different ways to instantiate
systems for keeping track of specifications and instances (of the wheeled boxes, for ex-
ample). The interaction of different pieces of equipment detailed in different industrial
reports becomes subject to informal and weakly specified semantics.

Clearly, for many applications, this degree of rigour is inappropriate and dispro-
portionate. However, in the field of safety-critical and high integrity systems, absolute
clarity of a specification’s subject matter is essential, since system correctness is a prop-
erty that only makes sense if defined relative to some original specification. Ambiguous
informal semantic glue between heterogeneous systems is a source of error and poten-
tially dangerous failures.

This argument motivates the need to provide a clear spatio-temporal and object ref-
erence system for an ontologically aware language such as . To be clear, is
not an ontology itself. To reiterate, this is not the place to explore the philosophical
subject matter involved, nor to formalize a language in an upper ontology, let alone to
debate the epistemic intricacies of what the informational part of the model actually is.
However, does attempt to illustrate how a computer specification language might
interface to such ontologies, and through such, to other domains of system specification
involving spatial issues.

A.2.2 Monotonicity principle of OID semantics

Once an is appended to an arc, we require that it persists for as long as the
root does. If that root is the / root, to all intents and purposes, it exists in
perpetuity. The semantics only allow a specification to be added to the tree if its

266

references to other parts of the are consistent. Since parts of a specification may only
ever be added, never taken away, problems with broken dependencies are impossible.
The physical justification of this axiom is the arrow of time. Indeed, values at different
times can be uniquely identified by appending a temporal component to memory
evolution.

A.2.3 Sandboxing and the semantics of composition

The meta-instantiation of a version of onto a particular root should be a static
parameter of the formalization, since, intuitively, an arbitrary prepended arc of natu-
ral numbers to identifiers should have no functional impact on anything that might be
specified with the system.

This observation indicates a related one: namely, that prepending of identifier arcs
may be a general method to instantiate repetitive structure. The appended part of the
 may be the same for every copy of a specification, but it gains its unique identity from
what is prepended to it. This principle extends to sub-assemblies. Theorems about re-
peated structures of this kind can be parametrized by the prepended instance , and
instantiated along with their subject matter. At the point where we have a root for the
whole of , the specifications beneath it become the ‘type’ of reality, as it relates to the
specification. Specifications with placeholder roots have a dependent existence; specifi-
cations transitively related to the / root have an independent existence. These
semantics are dependent on the list structure of individual s and the tree structure
of the category of s.

A.2.4 Static and dynamic OID semantics

Most of the semantics given here are static, in the sense that they declare objects
that perdure, rather than in the sense of parsing source code. Their purpose is to spec-
ify the structural relationships between memories interposed between harmonic boxes
and s. Dynamic semantics are a function of the environment at input interfaces,
and the static specification of the harmonic boxes, s and memories. The dynamic
semantics of given in chapter 4 and appendix C, being defined over types, fur-
nish such a set of semantics. Should we have different versions of these semantics, we
might give the semantics themselves s in some meta-schema, though at present this
would amount to over-engineering. Input data, along with the dynamic semantic rules,
uniquely specify the (potentially infinite) counter-indexed state data appended to the
memory instance s. This infinite structure can be specified because the input envi-
ronment is characterized by a coinductive type which acts as a parameter. The resulting
infinite structure has precisely one inhabitant in the real world, giving a kind of typed
reality. It is not intended that every value that has ever been defined in this way would

267

OID root local HBCL

root

logical instance root

logical library root

memFB

memBF

logical instance

Intermediate

non-HBCL

OIDs

Mutually recursing

logical instance and

library OIDs

Input data stream

Output data stream

Figure A.1: OID layout for logical instances and libraries

be recorded anywhere, but it nevertheless has a reality within our formalism. Issues such
as the creation and destruction of physical and logical objects are deliberately neglected
at this stage, but can be dealt with fairly easily by adding times of validity, and hence
temporal modality, to such specifications without violating the monotonicity principle
of s.

A.2.5 Qualitative heterogeneity in the OID string

Since s are just strings of natural numbers, there is no facility for giving a type to
different parts of the string, in the way that one can with, say, schemata, so we
need a Gödelesque encoding. To deal with this, zero is treated as the universal escape
number, and the number following this dictates how the next part of the string is to be
treated. These arbitrary numbers are static parameters of the formalization: there is no
reason to hard-code them. The list structure of s means that many of the annoyances
in parsing escape sequences in binary sources do not arise. Notwithstanding this, escape
sequences always look ugly and unreadable. This ugliness can be largely hidden from
view in the formalization by predicate subtyping of s, and in source, by the use
of textual aliases and automatic allocation of numbers according to static rules.

The four basic types are given by the type of terminating (after the last es-
cape). These are the types for logical instances, logical libraries, and input (memFB)
and output (memBF) memories. For the to be well-formed, it has to be escape-rooted
or appended to a well-formed of a type permitted by the semantics. These static se-
mantics of well-formedness constitute the definition of ‘ semantics’, and correspond
to the superficial textual static semantics of ’s coordination language. We show the
layout of which type of component may be appended to a given arc in Figure A.1.
The root may be instantiated on arbitrary arcs. The last element on any arc
represents the data values for a particular memory, on an infinite set of time-indexed
arcs according to the dynamic semantics.

Predicate subtyping of nested maps allows a compact representation of part of the
 tree in which ugly details such as escape sequences in the s are implicit.

268

A.2.6 Rootless references

Within the semantics of , references to an may start with a logical instance or
library , in which case, they are fragments, and identifiable as fragments because
they start with an escape character. References to fragments starting with instances are
implicitly prepended with the scope of the referencing instance’s . References start-
ing with libraries are taken to be prepended with the of the local scope or, if unde-
fined, the first scope between the current scope and the root of the tree in which the
library in question is defined. This is a subtlety of semantics, not semantics,
since s always have a transitive connection to the universal root.

A.3 Pre-HBCL: defining timed observables

H is a language for realizing causative relations between timed inputs and outputs
that can be implemented using computable functions. These inputs and outputs are
defined as discrete streams of the most likely idealized instantaneous observations that
could be made in the environment as timed by a global clock. There are no processes
in this model, and no interprocess communications: it is simply a set of relationships
between timed observable values. We call the inputs ‘observations’ and the outputs
‘manifestations’, and define each with an ‘memory’. These memories are not ab-
stractions of silicon, but rather perdurant abstractions of some point in space with which
can be associated a persistent observable value for an externally defined time interval.
A natural physical analogy is with the electrical potential of a pin.

These observables and manifestations of values constitute the signature of ‘logical
instances’. They form a thin temporal layer (on an arbitrary type system) that can be
embedded in a proof assistant and reasoned about using predicates over inputs and
outputs, and related within the proof assistant to some arbitrary axiomatization of an
application-specific problem. This is Pre-: ’s handle on static semantics.
Pre- says nothing about the relationships between these observables. This is left
to the logic in which Pre- is embedded, concrete (see below), or some other
coordination language that satisfies the instance signatures of Pre-.

Pre- also provides a conceptual framework for mapping logical instances to
hardware. This is not part of the executable language but is rather an ontology layer
that maps types and ‘memories’ to identifiable objects that may have spatial and tem-
poral attributes. This might be referred to as the pragmatics of the language, a term that
is common in linguistics but rare in computer science. We would like to extend our
schema to refer to more general pieces of physical hardware to bring these pragmatics
within the language, and to axiomatize enough basic physics to start to reason about
this hardware spatially. A full development is beyond the scope of the present work.

269

A.3.1 Instance signatures

Pre- defines a number of structures for instantiating and organizing memories,
without specifying the computationally causative relationships between them. These
are:

• Logical instance signatures Signatures, or fingerprints, are sets of input and out-
put memories of a logical instance, where a logical instance is a black box that
houses some computable and provably terminating function. Such a function is
any injective mapping from observed inputs over time to the values that should
be manifested as outputs over time.

• Hardware instance signatures These have the same fingerprints as logical in-
stances, but do not have causative logic associated with their inputs and outputs.
Rather, they expect to have the input and output memories of logical instances
mapped to them. This is to allow the model to be extended to give localizations
to physical inputs and outputs and specify the physical layer (cf. layer one of the
 model), so that the host logic in which is embedded can reason about the
interaction of an program with its environment.

• Configuration instances Configuration instances are mappings of logical instances
to hardware instances that are valid for some particular interval of time (which
may stretch infinitely into the future).

All of these types of instances may be accommodated in library scopes that defer
their instantiation: they can be seen in the examples given in section 3.5. An instance
reference shows that the instance in question has an existence that is independent of the
instance in which the reference occurs. However, given that the present development
is concerned with a language for specifying computation only, we omit a rigorous de-
velopment of hardware and configuration instance semantics.

A.4 Full HBCL: a coordination meta-language

The coordination language of full is an executable language for expressing realiza-
tions of specifications that satisfy Pre- signatures. It formalizes data flows between
observables and manifestations as s, and formalizes computation as any computable
function with guaranteed termination. The semantics of the coordination language ex-
press this idea by using the type system and strong termination implicit in the formal-
izing logic to abstract the formalization of any executable language with provable ter-
mination.1 One of the purposes of the structure of the full coordination language is

1This includes languages that do not in the general case have provable termination, but whose inhabi-
tants are expected always to be provided to along with a suitable termination proof, or the means of

270

to enable a systematic approach to strengthening a specification by transformation for
fault tolerance. This is sketched in the final example given in this thesis (in chapter 6).

Full is therefore a language which satisfies the instance and manifestation fin-
gerprint of instances of causation logic with the paraphernalia of s, boxes, nested
instances, and other constructions that are explained in chapter 3. It would be possible
for other coordination languages to specify the same behaviour using an appropriate
binding to instance signatures or fingerprints (we use the terms interchangeably).
The present concrete language is a functor on any number of expression languages, and
we provide a simple example of such a language in this thesis.

Time within is axiomatically dense. In other words, it is representable as a
rational number, and global time advances in discrete steps over the lowest common
multiple frequency of all components in the system, although there is no lower limit on
the size of these steps. All computations occurring at a point on this rational timeline
are axiomatized to occur instantaneously.

Infinitely fast computation is unphsysical, so implementations must be witnesses of
a given specification. This means that there must be an injective relationship between
the evolution of an implementation through its state space and the evolution of the state
space of the specification. Such implementations can be reflexive in or in some
other hardware or software system.

A.4.1 Entropic sandwich

A reasonable question to ask of is how can it be as expressive as process calculi
and other formalisms for modelling distributed systems: surely asynchrony is a spatial
corollary inherent in any distributed system? The answer is that it does not occupy the
same design space as high level distributed system modelling tools for dealing with
the asynchrony of an application, neither is it designed as a hardware design language.
It can be regarded as logical middleware that sits between these two design spaces,
providing a substrate to high level abstractions that is better behaved than real hardware.
Crucially, on account of the external clocking, is easily transformable for higher
implementation reliability in a way that is completely transparent to the application
developer. Hence, we stratify synchrony and asynchrony in what we call an ‘entropic
sandwich’, illustrated in Figure A.2. The application programmer can be concerned
with asynchrony between application objects in different clocked data streams. The
implementer is concerned with preserving the total order (given application inputs) in
spite of hardware that, owing to clocking uncertainties and physical irregularities, can
only ever be approximately synchronous.

Non-determinism exists at the hardware level in the total ordering of distributed

deterministically constructing it from a suitable encoding of a proof object.

271

Application
concurrency

HBCL

Hardware
concurrency

Application
concurrency

HBCL

HBCL

Hardware
concurrency

transform

Figure A.2: Entropy sandwich

events. It also exists at the application level, but this non-determinism is observed deter-
ministically by the semantics of . Correctness of executions is determined by
a total order on its state space: entropy is an external parameter, and as such we view
agency as a related concept to external entropy, in that the epistemic or human signifi-
cance of either is not accessible to the semantics of .2

A.5 Full HBCL language structure

Figure A.3 shows the primitive structures of full , indicating how the full coordina-
tion infrastructure is built on top of type systems, timed and harmonic, and abstractions
of untimed and timed box languages.

The type of interpreters is dependent on the final instantiated type of the coordina-
tion language. In order not to enshrine arbitrary choices (such as a type system) in the
formalization, the whole language is set up in terms of functors. We do not include the
spatial commitments of in this particular formalization.

The structure of Figure A.3 closely follows the module structure adopted in the Coq
2If we choose a suitably physical source of entropy, the significance of the information or noise therein

is also opaque to human minds, and any idea of ‘agency’ becomes a metaphysical question that we delib-
erately avoid.

272

(a) Identifier specification
Ids

(b) OID specification
OIDs

(c) Plain type system
UTypeSys

(d) OID type system
UTypeSysOid

(e) Harmonic type system
HTypeSys

(f) Untimed box language
UBox

(g) Harmonic box language
HBox

(j) Instantiation module
Model instance

(h) Coordination model
Coord

(i) Coordination interpreter
CoordInterp

Figure A.3: Structure of full HBCL

273

formalization (see chapter 5), with each box representing a module. Boxes with a bold
outline are module functors that require the modules on which they depend to be given
as module arguments. Arrows indicate dependency relationships, and should be read
transitively. This use of modules makes the final coordination functor statically paramet-
ric on arbitrary choices of type system and identifier specification. This is convenient
for present purposes, but does have the limitation that it is impossible to quantify over
multiple concurrent choices of type systems and identifiers. Generalizing this would
introduce the need to provide equivalence classes and show morphisms that would ob-
scure the main details of the coordination language that we are presenting. However,
we do choose to make the language ‘dynamically’ dependent on untimed and harmonic
box languages. This is because it is important to demonstrate as a meta-language
and emphasize that the method of specifying the computable function inside a box is
irrelevant to the temporal semantics of . This is done by using dependently typed
records to contain the semantics of the language, with the result that the coordination
language is formally quantified over any language that can be deeply embedded in the
host logic. In further work, it may become desirable to remove module parametric-
ity completely and use the object-oriented paradigm with dependently typed records
throughout; this is discussed in section 6.9.

We now introduce the contents of the modules in Figure A.3 briefly in turn. The
letters in the headings below refer to the labelled boxes in the figure.

A.5.1 Identifiers (a)

Everything in the development is dependent on the same set of identifiers. This makes
it easy to convert named inputs and outputs on boxes into equivalent records within
the embedded type system without writing tedious conversion and equivalence code.
Given appropriate conversions, this dependency could be converted from a static pa-
rameter (baked into the coordination functor instantiation) to a dynamic one (as a de-
pendently typed record).

A.5.2 OIDs (b)

Object identifiers are an axiomatization of / object identifiers, and are present
so that the observation and manifestation semantics of the language can reference real
objects in the world. Os are arcs of natural numbers, such as 1.2.3.4, where there is
no restriction either on the maximum number in each component of the arc, or on the
length of the arc. Os are administered hierarchically, in a similar way to the inter-
net’s domain name system (). Unlike , however, s tend to be used for systems
level designations. The numbers can be associated with text, and at present, in order
to avoid the overhead of translating from text to numbers, we substitute text strings

274

for numbers in our axiomatization of . A further advantage of s is that an
sub-structure, such as instances of logic, can be grafted onto any arc without
changing the semantics. We simplify things further by introducing relative s within
 programs as a syntactic and semantic convenience and as a method of removing
semantic dependence on a root . A reference to a relative is automatically rooted
at the closest scope at which the leftmost component of the reference matches the
rightmost component of a library instance . The scope dependencies introduced by
this mechanism form part of the logical instance signature of a logical instance. By adding
the requirement that s are allocated monotonically, that instances extend the s of
their type, and that temporal modality of a value is indexed by a further extension to
an , we can postulate an extremely strong method of referring to system properties
on spatial,3 temporal and informational axes. The references that a particular instance
makes to libraries outside its scope contribute to an implicit functor signature for that
instance. The instance is only fully defined once these dependencies are discharged by
being placed in a suitable context scope, forming an ‘instance closure’.

The example type system that we provide for this version of is first order and
consists of a Boolean base type and user-defined types that can be recursively defined
as tuples or records.

A.5.3 The plain untimed type system (c)

The plain type system of is a deep embedding of an arbitrary intrinsic type sys-
tem4 on which the rest of the modules are parametrized. This enables the expression
and coordination fragments to communicate with each other. The types are required
to be be sized, and must use dependent typing (derived from predicates) to express the
value domain of each type. In the same way as identifiers, this could be further gen-
eralized to a dynamic parameter with suitable conversion functions, equivalences and
morphisms, but this is unnecessary for present purposes so we stay with a static module
instantiation.

A.5.4 The OID type system functor (d)

The type system functor systematically lifts any deep embedding of a plain type sys-
tem into an -qualified type system. It enables the programmer to enforce axiomati-
cally disjoint domains between structurally identical types, according to application level
semantics. These types are automatically qualified by the scope of the logical instances
at which they are declared.

3On account of a physical object’s position.
4An ‘intrinsic’ embedding of a type system is one in which each type of data in the embedded logic

has a corresponding unique type in the embedded formalization. The term is popular in discussions of
higher-order encodings of 𝜆-calculi such as [46], although we do not use it for that purpose here.

275

A.5.5 The harmonic type system functor (e)

The harmonic type system functor operates in the same way as the type system
functor, except that it takes both plain and instantiated type systems as module pa-
rameters. It further refines untimed types by associating a sampling frequency with
each one and assigning a further to the object thus described.

A.5.6 Untimed box language interface functor (f)

At this stage, we must distinguish between what we mean by an untimed expression lan-
guage and an untimed box language. An untimed box language is provided with a set
of input and output identifiers with untimed types. At this level of abstraction, it
would be possible to embed an arbitrary coordination language or an expression lan-
guage within the box language.5 This language embedded in a box language may or
may not be aware of semantics. If it is not, then explicit casting semantics must be
provided in the embedding of the language to convert the types between and plain
types (as annotated with cost functions). It is also possible to directly embed an expres-
sion language within the untimed box, and this is what is done in the toy expression
language developed to demonstrate . Again, casting semantics are given in order
to deal with the fact that the embedded language may not be aware of semantics
(our toy expression language is not).6

The functor described here is thus a functor of type systems, not of box languages.
The box languages themselves are formalized as a record containing its semantics, tak-
ing full advantage of using a higher order type system to specify . The type of this
record is crystalized when the untimed box language interface functor is instantiated
with suitable type systems.

A.5.6.1 Instantiaton of untimed box interface

The untimed box interface is instantiated with the toy expression language. It defines a
number of built-in functions over primitive types, and the ability to define other func-
tions through expressions that may include references to arguments and calls to any
built-in or user-defined functions. The inclusion of built-in functions as a computa-
tional recursive base case has the advantage that we can use the host logic to implement
them, meaning that we do not have to provide case analysis in the language to boot-
strap some basic functionality. Providing case analysis would introduce considerably
more complexity to the implementation, especially in making sure that only exhaustive

5Given that the coordination language would run for short bursts, we would need to add a mechanism
to maintain a state variable between executions to permit this fully general case.

6A concept which could be extended to embed a box language with a completely different type system
to the plain type system that is the common concurrency of an instantiation of .

276

match clauses were permitted. Given that this thesis is primarily about a coordination
language, this additional complexity was not justified.

A.5.7 The harmonic box language interface functor (g)

This module is the glue between the coordination and untimed box languages.7 It pro-
vides an input/output mechanism for the untimed box language and allows the coor-
dination language to do meaningful computations with values, ensuring that semantics
for down-casting from and up-casting to these timed types are fully specified and un-
ambiguous. It enriches types with periodicity information and optionally defines the
relative offset between when a value is notionally computed and the time to which it
conceptually relates. It also fixes bounds on the minimum and maximum number of
values that may be accepted by the harmonic box language at any one time, and how
many it may produce. In the case of a type system and expression language with fixed-
size types, such as the one used in this thesis, it enforces the frequencies of memory
executions so that the number of values provided and produced in any one execution
is fixed.

A.5.7.1 Instantiation of harmonic box language

This object is a simple timed binding for the toy untimed box language, changing a list of
timed values for each input and output memory into a record of tuples of the correctly
typed underlying values. It is at this point that the fact that the type system and the rest
of share a common identifier representation becomes useful.

A.5.8 Concrete coordination language functor (h)

The coordination language assumes that all computation is reducible to a computable
function of the host logic through the deep embedding of the harmonic box language.
This is the sense in which full itself can be justified as a meta-language: it provides
formal meta-semantics for these arbitrary harmonic box languages. This allows the co-
ordination language to focus on specifying memories, s and their interconnection.
It also provides the formal dynamic semantics of the model’s concurrency in a form
in which theorems may be proved. The coordination language is statically parametric
on the formalization of the interfaces of the box languages, not on the languages them-
selves. This makes it possible to quantify simultaneously over arbitrary languages from
within the host logic containing the formalization.

7In further work, the harmonic box language semantic object may be generalized to allow coordination
languages that are aware of timed types to be axiomatized directly as harmonic box languages; in fact,
nested instances can be regarded as a recursive case of this idea (see appendix A.5.8.4).

277

A.5.8.1 Periodicities

All frequencies in the model are expressed as rational numbers. This ensures that con-
nected processes, memories and s fall in and out of phase with each other with con-
stant periodicities. It is likely to be useful to users of to limit the frequencies used
to the arithmetic product of the powers of a few low primes. By engineering an
specification so that integer powers of low primes predominate as much as possible,
these periodicities can be kept as short as possible. This should not be hard to arrange
in practice.

A.5.8.2 Memories and FIFOs

There are four kinds of memory possible in the model, of which we implement two:

1. Memories that stand between the outputs of boxes and the inputs of s

2. Memories that stand between the outputs of s and the inputs of boxes

3. Memories that stand between boxes

4. Memories that stand between s

The formalism is in a sense a shared memory model, although the memories have
less in common with physical memories, but are rather perdurant abstractions of points
in space which have associated with them observable values. The memory is concep-
tually a list of data ‘buckets’ containing consecutive values on a timeline with discrete
increments determined by the frequency of the timed type of the memory. Each mem-
ory also has a signed integer that gives the number of cycles of the memory’s timed
type to or from live. This determines the time that should exist between the first value
to be readable after each memory execution and the value’s past or future timestamp.
There is no handshaking between the observed memory and the observer: coordination
is achieved by timing alone. The values with these static relationships to the memory’s
time to or from live are the only values that need to be in the memory at the time it
executes. However, because the potentially different frequencies of type, memory,
and box may cause the number of values deposited and observed for each memory ex-
ecution to differ, there are implicit minima and maxima on the lengths of the list. These
minima and maxima ensure that old values are retained for long enough for them to be
observed, and enough new values are available to prevent the observing process from
becoming starved of data. The most elegant way of dealing with this problem is to in-
clude a data list for each of values that are ‘in transit’, to require all values that are
available on any execution to be read immediately, and to add values in transit to the
state space of the coordination language trace. However, to make things simpler for our

278

implementation, we have collapsed this state space onto the memories themselves, and
removed the frequencies and implicit transit capacities of s from the specification.
This means there is not enough information to infer the lengths of the data lists in our
memories. We therefore supply the missing information in the form of a minimum and
a maximum length of memories as a required invariant, and semantics are partially
subsumed into memory semantics in this way. Fs copy information directly from one
memory to the other.

The frequency of the memory is not necessarily the same as the frequency of the
timed type of the memory. As a consequence, if the frequency of the memory is lower,
more than one new value and more than one old value will be made available and dis-
carded on each memory tick respectively. If the frequency of the memory is higher,
some cycles of the memory will not be observed to change, though they may have con-
sumed values from their input buffer.

Under initial or fault conditions, memories may be empty. The handling of empty
memories is delegated to the box binding for the particular harmonic box language.
In the case of the toy expression language, output memories that fail to present the
minimum number of output values are rejected and produce null-valued timed data.
These nulls are a property of the timed data types, rather than the untimed types or
plain types over which they are defined.

We do not implement memories that stand directly between boxes. However, if we
did, they would have to have the same frequency as the boxes to which they were at-
tached, and be expressed as zero-length s. This would be a neat means to prepend
and append fan-out and voting logic to substantive processes. Similarly, memories that
stood between s could be expressed as two memories either side of a null box. Zero-
length s are not handled in the present implementation, since they would require a
partial ordering on the execution of boxes in any given time slice, violating the global
time-stepping of boxes, and requiring additional constraints checking for the absence of
data flow cycles to prevent deadlock and livelock. This would add complexity, which
would be distracting and unnecessary given that it would only become useful in the
presence of automatic transformation of programs, and we have not yet implemented
this. Where we introduce a voting and fan-out example in chapter 6, we do so with
non-zero length s, and accept that the signatures of replicated and non-replicated
programs will be temporally displaced by a few cycles to accommodate the extra com-
munication.

A.5.8.3 Scheduling

The dynamic semantics of the coordination language employ a sparse time model on
top of an underlying conception of dense time. Sparse time and dense time are both

279

well known philosophies of time. Particular instances of the model have sparse time
properties. That is, time elapses in increments demarcated by state transition events.
Dense time is time thought of as a rational number. This is sufficient at the meta-model
level to accommodate all specifiable harmonic frequencies.

The dynamic semantics entail four phases of execution, that proceed in an infinite
round robin fashion. Only events whose time coincides precisely with the time of the
pass through the round robin cycle are enabled on any given cycle. Each component
of the four-fold cycle takes place at the same conceptual point in wall-clock time, but
always in the same sequence. Alternatively, these events can be thought of as being
separated by an infinitessimally small time slice. These phases are as follows:

• s execute.

• -box memories execute.

• Boxes excecute.

• Box- memories execute.

During the building of the static semantic object, events happening at the same point
in dense time are consolidated into a single state transition, and are assigned to the
correct one of these execution phases. The deadlock-free properties follow extremely
easily from this model, since the state transitions must be reducible to Coq functions.
For these to be expressible in Coq, they must be strongly normalizing. Therefore, the set
of state transitions these dynamic semantics describe should be a coinductive list. We
prefer not to embed this list in another temporal logic (such as the 8 formalization in
Coq due to Coupet-Grimal [57]), since this would add extra complexity which for the
present objectives would not be useful: the concept of coinduction itself is adequately
expressive.

A.5.8.4 Nesting

Where instances are nested, they acquire a frequency determined only by the signature
of the nested instance, and the instance is only invoked with this frequency, as if it were
an ordinary harmonic box. The nested case of is a recursive case of the idea that
an arbitrary coordination language can be accommodated in a box language. Inside the
box, several iterations of the four-fold stepping cycle may take place before the instance
blocks on input or ouput operations. This finite set of cycles is realized as a fixpoint
version of the cofixpoint that is required for executing the top level. The concatenation
of each of these fixpoint slices produces the same trace as would have resulted had the

8Linear Temporal Logic

280

nested instance actually been at the top level, thus allowing us to recover the universal
compositionality of the language.

A.5.9 Coordination language interpreter (i)

The coordination language interpreter supplies existential proof of the model’s exe-
cutability by giving an inhabitant in the type of interpreters.

A.5.10 Coordination language instantiation (j)

The coordination language instantiation module is merely the concrete version of the
coordination module with the type system, identifier, and dependent module func-
tors instantiated.

281

Appendix B

Semantic notation: a simple
example

B.1 Notation: an illustrative example

We develop our structural operational semantics using the simple and familiar example
of propositional calculus with a natural deduction [159] proof system, expressing the
inference rules as semantic rules. It is not our purpose here to examine the logic of
propositional calculus or natural deduction, so we have formalized the inference rules
as presented in a primer text. We chose [18]. We will extend this to show how the same
example is realized in Coq, according to our approach.

B.2 Abstract syntax of the propositional calculus

A slightly unusual syntax is adopted to describe the abstract syntax, involving named
constructors. This choice is designed to ease translation into a meta-logical formalism
when we come to express a deep embedding in a metalogical formalism or prove things
about the language. It also functions as built-in documentation.

𝑤𝑓𝑓 ∶∶= 𝚆𝚏𝚏𝚂𝚝𝚊𝚝𝚎𝚖𝚎𝚗𝚝 𝑎𝑠𝑐𝑖𝑖𝑙𝑒𝑡𝑡𝑒𝑟
| 𝚆𝚏𝚏𝙽𝚘𝚝 𝑤𝑓𝑓
| 𝚆𝚏𝚏𝙰𝚗𝚍 𝑤𝑓𝑓 𝑤𝑓𝑓
| 𝚆𝚏𝚏𝙾𝚛 𝑤𝑓𝑓 𝑤𝑓𝑓
| 𝚆𝚏𝚏𝙸𝚏 𝑤𝑓𝑓 𝑤𝑓𝑓

(B.1)

Well-formed formulæ of the propositional calculus are built using the wff type.

𝑝𝑟𝑜𝑜𝑓 ∶∶= 𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍 𝑤𝑓𝑓 𝑝𝑟𝑜𝑜𝑓
| 𝚙𝚛𝚘𝚘𝚏𝙱𝚊𝚜𝚎 (B.2)

A syntactic proof is a list of well-formed formulæ. We give separate syntactic types

283

for lists in this notation, rather than assume the existence of higher-order lists. These
would presuppose a more complicated type system than the algebraic data types of most
abstract syntax. The semantics of the natural deduction formalization qualify which
syntactic ‘proofs’ are real proofs of the logic.

B.3 Semantic domain of propositional calculus example

The main feature of the semantic domain of the propositional calculus example is its
thirteen predicates axiomatizing natural deduction rules of inference. They show the
typographical conventions described in section 4.4.1 being used. We also see that ar-
guments are given to the meta-variables of predicates. This is because these arguments
are bound to the dependent type of predicates under the constructors of well-formed
formulæ. For example, the modus tollens rule has a dependent type that is bound to
be the negation of the argument that was supplied to its meta-variable. The thirteen
separate predicates are bound by mutual induction with an umbrella predicate, which
occurs last in the table. It is the disjoint union of all the others. The type definitions use
standard logical connectives.

Meta-variable or constant Type name Type definition

𝖭𝖣 𝖨𝖣𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓 (Natural
deduction identity rule)

𝜅𝖭𝖣 𝖨𝖣 ← 𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

𝖨𝗇𝖯𝗋𝗈𝗉𝑝, 𝑤

𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖯𝗈𝗇𝖾𝗇𝗌𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Modus ponens rule)

𝜅𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖯𝗈𝗇𝖾𝗇𝗌 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓, 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤′, 𝑤)
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤′

𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖳𝗈𝗅𝗅𝖾𝗇𝗌𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Modus tollens rule)

𝜅𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖳𝗈𝗅𝗅𝖾𝗇𝗌 ←
(𝚆𝚏𝚏𝙽𝚘𝚝(𝑤)) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓, 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤,𝑤′)
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙽𝚘𝚝(𝑤′)

𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖠𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Left-handed conjunction
simplification rule)

𝜅𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖠 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓, 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙰𝚗𝚍(𝑤,𝑤′)

𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖡𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Right-handed conjunction
simplification rule)

𝜅𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖡 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓, 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙰𝚗𝚍(𝑤′, 𝑤)

𝖭𝖣 𝖢𝗈𝗇𝗃𝖯𝗋𝗈𝗉
𝑤 ∶ 𝑤𝑓𝑓
𝑤′ ∶ 𝑤𝑓𝑓

(Conjunction rule)

𝜅𝖭𝖣 𝖢𝗈𝗇𝗃 ←
𝚆𝚏𝚏𝙰𝚗𝚍(𝑤,𝑤′) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤′

284

Meta-variable or constant Type name Type definition

𝖭𝖣 𝖣𝗂𝗌𝗃𝖠𝖯𝗋𝗈𝗉
𝑤 ∶ 𝑤𝑓𝑓
𝑤′ ∶ 𝑤𝑓𝑓

(Left-handed disjunction rule)

𝜅𝖭𝖣 𝖣𝗂𝗌𝗃𝖠 ←
𝚆𝚏𝚏𝙾𝚛(𝑤,𝑤′) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤

𝖭𝖣 𝖣𝗂𝗌𝗃𝖡𝖯𝗋𝗈𝗉
𝑤 ∶ 𝑤𝑓𝑓
𝑤′ ∶ 𝑤𝑓𝑓

(Right-handed disjunction rule)

𝜅𝖭𝖣 𝖣𝗂𝗌𝗃𝖡 ←
𝚆𝚏𝚏𝙾𝚛(𝑤,𝑤′) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤′

𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Left-handed conjunctive
syllogism rule)

𝜅𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠 ←
𝚆𝚏𝚏𝙽𝚘𝚝(𝑤) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙽𝚘𝚝(𝚆𝚏𝚏𝙰𝚗𝚍(𝑤,𝑤′))
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤′

𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Right-handed conjunctive
syllogism rule)

𝜅𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡 ←
𝚆𝚏𝚏𝙽𝚘𝚝(𝑤) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙽𝚘𝚝(𝚆𝚏𝚏𝙰𝚗𝚍(𝑤′, 𝑤))
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤′

𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Left-handed disjunctive
syllogism rule)

𝜅𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙾𝚛(𝑤,𝑤′)
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙽𝚘𝚝, (𝑤′)

𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Right-handed disjunctive
syllogism rule)

𝜅𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙾𝚛(𝑤′, 𝑤)
∧ 𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙽𝚘𝚝, (𝑤′)

𝖭𝖣 𝖧𝗒𝗉𝖲𝗒𝗅𝗅𝗈𝗀𝖯𝗋𝗈𝗉
𝑤 ∶ 𝑤𝑓𝑓
𝑤′ ∶ 𝑤𝑓𝑓

(Hypothetical syllogism rule)

𝜅𝖭𝖣 𝖧𝗒𝗉𝖲𝗒𝗅𝗅𝗈𝗀 ←
𝚆𝚏𝚏𝙸𝚏(𝑤,𝑤′) ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤,𝑤′′)
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤′′, 𝑤′)

𝖭𝖣 𝖣𝗂𝗅𝖾𝗆𝗆𝖺𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓
(Dilemma rule)

𝜅𝖭𝖣 𝖣𝗂𝗅𝖾𝗆𝗆𝖺 ←
𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∃𝑤′ ∶ 𝑤𝑓𝑓, ∃𝑤′′ ∶ 𝑤𝑓𝑓,
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙾𝚛(𝑤′, 𝑤′′)
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤′, 𝑤)
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝚆𝚏𝚏𝙸𝚏(𝑤′′, 𝑤)

285

Meta-variable or constant Type name Type definition

𝖭𝖣𝖯𝗋𝗈𝗉𝑤 ∶ 𝑤𝑓𝑓 (Natural
deduction disjoint product of
inference rules)

𝜅𝖭𝖣 ← 𝑤←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∐

𝖭𝖣 𝖨𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖯𝗈𝗇𝖾𝗇𝗌𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖳𝗈𝗅𝗅𝖾𝗇𝗌𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖠𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖡𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖢𝗈𝗇𝗃𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖣𝗂𝗌𝗃𝖠𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖣𝗂𝗌𝗃𝖡𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖧𝗒𝗉𝖲𝗒𝗅𝗅𝗈𝗀𝖯𝗋𝗈𝗉𝑝, 𝑤
𝖭𝖣 𝖣𝗂𝗅𝖾𝗆𝗆𝖺𝖯𝗋𝗈𝗉𝑝, 𝑤

The table of predicates for valid arguments does not introduce new notation, but
shows definitions which ensure that ‘proof s’ qualified by the valid argument predicate
are correct by construction. We define a list concatenation function as a convenience,
whose effect is as its name suggests. The empty predicate is defined to qualify an empty
argument, using the ‘empty set’ symbol ∅.

Meta-variable or constant Type name Type definition

𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖾𝗆𝗉𝗍𝗒𝖯𝗋𝗈𝗉 𝜅𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖾𝗆𝗉𝗍𝗒 ←
𝚙𝚛𝚘𝚘𝚏𝙱𝚊𝚜𝚎 ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

∅

𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖼𝗈𝗇𝗌𝖯𝗋𝗈𝗉
𝑤 ∶ 𝑤𝑓𝑓
𝑝′ ∶ 𝑝𝑟𝑜𝑜𝑓𝑠 𝜅𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖼𝗈𝗇𝗌 ←

𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍𝑤, 𝑝′ ←
∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓

𝖭𝖣𝖶𝖿𝖿𝖢𝗈𝗇𝖼𝖺𝗍𝑝, 𝑝′, 𝑤
𝖭𝖣𝖯𝗋𝗈𝗉(𝑤)
𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉𝑝, 𝑝

′

𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉𝑝
′ ∶ 𝑝𝑟𝑜𝑜𝑓𝑠 𝜅𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍 ←

𝑝′ ← ∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓
∐

𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖾𝗆𝗉𝗍𝗒𝖯𝗋𝗈𝗉𝑝, 𝑝
′

𝖭𝖣 𝖵𝖺𝗅𝖠𝗋𝗀 𝖼𝗈𝗇𝗌𝖯𝗋𝗈𝗉𝑝, 𝑝
′

Having defined some predicates, we now show how dependent types, restricted to
be dependent in the arguments of parametrized 𝜎-types, are defined.

286

Meta-variable or constant Type name Type definition

𝑊⊤ 𝒲⊤ ← ∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓
𝑤 ∈ 𝑤𝑓𝑓 ∶
𝖭𝖣𝖯𝗋𝗈𝗉𝑝, 𝑤

𝚆⟂ 𝒲⟂ ∅

𝐖⊤⟂ 𝔚⊤⟂ 𝒲⊤ ⨆ 𝒲⟂

In the first row of the table for the strong definition of a well-formed formula, we
see that it has acquired a dependence in the type of syntactic proofs. The definition is
of a 𝜎-type, parametrized in the environment of premises. These are the premises that
form the enviroment in which the formula is contingently true (given the truth and mu-
tual consistency of the premises) if a strong well-formed formula𝑊 can be constructed.
The second row gives the object that denotes an inconsistent formula, and the final row
defines the disjoint union of consistent and inconsistent formulæ. These objects are
needed so that the operational semantics can pass around a definite object denoting a
failed attempt to check a proof script.

Meta-variable or
constant

Type name Type definition

𝑃⊤ , 𝙿⊤∅ 𝒫⊤ ← ∀𝑝 ∶ 𝑝𝑟𝑜𝑜𝑓
𝑝′ ∈ 𝑤𝑓𝑓 ∶
𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉𝑝, 𝑝

′

𝙿⟂ 𝒫⟂ ∅

𝐏⊤⟂ 𝔓⊤⟂ 𝒫⊤ ⨆ 𝒫⟂

The definition of a valid argument from its allied predicate follows the same pattern
as the definition of a well-formed formula above. A constant denoting the consistent
empty argument is also present in this definition, subscripted by the empty set sign.

B.4 Structural operational semantics: notation

We now introduce the type of operational structural semantic notation that we will be
using. In the case of our example proof-checker, the static semantics are the same as the
dynamic semantics: the static semantics of a valid proof are the dynamic semantics of a
proof-checker. For programs that do something other than check or compute with static
properties, this is not true, and so has separate static and dynamic semantics. Nev-
ertheless, static and dynamic semantics have the same basic form, and so our example
serves to illustrate the constructs we will come across in the dynamic semantics.

In the semantic rules that follow, we refer to the terms on the left of the turnstile as

287

the ‘environment’, to the terms between the turnstile and the arrow as the ‘implicant’,
and to the terms on the right of the arrow as the ‘implicand’.

The first four rules show the possible matches on a proof script.

 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓 ⇒ P⟂

 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓 ⇒ 𝔓⊤⟂ P⟂
(B.3)

Rule B.3 shows the match that results in an empty and inconsistent object being returned
in the implicand of the conclusion. All the preceding elements of the proof script are
invoked by the premise, and if the result is inconsistent, then this particular invocation of
the rule can only be inconsistent too: there is no point in investigating whether the well-
formed formula that is matched in the implicant of the conclusion is valid. We observe at
this stage that the enviroment of premises is after the turnstile of the semantic rule. This
is different to the usual operational semantic style, but since we will be matching directly
on these environment objects, we reserve the environment of semantic rules for variables
that only constitute arguments to local predicates, and which are not computationally
relevant to concrete (non-predicate) types.

⎧⎪
⎨⎪⎩
⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓 ⇒

⎧⎪
⎨⎪⎩

P⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝
𝜎
⎛
⎜
⎝

𝑝′𝑝𝑟𝑜𝑜𝑓
𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝

′

𝑝𝑟𝑜𝑜𝑓
⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪
⎬⎪⎭

 ⊢ 𝖶𝖿𝖿𝖢𝗈𝗇𝖼𝖺𝗍 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝
′

𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓 ⇒ W⟂

 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓 ⇒ 𝔓⊤⟂ P⟂
(B.4)

Rule B.4 shows the situation where the preceeding proof matched in the conclusion’s
implicant, 𝑒𝑝𝑟𝑜𝑜𝑓 , yields a consistent proof, but where the local well-formed formula,
matched as 𝑤𝑤𝑓𝑓 cannot be proven given the available premises. In the implicand of
the first premise, we see that the underlying 𝜎-type has been matched, to produce the
syntactic proof object which we now know is really a valid proof. This new proof frag-
ment 𝑒𝑝𝑟𝑜𝑜𝑓′, is used in the second premise, concatenated with the common (logical)
premise 𝑒𝑝𝑟𝑜𝑜𝑓 , to invoke a match on one of the rules for proving a formula. However,
the inconsistent formula is found in the implicand, which means the implicand of the
conclusion must be that the whole proof script is not proven. The rule therefore returns
the inconsistent proof object, wrapped in the disjoint union constructor for consistent
and inconsistent proof objects.

288

⎧⎪
⎨⎪⎩
⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓 ⇒

⎧⎪
⎨⎪⎩

P⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝
𝜎
⎛
⎜
⎝

𝑝′𝑝𝑟𝑜𝑜𝑓
𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝

′

𝑝𝑟𝑜𝑜𝑓
⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪
⎬⎪⎭⎧⎪

⎨⎪⎩
⊢ 𝖶𝖿𝖿𝖢𝗈𝗇𝖼𝖺𝗍 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝

′

𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓 ⇒
⎧⎪
⎨⎪⎩

W⊤

𝖶𝖿𝖿𝖢𝗈𝗇𝖼𝖺𝗍 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝
′

𝑝𝑟𝑜𝑜𝑓

⎫⎪
⎬⎪⎭

⎫⎪
⎬⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑝𝑝𝑟𝑜𝑜𝑓

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎜
⎝

𝒫⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎜
⎜
⎝

𝜎

⎛
⎜
⎜
⎜
⎝

𝚙𝚛𝚘𝚘𝚏𝙸𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑝
′

𝑝𝑟𝑜𝑜𝑓

𝖭𝖣 𝖵𝖺𝗅𝗂𝖽𝖠𝗋𝗀𝗎𝗆𝖾𝗇𝗍𝖯𝗋𝗈𝗉
𝑒𝑝𝑟𝑜𝑜𝑓
𝖶𝖿𝖿𝖢𝗈𝗇𝖼𝖺𝗍 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑝

′

𝑝𝑟𝑜𝑜𝑓

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(B.5)
The form of rule B.5 is similar to that of rule B.4, except that in the second premise, there
is now a successful match on a proven formula in the environment. It is dependent in
the concatenated proof script that was supplied in the implicant of this premise. This
new and predicate qualified object is used in the implicand of the conclusion to con-
struct a new strong proof object, elevating the syntactic proof (a list of formulæ) to the
type of correct proofs. Both the concrete terms (under the proofInd constructor) and
new predicate are shown. We do not show the operational rules for constructing the
predicate. This is an obligation that is discharged in the environment of a full-fledged
proof assistant when we show the equivalent of this rule in appendix B.8.

 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚙𝚛𝚘𝚘𝚏𝙱𝚊𝚜𝚎() ⇒ 𝔓⊤⟂ ,
P⊤∅
𝑒𝑝𝑟𝑜𝑜𝑓

(B.6)

Rule B.6 shows the trivial base case in which the empty correct proof object is con-
structed from the empty syntactic proof object.

We now show each operational rule for building a proof based on one of the natural
deduction predicates in the semantic domain. We do not meet any new features of the
notation here, so the point of interest is the comparison of the structure with that of
the allied predicate in the semantic domain, and with the equivalent Coq function in
appendix B.8.

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤
′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒
𝑊

′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒ 𝔚⊤⟂
𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

𝑤𝑤𝑓𝑓
𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖯𝗈𝗇𝖾𝗇𝗌 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⎫⎪⎪
⎬⎪⎪⎭

(B.7)

Rule B.7 implements the modus ponens rule of inference. The conclusion implicand

289

matches on the environment of already accepted propositions and the syntactic formula
object, and shows two premises corresponding to the logical premises of the rule. A new
variable𝑤′ is shown in the environment of the premises: the existence of such a variable
is a prerequisite for the application of the rule. We now enumerate the remainder of the
rules, which follow the same structural pattern.

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒
𝑊

′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⇒
⎧⎪
⎨⎪⎩
𝔚⊤⟂

⎛
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝

𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓
𝖭𝖣 𝖬𝗈𝖽𝗎𝗌𝖳𝗈𝗅𝗅𝖾𝗇𝗌 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(B.8)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙰𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒ 𝔚⊤⟂
𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

𝑤𝑤𝑓𝑓
𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖠 𝑤𝑤𝑓𝑓

⎫⎪⎪
⎬⎪⎪⎭

(B.9)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙰𝚗𝚍𝑤
′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒ 𝔚⊤⟂
𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

𝑤𝑤𝑓𝑓
𝖭𝖣 𝖲𝗂𝗆𝗉𝗅𝖡 𝑤𝑤𝑓𝑓

⎫⎪⎪
⎬⎪⎪⎭

(B.10)

 𝑤𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒
𝑊

′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙰𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔚⊤⟂

⎛
⎜
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎜
⎝

𝚆𝚏𝚏𝙰𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓
𝖭𝖣 𝖢𝗈𝗇𝗃 𝑤𝑤𝑓𝑓

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(B.11)

 𝑤𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙾𝚛𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔚⊤⟂

⎛
⎜
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎜
⎝

𝚆𝚏𝚏𝙾𝚛𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓
𝖭𝖣 𝖣𝗂𝗌𝗃𝖠 𝑤𝑤𝑓𝑓

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(B.12)

290

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙾𝚛𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔚⊤⟂

⎛
⎜
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎜
⎝

𝚆𝚏𝚏𝙾𝚛𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓
𝖭𝖣 𝖣𝗂𝗌𝗃𝖡 𝑤𝑤𝑓𝑓

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(B.13)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝚆𝚏𝚏𝙰𝚗𝚍𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⇒
⎧⎪
⎨⎪⎩
𝔚⊤⟂

⎛
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝

𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓
𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(B.14)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝚆𝚏𝚏𝙰𝚗𝚍𝑤
′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⇒
⎧⎪
⎨⎪⎩
𝔚⊤⟂

⎛
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝

𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓
𝖭𝖣 𝖢𝗈𝗇𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(B.15)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙾𝚛𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒
⎧⎪
⎨⎪⎩
𝔚⊤⟂

⎛
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝

𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓
𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖠 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(B.16)

 𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙾𝚛𝑤
′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒
⎧⎪
⎨⎪⎩
𝔚⊤⟂

⎛
⎜
⎝

𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

⎛
⎜
⎝

𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓
𝖭𝖣 𝖣𝗂𝗌𝗃𝖲𝗒𝗅𝗅𝗈𝗀𝖡 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙽𝚘𝚝𝑤𝑤𝑓𝑓

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(B.17)

291

 𝑤𝑤𝑓𝑓 , 𝑤
′′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤𝑤𝑓𝑓 , 𝑤
′′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤′′

𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤
′′

𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓 ⇒
𝑊

′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤𝑤𝑓𝑓 , 𝑤
′

𝑤𝑓𝑓

⇒ 𝔚⊤⟂
𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

𝑤𝑤𝑓𝑓
𝖭𝖣 𝖧𝗒𝗉𝖲𝗒𝗅𝗅𝗈𝗀 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⎫⎪⎪
⎬⎪⎪⎭

(B.18)

 𝑤
′

𝑤𝑓𝑓 , 𝑤
′′

𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙾𝚛𝑤
′

𝑤𝑓𝑓 , 𝑤
′′

𝑤𝑓𝑓 ⇒ 𝑊⊤
𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤
′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒
𝑊

′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

 𝑤′′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝚆𝚏𝚏𝙸𝚏𝑤
′′

𝑤𝑓𝑓 , 𝑤𝑤𝑓𝑓 ⇒
𝑊

′′
⊤

𝑒𝑝𝑟𝑜𝑜𝑓

⎧⎪⎪
⎨⎪⎪⎩

⊢ 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⇒ 𝔚⊤⟂
𝒲⊤
𝑒𝑝𝑟𝑜𝑜𝑓

𝑤𝑤𝑓𝑓
𝖭𝖣 𝖣𝗂𝗅𝖾𝗆𝗆𝖺 𝑒𝑝𝑟𝑜𝑜𝑓 , 𝑤𝑤𝑓𝑓

⎫⎪⎪
⎬⎪⎪⎭

(B.19)

B.5 The embedding of semantics in Coq

We now carry the propositional calculus example forward to an embedding of the same
semantics in Coq, in order to demonstrate, in the context of a simple example, how we
have approached the translation of into a formal logic.

Since Coq uses a general-purpose logic, it can be employed to reason about semantics
in any style. We use two styles: a predicative, type-theoretical style to define a strongly
typed semantic domain, and an operational semantic style, in the form of Coq functions.
The latter provides concrete procedures to find inhabitants of the former.

In the listings that follow, we have used the ‘coqdoc’ tool to format listings for pre-
sentation. ‘coqdoc’ is part of the Coq distribution. The tool adds syntax highlighting
and some notational niceties such as replacing ‘’ representations of quantifiers with
their mathematical counterparts. It also provides facilities to hide uninteresting parts
of code files, such as proof scripts. The software produces many different formats and
types of documentation, but we use the LATEX output.

B.6 Propositional calculus abstract syntax in Coq

The abstract syntax of our propositional logic example is composed of an inductive type
for well-formed formulæ, in combination with the ascii and list types from the Coq
Standard Library.

292

Listing B.1: The propositional calculus abstract syntax
Definition Statement := ascii.
Inductive Wff : Set :=
| Wff St : Statement → Wff
| Wff Not : Wff → Wff
| Wff And : Wff → Wff → Wff
| Wff Or : Wff → Wff → Wff
| Wff If : Wff → Wff → Wff .

We define Statement to be the Coq type ascii. A well-formed formula Wff is, to take the
constructors as they appear, either a statement, a negation, a conjunction, a disjunction
or an implication. The concrete type of syntactic proofs is not shown, as it is just an
instance of Coq’s polymorphic list type, list Wff.

B.7 Propositional calculus semantic domain in Coq

The semantic domain is composed of a number of predicates over the concrete syntactic
types. We illustrate how these are turned into parametrized 𝜎-types to form a strong
semantic domain which, by construction, cannot contain meaningless subsets of the
concrete objects.

Listing B.2: The propositional calculus semantic domain
Inductive NatDeduct(env : list Wff) : Wff → Prop :=
| ND ID (A : Wff) : In A env → NatDeduct env A
| ND ModusPonens(B : Wff) :

(∃ A, NatDeduct env (Wff If A B) ∧ NatDeduct env A) → NatDeduct env B
| ND ModusTollens(A : Wff) :

(∃ B, NatDeduct env (Wff If A B) ∧ NatDeduct env (Wff Not B)) →
NatDeduct env (Wff Not A)

| ND SimplA(A : Wff) :
(∃ B, NatDeduct env (Wff And A B)) → NatDeduct env A

| ND SimplB(B : Wff) :
(∃ A, NatDeduct env (Wff And A B)) → NatDeduct env B

| ND Conj(A B : Wff) : NatDeduct env A ∧ NatDeduct env B →
NatDeduct env (Wff And A B)

| ND DisjA(A B : Wff) : NatDeduct env A → NatDeduct env (Wff Or A B)
| ND DisjB(A B : Wff) : NatDeduct env B → NatDeduct env (Wff Or A B)
| ND ConjSyllogA(A : Wff) :

(∃ B, NatDeduct env (Wff Not (Wff And A B)) ∧ NatDeduct env B) →
NatDeduct env (Wff Not A)

| ND ConjSyllogB(B : Wff) :
(∃ A, NatDeduct env (Wff Not (Wff And A B)) ∧ NatDeduct env A) →
NatDeduct env (Wff Not B)

| ND DisjSyllogA(A : Wff) :
(∃ B, NatDeduct env (Wff Or A B) ∧ NatDeduct env (Wff Not B)) →
NatDeduct env A

| ND DisjSyllogB(B : Wff) :
(∃ A, NatDeduct env (Wff Or A B) ∧ NatDeduct env (Wff Not A)) →
NatDeduct env B

| ND HypSyllog(A C : Wff) :
(∃ B, NatDeduct env (Wff If A B) ∧ NatDeduct env (Wff If B C)) →
NatDeduct env (Wff If A C)

| ND Dilemma(C : Wff) :
(∃ A, ∃ B, NatDeduct env (Wff Or A B) ∧

NatDeduct env (Wff If A C) ∧ NatDeduct env (Wff If B C)) →

293

NatDeduct env C.
Inductive ND ValidArgument(premises : list Wff) : list Wff → Prop :=
| ND ValArg empty : ND ValidArgument premises nil
| ND ValArg cons(wff : Wff)(env : list Wff) :

ND ValidArgument premises env →
NatDeduct (premises ++ env) wff → ND ValidArgument premises (wff :: env).

The definition of the inductive type NatDeduct shows a predicate over well formed for-
mulæ. It can be seen in the first line of the definition that it is declared in the Sort of
propositions, Prop, whereas the concrete Wff type was declared in the concrete Set Sort.
NatDeduct has two dependent arguments. The first, env, is a list of well-formed for-
mulæ. The consistency of NatDeduct is dependent on the truth and mutual consistency
of the formulæ in this list. This is a named parameter, which in Coq has the effect that
nothing in a constructor can contribute to the named type parameter. It is intuitively
correct that this should be a named type, because premises are by definition prior to
the specification of any well-formed formula that can be constructed in this particu-
lar instance of NatDeduct. The type parameters are Curried like any other parameters,
so once env is supplied, the new definition is tied to this set of premises. The second
dependent parameter of NatDeduct is a well-formed formula that is supplied by each
individual constructor. The form of this constructor varies depending on the inference
rule that is being relied upon to produce constructive proof of the formula’s validity in
this environment.

This can be illustrated by the first constructor, ND ID, which is an identity construc-
tor. Its parameters are a concrete Wff, A, and a proof that A is contained in env. In is a
predicate that we imported from Coq’s List Module from the Standard Library. This al-
lows us to use lemmas concerning Coq lists that are supplied by the Standard Library.
The result of this constructor, NatDeduct env A, shows the instantiation of NatDeduct
with its obligatory env parameter, and A as the concrete type over which this predicate
can be constructed, which in this case is A itself, since this is an identity inference rule.

The rest of the constructors behave similarly, following the predicates that we de-
fined in appendix B.3. The modus ponens constructor shows an example where Coq’s
polymorphic existential inductive predicate, shown by the ‘∃’ symbol, is used to re-
quire that there is some A that is true in the environment, which together with a proof
that A implies B, allows us to construct a predicate certifying that B is justified. In the
modus tolles constructor, we can see an example of an inference rule that constrains the
Wff over which the NatDeduct predicate is defined to be a synthesis of the constructor
parameters, in this case providing a proof of the negation of the A, giving Wff Not A. The
rest of the constructor definitions of NatDeduct do not introduce any new Coq concepts.

The predicate ND ValidArgument provides a way of specifying lists of inferences
where every inference is justified by the previous instances added to the list. It has a pa-
rameter, called premises. ND ValidArgument proves a valid argument in the logic, given

294

the premises. It is itself a syllogism that does not comment upon the truth or mutual con-
sistency of the premises. The value of the second type parameter is determined under
the individual constructors of ND ValidArgument. Each element of ND ValidArgument is
built up in tandem with the underlying list, ensuring that the underlying list is correct by
construction. The ND ValArg empty constructor is the recursive base case, axiomatizing
the consistency of the empty argument. ND ValArg cons mirrors the constructor of the
underlying list, taking a well-formed fomula wff, the preceding proof script, env, proof
that this environment is itself a ND ValidArgument, and a proof that the wff is justified in
the environment of the premises and env. The concatenation of these lists is shown by
the ++ notation. The :: notation in the construction of the resulting ND ValidArgument

shows that this proof is a proof of the old list env with wff added to the head of the list.

Listing B.3: The propositional calculus consistency assertions
Inductive ND PremisesConsistent : list Wff → Prop :=
| ND PConsist intro nil : ND PremisesConsistent nil
| ND PConsist intro cons(wff : Wff)(pc : list Wff) :
¬ (ND ValidArgument nil ((Wff Not wff) :: pc)) →
ND PremisesConsistent pc → ND PremisesConsistent (wff :: pc).

Definition ND IsTrue(premises : sig (ND PremisesConsistent))(wff : Wff) :
Prop :=
In wff (‘premises) ∨
∃ script : sig (ND ValidArgument (‘premises)), NatDeduct (‘script) wff .

Theorem ND consistent(premises : sig (ND PremisesConsistent)) :
∀ wff , ¬ (ND IsTrue premises wff ∧ ND IsTrue premises (Wff Not wff)).

For completeness, Listing B.3 shows a predicate that constrains premises to be consis-
tent, by building up the list of premises from an empty list (denoted by the nil construc-
tor). ND PConsist intro cons shows that a new formula can be added only if there is
no valid argument from which can be deduced its negation. To negate a proposition
in the intuitionistic logic of Coq is equivalent to saying that it does not exist, which
is the same as saying it cannot be constructed. The definition ND IsTrue and theorem
ND consistent, which we admit without proof, formalizes the claim that the logic is
consistent. The sig type of Coq is the formalization of a 𝜎-type, turning a predicate
into a union of the underlying concrete value over which the predicate is declared and
an instance of the predicate that shows that the concrete instance is ‘true’ according to
the predicate. The backtick notation in Coq is used to denote the concrete part of a sig

type, and we see that the predicate is stripped from the argument of ND IsTrue, so that
the predicates referenced in the type definition receive an argument of the correct type.
The 𝜎-type we use for the strong (i.e. correct by construction) definition of the type of
proofs in the logic is formed from the ND Valid Argument, and we see that the predicate
has two arguments. However, the description of a 𝜎-type that we just gave is a monadic
predicate, or one that has only one argument. The extra argument, the ‘premises’ of the
ND Valid Argument definition, is bound as a parameter to the 𝜎-type.

295

B.8 Structural operational semantics of the propositional
calculus example in Coq

The functions given here realize a proof-checker. We use Coq’s option type to wrap
the object produced by this function. This corresponds to the union object in fraktur
font in the semantic domain of appendix B.3. The Some constructor of the option type
wraps a verified proof script, which has been enriched with a predicate that certifies
this. The None constructor, which takes no arguments, is returned when the script be-
ing processed does not meet the semantic specification, corresponding to the branches
in our semantic rules where the ‘inconsistent object’ is returned. There is a strong corre-
spondence between the semantic rules and the realizing functions, but the executability
of the Coq functions necessitates that they deal with details of searching lists for terms,
rendering them less succinct.

We have proven that our proof-cheking function only produces inhabitants of the
predicate-qualified semantic domain. We have not proved that it always produces such
an inhabitant when one exists for the supplied un-predicated proof script. Neither have
we proven consistency or completeness of the logical system we have formalized. These
properties could be shown with more work, but the business of this appendix is to intro-
duce our method, rather than to prove things about propositional calculus. Accordingly,
we have omitted these proofs.

In searching the cumulative proof script, we need a decision procedure to check the
equality of terms. This is given in Listing B.4. The equality we need here is simple Leib-
niz equality, in which two structures are equal if they have the same structure in Coq.
Often, in our formalization of , we need to use equivalence relations instead. This
arises from our use of map structures, where many underlying structures can denote
the same map.

Listing B.4: The propositional calculus formula equality decision function

Fixpoint Wff dec(a b : Wff) { struct a } : {a = b} + {a ≠ b}.
refine (

match a, b with
| Wff St s, Wff St s’ ⇒

match ascii dec s s’ with
| left ⇒
| right ⇒

end
| Wff Not p, Wff Not q ⇒
| Wff And p q, Wff And r s ⇒
| Wff Or p q, Wff Or r s ⇒
| Wff If p q, Wff If r s ⇒
| , ⇒

end
).
Defined.

296

The function Wff dec returns the disjoint union of a proof that the parameters a and b are
equal or a proof that they are not equal. The Coq notation + in this context is shorthand
for the polymorphic disjoint union type in Coq’s Standard Library. The definition of the
fixpoint is given within the refine tactic. This enables us to use wildcards which we can
fill in later by using proof tactics. We have written out the high level structure explicitly,
showing matches on ‘a’ and ‘b’. We are only interested in the matches where we have
the same constructor for each of ‘a’ and ‘b’, since all other cases cannot be equal and
we can immediately use the discriminate tactic to dismiss them. Where we have the
same constructor, we either, in the case of a statement, call the decision function from
the Coq’s ascii Module, or we recursively call Wff dec. Although this function has a
concrete return type, it is a return type that wraps a proof term, and so it is easy and
straightforward to fill in the details of the function using proof tactics, which is what we
do. We do not show our calls to proof tactics in filling in the wildcards.

Listing B.5: The formula resolution section introduction
Section resFuncS.

Variable P : Wff → Prop.
Variable specFunc : ∀ wff : Wff , option (P wff).
Let PList(lOrig lFilter :) := ∀ w, In w lFilter → P w ∧

NatDeduct lOrig w.

The Section keyword in Coq allows us to open an environment where we are able
to declare variables or hypotheses wihout giving values for them or explaining where
they came from. This does not lead to inconsistency, because on closing a section, Coq
adds an extra argument to any definitions that depend on these variables or hypothe-
ses, which corresponds to the unknown in question. The definition therefore becomes
contingent upon supplying the missing information. This paradigm is useful because it
allows us to factor out common arguments from a collection of definitions, and makes
code clearer. In the section resFuncS, which we open in Listing B.5, we declare two such
variables: a proposition about well-formed formulæ, P, whose definition we defer, and
a function specFunc, which either produces a proof that a given formula satisfies P, or
None. The Let keyword introduces a definition that will be expanded inline when the
section is closed. PList is a predicate of two proof scripts lOrig and lFilter, which
states that any formula in lFilter satisfies P and is a valid inference given lOrig.

Listing B.6: The ambivalent formula resolution function
Definition specAnyWff (arg : list Wff) :

option (sig2 P (fun x ⇒ In x arg)).
refine (

let fix specAnyWffInner(arg’ : list Wff)(arg’Incl : incl arg’ arg) :
option (sig2 P (fun x ⇒ In x arg)) :=
match arg’ as arg’ return = arg’ → with
| wff :: arg” ⇒ fun J : arg’ = wff :: arg” ⇒

297

match specFunc wff with
| Some p ⇒ Some (exist2 wff p)
| None ⇒ specAnyWffInner arg”

end
| nil ⇒ fun ⇒ None

end (eq refl)
in specAnyWffInner arg (incl refl)

).

Defined.

The purpose of the ambivalent formula resolution function of Listing B.6 is to retrieve
from the proof script thus far any term (hence ‘ambivalent’) that satisfies P. The return
type is a 𝜎-type that is loaded with two predicates (sig2), meaning that the underlying
concrete type satisfies both predicates parametrizing the 𝜎-type. The two predicates in
question here are the P and proof that the returned formula occurred in the list arg.

The function body of specAnyWff is given within the refine tactic, enabling us to
give concrete terms, but leave proof terms, which are not computationally relevant, to
be dealt with by later proof tactics. specAnyWff is implemented by means of an inner
fixpoint, which we declare with ‘let fix’. specAnyWffInner is called at the bottom
of the outer function definition, where we see ‘in specAnyWffInner arg (incl refl

)’. specAnyWffInner has two arguments: a list of formulæ, and a proof that this list is
included in the original list of the outer function, arg. When we call specAnyWffInner
at the bottom of Listing B.6, the argument we give is arg, so we use the lemma from
the Standard Library that a list is included in itself, incl refl, to provide the proof
term. The wildcard to inclRefl is arg, but it can inferred by Coq, so we use the shorter
wildcard. This particular wildcard does not therefore correspond to a missing proof
that we have to supply later.

Inside specAnyWffInner, we see a new match notation, which we use pervasively.
First, we need to explain why we are returning a function type here from a match of some
plain data. The reason is that we require a proof term inside the match that “arg’” is the
same as “wff :: arg’’”. Without such a term, we would not be able to provide proof
that the sublist was included in the original list, or that the formula wff occurred in the
original list, which we need to know in order to satisfy P. However, without more, there
is no way to prove this obvious-looking fact. The standard paradigm for dealing with
this in Coq involves, rather than returning a concrete proof of these things, returning
an implication proof that generates an unqualified proof from the necessary equality,
which we can supply outside the scope of the match with the eq refl constructor, which
produces equality proofs of its argument. We can see eq refl appearing in Listing B.6
after the end of the match, with the type of equality inferred by Coq under the wildcard.
Type inference is not complete in dependently typed 𝜆-calculi, so without the “as arg’

return = arg’ -> ” after the match keyword, the code could not have successfully
type-checked. Finally, we can obtain a reference to the equality we need by writing the

298

match logic under an anonymous function that binds the form of the equality proof we
require to the term J. We need to give the type of J explicitly; otherwise, it would default
to “arg’ = arg’”, which would not help us.

Inside the anonymous function, we make a call to specFunc, which is a section vari-
able. If it returns None, then specAnyWffInner is called again, with a wildcard for the list
inclusion proof term for “arg’’”, which we fill in later in the Coq proof script. However,
if we find a value under Some, then we can construct a member of sig2 P (fun x => In

x arg) using its constructor exist2. The proof of P we obtain directly from the match,
while the list inclusion proof we fill in under a wildcard later in the Coq proof script,
where we use J to show the necessary proposition.

Listing B.7: The proof filtration function
Definition filterWff (arg : list Wff) : sig (PList arg).
refine (

let fix filterWffInner(arg’ : list Wff)(arg’Incl : incl arg’ arg) :
sig (PList arg) :=
match arg’ as arg’ return = arg’ → sig (PList arg) with
| wff :: arg” ⇒ fun J : arg’ = wff :: arg” ⇒

let filterRec := filterWffInner arg”
in
match specFunc wff with
| Some p ⇒ exist (wff :: (‘filterRec))
| None ⇒ exist (‘filterRec)

end
| nil ⇒ fun ⇒ (exist nil)

end (eq refl)
in filterWffInner arg (incl refl)

).
Defined.
End resFuncS.

The proof filtration function of Listing B.7 fulfills a similar function to specAnyWff, except
that rather than return an arbitrary formula satisfying the filtration criteria, it returns
every formula in the list that satisfies the criterion P. The structure is the same, except
that under the match of specFunc wff, the inner fixpoint is called recursively regardless
of whether wff matched the criterion P. If it did (the first branch), it is added to the
list obtained with the recursive call; if it did not (the second branch), the recursive call
is made straight away. In both cases, the result is a 𝜎-type, so the results are placed
under the exist constructor, and a wildcard acts as a placeholder for the proof, which
we supply later in the script, but do not show here for the sake of brevity. After this
function, we see that the section we opened to define these resolution functions is closed
with End resFuncS.

Listing B.8: The ID rule prover
Section tryMatchS.

Definition try ID(arg : list Wff)(wff : Wff) : option (NatDeduct arg wff).
refine (

299

let fix memWffInner(arg’ : list Wff)(arg’Incl : incl arg’ arg) :
option (NatDeduct arg wff) :=
match arg’ as arg’ return = arg’ → option (NatDeduct arg wff) with
| nil ⇒ fun ⇒ None
| wff’ :: arg” ⇒ fun J : arg’ = wff’ :: arg” ⇒

match Wff dec wff’ wff with
| left ⇒ Some
| right ⇒ memWffInner arg”

end
end (eq refl)
in memWffInner arg (incl refl)

).
Defined.

We now see a series of functions, each of which attempts to prove a proposition using
one of the inference rules. arg stands for ‘logical argument’, rather than the argument of
a function, and is synonymous with 𝑒𝑝𝑟𝑜𝑜𝑓 in the semantic rules of appendix B.4. try ID

attempts to verify the formula by seeing if it already exists in the argument arg. The
return type option (NatDeduct arg wff) allows either a suitable proof of NatDeduct
arg wff to be returned under the Some constructor, or None, if wff cannot be proved
using this rule, because it did not appear in arg. Inside the inner fixpoint, the equality
decision function Wff dec is called for each member of the environment. If it returns a
proof of equality, NatDeduct arg wff can be shown immediately; otherwise, the inner
fixpoint is called recursively.

Listing B.9: Themodus ponens rule prover

Let findHasImplicand(A B : Wff) : option (hasImplicand A B).
refine (

match B with
| Wff If a b ⇒

match Wff dec A b with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try ModusPonens(arg : list Wff)(wff : Wff) :

option (NatDeduct arg wff).
refine (

let implicandMatches :=
filterWff (hasImplicand wff) (findHasImplicand wff) arg
in
let fix tryEachImpl(impls : list Wff)

(implsIncl : incl impls (‘implicandMatches)) :
option (NatDeduct arg wff) :=
match impls as impls return = impls → option (NatDeduct arg wff) with
| wff’ :: impls’ ⇒ fun J : impls = wff’ :: impls’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff If x y ⇒ fun J0 : wff’ = Wff If x y ⇒
match try ID arg x with
| Some prf ⇒ Some (ND ModusPonens arg wff)
| None ⇒ tryEachImpl impls’

end
| ⇒ fun ⇒ !

300

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachImpl (‘implicandMatches) (incl refl)

).

Defined.

The implementation of modus ponens given here follows the operational semantic rule
given in rule B.7. In Listing B.9, we see that a helper function findHasImplicand is in-
troduced. The idea here is that we need to find an implication from any formula (we do
not mind which) to wff, as long as the implicant also appears in the environment arg.
The arbitrary choice of implicant forms a witness allowing us to construct the existential
predicate in the definition of ND ModusPonens. We therefore need first to filter the for-
mulæ in the environment to obtain all those implications that have wff as an implicand.
findHasImplicand allows us to do this. It has the same type as the specFunc variable of
the resFuncS section, so we can supply this function as a parameter to the list filtration
function filterWff. In try ModusPonens, we see that filterWff is used in this way to
obtain a list of candidate implications. The rest of the function tries to find an implicant
for one of them, so that from the combination of both we can deduce wff. The first level
match in the inner fixpoint, tryEachImpl, unpacks the head of the list of candidate im-
plications. The next level match matches on the Wff constructors, to obtain an implicant
we can search for. Only one of the constructors is given, Wff If. The rest of the con-
structors are matched by a wildcard, where the result is “!”. The “!” is Coq notation for
a type which allows us to build an inhabitant of any type from the False proposition, us-
ing the ex falso quodlibet principle (anything follows from the False proposition). We can
discharge the proof of Falsity here because we can prove that this branch of match can
never be reached. We can prove this from the predicate over implicandMatches, from
which we can deduce that it only contains well-formed formulæ that are implications.

Having found a candidate implicant x, try ID is invoked to try to prove it. If suc-
cessful (a proof is returned under Some), the ND ModusPonens constructor can be used
to construct a proof and return it under the Some constructor. If unsuccessful (try ID

returns None) then we continue by recursively calling the inner fixpoint. If we reach the
end of the list (nil) without proving wff, we know it cannot be proved in this environ-
ment using the modus ponens inference rule, so we return None.

Listing B.10: Themodus tollens rule prover
Definition try ModusTollens(arg : list Wff)(wff : Wff) :

option (NatDeduct arg (Wff Not wff)).
refine (

let implicantMatches :=
filterWff (hasImplicant wff)
(findHasImplicant wff) arg
in

301

let fix tryEachImpl(impls : list Wff)
(implsIncl : incl impls (‘implicantMatches)) :
option (NatDeduct arg (Wff Not wff)) :=
match impls as impls return = impls →

option (NatDeduct arg (Wff Not wff)) with
| wff’ :: impls’ ⇒ fun J : impls = wff’ :: impls’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff If x y ⇒ fun J0 : wff’ = Wff If x y ⇒
match try ID arg (Wff Not y) with
| Some prf ⇒ Some (ND ModusTollens arg wff)
| None ⇒ tryEachImpl impls’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachImpl (‘implicantMatches) (incl refl)

).

Defined.

The modus tollens rule of Listing B.10 has an almost identical structure. We note, however,
that the return type ‘option (NatDeduct arg (Wff Not(wff))’ now contains the negation
of the argument wff. This accords with what we expect from the modus tollens rule, both
from the definition in the semantic domain, and from the operational semantic rule we
gave in rule B.8. The remaining functions for trying particular inference rules do not
introduce any new Coq syntax or features. We give them for completeness below.

Listing B.11: The left-hand simplification rule prover
Let hasAndA(A B : Wff) := ∃ C, Wff And A C = B.
Let findHasAndA(A B : Wff) : option (hasAndA A B).
refine (

match B with
| Wff And a b ⇒

match Wff dec A a with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try SimplA(arg : list Wff)(wff : Wff) : option (NatDeduct arg wff).
refine (

let anyAndA := specAnyWff (hasAndA wff) (findHasAndA wff) arg
in
match anyAndA as anyAndA return = anyAndA → with
| Some (exist2 wff’ p q) ⇒

fun J : anyAndA = Some (exist2 wff’ p q) ⇒
Some (ND SimplA arg wff)

| None ⇒ fun ⇒ None
end (eq refl)

).
Defined.

Listing B.11 implements rule B.9. A new filtration function for filterWff is provided,

302

findHasAndA, which filters the existing formulæ to find those that have wff as their left-
hand argument. This time, we only need to find one formula in the environment that
satisfies this requirement, so we pass the filtration function to specAnyWff. When we
match the result of this call under Some, we further deconstruct the 𝜎-type with the ex-

ist2 constructor, matching the two proof terms it yields as ‘p’ and ‘q’. These proof terms
are needed so that we can fill in the wildcard in ND SimplA arg wff)using proof tactics
later in the Coq script.

This method of predicate extraction is used extensively. In simple cases, Coq’s Pro-
gram tactic can automatically deal with some of the repetitive aspects of producing these
sorts of definitions. We avoid the Program tactic here because it can obscure what is hap-
pening. The method becomes slightly more complicated when the inductive proposi-
tional predicates have multiple constructors, in which case the irrelevant ones are ruled
out by proving falsehood in the context of their matches. Again, Coq has proof tactics
that make this easier. Although when specifying concrete functions, we must in gen-
eral only match on concrete types, where we are trying to generate a pure propositional
term, for instance, when constructing the propositional part of a new 𝜎-type, we can
match on propositional types. Since we have proof-irrelevance of propositional func-
tions from the Curry-Howard isomorphism, the form of the proof term that the proof
tactics substitute into propositional wildcards in the refine tactic is of no concern, as
long as the type-checker accepts it.

Listing B.12: The right-hand simplification rule prover
Let hasAndB(A B : Wff) := ∃ C, Wff And C A = B.
Let findHasAndB(A B : Wff) : option (hasAndB A B).
refine (

match B with
| Wff And a b ⇒

match Wff dec A b with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try SimplB(arg : list Wff)(wff : Wff) : option (NatDeduct arg wff).
refine (

let anyAndB := specAnyWff (hasAndB wff) (findHasAndB wff) arg
in
match anyAndB as anyAndB return = anyAndB → with
| Some (exist2 wff’ p q) ⇒

fun J : anyAndB = Some (exist2 wff’ p q) ⇒
Some (ND SimplB arg wff)

| None ⇒ fun ⇒ None
end (eq refl)

).
Defined.

Listing B.12 implements rule B.10. try SimplB is constructed in exactly the same way as

303

try SimplA, except that the filtration occurs on the right-hand member of the conjunc-
tion rather than the left.

Listing B.13: The conjunction rule prover

Definition try Conj(arg : list Wff)(wff wff’ : Wff) :
option (NatDeduct arg (Wff And wff wff’)) :=
match try ID arg wff with
| Some prf ⇒

match try ID arg wff’ with
| Some prf’ ⇒ Some (ND Conj arg wff wff’ (conj prf prf’))
| None ⇒ None

end
| None ⇒ None

end.

Listing B.13 implements rule B.11. It calls try ID twice, once with wff and once with
wff’. If it finds both, the proof is constructed directly from the two proofs using the
built-in conj constructor of Coq which constructs Coq’s axiomatization of conjunction
that we used in the definition of ND Conj. If the function does not find one of the formulæ
it is looking for, then it returns None.

Listing B.14: The left-hand disjunction rule prover

Definition try DisjA(arg : list Wff)(wff wff’ : Wff) :
option (NatDeduct arg (Wff Or wff wff’)) :=
match try ID arg wff with
| Some prf ⇒ Some (ND DisjA arg wff wff’ prf)
| None ⇒ None

end.

Listing B.14 implements rule B.12. The left-hand disjunction function constructs the
‘or’ formula from wff and wff’ and uses try ID to find this in the environment. If it
does so successfully, then the inference proof of the first argument wff is constructed
directly from the matched proof term and the definition of ND DisjA. Otherwise, None
is returned.

Listing B.15: The right-hand disjunction rule prover

Definition try DisjB(arg : list Wff)(wff wff’: Wff) :
option (NatDeduct arg (Wff Or wff wff’)) :=
match try ID arg wff’ with
| Some prf ⇒ Some (ND DisjB arg wff wff’ prf)
| None ⇒ None

end.

Listing B.15 implements rule B.13. The right-hand disjunction function works in exactly
the same way as the left, except this time ND DisjA is used to prove the second argument
wff’ from the disjunction.

304

Listing B.16: The left-hand conjunctive syllogism rule prover
Let hasNandA(A B : Wff) := ∃ C, (Wff Not (Wff And A C)) = B.
Let findHasNandA(A B : Wff) : option (hasNandA A B).
refine (

match B with
| (Wff Not (Wff And a b)) ⇒

match Wff dec A a with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try ConjSyllogA(arg : list Wff)(wff : Wff) :

option (NatDeduct arg (Wff Not wff)).
refine (

let NandAMatches :=
filterWff (hasNandA wff)
(findHasNandA wff) arg
in
let fix tryEachNand(nands : list Wff)

(nandsIncl : incl nands (‘NandAMatches)) :
option (NatDeduct arg (Wff Not wff)) :=
match nands as nands return = nands →

option (NatDeduct arg (Wff Not wff)) with
| wff’ :: nands’ ⇒ fun J : nands = wff’ :: nands’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff Not (Wff And x y) ⇒ fun J0 : wff’ = Wff Not (Wff And x y) ⇒

match try ID arg y with
| Some prf ⇒ Some (ND ConjSyllogA arg wff)
| None ⇒ tryEachNand nands’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachNand (‘NandAMatches) (incl refl)

).

Defined.

Listing B.16 implements rule B.14. The Coq function left-hand conjunctive syllogism,
try ConjSyllogA, works in a similar way to the modus tollens function, in that it is trying
to draw an inference negating the argument of the rule from two formulæ in the envi-
ronment. It first filters the environment using a new filter function, findHasNandA, to
locate suitable negations of conjunctions that can be used to draw the correct inference.
Like the modus tollens rule, it then systematically searches the list for a positive statement
from the right-hand side of the negated conjunction. If it finds one, it can construct a
proof with ND ConjSyllogA. Otherwise, the function returns None.

Listing B.17: The right-hand conjunctive syllogism rule prover
Let hasNandB(A B : Wff) := ∃ C, (Wff Not (Wff And C A)) = B.
Let findHasNandB(A B : Wff) : option (hasNandB A B).

305

refine (
match B with
| (Wff Not (Wff And a b)) ⇒

match Wff dec A b with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try ConjSyllogB(arg : list Wff)(wff : Wff) :

option (NatDeduct arg (Wff Not wff)).
refine (

let NandBMatches :=
filterWff (hasNandB wff)
(findHasNandB wff) arg
in
let fix tryEachNand(nands : list Wff)

(nandsIncl : incl nands (‘NandBMatches)) :
option (NatDeduct arg (Wff Not wff)) :=
match nands as nands return = nands →

option (NatDeduct arg (Wff Not wff)) with
| wff’ :: nands’ ⇒ fun J : nands = wff’ :: nands’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff Not (Wff And x y) ⇒ fun J0 : wff’ = Wff Not (Wff And x y) ⇒
match try ID arg x with
| Some prf ⇒ Some (ND ConjSyllogB arg wff)
| None ⇒ tryEachNand nands’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachNand (‘NandBMatches) (incl refl)

).

Defined.

Listing B.17 implements rule B.15. The right-hand rule operates in exactly the same way
as the left-hand rule, but now the positive statement in the environment must match that
on the left-hand side of the negated conjunction, in order to show the negation of the
formula on the right-hand side.

Listing B.18: The left-hand disjunctive syllogism rule prover
Let hasOrA(A B : Wff) := ∃ C, Wff Or A C = B.
Let findHasOrA(A B : Wff) : option (hasOrA A B).
refine (

match B with
| Wff Or a b ⇒

match Wff dec A a with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try DisjSyllogA(arg : list Wff)(wff : Wff) :

306

option (NatDeduct arg wff).
refine (

let OrAMatches := filterWff (hasOrA wff) (findHasOrA wff) arg
in
let fix tryEachOr(ors : list Wff)

(orsIncl : incl ors (‘OrAMatches)) :
option (NatDeduct arg wff) :=
match ors as ors return = ors →

option (NatDeduct arg wff) with
| wff’ :: ors’ ⇒ fun J : ors = wff’ :: ors’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff Or x y ⇒ fun J0 : wff’ = Wff Or x y ⇒

match try ID arg (Wff Not y) with
| Some prf ⇒ Some (ND DisjSyllogA arg wff)
| None ⇒ tryEachOr ors’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachOr (‘OrAMatches) (incl refl)

).

Defined.

Listing B.18 implements rule B.16. The structure of the function for the construction of
an inference from a disjunctive syllogism is similar to that of the modus ponens rule. We
are trying to show wff, given a disjunction containing (in the case of the left-handed rule)
wff on the left-hand side, and a negation somewhere in the environment of whatever
is on the right-hand side. Again, we need a new filtration function for this purpose,
findHasOrA.

Listing B.19: The right-hand disjunctive syllogism rule prover
Let hasOrB(A B : Wff) := ∃ C, Wff Or C A = B.
Let findHasOrB(A B : Wff) : option (hasOrB A B).
refine (

match B with
| Wff Or a b ⇒

match Wff dec A b with
| left prf ⇒ Some
| right ⇒ None

end
| ⇒ None

end
).
Defined.
Definition try DisjSyllogB(arg : list Wff)(wff : Wff) :

option (NatDeduct arg wff).
refine (

let OrBMatches := filterWff (hasOrB wff) (findHasOrB wff) arg
in
let fix tryEachOr(ors : list Wff)

(orsIncl : incl ors (‘OrBMatches)) :
option (NatDeduct arg wff) :=
match ors as ors return = ors →

option (NatDeduct arg wff) with
| wff’ :: ors’ ⇒ fun J : ors = wff’ :: ors’ ⇒

match wff’ as wff’ return = wff’ → with

307

| Wff Or x y ⇒ fun J0 : wff’ = Wff Or x y ⇒
match try ID arg (Wff Not x) with
| Some prf ⇒ Some (ND DisjSyllogB arg wff)
| None ⇒ tryEachOr ors’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachOr (‘OrBMatches) (incl refl)

).

Defined.

Listing B.19 implements rule B.17. The right-handed disjunction prover has exactly the
same structure as the left-handed one, except that we are now trying to prove the for-
mula on the right-hand side of a disjunction.

Listing B.20: The hypothetical syllogism rule prover
Definition try HypSyllog(arg : list Wff)(wff wff’ : Wff) :

option (NatDeduct arg (Wff If wff wff’)).
refine (

let implicantMatches :=
filterWff (hasImplicant wff) (findHasImplicant wff) arg
in let implicandMatches :=

filterWff (hasImplicand wff’) (findHasImplicand wff’) arg
in
let fix tryEachImpl(impls : list Wff)

(implsIncl : incl impls (‘implicandMatches)) :
option (NatDeduct arg (Wff If wff wff’)) :=
match impls as impls return = impls → with
| wff” :: impls’ ⇒ fun J : impls = wff” :: impls’ ⇒

match wff” as wff” return = wff” → with
| Wff If x y ⇒ fun J0 : wff” = Wff If x y ⇒

match specAnyWff (hasImplicand x) (findHasImplicand x)
(‘implicantMatches) with
| Some implA ⇒

Some (ND HypSyllog arg wff wff’)
| None ⇒ tryEachImpl impls’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachImpl (‘implicandMatches) (incl refl)

).

Defined.

Listing B.20 implements rule B.18. The function for constructing proofs of hypothetical
syllogisms, try HypSyllog, attempts to show that wff implies wff’ by finding a chain
of implications that interpolates some third formula. try HypSyllog does this by first
using a filter function to construct a list of inferences that have wff as their implicant,
and then using another filter function to construct a list of inferences that have wff’

as their implicand. The function then attempts to find a pair from these two lists in

308

which the implicand of the implication from the first list matches the implicant of the
implication from the second list. Going systematically through the list of implications
that imply wff’, it uses the specAnyWff filter to search the list of implications with wff as
their implicant to find a matching implicand. If one is found, a proof can be constructed
to satisfy ND HypSyllog in the environment. The proof was the most complex of all of
these examples, as it relied on predicates that had to be stripped from the results of three
separate filtration operations.

Listing B.21: The dilemma rule prover
Let isOr(A : Wff) := ∃ B, ∃ C, Wff Or B C = A.
Let findIsOr(A : Wff) : option (isOr A).
refine (

match A with
| Wff Or ⇒ Some
| ⇒ None

end
).
Defined.
Definition try Dilemma(arg : list Wff)(wff : Wff) :

option (NatDeduct arg wff).
refine (

let isOrMatches := filterWff isOr findIsOr arg
in
let fix tryEachOr(ors : list Wff)

(orsIncl : incl ors (‘isOrMatches)) :
option (NatDeduct arg wff) :=
match ors as ors return = ors → with
| wff’ :: ors’ ⇒ fun J : ors = wff’ :: ors’ ⇒

match wff’ as wff’ return = wff’ → with
| Wff Or x y ⇒ fun J0 : wff’ = Wff Or x y ⇒

match try ID arg (Wff If x wff) with
| Some prf ⇒

match try ID arg (Wff If y wff) with
| Some prf’ ⇒ Some (ND Dilemma arg wff)
| None ⇒ tryEachOr ors’

end
| None ⇒ tryEachOr ors’

end
| ⇒ fun ⇒ !

end (eq refl)
| nil ⇒ fun ⇒ None

end (eq refl)
in tryEachOr (‘isOrMatches) (incl refl)

).

Defined.
End tryMatchS.

Listing B.21 implements rule B.19. The filtration function findIsOr filters all of the dis-
junctions in the environment, and then checks systematically for implications that en-
able us to conclude that wff is proven in the environment. try ID is used twice, first to
look for an implication of the left-hand side of the disjunction to wff, and then from the
right-hand side of the disjunction to wff. If both can be found for a particular disjunc-
tion, then a proof can immediately be constructed using the ND Dilemma constructor. If

309

the list of disjunctions is exhausted without finding a suitable pair of implications, then
None is returned.

We now introduce some extra functions that do not have a direct analogue in the
structural operational semantics. These functions group the inference rules by the rela-
tionship of their argument to the formula that they prove.

Listing B.22: The ID rule searcher
Definition tryIDSearch(arg : list Wff)(A : Wff) : option (NatDeduct arg A) :=

let fix trySearchInner
(tryList :

list (∀ (arg : list Wff)(wff : Wff), option (NatDeduct arg wff))) :
option (NatDeduct arg A) :=
match tryList with
| func :: tryList’ ⇒

match func arg A with
| Some wff’ ⇒ Some wff’
| None ⇒ trySearchInner tryList’

end
| nil ⇒ None

end
in trySearchInner (try ID :: try ModusPonens :: try SimplA ::

try SimplB :: try DisjSyllogA :: try DisjSyllogB :: try Dilemma :: nil).

The function of Listing B.22 tries all of the rules that try to establish their argument. The
list of functions at the bottom of tryIDSearch is processed sequentially by trySearchIn-

ner. This higher-order construction is used to avoid excessive use of nested matches.
When each function is tried with the call to func arg A, a match on a Some construc-
tor causes an immediately successful return, while a match on None causes a recursive
call with the unsuccessful function removed from the list. If the end (nil) of the list is
reached without any successful matches, the function returns None.

Listing B.23: The Not rule searcher
Definition tryNotSearch(arg : list Wff)(A : Wff) :

option (NatDeduct arg (Wff Not A)) :=
let fix trySearchInner

(tryList : list (∀ (arg : list Wff) (wff : Wff),
option (NatDeduct arg (Wff Not wff)))) :

option (NatDeduct arg (Wff Not A)) :=
match tryList with
| func :: tryList’ ⇒

match func arg A with
| Some wff’ ⇒ Some wff’
| None ⇒ trySearchInner tryList’

end
| nil ⇒ None

end
in trySearchInner ((fun a w ⇒ try ID a (Wff Not w)) :: try ModusTollens ::

try ConjSyllogA :: try ConjSyllogB :: nil).

The function tryNotSearch of Listing B.23 follows exactly the same structure as tryID-
Search, except that it now calls on functions that try to prove the negation of their ar-

310

gument. Again, these functions appear in a list at the bottom of the function in the call
to the inner fixpoint. The reason we cannot use exactly the same function for each of
these inference-searching functions is that the number of arguments and return types
are connected and vary. A higher order construction that would be able to cope with
this would look clumsy, having to condense variable numbers of arguments into a single
argument, and give many more type parameters.

Listing B.24: The And rule searcher

Definition tryAndSearch(arg : list Wff)(A B : Wff) :
option (NatDeduct arg (Wff And A B)) :=
let fix trySearchInner

(tryList : list (∀ (arg : list Wff) (wff wff’ : Wff),
option (NatDeduct arg (Wff And wff wff’)))) :

option (NatDeduct arg (Wff And A B)) :=
match tryList with
| func :: tryList’ ⇒

match func arg A B with
| Some wff’ ⇒ Some wff’
| None ⇒ trySearchInner tryList’

end
| nil ⇒ None

end
in trySearchInner (try Conj :: nil).

tryAndSearch of Listing B.24 follows the same pattern as the other search functions, even
though there is only one prover function in the list this time: try Conj. We keep the
same function structure purely for consistency. This function differs from those before
in that it has two arguments, one for either side of the conjunction.

Listing B.25: The Or rule searcher

Definition tryOrSearch(arg : list Wff)(A B : Wff) :
option (NatDeduct arg (Wff Or A B)) :=
let fix trySearchInner

(tryList : list (∀ (arg : list Wff) (wff wff’ : Wff),
option (NatDeduct arg (Wff Or wff wff’)))) :

option (NatDeduct arg (Wff Or A B)) :=
match tryList with
| func :: tryList’ ⇒

match func arg A B with
| Some wff’ ⇒ Some wff’
| None ⇒ trySearchInner tryList’

end
| nil ⇒ None

end
in trySearchInner (try DisjA :: try DisjB :: nil).

The function tryOrSearch of Listing B.25 follows the same pattern as tryAndSearch, ex-
cept that it now looks for implications of disjunctions, which can be either left-handed
(try DisjA) or right-handed (try DisjB). Again, there are two arguments to this func-
tion, one for either side of the disjunction.

311

Listing B.26: The If rule searcher

Definition tryIfSearch(arg : list Wff)(A B : Wff) :
option (NatDeduct arg (Wff If A B)) :=
let fix trySearchInner

(tryList : list (∀ (arg : list Wff) (wff wff’ : Wff),
option (NatDeduct arg (Wff If wff wff’)))) :

option (NatDeduct arg (Wff If A B)) :=
match tryList with
| func :: tryList’ ⇒

match func arg A B with
| Some wff’ ⇒ Some wff’
| None ⇒ trySearchInner tryList’

end
| nil ⇒ None

end
in trySearchInner (try HypSyllog :: nil).

Finally, tryIfSearch of Listing B.26 searches for inferences that build an implication out
of its two arguments. There is only one inference rule that produces conclusions of this
type: it is try HypSyllog.

Listing B.27: The top rule searcher

Definition searchArg
(arg : list Wff)(wff : Wff) :
option (NatDeduct arg wff) :=
match (tryIDSearch arg wff) with
| Some prf ⇒ Some prf
| None ⇒

match wff with
| Wff St ⇒ None
| Wff Not A ⇒ tryNotSearch arg A
| Wff And A B ⇒ tryAndSearch arg A B
| Wff Or A B ⇒ tryOrSearch arg A B
| Wff If A B ⇒ tryIfSearch arg A B

end
end.

The top-level inference search function, searchArg of Listing B.27, first tries the identity
function, tryID Search. This can provide a direct proof, if the formula to be proved is
a formula that already appears verbatim in the argument, or if it can be shown by one
of the inference rules that proves its argument. If this does not succeed, then one of the
functions that tries to make an inference of a formula depending on the arguments and
return type is called, depending on what is found when the candidate formula wff is
deconstructed. If we are trying to prove a statement, which corresponds to a letter, then
it cannot be proven here, since if it was capable of being proved in this environment, it
would have to be proved by an inference tried by tryIDSearch. Each of the other matches
calls the worker function with the name and arguments corresponding to the relevant
match.

312

Listing B.28: The proof checker function
Fixpoint checkProof (premises : list Wff)(script : list Wff) :

option (sig (ND ValidArgument premises)) :=
match script with
| wff :: script’ ⇒

let prevScriptOpt := checkProof premises script’ in
match prevScriptOpt with
| None ⇒ None
| Some prevScript ⇒

match searchArg (premises ++ (‘prevScript)) wff with
| None ⇒ None
| Some ndPred ⇒

Some (exist (ND ValArg cons premises wff (‘prevScript)
(proj2 sig prevScript) ndPred))

end
end

| nil ⇒ Some (exist (ND ValArg empty premises))
end.

The function checkProof of Listing B.28 implements the top-level operational semantic
rules of rule B.3, rule B.4, rule B.5 and rule B.6. Rule B.6, the recursive base case, is im-
plemented in the last match of the function, where an empty valid argument built with
ND ValArg empty is constructed for an empty candidate argument. The other branches
of the rule correspond to the options that arise when checkProof is recursively invoked.
The situation in rule B.3, where a recursive attempt to build a valid argument has failed
with None, immediately short-circuits to a return of None, as there is no way that we can
make an invalid argument valid by adding formulæ to it. The result of the match on
calling searchArg on the local candidate formula wff accounts for the remaining two
branches of the top-level operational semantic rule. The ++ operator of Coq denotes list
concatenation. The case where searchArg returns None corresponds to rule B.4, where no
proof that wff was proven in the environment could be found. Finally, where searchArg
produces a proof under the Some constructor, an iteration of the inductive valid argu-
ment constructor can proceed, as at this point in the function, we are in a context where
we can build the necessary proof terms for ND ValArg cons. This corresponds to rule
B.5.

313

Appendix C

Further Harmonic Box
Coordination Language Syntax
and Semantics

C.1 Concrete syntax

C.1.1 Primitive tokens

C.1.1.1 Lexing

⟨romanletter⟩ ∶∶= { 𝚊 , . . . , 𝚣 }
| { 𝙰 , . . . , 𝚉 } (C.1)

⟨arabicnumeral⟩ ∶∶= { 𝟶 , . . . , 𝟿 } (C.2)

⟨id⟩ ∶∶= { , ⟨romanletter⟩ } { ⟨romanletter⟩ , ⟨arabicnumeral⟩ , ′ } ∗ (C.3)

⟨boolconst⟩ ∶∶= 𝚝𝚛𝚞𝚎
| 𝚏𝚊𝚕𝚜𝚎 (C.4)

C.1.1.2 Constants

⟨natconst⟩ ∶∶= { ⟨arabicnumeral⟩ }+ (C.5)

⟨intconst⟩ ∶∶= ⟨natconst⟩
| − ⟨intconst⟩ precedence 1 right associativity (C.6)

315

C.1.2 Concrete syntax common to coordination and expression lan-
guages

⟨type⟩ ∶∶= ⟨basetype⟩
| ⟨tupletype⟩
| ⟨recordtype⟩
| ⟨typid⟩

(C.7)

⟨basetype⟩ ∶∶= 𝚋𝚘𝚘𝚕 (C.8)

⟨tupletype⟩ ∶∶= (⟨type⟩ , . . . , ⟨type⟩𝑛) 𝑛 ≥ 1 (C.9)

⟨vardeclprim⟩ ∶∶= ⟨varid⟩ ∶ ⟨type⟩ (C.10)

⟨recordtype⟩ ∶∶= { ⟨type⟩ ; . . . ; ⟨vardeclprim⟩𝑛 } 𝑛 ≥ 1 (C.11)

⟨typid⟩ ∶∶= ⟨id⟩ (C.12)

⟨varid⟩ ∶∶= ⟨id⟩ (C.13)

⟨typedef⟩ ∶∶= 𝚝𝚢𝚙𝚎 ⟨typeid⟩ ⟨type⟩ (C.14)

⟨utypedef⟩ ∶∶= 𝚘𝚒𝚍𝚝𝚢𝚙𝚎 ⟨typeid⟩ ⟨typeid⟩ (C.15)

⟨freq⟩ ∶∶= [⟨natconst⟩ / ⟨natconst⟩] (C.16)

⟨htypedef⟩ ∶∶= 𝚑𝚝𝚢𝚙𝚎 ⟨typeid⟩ ∶ ⟨typeid⟩ ⟨freq⟩ (C.17)

C.1.3 Concrete syntax for coordination language

316

⟨linst⟩ ∶∶= 𝚕𝚒𝚗𝚜𝚝 { ⟨id⟩ ⟨linstdecl⟩ ; . . . ; ⟨linstdecl⟩𝑛 } 𝑛 ≥ 1
| 𝚕𝚒𝚗𝚜𝚝 ⟨id⟩ ∶ 𝚕𝚒𝚗𝚜𝚝𝚛𝚎𝚏 (C.18)

⟨linstref⟩ ∶∶= ⟨id⟩ ⟨id⟩𝑛 . ⟨id⟩ 𝑛 ≥ 1 (C.19)

⟨utyperef⟩ ∶∶= ⟨id⟩ ⟨id⟩𝑛 . ⟨typeid⟩ 𝑛 ≥ 1 (C.20)

⟨htyperef⟩ ∶∶= ⟨id⟩ ⟨id⟩𝑛 . ⟨typeid⟩ 𝑛 ≥ 1 (C.21)

⟨llib⟩ ∶∶= 𝚕𝚒𝚗𝚜𝚝 { ⟨id⟩ ⟨libdecl⟩ ; . . . ; ⟨libdecl⟩𝑛 } 𝑛 ≥ 1 (C.22)

⟨typeany⟩ ∶∶= ⟨typedef⟩
| ⟨utypedef⟩
| ⟨htypedef⟩

(C.23)

⟨linstdecl⟩ ∶∶= ⟨linst⟩
| ⟨llib⟩
| 𝚑𝚋𝚘𝚡 ⟨boxid⟩ ⟨memfbids⟩ ∶ ⟨membfids⟩ − > ⟨freq⟩ { ⟨uprogram⟩ }
| 𝚖𝚎𝚖(𝚋𝚏) ⟨membfid⟩ ∶ ⟨htyperef⟩ ⟨ttfl⟩
| 𝚖𝚎𝚖(𝚏𝚋) ⟨memfbid⟩ ∶ ⟨htyperef⟩ ⟨ttfl⟩
| ⟨typeany⟩
| 𝚘𝚋𝚜𝚎𝚛𝚟𝚎 { ⟨memfbidref⟩ ; . . . ; ⟨memfbidref⟩𝑛 } 𝑛 ≥ 1
| 𝚖𝚊𝚗𝚒𝚏𝚎𝚜𝚝 { ⟨membfidref⟩ ; . . . ; ⟨membfidref⟩𝑛 } 𝑛 ≥ 1
| 𝚏𝚒𝚏𝚘 ⟨membfidref⟩ 𝚝𝚘 ⟨memfbidref⟩

(C.24)

⟨libdecl⟩ ∶∶= ⟨linst⟩
| ⟨llib⟩ (C.25)

⟨ttfl⟩ ∶∶= 𝚝𝚝𝚕 (⟨natconst⟩)
| 𝚝𝚏𝚕 (⟨natconst⟩) (C.26)

⟨membfid⟩ ∶∶= ⟨id⟩ (C.27)

317

⟨membfidref⟩ ∶∶= ⟨linstref⟩ . ⟨membfid⟩ (C.28)

⟨memfbid⟩ ∶∶= ⟨id⟩ (C.29)

⟨memfbidref⟩ ∶∶= ⟨linstref⟩ . ⟨memfbid⟩ (C.30)

⟨boxid⟩ ∶∶= ⟨id⟩ (C.31)

C.1.4 Concrete syntax for expression language

⟨uprogram⟩ ∶∶= ⟨udecl⟩ ; . . . ; ⟨udecl⟩𝑛 𝑛 ≥ 1 (C.32)

⟨udecl⟩ ∶∶= ⟨vardecl⟩
| ⟨vardef⟩ (C.33)

⟨expr⟩ ∶∶= ⟨patt⟩
| ⟨constr⟩
| ⟨varid⟩ (⟨expr⟩ , . . . , ⟨expr⟩𝑛) 𝑛 ≥ 1

(C.34)

⟨exprassoc⟩ ∶∶= ⟨varid⟩ = ⟨expr⟩ (C.35)

⟨constr⟩ ∶∶= ⟨boolconst⟩
| (⟨expr⟩ , . . . , ⟨expr⟩𝑛) 𝑛 ≥ 1
| { ⟨exprassoc⟩ ; . . . ; ⟨exprassoc⟩𝑛 } 𝑛 ≥ 1

(C.36)

⟨fundeclprim⟩ ∶∶= ⟨varid⟩ ∶ ⟨type⟩ − > ⟨type⟩ (C.37)

⟨vardecl⟩ ∶∶= ⟨vardeclprim⟩
| ⟨fundeclprim⟩ (C.38)

⟨vardef⟩ ∶∶= ⟨vardeclprim⟩ ∶∶= ⟨expr⟩
| ⟨fundeclprim⟩ ∶∶= ⟨expr⟩ (C.39)

318

⟨patt⟩ ∶∶= ⟨varid⟩ . ⟨datresolve⟩ ⟨datresolve⟩𝑛 } 𝑛 ≥ 1 (C.40)

⟨datresolve⟩ ∶∶= ⟨varid⟩
| ⟨natconst⟩ (C.41)

C.2 Static semantics as a static semantic object

These rules are couched so as to correspond to total pattern matching functions on ab-
stract syntax trees representing conclusions.

The semantics are given in an evaluation style.

C.2.1 Fragment common to expression and coordination languages

The following rules are those of the static interface between the coordination and ex-
pression languages on which our present untimed expression language depends.

Matches on the 𝑡𝑦𝑝𝑒 syntactic object:

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝙱𝚊𝚜𝚎𝚝𝚢𝚙𝚎𝑏𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒 ⇒ 𝔗⊤⟂
𝒯⊤ 𝑏𝑏𝑎𝑠𝑒𝑡𝑦𝑝𝑒

𝑈⊤

(C.42)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ L⟂
 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚃𝚞𝚙𝚕𝚎𝚝𝚢𝚙𝚎𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝔗⊤⟂ T⟂

(C.43)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝐿⊤𝑈⊤

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚃𝚞𝚙𝚕𝚎𝚝𝚢𝚙𝚎𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝒯⊤
𝐿⊤
𝑈⊤

(C.44)

 𝑈⊤ ⊢ 𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ A⟂
 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚁𝚎𝚌𝚘𝚛𝚍𝚝𝚢𝚙𝚎𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ 𝔗⊤⟂ T⟂

(C.45)

 𝑈⊤ ⊢ 𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ 𝐴⊤𝑈⊤

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚁𝚎𝚌𝚘𝚛𝚍𝚝𝚢𝚙𝚎𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝒯⊤
𝐿⊤
𝑈⊤

(C.46)

𝑈⊤ 𝑡𝑡𝑦𝑝𝑒𝑖𝑑 = T⟂
 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚃𝚢𝚙𝚎𝚒𝚍𝑡𝑡𝑦𝑝𝑒𝑖𝑑 ⇒ 𝔗⊤⟂ T⟂

(C.47)

𝑈⊤ 𝑡𝑡𝑦𝑝𝑒𝑖𝑑 =
𝑇⊤
𝑈⊤

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚃𝚢𝚙𝚎𝚒𝚍𝑡𝑡𝑦𝑝𝑒𝑖𝑑 ⇒ 𝔗⊤⟂
𝑇⊤
𝑈⊤

(C.48)

Matches on the 𝑡𝑦𝑝𝑒𝑠 syntactic object:

319

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ L⟂
 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑡𝑡𝑦𝑝𝑒𝑠, 𝑡

′
𝑡𝑦𝑝𝑒 ⇒ 𝔏⊤⟂ L⟂

(C.49)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝐿⊤𝑈⊤ 𝑈⊤ ⊢ 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ T⟂

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑡𝑡𝑦𝑝𝑒𝑠, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ 𝔏⊤⟂ L⟂

(C.50)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒𝑠 ⇒ 𝐿⊤𝑈⊤ 𝑈⊤ ⊢ 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ 𝑇⊤𝑈⊤

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑡𝑡𝑦𝑝𝑒𝑠, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ 𝔏⊤⟂ ℒ⊤

𝐿⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

(C.51)

 𝑈⊤ ⊢ 𝚝𝚢𝚙𝚎𝚜𝙱𝚊𝚜𝚎() ⇒ 𝔏⊤⟂ ℒ⊤
𝑇⊤
𝑈⊤

(C.52)

Matches on the 𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 syntactic object:

 𝑈⊤ ⊢ 𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ R⟂
 𝑈⊤ ⊢ 𝚊𝚜𝚜𝚘𝚌𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠, 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ ℜ⊤⟂ R⟂

(C.53)

 𝑈⊤ ⊢ 𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ 𝑅⊤𝑈⊤
 𝑈⊤,

𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ R⟂

 𝑈⊤ ⊢ 𝚊𝚜𝚜𝚘𝚌𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠, 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ ℜ⊤⟂ R⟂
(C.54)

 𝑈⊤ ⊢ 𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠 ⇒ 𝑅⊤𝑈⊤
 𝑈⊤,

𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤
𝑈⊤

 𝑈⊤ ⊢ 𝚊𝚜𝚜𝚘𝚌𝚝𝚢𝚙𝚎𝚜𝙸𝚗𝚍𝑎𝑎𝑠𝑠𝑜𝑐𝑡𝑦𝑝𝑒𝑠, 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ ℜ⊤⟂ 𝑅
′
⊤
𝑈⊤

(C.55)

 𝑈⊤ ⊢ 𝚊𝚜𝚜𝚘𝚌𝚝𝚢𝚙𝚎𝚜𝙱𝚊𝚜𝚎() ⇒ ℜ⊤⟂
ℛ⊤∅
𝑈⊤

(C.56)

Matches on the 𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 syntactic object:
𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠T⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂
(C.57)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ T⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂
(C.58)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = T⟂ 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ {𝑇⊤}

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒

⇒

⎧⎪⎪
⎨⎪⎪⎩

ℜ⊤⟂
⎛
⎜
⎜
⎝

𝑅⊤
𝑈⊤

⊕ 𝑣𝑣𝑎𝑟𝑖𝑑 →
𝑇⊤
𝑈⊤

,
𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = T⟂

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.59)

320

C.2.2 Untimed expression fragment

Matches on the 𝑢𝑝𝑟𝑜𝑔𝑟𝑎𝑚 syntactic object:

 𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒ P⟂

 𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝚞𝙿𝚛𝚘𝚐𝙳𝚎𝚌𝚕𝚜(𝑑𝑢𝑑𝑒𝑐𝑙𝑠) ⇒ 𝔓⊤⟂ P⟂
(C.60)

 𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒ 𝑃
′

⊤ 𝖽𝖾𝖼𝗅𝖽𝖾𝖿 𝑃
′

⊤ = ⟂

 𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝚞𝙿𝚛𝚘𝚐𝙳𝚎𝚌𝚕𝚜(𝑑𝑢𝑑𝑒𝑐𝑙𝑠) ⇒ 𝔓⊤⟂ P⟂
(C.61)

 𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒
𝑃
′
⊤

𝐸⊤ 𝖽𝖾𝖼𝗅𝖽𝖾𝖿 𝑃
′

⊤ = ⊤

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
P⊤∅
𝐸⊤

⊢ 𝚞𝙿𝚛𝚘𝚐𝙳𝚎𝚌𝚕𝚜(𝑑𝑢𝑑𝑒𝑐𝑙𝑠)

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎝
𝒫⊤

⎛
⎜
⎜
⎝

𝑃
′
⊤

𝐸⊤
,

𝖽𝖾𝖼𝗅𝖽𝖾𝖿𝖯𝗋𝗈𝗉 𝑃
′
⊤

𝐸⊤

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.62)

Matches on the 𝑢𝑑𝑒𝑐𝑙𝑠 syntactic object:

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒ P⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚞𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍𝑑𝑢𝑑𝑒𝑐𝑙𝑠, 𝑑
′

𝑢𝑑𝑒𝑐𝑙 ⇒ 𝔓⊤⟂ P⟂
(C.63)

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒
𝑃
′
⊤

𝐸⊤ 𝐸⊤,
𝑃
′
⊤

𝐸⊤
⊢ 𝑑

′

𝑢𝑑𝑒𝑐𝑙 ⇒ P⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚞𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍𝑑𝑢𝑑𝑒𝑐𝑙𝑠, 𝑑
′

𝑢𝑑𝑒𝑐𝑙 ⇒ 𝔓⊤⟂ P⟂
(C.64)

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑢𝑑𝑒𝑐𝑙𝑠 ⇒
𝑃
′
⊤

𝐸⊤ 𝐸⊤,
𝑃
′
⊤

𝐸⊤
⊢ 𝑑

′

𝑢𝑑𝑒𝑐𝑙 ⇒
𝑃
′′
⊤

𝐸⊤

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚞𝚍𝚎𝚌𝚕𝚜𝙸𝚗𝚍𝑑𝑢𝑑𝑒𝑐𝑙𝑠, 𝑑
′

𝑢𝑑𝑒𝑐𝑙 ⇒ 𝔓⊤⟂
𝑃
′′
⊤

𝐸⊤

(C.65)

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚞𝚍𝚎𝚌𝚕𝚜𝙱𝚊𝚜𝚎() ⇒ 𝔓⊤⟂
𝑃⊤
𝐸⊤

(C.66)

Matches on the 𝑢𝑑𝑒𝑐𝑙 syntactic object:

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑣𝑎𝑟𝑑𝑒𝑐𝑙 ⇒ P⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚌𝚕(𝑑𝑣𝑎𝑟𝑑𝑒𝑐𝑙) ⇒ 𝔓⊤⟂ P⟂
(C.67)

321

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑣𝑎𝑟𝑑𝑒𝑐𝑙 ⇒
𝑃
′
⊤

𝐸⊤

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚌𝚕(𝑑𝑣𝑎𝑟𝑑𝑒𝑐𝑙) ⇒ 𝔓⊤⟂ 𝑃
′

⊤
(C.68)

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑣𝑎𝑟𝑑𝑒𝑓 ⇒ P⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚏𝑑𝑣𝑎𝑟𝑑𝑒𝑓 ⇒ 𝔓⊤⟂ P⟂
(C.69)

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝑑𝑣𝑎𝑟𝑑𝑒𝑓 ⇒
𝑃
′
⊤

𝐸⊤

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝚍𝚎𝚏𝑑𝑣𝑎𝑟𝑑𝑒𝑓 ⇒ 𝔓⊤⟂ 𝑃
′

⊤
(C.70)

Matches on the 𝑣𝑎𝑟𝑑𝑒𝑐𝑙 syntactic object:

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ R⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ 𝔓⊤⟂ P⟂
(C.71)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤
𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎝

𝑃⊤ +𝑊
𝑅
′
⊤

𝐸⊤.𝑈⊤
,

𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.72)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ R⟂

 𝐸⊤,
𝐸⊤

𝑃⊤,𝐸⊤
⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝙵𝚞𝚗𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ 𝔓⊤⟂ P⟂

(C.73)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤
𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤
⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤,
𝐸⊤

𝑃⊤,𝐸⊤
⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝙵𝚞𝚗𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎝

𝑃⊤ +𝑊
𝑅
′
⊤

𝐸⊤.𝑈⊤
,

𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(C.74)
Matches on the 𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 syntactic object:

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠Y⟂

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠

𝒴⊤
𝑈⊤
 𝑡𝑡𝑦𝑝𝑒

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂
(C.75)

322

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ T⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂
(C.76)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 =

𝒴⊤
𝑈⊤
 𝑡𝑡𝑦𝑝𝑒

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂
𝑅⊤
𝑈⊤

(C.77)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Y⟂ 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ 𝑇⊤𝑈⊤

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒

⇒

⎧⎪⎪
⎨⎪⎪⎩

ℜ⊤⟂
⎛
⎜
⎜
⎝

𝑅⊤
𝑈⊤

⊕ 𝑣𝑣𝑎𝑟𝑖𝑑 →
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
 ,

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Y⟂

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.78)

 ⊢ 𝚟𝚊𝚛𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}
(C.79)

Matches on the 𝑣𝑎𝑟𝑑𝑒𝑓 syntactic object:

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ R⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔓⊤⟂ P⟂
(C.80)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}

 𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒ K⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔓⊤⟂ P⟂
(C.81)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}

 𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝐾⊤

𝑅
′
⊤,𝑌⊤,𝐸⊤.𝑈⊤

𝑃⊤.𝑊⊤

𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠Z⟂
⎧⎪
⎨⎪⎩

𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟
⇒ 𝔓⊤⟂ P⟂

⎫⎪
⎬⎪⎭

(C.82)

323

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}

 𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝐾⊤

𝑅
′
⊤,𝑌⊤,𝐸⊤.𝑈⊤

𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤𝑃⊤.𝑊⊤
𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑 = Z⟂
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝚅𝚊𝚛𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎝

𝑃⊤ +𝑊
𝑅
′
⊤

𝐸⊤.𝑈⊤
+𝒵⊤

𝐾⊤
𝑅
′
⊤,𝑌⊤,𝐸⊤.𝑈⊤

, ,
𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤
, 𝑃⊤.𝑊⊤
𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑 = Z⟂

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.83)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑓𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ R⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝙵𝚞𝚗𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔓⊤⟂ P⟂
(C.84)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑓𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}
⎧⎪
⎨⎪⎩

𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒ K⟂

⎫⎪
⎬⎪⎭

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝙵𝚞𝚗𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔓⊤⟂ P⟂
(C.85)

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑓𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}
⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒

⎧⎪⎪
⎨⎪⎪⎩

𝐾⊤
𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

,𝑌⊤,𝐸⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭𝑃⊤.𝑊⊤

𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠Z⟂

 𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝙵𝚞𝚗𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔓⊤⟂ P⟂
(C.86)

324

 𝐸⊤.𝑈⊤,
𝑃⊤.𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑓𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒
𝑅
′
⊤

𝐸⊤.𝑈⊤

 ⊢ 𝑣𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}
⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤.𝑈⊤,
𝒴⊤

𝐸⊤.𝑈⊤
 𝑅

′
⊤

𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒

⎧⎪⎪
⎨⎪⎪⎩

𝐾⊤
𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

,𝑌⊤,𝐸⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭𝑃⊤.𝑊⊤

𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Z⟂

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑃⊤
𝐸⊤

⊢ 𝚟𝚊𝚛𝚍𝚎𝚏𝙵𝚞𝚗𝑣𝑣𝑎𝑟𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚, 𝑒𝑒𝑥𝑝𝑟

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔓⊤⟂

⎛
⎜
⎜
⎜
⎝

𝑃⊤ +𝑊
𝑅
′
⊤

𝐸⊤.𝑈⊤
+𝒵⊤

⎛
⎜
⎝
𝑣𝑣𝑎𝑟𝑖𝑑,

𝐾⊤
𝑅
′
⊤

𝐸⊤.𝑈⊤
+ 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑌⊤
𝐸⊤.𝑈⊤

,𝑌⊤,𝐸⊤.𝑈⊤

⎞
⎟
⎠
, ,

𝑅
′
⊤

𝐸⊤.𝑈⊤
≥ 𝑃⊤.𝑅⊤

𝐸⊤.𝑈⊤
, 𝑃⊤.𝑊⊤
𝑃⊤.𝑅⊤,𝐸⊤.𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑 = Z⟂

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.87)
Matches on the 𝑓𝑢𝑛𝑑𝑒𝑐𝑙𝑝𝑟𝑖𝑚 syntactic object:

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠Y⟂

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠

𝒴⊤
𝑈⊤
 𝑡𝑡𝑦𝑝𝑒, 𝑡

′
𝑡𝑦𝑝𝑒

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂

(C.88)

 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ T⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂

(C.89)

 𝑈⊤ ⊢ 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ T⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂ R⟂

(C.90)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 =

𝒴⊤
𝑈⊤
 𝑡𝑡𝑦𝑝𝑒, 𝑡

′
𝑡𝑦𝑝𝑒

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ ℜ⊤⟂

𝑅⊤
𝑈⊤

(C.91)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Y⟂ 𝑈⊤ ⊢ 𝑡𝑡𝑦𝑝𝑒 ⇒ 𝑇⊤𝑈⊤ 𝑈⊤ ⊢ 𝑡

′
𝑡𝑦𝑝𝑒 ⇒

𝑇
′
⊤

𝑈⊤

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒

⇒

⎧⎪⎪
⎨⎪⎪⎩

ℜ⊤⟂
⎛
⎜
⎜
⎝

𝑅⊤
𝑈⊤

⊕ 𝑣𝑣𝑎𝑟𝑖𝑑 →
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑇

′
⊤

𝑈⊤
 ,

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Y⟂

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.92)

 ⊢ 𝚏𝚞𝚗𝚍𝚎𝚌𝚕𝚙𝚛𝚒𝚖𝑣𝑣𝑎𝑟𝑖𝑑, 𝑡𝑡𝑦𝑝𝑒, 𝑡
′
𝑡𝑦𝑝𝑒 ⇒ {𝑣𝑣𝑎𝑟𝑖𝑑}

(C.93)

Matches on the 𝑒𝑥𝑝𝑟 syntactic object:

325

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑝𝑝𝑎𝑡𝑡 ⇒ Q⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙿𝚊𝚝𝚝𝑝𝑝𝑎𝑡𝑡 ⇒ 𝔎⊤⟂ K⟂
(C.94)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑝𝑝𝑎𝑡𝑡 ⇒
𝑄⊤

𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙿𝚊𝚝𝚝𝑝𝑝𝑎𝑡𝑡 ⇒ 𝔎⊤⟂
𝑄⊤

𝑅⊤,𝑌⊤,𝑈⊤

(C.95)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑐𝑐𝑜𝑛𝑠𝑡𝑟 ⇒ C⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙲𝚘𝚗𝚜𝚝𝚛(𝑐𝑐𝑜𝑛𝑠𝑡𝑟) ⇒ 𝔎⊤⟂ K⟂
(C.96)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑐𝑐𝑜𝑛𝑠𝑡𝑟 ⇒ 𝐶⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙲𝚘𝚗𝚜𝚝𝚛(𝑐𝑐𝑜𝑛𝑠𝑡𝑟) ⇒ 𝔎⊤⟂
𝐶⊤

𝑅⊤,𝑌⊤,𝑈⊤

(C.97)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = 𝑌⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂
(C.98)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠𝑌⟂ 𝑈⊤,

𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂
(C.99)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠𝑌⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑇

′
⊤

𝑈⊤

𝑌⊤
𝑈⊤
≠𝒴⊤
𝑈⊤
 𝑇

′
⊤

𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂
(C.100)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠𝑌⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑇

′
⊤

𝑈⊤

𝑌⊤
𝑈⊤

= 𝒴⊤
𝑈⊤
 𝑇

′
⊤

𝑈⊤

 𝑈⊤,
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑅⊤

𝑈⊤
⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂
(C.101)

326

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 ≠𝑌⟂

 𝑈⊤,
𝑅⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑇

′
⊤

𝑈⊤

𝑌⊤
𝑈⊤

= 𝒴⊤
𝑈⊤
 𝑇

′
⊤

𝑈⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑈⊤,
𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
, 𝑅⊤

𝑈⊤
⊢ 𝑒𝑒𝑥𝑝𝑟 ⇒

⎧⎪⎪
⎨⎪⎪⎩

𝐾⊤

𝑅⊤,
𝒴⊤
𝑈⊤

𝑇⊤
𝑈⊤

,𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪
⎨⎪⎪⎩

𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝙵𝚞𝚗𝚊𝚙𝚙𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒𝑒𝑥𝑝𝑟

⇒
⎧⎪
⎨⎪⎩
𝔎⊤⟂

⎛
⎜
⎝
𝒦⊤

⎛
⎜
⎝
𝑣𝑣𝑎𝑟𝑖𝑑, 𝑈⊤,

𝑇⊤
𝑈⊤
, 𝐾⊤

𝑅⊤,
𝒴⊤
𝑈⊤

𝑇⊤
𝑈⊤

,𝑈⊤

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪
⎬⎪⎪⎭

(C.102)

Matches on the 𝑐𝑜𝑛𝑠𝑡𝑟 syntactic object:

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚌𝚘𝚗𝚜𝚝𝚛𝙱𝚊𝚜𝚎(𝑏𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡) ⇒ ℭ⊤⟂
𝒞⊤

𝑅⊤,𝑌⊤,𝑈⊤
 𝑏𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡

(C.103)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚌𝚘𝚗𝚜𝚝𝚛𝚃𝚞𝚙𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒ ℭ⊤⟂ C⟂
(C.104)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒
𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚌𝚘𝚗𝚜𝚝𝚛𝚃𝚞𝚙𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒ ℭ⊤⟂
𝒞⊤

𝑅⊤,𝑌⊤,𝑈⊤
 𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤

(C.105)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚌𝚘𝚗𝚜𝚝𝚛𝚁𝚎𝚌𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ ℭ⊤⟂ C⟂
(C.106)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ 𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚌𝚘𝚗𝚜𝚝𝚛𝚁𝚎𝚌𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ ℭ⊤⟂
𝒞⊤

𝑅⊤,𝑌⊤,𝑈⊤
 𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤

(C.107)

Matches on the 𝑒𝑥𝑝𝑟𝑡𝑢𝑝 syntactic object:

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝, 𝑒
′
𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂

(C.108)

327

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒
𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤
 𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒′𝑒𝑥𝑝𝑟 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝, 𝑒
′
𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂

(C.109)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝 ⇒
𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒′𝑒𝑥𝑝𝑟 ⇒
𝐾
′
⊤

𝑅⊤,𝑌⊤,𝑈⊤

⎧⎪
⎨⎪⎩

𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑡𝑢𝑝, 𝑒
′
𝑒𝑥𝑝𝑟

⇒ 𝔎⊤⟂
𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤
, 𝐾

′
⊤

𝑅⊤,𝑌⊤,𝑈⊤

⎫⎪
⎬⎪⎭

(C.110)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚝𝚞𝚙𝙱𝚊𝚜𝚎() ⇒ 𝔎⊤⟂ 𝒦⊤()
(C.111)

Matches on the 𝑒𝑥𝑝𝑟𝑟𝑒𝑐 syntactic object:

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐, 𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒
′
𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂

(C.112)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ 𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒′𝑒𝑥𝑝𝑟 ⇒ K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐, 𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒
′
𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂

(C.113)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ 𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑 ≠K⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐, 𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒
′
𝑒𝑥𝑝𝑟 ⇒ 𝔎⊤⟂ K⟂

(C.114)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐 ⇒ 𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝑒′𝑒𝑥𝑝𝑟 ⇒
𝐾
′
⊤

𝑅⊤,𝑌⊤,𝑈⊤
𝐾⊤

𝑅⊤,𝑌⊤,𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = K⟂

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙸𝚗𝚍𝑒𝑒𝑥𝑝𝑟𝑟𝑒𝑐, 𝑣𝑣𝑎𝑟𝑖𝑑, 𝑒
′
𝑒𝑥𝑝𝑟

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝔎⊤⟂
⎛
⎜
⎜
⎝

𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

⊕ 𝑣𝑣𝑎𝑟𝑖𝑑 →
𝐾
′
⊤

𝑅⊤,𝑌⊤,𝑈⊤
,

𝐾⊤
𝑅⊤,𝑌⊤,𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑 = K⟂

⎞
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.115)

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚎𝚡𝚙𝚛𝚛𝚎𝚌𝙱𝚊𝚜𝚎() ⇒ 𝔎⊤⟂ 𝒦⊤()
(C.116)

Matches on the 𝑝𝑎𝑡𝑡 syntactic object:

328

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 = Y⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚙𝚊𝚝𝚝𝙸𝚗𝚍𝚎𝚡(𝑣𝑣𝑎𝑟𝑖𝑑, 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡) ⇒ 𝔔⊤⟂ Q⟂
(C.117)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 =

𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
 𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒ J⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚙𝚊𝚝𝚝𝙸𝚗𝚍𝚎𝚡(𝑣𝑣𝑎𝑟𝑖𝑑, 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡) ⇒ 𝔔⊤⟂ Q⟂
(C.118)

𝑅⊤
𝑈⊤
 𝑣𝑣𝑎𝑟𝑖𝑑 =

𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤
 𝑈⊤,

𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒
𝐽⊤

𝑌⊤,𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑅⊤
𝑈⊤

⊢ 𝚙𝚊𝚝𝚝𝙸𝚗𝚍𝚎𝚡(𝑣𝑣𝑎𝑟𝑖𝑑, 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡) ⇒ 𝔔⊤⟂
𝐽⊤

𝑌⊤,𝑈⊤

(C.119)

Matches on the 𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 syntactic object:

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ⇒ T⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙸𝚗𝚍𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒, 𝑑
′

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒ 𝔍⊤⟂ J⟂
(C.120)

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ⇒
𝑇
′
⊤

𝑈⊤ 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇

′
⊤

𝑈⊤
⊢ 𝑑

′

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒ J⟂

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙸𝚗𝚍𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒, 𝑑
′

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒ 𝔍⊤⟂ J⟂
(C.121)

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 ⇒
𝑇
′
⊤

𝑈⊤ 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇

′
⊤

𝑈⊤
⊢ 𝑑

′

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡 ⇒
𝐽⊤

𝑌⊤,𝑈⊤

⎧⎪⎪
⎨⎪⎪⎩

𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙸𝚗𝚍𝑑𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒, 𝑑
′

𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑙𝑖𝑠𝑡

⇒ 𝔍⊤⟂
𝒥⊤

𝑌⊤,𝑈⊤
 𝑇

′
⊤

𝑈⊤
, 𝐽⊤
𝑌⊤,𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

(C.122)

𝑌⊤
𝑈⊤

= 𝒴⊤
𝑈⊤
 𝑇⊤

𝑈⊤

 𝑈⊤,
𝑌⊤
𝑈⊤
, 𝑇⊤
𝑈⊤

⊢ 𝚍𝚊𝚝𝚁𝚎𝚜𝚘𝚕𝚟𝚎𝙱𝚊𝚜𝚎() ⇒ 𝔍⊤⟂
𝒥⊤

𝑌⊤,𝑈⊤
()

(C.123)

Matches on the 𝑑𝑎𝑡𝑟𝑒𝑠𝑜𝑙𝑣𝑒 syntactic object:

 𝑈⊤ ⊢ 𝗍𝗎𝗉𝖳𝗒𝗉𝖾𝖣𝖾𝗌𝗍𝗋𝗎𝖼𝗍 𝑇⊤
𝑈⊤
, 𝑖𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ⇒ T⟂

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑖𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ⇒ 𝔗⊤⟂ T⟂
(C.124)

329

 𝑈⊤ ⊢ 𝗍𝗎𝗉𝖳𝗒𝗉𝖾𝖣𝖾𝗌𝗍𝗋𝗎𝖼𝗍 𝑇⊤
𝑈⊤
, 𝑖𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ⇒

𝑇
′
⊤

𝑈⊤

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑖𝑖𝑛𝑡𝑐𝑜𝑛𝑠𝑡 ⇒ 𝔗⊤⟂ 𝑇
′
⊤

𝑈⊤

(C.125)

 𝑈⊤ ⊢ 𝗋𝖾𝖼𝖳𝗒𝗉𝖾𝖣𝖾𝗌𝗍𝗋𝗎𝖼𝗍 𝑇⊤
𝑈⊤
, 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒ T⟂

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒ 𝔗⊤⟂ T⟂
(C.126)

 𝑈⊤ ⊢ 𝗋𝖾𝖼𝖳𝗒𝗉𝖾𝖣𝖾𝗌𝗍𝗋𝗎𝖼𝗍 𝑇⊤
𝑈⊤
, 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒

𝑇
′
⊤

𝑈⊤

 𝑈⊤,
𝑇⊤
𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒ 𝔗⊤⟂ 𝑇
′
⊤

𝑈⊤

(C.127)

C.3 Coordination dynamic semantics

We now give operational semantics of run-time in an evaluation style, enriched
with the type system discussed in section 4.4. We give all rules down to the point where
their premises can be explained in simple English. Our general scheme is to introduce
the rule, then give the rule, and follow it with a more detailed explanation.

C.3.1 Program super-step

The semantic rules in this section describe how the four-fold round robin scheduling
works. In rule C.128, the inductive case of the -generating rule is given, while rule
C.129 handles the base case. Rule C.130 matches -box memory execution, rule C.131
determines the state evolution as boxes are (atomically) executed, and rule C.132 gives
the behaviour for box- executing memories. Each rule of the super-step can be
thought of as specifying a pattern match on a coinductive type: this is why each inner
trace under a constructor is one step forward in time.

A match on the inductive constructor of the input stream drives evaluation; when
the input stream matches the base case that marks the end of input (if there is one —

executions may be infinite), then the coordination trace terminates in an empty con-
structor. It is important to note that in rule C.128, the time of temporal validity of the
input memory map and the temporal validity of the inner stream are of the next time
slice with respect to the slice in which the match is taking place. It can also be observed
that the inductive match has two premises. The first is a match on the execu-
tion step; the second is a match that uses this match to force evaluation of the next step
in the trace. The choice of the phrase ‘force evaluation’ is no accident: the operational
semantics are rendered as an interpreter by direct translation into a functional language
that uses lazy evaluation to examine the contents of a trace. Since rule C.129 is a base

330

case, it has no premises. The type of the input stream is constrained to supply, in each
memory map arriving on each clock tick, all values for all s in the coordination ob-
ject that would otherwise block on input. Not all s are enabled on each step, only
those whose frequencies divide exactly the input map frequency.

The rest of the super-step rules have the property that they will never block on input
until the next -step is reached. As a consequence, traces always begin and end on
 steps, the last one being an empty step with an empty trace constructor. The first
step of this type is the rule that constructs the trace object with the -box memory step
uppermost. This is described by rule C.130. Memory execution is a temporal firewall
which allows a memory to digest its input values and assert the correct readable values.
As with the step, only enabled memories (those whose frequency exactly divides
the input map frequency) may execute. The -box memory step calls the next boxes
step with the coordination object clock incremented by one tick, since box computation
is notionally the first thing to take place in one global time step. Again, there are two
premises, one for the next trace element construction, and one for the step computation
that is an argument to that trace construction.

We now review the super-step rules in detail, starting with the step.
Rule C.131 and rule C.132 determine the box executions and box- memory exe-

cutions, and proceed in exactly the same way as the -box memory steps, save that
they do not have the complication of incrementing the time.

331

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

, 𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞 ⇒

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝑇𝑟⊤

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢ 𝒮⊤
𝑁⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

, 𝑆⊤
𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓

′
𝑓𝑟𝑒𝑞

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝒯𝓇⊤
⎛
⎜
⎝

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑇𝑟⊤
𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎠

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.128)

The purpose of the inductive step of rule C.128 is to construct the trace in the im-
plicand of the conclusion. It has the s subscript to show that it is a trace whose
dependent type is fixed by the current ‘s enabled’ coordination state, which can be
seen in the list of environment variables for this statement. There is a one-to-one corre-
spondence between the values of this type of trace and the values of the input stream.
The operational semantic rules give a procedure for finding the inhabitant of this trace
type that corresponds to the input stream given in the implicant of the conclusion. The
premises must generate a ‘memFB’ type trace so that the ‘’ type trace can be con-
structed in the conclusion. In order to provide the necessary information, the conclu-
sion’s implicant is deconstructed to form a snapshot of the input memory map for the
current time slice and the next co-inductive part of the input stream, which we can see
has a type dependent in the time of the next execution slice. The type environment,
instance signature, instance closure signature and instance closure are only of static in-

332

terest and fix the dependent type of the logical instance, which itself fixes the type of
the coordination state object.

The first premise invokes the -step rule, which we shall meet shortly. A num-
ber of important predicates ensure that the input map is structurally and temporally
consistent with the -enabled coordination state it is about to update. 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉
requires that the frequency of the input map is an exact divisor of the frequency of the
coordination state object. 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 ensures that the frequency of the input map
is the lowest common multiple of all the frequencies of memories in that map. The
input map in question is dereferenced from the logical instance that defines the static
structure of the coordination object using the ‘dot’ notation.𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉 stipluates that
the current time 𝑡⊤

𝑓𝑓𝑟𝑒𝑞
(dependent in the frequency of the coordination state) is the same

as the current time 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

(dependent in the frequency of the input map), notwithstanding

the fact that the underlying natural numbers representing the time in cycles since time

zero are different. 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉 fixes the requirement that 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

is the time one cycle later

than 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, at the frequency of the input stream, 𝑓
′

𝑓𝑟𝑒𝑞.

The second premise invokes the next step in trace construction, namely the ‘memFB’
trace, which adds the coordination state after -box memory execution. The time
of the next trace is that of the current time slice, but the accompanying input trace is
that of the next time slice: it will not be consumed until the execution step of the
next time slice. The new ‘memFB’ coordination state we obtained in the first premise
appears in the second premise as one of the dependent type arguments of the next trace,
constraining that trace to be one that follows from the given ‘memFB’ coordination state
and the next input stream.

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
S⊤

𝑡⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝒯𝓇⊤()

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

(C.129)
The second match for the step given in rule C.129 has no premises. The stream

object that has matched in this case is the final stream object, which carries no data, but
signifies the end of a finite stream. The version of the state trace object constructor
that is invoked also has no arguments, but has the correct dependent type. The type is
dependent on arguments in the environment: these are the same as for the non-terminal

333

case of rule C.128.

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

⊢
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒

𝐶⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝐼⊤.𝑀⊤.𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝑇𝑟⊤

𝐶⊤,𝑡
′
⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝒯𝓇⊤
⎛
⎜
⎝

𝐶⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑇𝑟⊤
𝐶⊤,𝑡

′
⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎠

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C.130)

The trace construction for the -box memory execution of rule C.130 step is similar
to that for the step of rule C.128. The main difference is that the input stream is not
deconstructed in the conclusion implicant, but is passed on unaltered to the implicant
of the second premise, which invokes the next phase of the super-step trace construc-

tion. The environment variables are the same, except 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
. The primed time is this time

dependent in the frequency of the coordination state, not the input map, and the time it
represents is the next time state for the coordination state. The arguments of 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
and 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉 are permuted accordingly. The box step is unique among the four steps
in that it is the only step at which the global clock advances.

As in rule C.128, the first premise generates the next coordination state, while the
second premise uses this to build the next (boxes step) trace object, which is then itself

334

used in the conclusion to build the current trace object. Compared with rule C.128,
the - memory step of rule C.130 has coordination objects subscripted ‘memFB’
instead of ‘’, and ‘Boxes’ instead of ‘memFB’. Accordingly the next step is dependent
in the type of the ‘Boxes’ enabled step rather than in the ‘memFB’ enabled step.

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

⊢
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝑇𝑟⊤

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝒯𝓇⊤
⎛
⎜
⎝

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑇𝑟⊤
𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎠

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.131)

The trace construction of the step that adds the result of the boxes step (rule C.131) is
identical to that for the -box memory step of rule C.130, except that the time variables
and relationships are again different. This time the boxes-enabled state, the next (box-
 memory enabled) state, and the input stream time are all the same. The input stream
will be processed in the step of this time slice. The two time variables differ only
by the frequency in which they are dependent, and the 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉 predicate appears in
the environment accordingly. This time the new coordination trace is dependent in the
new coordination state of box- memories enabled, which appears in the implicand
of the first premise. The current trace is dependent in the currrent coordination state of
enabled boxes, which appears in the environment of the conclusion.

335

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

⊢
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝐼⊤.𝑀⊤.𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝑇𝑟⊤

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑆⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝒯𝓇⊤
⎛
⎜
⎝

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑇𝑟⊤
𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎠

𝐶⊤,𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.132)
The trace construction step that adds the result of the box- memory execution step
(of rule C.132) is almost identical to the rule that does the same for the boxes step (rule
C.131), except for the permutation of coordination states invoked. The coordination
step invocation this time produces a s-enabled coordination state, and the new
trace generated from the second premise is dependent in this type. The whole trace is
dependent in the type of coordination state for enabled box- memory executions:
this appears in the environment of the conclusion. The time relationships are the same
as for the boxes step.

C.3.2 FIFO step

The step of rule C.133 has two premises. The first deals with updating the local input
memory maps; the second tackles the nested case, recursing through the coordination
object and updating any memories that are exposed from inner instances but are not
exported by the current instance: in other words, they must be updated at the current
scope, and that is what this premise specifies. As well as dealing with input supplied as
a separate parameter, the step also executes s where the box- memory to be
read is within scope. In the present formalization, s do not have any state associated

336

with them: as soon as a value is available in the box- memory, it is appended to the
-box (input) memory at the other end of the . This simplifies the state space,
which does not need an explicit state store, but is at the expense of requiring those
input memories that will be connected to longer s to have longer buffers. This is
something that would be changed in a future version of the language.

337

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

, 𝑁
′
⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒ 𝑁
′′

⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝜇𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒ 𝜇𝐶⊤

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝒞⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑁
′′

⊤, 𝑁⊤, 𝜇𝐶⊤,

𝖬𝖾𝗆𝖥𝖡𝖢𝗈𝗋𝗋𝖾𝖼𝗍𝖯𝗋𝗈𝗉

⎛
⎜
⎜
⎜
⎝

𝑁
′′

⊤
𝑁⊤
𝜇𝐶⊤
𝑡⊤, 𝐼⊤, 𝐼⊤, 𝐾⊤, 𝐾⊤, 𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⇒
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

, 𝒞⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

 𝑁
′

⊤, 𝑁⊤, 𝜇𝐶⊤

⇒
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C.133)

The implicant of the conclusion of rule C.133 deconstructs the coordination state
object into its three constituents. 𝑁

′

MOI⊤ is the old input memory map from the coor-
dination object. 𝑁MOO⊤ is the output map, as modified by the last boxes and box-
execution steps. 𝜇𝐶FIFOs⊤ is the map of nested coordination map objects in the s-

338

enabled state.
The implication of the first premise shows the invocation of a rule that constructs

an updated input memory map 𝑁
′′

MOI⊤ from the old map 𝑁
′

MOI⊤ and the map of new
inputs 𝑁MOI⊤. This operation involves the old input map component 𝑁

′

MOI⊤ of 𝐶FIFOs⊤
being updated with the new values from 𝑁

′

MOI⊤. For each new memory, in 𝑁
′

MOI⊤, its
list of data values is prepended to the old memory map. For the sake of brevity, we do
not show the rule for updating these memories, as it was straightforward to describe
in English. We also elide the dependent arguments on input maps: the input stream
contains data that is new on this time slice, while the old memory map from the coor-
dination state contains old data. A further predicate would be necessary here to reduce
this rule to a form without premises.

The implication of the second premise concerns the update of nested input memory
maps. The point of interest here is that the coordination state is subscripted inner s.
This is because the outward-facing s (those whose terminating memories have been
exported to the enclosing instance) are updated in this step at the enclosing scope: in
effect, the first premise is recursively applied throughout the tree of nested coordination
objects. Only the inner s are left in a condition to be executed on invocation of the
nested step, which does not happen until the invocation of the boxes step. Again, we
elide the need for a predicate on the input map in a rule implementing the append-
ing operation, which we omit.

The third premise uses the new values inferred from the premises to build the next
inner s coordination object, in which -box memories are ready to be executed
without the need for any external input. This term (in the implicant) looks similar to
the object that was deconstructed in the conclusion implicant, except that the input and
nested maps are now updated versions. We show the requirement of a predicate to en-
sure that the new object is well-formed. The structure of this predicate has not been for-
mally defined: to do so would require operational structural semantic rules that would
yield pure logical propositions. This is deferred to further work, since it is a refinement
that would very substantially add to the size of the rules, but does not affect the opera-
tional behaviour. The premise invokes a rule that, for those memories corresponding to
enabled s in𝑁MOO⊤, copies values that were not read on the previous run. Each
copied value is appended to the memory in𝑁

′

MOI⊤ that is statically specified by the
definition. Again, we do not write out this rule in operational notation. The result is the
next ‘MemFB’ coordination object, which is immediately returned by the implicand of
the conclusion.

339

C.3.3 MemFB step

The memory execution step (rule C.134) has a single premise. This is because the mem-
ory execution only occurs at local scope: memory execution within the nested case is
taken care of by the nested boxes step. In the present formalization, memories are lists,
and their execution involves reversing the list. If the memories are double-buffered, only
the -box lists are reversed on a -box step; otherwise, both lists are reversed on
both steps. The approaches are bisimilar, and we adopt the latter because it is simpler,
although the former is more elegant. It is a crucial element of that communication
by these memories is not based on message passing, but synchronized entirely by the
global clock. A memory must be specified by what should be observable at a particular
time. The observable part of a memory is a bounded-length buffer in which there are
limits on how far in advance of the current time a value may be present, how far in ad-
vance of the current time a value must be present, how far in arrears of the current time
old values must still be visible, and how far in arrears of the current time old values may
still be visible.

340

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡⊤,𝐼⊤.𝑀⊤,𝑓
′′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

⊢
𝒞⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 𝑁⊤, 𝑁⊤, 𝜇𝐶⊤

⇒

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝒞⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑁
′

⊤, 𝑁
′

⊤, 𝜇𝐶⊤,

𝖡𝗈𝗑𝖾𝗌𝖢𝗈𝗋𝗋𝖾𝖼𝗍𝖯𝗋𝗈𝗉

⎛
⎜
⎜
⎜
⎜
⎝

𝑁
′

⊤
𝑁

′

⊤
𝜇𝐶⊤
𝑡
′
⊤, 𝐼⊤, 𝐼⊤, 𝐾⊤, 𝐾⊤, 𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.134)
The -box execution step of rule C.134 is similar to that of rule C.133, except that

there is now no interaction between input and output memories, and nested coordi-
nation state objects are unaffected by the application of the rule. The implicant of the
conclusion again deconstructs the coordination object, but this time that coordination
object is subscripted ‘memFB’ to signify that the -box memories are ready to be ex-
ecuted.

The first premise’s implicant shows the old memory map being converted to the new
(primed) memory map. The new memory map is dependent on the primed time vari-
able, indicating that it now belongs to the next time slice, ready to be read by the next
boxes step and updated with the next step. The original input memory map appears
to have become dependent in the current time and static memory map description since

341

being extracted from the implicant of the conclusion. This is because this dependence is
generated purely by up-casting to a parametrized 𝜎-type. The dependence is only due
to the parameters of the underlying predicate, which is inferred from the destruction
of the conclusion implicant’s coordination state. We have not specified the structure of
this predicate, but we know it will have to be capable of being deconstructed to yield the
predicate we need. The possibility of such deconstruction gives a lemma implying that
the memory map predicate must follow from the predicate over the whole coordination
object from which the memory map is obtained. The operation on the underlying con-
crete maps that is occurring in this transition is that stale data values are discarded (ones
that will have been read by a box in the previous step). This is determined by the max-
imum memory length value in the static specification, although a more sophisticated
approach would be to infer this value from the frequency relationship of the and
box memories. In the present version of the semantics, execution also involves reversing
a list representing a single buffer of timed data of both input and output buffers. The
latter operation is invoked by the second premise.

The implicand of the conclusion builds the new coordination object using the up-
dated input memory map in the same way as rule C.133.

C.3.4 Boxes step

The boxes step has four rules. Rule C.135 describes the top level match, which decom-
poses the problem into the local execution of boxes and the nested execution of boxes.
The nested case is dealt with in appendix C.3.5, so the remaining three steps describe
the local case, where what is observed from -box memories produces a new set of
box- memories.

Rule C.136 is a map reduction rule, where a new premise is spawned for each en-
abled harmonic box. The rule extracts the specification of the box, and the selection of
the required input and output memories needed by the box in question.

Rule C.137 shows how the case of the untimed box binding (the only binding we cur-
rently have) is extracted from the general harmonic box type. Rule C.137 also shows the
extraction of the mapping between object identifiers, which give handles to the mem-
ories on the outside of the box, and variable identifiers, which have semantic meaning
inside the untimed box.

Finally, rule C.138 shows how the binding operates and how the untimed box lan-
guage is called. Again, we see that the box language is a first order entity in these se-
mantics. There are three premises to this rule. The first handles the conversion of data
values from the coordination language to the box language; the second invokes the box
language with these data values; the third converts the result back into the memory
types of the coordination language.

342

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓
′′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′′
𝑓𝑟𝑒𝑞

, 𝑁⊤
𝑡′⊤,𝐼⊤.𝑀⊤,𝑓

′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′′′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′′
⊤

𝑓
′′′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′′′
𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′′
⊤

𝑓
′′′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′′′
𝑓𝑟𝑒𝑞

, 𝑡
′′′
⊤

𝑓
′′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

⊢
𝜇𝐶⊤

𝑡′⊤ ,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓
′′′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝜇𝐶⊤
𝑡′′′⊤ ,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓

′′′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝒞⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 𝑁⊤, 𝑁⊤, 𝜇𝐶⊤

⇒

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝒞⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑁⊤, 𝑁
′

⊤, 𝜇𝐶⊤,

𝖬𝖾𝗆𝖡𝖥𝖢𝗈𝗋𝗋𝖾𝖼𝗍𝖯𝗋𝗈𝗉

⎛
⎜
⎜
⎜
⎝

𝑁⊤
𝑁

′

⊤
𝜇𝐶⊤
𝑡⊤, 𝐼⊤, 𝐼⊤, 𝐾⊤, 𝐾⊤, 𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.135)
The conclusion of the main rule for matching the change of coordination state on a box
step (rule C.135) deconstructs the coordination state, which is in the boxes step-enabled
state. The inner map is still in the inner s-enabled state, since the step for the
nested instances cannot be run until the local boxes have had a chance to produce their
input: which may be needed by that inner step.

The implicant of the first premise takes the input and output maps, with the former
ready for reading by the currently enabled local boxes, and the latter ready for writing.

The second premise takes the nested coordination state map and precipitates the
invocation of the nested box step to bring the coordination state from the ‘inner s-
enabled’ state of the last time slice to the ‘s-enabled’ state of the current time slice.
This reflects the execution of an entire four-fold cycle within the nested instance. It will

343

become clear how this works when we present the semantic rule for nested execution.
The implicand of the conclusion builds the next coordination state using the old

input map, the new output map and the new coordination state object.

344

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓
′′′

𝑓𝑟𝑒𝑞, 𝑓
′
𝑓𝑟𝑒𝑞,

𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑀
′

⊤, 𝑀
′

⊤

𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′
𝑓𝑟𝑒𝑞, 𝑓

′′′

𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′
𝑓𝑟𝑒𝑞, 𝑓

′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡′⊤,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

, 𝐻⊤
𝑀
′
⊤,𝑀

′
⊤,𝑓

′′′
𝑓𝑟𝑒𝑞,𝐸⊤

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′⊤ ,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′′′

𝑓𝑟𝑒𝑞, 𝑓
′
𝑓𝑟𝑒𝑞, 𝑓

′
𝑓𝑟𝑒𝑞,

𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑀
′

⊤, 𝑀
′

⊤

𝐻⊤
𝑀
′
⊤,𝑀

′
⊤,𝑓

′′′
𝑓𝑟𝑒𝑞,𝐸⊤

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′
𝑓𝑟𝑒𝑞, 𝑓

′′′

𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′
𝑓𝑟𝑒𝑞, 𝑓

′′′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁
′
⊤

𝑡′⊤ ,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

, 𝐻⊤
𝑀
′
⊤,𝑀

′
⊤,𝑓

′′′
𝑓𝑟𝑒𝑞,𝐸⊤

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′⊤ ,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪

⎨⎪⎪⎪⎩

𝐸⊤, 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓
′
𝑓𝑟𝑒𝑞,

𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑀⊤, 𝑀
′

⊤

⊢
𝑁⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′′
𝑓𝑟𝑒𝑞

, 𝑁
′
⊤

𝑡′⊤ ,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′′
⊤

𝑡′⊤ ,𝐼⊤.𝑀
′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓
′′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

⊢

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐼⊤.ℎ𝑏𝑜𝑥𝑒𝑠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⨁𝑂⊤ → ∏

𝑓
′′′

𝑓𝑟𝑒𝑞
𝑀

′

⊤
𝑀

′

⊤
𝐻⊤

𝑀
′
⊤,𝑀

′
⊤,𝑓

′′′
𝑓𝑟𝑒𝑞,𝐸⊤

⎞
⎟
⎟
⎟
⎟
⎟
⎠𝑁⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

, 𝑁⊤
𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓

′′
𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⇒
⎧⎪
⎨⎪⎩

𝒩⊤

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′′
𝑓𝑟𝑒𝑞

 𝑁⊤ + ⨁𝑁
′′

⊤
⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.136)

345

The conclusion of rule C.136 deconstructs three objects: the static instance definition of
the local harmonic boxes 𝐼⊤.ℎ𝑏𝑜𝑥𝑒𝑠, the input map 𝑁MOI⊤ and the output map 𝑁MOO⊤.
We have introduced the n-ary exclusive sum operator ⨁ to deconstruct these objects
further according to an implicit higher-order map function in our semantic rule notation.
𝑁

′

MOO⊤ is not one variable, but takes on as many values as there are keys in the map.
The premise is instantiated once with each variable. The results are recombined using
the same ⨁ operator in the implicand of the conclusion. The notation is interpreted
differently depending on whether the operand of the ⨁ symbol is a single value or
a function. In the case of the deconstruction of values, it may only be a function, and
this makes both the key and value available to the premises with the bindings shown.
On recombination, the reverse operation is possible, but we also use a single operand to
show a map that contains multiple bindings: this represents the merging of maps. There
is no obvious inverse to this operation, which is why this construction can only appear
in an implicand. In the case of the reassembled map in the implicand of the conclusion
it appears on the right-hand side of the non-exclusive sum operator. This is because
the freshly recombined map only holds new values for memories that were updated for
harmonic boxes that were enabled to run on the current time slice. The old values are
overwritten by the straight sum, but the unmodified values are left undisturbed.

The first premise of rule C.136 precipitates the invocation of a rule that filters the
input memory map of the current logical instance to produce the subset of it that is
needed by the harmonic box (the rule is uninteresting and not shown). It matches on
the static harmonic box description object 𝐻O⊤ in order to do this. There are a number
of frequencies involved. 𝑓𝑓𝑟𝑒𝑞 is the frequency of the underlying instance. 𝑓

′

𝑓𝑟𝑒𝑞 is the

frequency of the logical instance map. 𝑓
′′′

𝑓𝑟𝑒𝑞 is the lowest common multiple frequency of

the minimal input and output memories needed by the harmonic box in question. 𝑓
′

𝑓𝑟𝑒𝑞
is the lowest common multiple frequency of the minimal input memories needed by the
harmonic box in question. The predicates in the environment express the consistency
of these relationships.

The second premise invokes rule C.137, which is the rule for executing individual
harmonic boxes. The implicant consists of the reduced input map required by the first
premise and again features the static harmonic box object. It generates an updated out-
put map of memories used by the harmonic box. This has the frequency 𝑓

′

𝑓𝑟𝑒𝑞, which is
the lowest common multiple of these output memories.

The third premise filters the old output map by the key set for the harmonic box
that has just been executed, and then merges this map with the new map of memories,
appending new timed data slices to any that are already there.

346

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝑓
′

𝑓𝑟𝑒𝑞,
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑀⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑀⊤

⊢ 𝜇𝜇𝑖(𝑀⊤ ↔𝑀⊤),
𝑁⊤

𝑡′⊤,𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒ 𝑁⊤𝑀⊤

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓
′′

𝑓𝑟𝑒𝑞,
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

⊢ 𝑀⊤, 𝑀
′

⊤,
𝐻⊤

𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐸⊤

, 𝑁⊤
𝑀⊤

⇒
𝑁
′
⊤

𝑀
′
⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪

⎨⎪⎪⎪⎩

𝐸⊤, 𝑓
′′

𝑓𝑟𝑒𝑞,
𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

, 𝑀
′

⊤,
𝑀⊤

𝑓
′′
𝑓𝑟𝑒𝑞

⊢ 𝜇𝜇𝑜𝑀
′

⊤ ↔𝑀⊤,
𝑁
′
⊤

𝑀
′
⊤

 ⇒
⎧⎪
⎨⎪⎩

𝑁⊤
𝑡′′⊤ ,𝑀⊤,𝑓

′′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑀
′

⊤, 𝑀
′

⊤,
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

⊢

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑁⊤
𝑡′⊤,𝐼⊤.𝑀⊤,𝑓

′
𝑓𝑟𝑒𝑞

ℋ⊤
𝑀⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐸⊤

⎛
⎜
⎜
⎝

𝑀⊤, 𝑀
′

⊤,
𝐻⊤

𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐸⊤

𝜇𝜇𝑖(𝑀⊤ ↔𝑀⊤), 𝜇𝜇𝑜𝑀
′

⊤ ↔𝑀⊤

⎞
⎟
⎟
⎠

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⇒
⎧⎪
⎨⎪⎩

𝑁⊤
𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓

′′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.137)
Rule C.137 handles the extraction of a harmonic box binding. We need now to differen-
tiate between the various different subscripts to harmonic box variables. The implicant
of the conclusion of rule C.137 deconstructs the harmonic box specification object 𝐻𝑂⊤
to yield an untimed harmonic box binding 𝐻𝑈⊤. This untimed box binding is not se-
mantically aware of s, and so the constructor of the harmonic box specification type
𝐻𝑂⊤ contains two memory maps by variable identifier, one for input (𝑀⊤) and one for
output (𝑀

′

⊤), as well as two bijective mappings from to variable identifiers. The
bijections are denoted by the double-ended arrows. The 𝜇𝜇 denotes a bijective map.
The maps in this rule are named i and o to denote input and output memory bindings
respectively.

The first premise invokes the conversion of an map to one indexed by variables,
according to the conversion map i. The operation is trivial so we do not provide an
explicit rule.

The second premise uses the new variable identifier-indexed memory map to call

347

rule C.138, which unpacks the untimed box binding, executes the untimed box and re-
turns a variable-indexed memory map, suitably updated with any new values. The
third premise does the reverse operation of the first, using the other bijective mapping
to re-index the output map by s. The result is passed straight to the implicand of the
conclusion.

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤,
𝐴⊤
𝐸⊤

, 𝐴
′
⊤

𝐸⊤
, 𝑓𝑓𝑟𝑒𝑞,

𝑀⊤
𝐸⊤

, 𝑀
′
⊤
𝐸⊤

, 𝐵⊤
𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐴

′
⊤,𝐴⊤,𝐸⊤

⊢ 𝑁⊤
𝑀⊤,𝐸⊤

 ⇒ 𝜎 𝐵⊤.𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖨𝗇𝖯𝗋𝗈𝗉
𝑁⊤

𝑀⊤,𝐸⊤

⎫⎪⎪
⎬⎪⎪⎭⎧⎪⎪

⎨⎪⎪⎩

𝐸⊤,
𝐴⊤
𝐸⊤

, 𝐴
′
⊤

𝐸⊤
, 𝐴⊤
𝐴
′
⊤,𝐴⊤,𝐸⊤

⊢
𝑋⊤

𝐴
′
⊤,𝐴⊤,𝐸⊤

, 𝐷⊤
𝐴⊤,𝐸⊤

⇒ 𝜎 𝐴⊤.𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉
𝑋⊤

𝐴
′
⊤,𝐴⊤,𝐸⊤

, 𝐷⊤
𝐴⊤,𝐸⊤

⎫⎪⎪
⎬⎪⎪⎭⎧⎪⎪

⎨⎪⎪⎩

𝐸⊤,
𝐴⊤
𝐸⊤

, 𝐴
′
⊤

𝐸⊤
, 𝑓𝑓𝑟𝑒𝑞,

𝑀⊤
𝐸⊤

, 𝑀
′
⊤
𝐸⊤

, 𝐵⊤
𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐴

′
⊤,𝐴⊤,𝐸⊤

⊢
𝐷⊤
𝐴
′
⊤,𝐸⊤

 ⇒ 𝜎 𝐵⊤.𝖻𝗈𝗑𝖣𝖺𝗍𝖺𝖢𝗈𝗇𝗏𝖮𝗎𝗍𝖯𝗋𝗈𝗉
𝐷⊤
𝐴
′
⊤,𝐸⊤

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝑀⊤
𝐸⊤

, 𝑀
′
⊤
𝐸⊤

⊢

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

ℋ⊤

𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐸⊤

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐴⊤, 𝐴
′

⊤,
𝐴⊤

𝐴
′
⊤,𝐴⊤,𝐸⊤

𝐵⊤
𝑀
′
⊤,𝑀⊤,𝑓𝑓𝑟𝑒𝑞,𝐴

′
⊤,𝐴⊤,𝐸⊤

𝑋⊤
𝐴
′
⊤,𝐴⊤,𝐸⊤

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝑁⊤
𝑀⊤,𝐸⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⇒
𝑁
′
⊤

𝑀
′
⊤,𝐸⊤

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.138)

Rule C.138 specifies how an untimed box language is invoked from an untimed har-
monic box binding. The conclusion implicant matches on two things: the first is the
specification of the function over memories that is to be computed by the harmonic
box; the second is the set of input memories to which this function will be applied to
produce output memories. The harmonic box specification object is unpacked accord-
ing to its structure defined in the semantic domain. In order, it matches on the input
and output data type specification for the expression language, the expression language
binding (A), the harmonic box binding (B), and a static semantic object for a program
in the language specifed by A with a binding that matches the memory environment.
The function fields of the harmonic box specification object are not shown: they are first
order functions, rendered as rules in our structural operational semantics. These rules
(such as the expression language specification) are higher order, but notationally they
appear of the same form. They are invoked by the premises to this rule C.138. We could

348

instead have made this a rule with no premises, and invoked these functions by name
directly in the implicand of the conclusion. The effect would be the same, but the latter
would have the disadvantage that we would have to embed our method of representing
the structural operational semantics in the structural operational semantics themselves,
which would leave us without a base case. This is a symptom of defining a specification
system that is powerful enough to describe itself, and is a consequence of the Gödel
issues we addressed in chapter 2.

The three premises of rule C.138 are chained together. The first premise invokes the
conversion function translating coordination language memories into raw data types.
The second uses the product of this operation to invoke the expression language, taking
the static semantic object as a Curried argument. The third premise converts this back
into the form of memories, to be carried to the implicand of the conclusion. It is the
predicates contained within A and B which enable all of these processes to be defined
as injective functions. The inclusion of B ensures that, by construction, a harmonic box
specification can only be created if the signatures of its input and output types in terms
of coordination language memories and plain datatypes are convertible using the rele-
vant functions. The final point of interest about rule C.138 is that each of the implicands
of the premises is presented as a 𝜎-type, but the predicate of the 𝜎-type has been dis-
carded when the argument is picked up in the implicant of the next premise (or in the
case of the last premise, picked up in the implicand of the conclusion). This is because
each successive construction does not need to know that the previous rule application
generated a result compatible with its allied predicate. If we were to characterize rule
C.138 as a predicate and refine the rule to generate a derived 𝜎-type of that predicate,
then the fact that each premise-invoked rule had produced a 𝜎-type of its own would
be used in constructing the necessary proof for the 𝜎-type of that modified rule.

C.3.5 Nested boxes step

The nested boxes step consists of two sub-rules. Rule C.139 is a map reduction rule,
handling how the execution of each nested coordination instance is combined into the
map of nested coordination instances for the enclosing instance. Rule C.140 sets up a
recursive trace fragment and deconstructs it to return the final coordination state.

An alternative approach to describing the nested case does not rely on delving into
the structure of the nested coordination object in order to effect input and output (where
an interface of a nested component is exposed by an enclosing component). We can in-
stead pass these values as separate arguments and return values as we descend and
ascend the nested structure. In this work, we adopt the latter approach in the Coq for-
malization because it makes for simpler code, but we take the former approach in the
semantic rules shown in this section because it is more concise. Superficially, the lat-

349

ter approach might have the benefit that it would scale better when, instead of nesting
, we mutually recursed with another box language, in which case the structure of
the nested object ought to be invisible to for data-hiding hygiene reasons. How-
ever, on closer examination, this is not justified, since an instantiation of inside
another language has a floating ontology relative to at global scope. As a conse-
quence, inner s would not be accessible at all in this circumstance: it would be up
to the intervening box language to connect together timed memories from these
different ontologies.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

𝑓
′

𝑓𝑟𝑒𝑞,
𝐼
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾
′
⊤

𝐾
′
⊤
, 𝐼

′
⊤

𝐼
′
⊤,𝐾

′
⊤,𝐾

′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑂⊤

𝗂𝗌𝖭𝖾𝗌𝗍𝖾𝖽𝖨𝗇𝗌𝗍𝖯𝗋𝗈𝗉

⎛
⎜
⎜
⎜
⎝

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

𝑓
′

𝑓𝑟𝑒𝑞,
𝐼
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾
′
⊤

𝐾
′
⊤
, 𝐼

′
⊤

𝐼
′
⊤,𝐾

′
⊤,𝐾

′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

, 𝑂⊤

⎞
⎟
⎟
⎟
⎠

⊢
𝐶⊤

𝑡′⊤,𝐼
′
⊤,𝐼

′
⊤,𝐾

′
⊤,𝐾

′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝐶⊤
𝑡′′⊤ ,𝐼

′
⊤,𝐼

′
⊤,𝐾

′
⊤,𝐾

′
⊤,𝑓

′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

⊢
𝜇𝒞⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⨁𝑂⊤ → 𝐶⊤

⇒

⎧⎪⎪
⎨⎪⎪⎩

𝜇𝒞⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎛
⎜
⎜
⎜
⎝

⨁𝑂⊤ → 𝐶⊤,

𝖭𝖾𝗌𝗍𝖾𝖽𝖥𝖨𝖥𝖮𝗌𝖢𝗈𝗋𝗋𝖾𝖼𝗍𝖯𝗋𝗈𝗉
⎛
⎜
⎜
⎝

⨁𝑂⊤ → 𝐶⊤
𝑡⊤, 𝐼⊤, 𝐼⊤
𝐾⊤, 𝐾⊤, 𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

(C.139)
The implicant of the conclusion of rule C.139 deconstructs the map of nested coordina-
tion objects, using the same notational conventions that we used in rule C.135 when we
deconstructed maps of harmonic boxes. The single premise is invoked once for each of
these matches, each with a matching pair of a nested instance identifier and the asso-
ciated nested coordination state. The implicant of the first premise requires a rule that
updates a coordination state object in the ‘InnerFIFOs’ state from the previous time slice
to one in the ‘FIFOs’ state of the current time slice. The resulting objects from each in-
vocation of the premise are recombined into a map in the implicand of the conclusion.
A propositional component is added to form the 𝜎-type of the result.

350

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

⊢
𝐶⊤

𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒

𝐶⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡

′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝐶⊤
𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞

𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞 , 𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

, 𝑡
′′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
S⊤∅

𝑡′′⊤ ,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
𝑇𝑟⊤

𝐶⊤,𝑡
′
⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

⊢
𝑇𝑟⊤

𝐶⊤,𝑡
′
⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

 ⇒
𝐶⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖭𝖾𝗑𝗍𝖯𝗋𝗈𝗉
𝑡
′
⊤

𝑓𝑓𝑟𝑒𝑞
, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

⊢
𝐶⊤

𝑡′⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 ⇒

𝐶⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.140)

Rule C.140 executes a nested instance, which has been left in the ‘inner s-enabled’
state for the previous time slice, bringing it to the s-enabled state.

The first premise precipitates the execution of local s. This is the same operation
that is called by the third premise of rule C.133, producing a new coordination state
object in the ‘MFB-enabled’ state. This object still belongs to the previous time slice.
The second premise uses this object to set up a fragment of a new trace, with an empty
input stream. This trace will run for one slice (it will terminate on the next step for
lack of input). The premise thus calls the whole trace-building structure by mutual re-
cursion. The third premise deconstructs the new trace object to extract the -enabled
coordination state associated with the terminal object in that trace. This object reflects
the state of the nested coordination state after the execution of its own boxes step, so the
time slice of the new -enabled object is that of the current time slice of the calling
premise. The result is used directly in the implicand of the conclusion.

C.3.6 MemBF step

The execution of box- memories is exactly like that of the -box case, except that
boxes and s are transposed.

351

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝑁⊤

𝑡⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

 ⇒
⎧⎪
⎨⎪⎩

𝑁
′
⊤

𝑡′⊤,𝐼⊤.𝑀⊤,𝑓
′
𝑓𝑟𝑒𝑞

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝑓𝑓𝑟𝑒𝑞, 𝑓
′

𝑓𝑟𝑒𝑞,
𝐼⊤
𝑓𝑓𝑟𝑒𝑞

, 𝐾⊤,
𝐾⊤
𝐾⊤

, 𝐼⊤
𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

, 𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

𝖿𝗋𝖾𝗊𝖣𝗂𝗏𝗂𝖽𝖾𝗌𝖯𝗋𝗈𝗉 𝑓
′

𝑓𝑟𝑒𝑞, 𝑓𝑓𝑟𝑒𝑞 , 𝖺𝗅𝗅𝖥𝗋𝖾𝗊𝗌𝖣𝗂𝗏𝗂𝖽𝖾𝖯𝗋𝗈𝗉 𝐼⊤.𝑀⊤, 𝑓
′

𝑓𝑟𝑒𝑞

𝗍𝗂𝗆𝖾𝖤𝗊𝖯𝗋𝗈𝗉
𝑡⊤
𝑓𝑓𝑟𝑒𝑞

, 𝑡
′
⊤

𝑓
′
𝑓𝑟𝑒𝑞

⊢
𝒞⊤

𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞
 𝑁⊤, 𝑁⊤, 𝜇𝐶⊤

⇒

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝒞⊤
𝑡⊤,𝐼⊤,𝐼⊤,𝐾⊤,𝐾⊤,𝑓𝑓𝑟𝑒𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑁⊤, 𝑁
′

⊤, 𝜇𝐶⊤,

𝖥𝖨𝖥𝖮𝗌𝖢𝗈𝗋𝗋𝖾𝖼𝗍𝖯𝗋𝗈𝗉

⎛
⎜
⎜
⎜
⎜
⎝

𝑁⊤
𝑁

′

⊤
𝜇𝐶⊤
𝑡
′
⊤, 𝐼⊤, 𝐼⊤, 𝐾⊤, 𝐾⊤, 𝑓𝑓𝑟𝑒𝑞

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.141)
The operation of rule C.141 is almost identical to that of rule C.134, except that inputs
are swapped with outputs, and unlike rule C.134, both the premises and conclusion of
the rule now concern the same time slice. Otherwise, mutatus mutandis, they are the
same.

C.4 Expression language dynamic semantics

We now give operational semantics of our simple Boolean expression language for
in the same style as appendix C.3. Details of the expression costings are omitted for
clarity.

C.4.1 Expression static semantic object and argument match

Rule C.142 extracts the function closure from the static semantic object containing the
main expression, and invokes it by binding values for its arguments to the variable envi-
ronment. The main function is called ‘main’, and 𝑣𝑣𝑎𝑟𝑖𝑑 is constrained to take this value.
This rule handles the binding of our example expression language to the coordination
language; the former is a first order object in the context of the latter.

352

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝐸
′

⊤,
𝑇⊤

𝐸⊤+𝐸
′
⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤+𝐸
′
⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

𝑅⊤
𝐸⊤+𝐸

′
⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤

𝑅⊤,𝐸⊤+𝐸
′
⊤.𝑈⊤

, 𝐷⊤
𝑇⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

⇒
⎧⎪
⎨⎪⎩

𝐷
′
⊤

𝑇
′
⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝐴⊤, 𝐴
′

⊤

⊢

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝒳⊤

𝐴
′
⊤,𝐴⊤,𝐸⊤

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝐸
′

⊤,
𝑇⊤

𝐸⊤+𝐸
′
⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤+𝐸
′
⊤.𝑈⊤

𝑐⊤
𝑇⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

𝑣𝑣𝑎𝑟𝑖𝑑,
𝑅⊤

𝐸⊤+𝐸
′
⊤.𝑈⊤

, 𝑊⊤

𝑅⊤,𝐸⊤+𝐸
′
⊤.𝑈⊤

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠𝐷⊤

𝑇⊤,𝐸⊤+𝐸
′
⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

⇒ 𝜎
𝐷
′
⊤

𝑇
′
⊤,𝐸⊤+𝐸

′
⊤.𝑈⊤

, 𝐴⊤.𝖾𝗑𝗉𝗋𝖲𝖾𝗆𝖯𝗋𝗈𝗉
𝑋⊤

𝐴
′
⊤,𝐴⊤,𝐸⊤

, 𝐷⊤
𝐴⊤,𝐸⊤

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.142)
The implicant of the conclusion of rule C.142 matches on two arguments: the first is a
static semantic object; the second is the piece of data that is the argument to the main
function specified by this object. The piece of data is no longer a subscripted ‘UM’,
which denotes data dependent in a box binding, but is instead dependent in a plain
type variable: the type variable is directly inferred from the binding 𝐴𝐵. This shifting
of dependent arguments is possible and practical because we have constrained our de-
pendent types to be defined only in terms of parametrized 𝜎-types. The type-casting
happens purely in the type of propositions: the validity of the cast can be established
by a lemma in the context of the rule, and thus the conversion has no computational
content. This approach also avoids the need to consider weak (non-Leibniz) equality
definitions for dependent types. When we deconstruct the static semantic object in the
implicant of the conclusion, we expose the objects needed to invoke a function in our
expression language. The type environment is given in a binary form, with the ‘+’ sym-
bol functioning as a union operator over the enclosing type environment and any types
defined at the scope of the expression language. The plus is not circled because it is
a non-exclusive operation: local bindings to type identifiers overwrite ones from the
environment. 𝑇 is constrained (in the construction of the static semantic object 𝑋) to
match the type mandated by𝐴𝐵, and likewise 𝑇 ′ and𝐴

′

𝐵. The cost variables 𝑐 and 𝑐′ are,
respectively, the cost functions giving the minimum computational potential available

353

with the input type and the maximum allowable potential remaining after a computa-
tion (in the spirit of Tarjan [176]). Our cost function is a stub implementation using an
uninteresting flat function of the type, counting function invocations and construction
operations: we omit the formal semantics for this.

The implicant of the first premise precipitates the calling of the function execution
rule, giving the name of the function, a definition closure, and the piece of data which is
to be applied to the function. The result immediately enters the conclusion of the rule,
equipped with a predicate asserting that the returned data realises the semantics of the
expression language 𝐴. We describe the function of 𝑅 and 𝑊 variables with the next
rule.

C.4.2 Function invocation

The function invocation rule (rule C.143) handles the binding of a function’s argument
in a new value and function definition closure, and the subsequent reduction of the
resulting expression, which is now closed under its operands.

354

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

𝑌⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤
𝑅⊤,𝐸⊤

⇒
⎧⎪
⎨⎪⎩

𝑅
′′
⊤

𝐸⊤
, 𝑊⊤

𝑅
′′
⊤ ,𝐸⊤

, , 𝒵⊤
𝑌⊤,𝐸⊤.𝑈⊤

⎛
⎜
⎝
𝑣′𝑣𝑎𝑟𝑖𝑑,

𝐾⊤

𝑌
′
⊤,𝐸⊤.𝑈⊤,

𝑅⊤
𝐸⊤.𝑈⊤

+𝑣
′
𝑣𝑎𝑟𝑖𝑑→

𝑌
′
⊤

𝐸⊤.𝑈⊤
,𝐸⊤.𝑈⊤

⎞
⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

𝑌⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑣
′

𝑣𝑎𝑟𝑖𝑑

⊢

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝒲⊤

𝑅
′′
⊤

𝐸⊤.𝑈⊤
+𝑣

′
𝑣𝑎𝑟𝑖𝑑→

𝑌
′
⊤

𝐸⊤.𝑈⊤

⎛
⎜
⎜
⎜
⎜
⎝

𝐸⊤,
𝑅
′′
⊤

𝐸⊤
𝑣′𝑣𝑎𝑟𝑖𝑑 →

𝒵⊤

𝑌
′
⊤,𝐸⊤.𝑈⊤

 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

𝑊

′′
⊤

𝑅
′′
⊤ ,𝐸⊤

⎞
⎟
⎟
⎟
⎟
⎠

𝐾⊤

𝑌
′
⊤,

𝑅
′′
⊤

𝐸⊤.𝑈⊤
+𝑣

′
𝑣𝑎𝑟𝑖𝑑→

𝑌
′
⊤

𝐸⊤.𝑈⊤
,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

⇒
𝐷
′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤

𝑅⊤,𝐸⊤.𝑈⊤
, 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⇒
𝐷
′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.143)
Examining the environment of the conclusion, we have the familiar type environment,
two types (input and output) for the function, their associated costs and a record envi-
ronment. The record environment𝑅 is the environment that maps variable identifiers to
value and function declarations in the current closure𝑊Clos, in whose scope the function
is being executed. The rule matches on the name of the variable referring to the function
being invoked, the closure of bindings in which the function will be found, and the data
value to be passed to this function.

The first premise concerns the result of a look-up operation as described in the next
two rules. 𝑍 is the function definition that is found. It is deconstructed in the implicand
for use in the next premise. It contains the name of the function’s free variable 𝑣𝑣𝑎𝑟𝑖𝑑′

355

and the expression that is valid in the new environment. 𝑍 is dependent in the required
argument and return types specified by 𝑌. Syntactically, there could be four matches on
the function and variable object: that for a built-in constant or function, or a user-defined
variable or function. Predicates should ensure that a function will never be looked up
with an identifier that is actually assigned to a plain variable. This makes certain that
interpreter fixpoints realizing this rule can be well-founded. We omit treatment of built-
in functions, as they implement the basic Boolean operations of the primitive truth tables
suggested by their names.

The expression 𝐾 is dependent in a type environment to which the argument of
the function has been added as a bound variable. The data type is wrapped in a new
primed type declaration object. The change to the type environment is indicated by the
‘+’ sign after the record environment (the new closure masks any old binding) and the
new mapping from the primed variable identifier to the new primed type description.

The implicand of the first premise also contains a new (double-primed) type decla-
ration environment and definition closure that is applicable to the scope at which the
definition was found.

The second premise specifies how the value of the function argument is bound in
a new definition closure so that the expression can be matched by the reduction ma-
chinery. A new closure is constructed from the old closure 𝑊Clos and a new record
environment containing just the new binding from the primed variable identifier to the
data value, wrapped in the type of definition of the new type (the 𝑌 in the dependent
type is now primed). The double-primed record object 𝑅 is present in order to index the
double-primed closure’s dependent type. The expression reduction that is triggered by
this second premise takes place in this newly constructed definition closure. The result
of the expression reduction that is occasioned by this premise is passsed straight to the
implicand of the conclusion.

C.4.3 Function and data resolution

Rule C.144 and rule C.145 resolve a function or simple data object from the definition
closure. The closure is a list of environments, and the closest one to the head of the list
that contains the function or variable with the required variable name is the one that is
matched.

Rule C.144 is the base case in which the value is found in the local mapping. Rule
C.145 handles the recursive case.

Predicates prescribe what must and must not be present in maps, although we elide
them here. These predicates would provide the means to prove that a fixpoint realizing
the look-up in an interpreter is primitively recursive (in the structure of the predicate),
and therefore terminates.

356

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝒲⊤
𝑅⊤,𝐸⊤ 𝐸

′

⊤,
𝑅
′
⊤

𝐸
′
⊤
, 𝑊

′
⊤

𝑅
′
⊤,𝐸

′
⊤
, 𝑣𝑣𝑎𝑟𝑖𝑑 →

𝑍⊤
𝑌⊤,𝐸⊤.𝑈⊤

⇒ 𝑅⊤
𝐸⊤

, 𝑊⊤
𝑅⊤,𝐸⊤

, 𝑍⊤
𝑌⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.144)

In rule C.144, we see in the implicant of the conclusion that the matched variable iden-
tifier 𝑣𝑣𝑎𝑟𝑖𝑑 is present in the local definition map, bound to𝑍. 𝑍 is therefore returned
immediately in the implicand. Being a base case, there is no need for any premises. We
also return the record and closure environments for the scope at which the function or
data object was found. If we did not do this, but instead tried to reduce an expression
that was defined in the scope from which the look-up is performed, the bindings might
not match. This occurs because outer scopes mask the inner static look-up scopes at
which particular functions or expressions were defined.

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤ + 𝐸
′

⊤,
𝑅
′
⊤

𝐸⊤.𝑈⊤
, 𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑅
′
⊤

𝐸
′
⊤
, 𝑊

′
⊤

𝑅
′
⊤,𝐸

′
⊤

⇒
𝑅
′′
⊤

𝐸⊤
, 𝑊⊤

𝑅
′′
⊤ ,𝐸⊤

, 𝑍⊤
𝑌⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑌⊤
𝐸⊤.𝑈⊤

⊢

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑣𝑣𝑎𝑟𝑖𝑑,
𝒲⊤
𝑅⊤,𝐸⊤

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐸
′

⊤,
𝑅
′
⊤

𝐸
′
⊤
, 𝑊

′
⊤

𝑅
′
⊤,𝐸

′
⊤

⨁𝑣
′

𝑣𝑎𝑟𝑖𝑑 →
𝑍
′
⊤

𝑌⊤,𝐸⊤.𝑈⊤ ,

𝑣𝑣𝑎𝑟𝑖𝑑≠𝑣
′

𝑣𝑎𝑟𝑖𝑑

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⇒
𝑅
′′
⊤

𝐸⊤
, 𝑊⊤

𝑅
′′
⊤ ,𝐸⊤

, 𝑍⊤
𝑌⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

(C.145)

Rule C.145 applies to the case where 𝑣𝑣𝑎𝑟𝑖𝑑 does not occur in the local bindings. This
is denoted by using the n-ary ‘⨁’ operator to show that of all the variables in the map
(now shown by a primed 𝑣𝑣𝑎𝑟𝑖𝑑), none of them are equal to 𝑣𝑣𝑎𝑟𝑖𝑑. This requirement is
stated explicitly in the accompanying condition.

Although the binding for 𝑣𝑣𝑎𝑟𝑖𝑑 has not been found at the local scope, given that
𝑊Clos is dependent in 𝑅 (in which 𝑣𝑣𝑎𝑟𝑖𝑑 is bound), we know that it must be bound by
a map before we reach the empty closure. The inner primed closure is thus passed to
the premise, which recursively re-invokes the rule, passing the result to the implicand
of the conclusion. For the same reason discussed below rule C.144, we see that the
returned declaration (record) and definition closures from the premise are passed on.
These may differ from all of the records and closures seen at the current scope, hence
the new double-primed meta-variables.

357

C.4.4 Data look-up

Rule C.146 and rule C.147 use the rules of appendix C.4.3 to retrieve a data definition
object in the same way that appendix C.4.2 uses the same rules to access function objects
in the closure environment. However, in this case, the values of these definition objects
are restricted to having simple types.

Rule C.146 covers the case where the value stored is a piece of data. Rule C.147 deals
with the case where it is an expression of the correct type that must be reduced first to
yield a simple data object. This requires the rules of appendix C.4.5.

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤
𝑅⊤,𝐸⊤

⇒ 𝒵⊤
𝑌⊤,𝐸⊤.𝑈⊤

 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤
𝑅⊤,𝐸⊤

 ⇒
𝑅
′
⊤

𝐸⊤
, 𝑊⊤

𝑅
′
⊤,𝐸⊤

, 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.146)

In rule C.146, the implicant of the conclusion triggers the piece of data referenced by
𝑣𝑣𝑎𝑟𝑖𝑑 to be resolved from the environment. The destruction in the implicand of the
premise shows that this branch of the rule deals with the case where the piece of data
is a plain value, and does not need to be further reduced before it can be returned. It is
therefore passed straight to the implicand of the conclusion. The new (primed) closure
environment produced by the premise is therefore ignored.

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑌⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤
𝑅⊤,𝐸⊤

⇒
𝑅
′
⊤

𝐸⊤
, 𝑊⊤

𝑅
′
⊤,𝐸⊤

, 𝒵⊤
𝑌⊤,𝐸⊤.𝑈⊤

 𝐾⊤
𝑌⊤,𝑅

′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅
′
⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊
′
⊤

𝑅
′
⊤,𝐸⊤

, 𝐾⊤
𝑌⊤,𝑅

′
⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤
𝑅⊤,𝐸⊤

 ⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.147)

358

Rule C.147 is similar to rule C.146 but instead deals with the situation where the defini-
tion found in the implicand of the first premise is an expression, which must be reduced
to yield a value. The second premise triggers this operation. It takes the current closure
and an expression 𝐾 , which is dependent in the record environment that matches the
dependent argument of that closure, and invokes the expression reduction rule, which
we describe next. The expression shares the same type 𝑌 as the data type to which it
will be reduced. The expression is evaluated in the new closure obtained from the first
premise. The result is passed straight from the implicand of the second premise to the
implicand of the conclusion.

C.4.5 Expression evaluation

Rule C.148, rule C.149 and rule C.150 deconstruct expressions as a first step in their
reduction to concrete values.

Rule C.148 delegates to the pattern rules in appendix C.4.6. Rule C.149 does the
same for the constructor rules of appendix C.4.7.

Rule C.150 handles function application. The first premise triggers reduction of the
operand (we have a strictly evaluated language); the second invokes the required func-
tion, triggering the invocation rule of appendix C.4.2.

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝑄⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝒦⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

 𝑄⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.148)

Rule C.148 deconstructs the expression 𝐾 in its implicant. It is the branch that trig-
gers pattern reduction, because the object under the constructor has the pattern meta-
variable 𝑄, dependent in the same environment as the enclosing expression. The pat-
tern meta-variable is passed to the premise, along with the definition closure, which
the pattern will need in order to dereference a piece of data. The data returned in the
implicand is passed back to the conclusion.

359

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝐶⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝒦⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

 𝐶⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.149)

The form of rule C.149 is identical to rule C.148, except that instead of dealing with a
pattern meta-variable 𝑄, there is now a constructor meta-variable 𝐶. The premise now
triggers the construction rule rather than the pattern rule.

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝐾
′
⊤

𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒
𝐷
′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑅⊤
𝐸⊤.𝑈⊤

⊢ 𝑣𝑣𝑎𝑟𝑖𝑑,
𝑊⊤

𝑅⊤,𝐸⊤.𝑈⊤
, 𝐷

′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝑊⊤
𝑅⊤,𝐸⊤

, 𝒦⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑣𝑣𝑎𝑟𝑖𝑑,
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
, 𝐾

′
⊤

𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

,

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.150)
Rule C.150 deals with expressions that specify a function application. The expression

360

constructor in the implicant of the conclusion has a number of arguments, of which
two are interesting: 𝑣𝑣𝑎𝑟𝑖𝑑 is the name of the function; 𝐾′ is the expression that forms
the argument to that function. The other arguments give the type and computational
cost of the argument, and constrain equivalence of the 𝑌′, which is the union variable
function type of the simple type and its cost. The first premise triggers reduction of the
expression by recursively invoking the expression evaluation rule. The second premise
uses the result of this and the definition closure to trigger the function invocation rule,
passing the result straight back to the implicand of the conclusion.

C.4.6 Pattern evaluation

Rule C.151, rule C.152, Rule C.153 and Rule C.154 specify the pattern-matching seman-
tics. Pattern matching proceeds using an index string of identifiers (for records) or tu-
ple indices (for tuples). The rules deconstruct this string to retrieve the correct part of
the data structure. The length of the string, whether a tuple or record is expected, and
whether the index is valid in the context in which it occurs, are details enforced by pred-
icates, again omitted for clarity. Rule C.151 uses the top-level variable identifier to look
up a data value from the environment, using the data look-up rules of appendix C.4.5,
before extracting the pattern string. Rule C.152 applies when a tuple is at the head of
the pattern string; rule C.153 does so when a record is at the head of the pattern string.
Rule C.154 is the recursive base case for pattern resolution: it indicates that the end of
the list has been reached, and the data type most recently retrieved should be the same
as the data type required by the whole pattern match. The pattern list constructor is
empty for such lists, and its two type parameters are constrained to be equal.

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝑣𝑣𝑎𝑟𝑖𝑑 ⇒
𝐷
′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭⎧⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢
𝐽⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝐷
′
⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝑄⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑,
𝐽⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇
′
⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

(C.151)

Rule C.151 looks up the data object 𝑄 from the supplied definition closure 𝑊Clos and

361

passes it to the other pattern matching rules. The implicand of the conclusion decon-
structs the only constructor to yield a variable name that will be used to look up the data
from the closure, and a pattern string 𝐽 , which will be used to extract the desired com-
ponent of this data. The first premise precipitates a match on the data look-up rules,
and passes the result to the second premise, along with the pattern list and (primed)
data variable of the expected type. The second premise invokes the pattern-matching
rules, and the returned data is passed straight to the implicand of the conclusion. 𝐽 is
dependently typed in terms of the type which is being deconstructed (preceded by its
type environment) and the type which the pattern should eventually return when the
recursive call stack unwinds (preceded by its type environment).

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝐸
′

⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇⊤
𝐸
′
⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

⊢ 𝐷⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

, 𝐽
′
⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇⊤,𝐸
′
⊤.𝑈⊤

 ⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝐸
′

⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑇⊤
𝐸
′
⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

⊢

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝒥⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇
′
⊤,𝐸⊤.𝑈⊤

 𝑛ℕ,
𝐽
′
⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇⊤,𝐸
′
⊤.𝑈⊤

𝒟⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎛
⎜
⎝

∏
=
 𝐷⊤

𝑇⊤,𝐸
′
⊤.𝑈⊤

 ⎞⎟
⎠

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

(C.152)

Rule C.152 is the recursive case of a tuple pattern match. The pattern is deconstructed in
the implicant of the conclusion, yielding an index 𝑛ℕ, giving the position of the derefer-
enced data within the tuple, and a further pattern specifying how this data is in turn to
be deconstructed. There is a computational cost associated with this operation, which
in the case of our flat cost function is related only to the length of the pattern. The type
associated with the data extracted from the tuple is given by 𝑇𝑛. The data is also de-
constructed from the tuple, passing only the relevant member indexed 𝑛 to the premise.
The first premise recursively invokes the pattern matching rules. The type of the data
now being deconstructed is that of the corresponding 𝑛𝑡ℎ member of the deconstructed
tuple type. The separate type environments with the ‘n’ subscript cater for the fact that
a type inside a tuple may have been declared in a different scope.

362

⎧⎪⎪
⎨⎪⎪⎩

𝐸⊤, 𝐸
′

⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇⊤
𝐸
′
⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

⊢ 𝐷⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

, 𝐽
′
⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇⊤,𝐸
′
⊤.𝑈⊤

 ⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝐸⊤, 𝐸
′

⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑇⊤
𝐸
′
⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

⊢

⎧⎪⎪
⎨⎪⎪⎩

𝒥⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇
′
⊤,𝐸⊤.𝑈⊤

 𝑣𝑣𝑎𝑟𝑖𝑑,
𝐽
′
⊤

𝑇⊤,𝐸⊤.𝑈⊤,𝑇⊤,𝐸
′
⊤.𝑈⊤

𝒟⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

 ⨁𝑣𝑣𝑎𝑟𝑖𝑑 →
𝐷⊤

𝑇⊤,𝐸
′
⊤.𝑈⊤

⎫⎪⎪
⎬⎪⎪⎭

⇒ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎭

(C.153)

Rule C.153 has the same structure as rule C.152, except that instead of matching on a
natural number index of a tuple, the head of the pattern list matches on a variable identi-
fier 𝑣𝑣𝑎𝑟𝑖𝑑, which identifies a member of a record data type. The data in the conclusion’s
implicant is also deconstructed to access the data referenced by this identifier, which
is then passed to the premise. Everything else is the same as the tuple-matching rule,
mutatus mutandis.

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝐸⊤,
𝑇⊤

𝐸⊤.𝑈⊤
, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝐷⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝒥⊤
𝑇⊤,𝐸⊤.𝑈⊤,𝑇⊤,𝐸⊤.𝑈⊤

()

⇒ 𝐷⊤
𝑇⊤,𝐸

′
⊤.𝑈⊤

⎫⎪⎪⎪
⎬⎪⎪⎪⎭

(C.154)

Rule C.154 is the pattern list base case. It is a trivial rule with no premises. Any match
on an empty list constructor must have the same type in both the match and return
positions, and so the matched data in the implicant is passed straight to the implicand.

C.4.7 Construction evaluation

Rule C.155, rule C.156 and rule C.157 are concerned with building new values.
Rule C.155 deals with the simple case where a base type is being built.
Rule C.156 builds a tuple from a sequence of expressions, which are recursively re-

duced using rules in appendix C.4.5.
Rule C.157 does the same for records, building a record from an equivalently indexed

associative array of expressions.

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝒞⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

 𝑏𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡

⇒ 𝒟⊤
𝑇⊤,𝐸⊤.𝑈⊤

 𝑏𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

(C.155)

363

Rule C.155 matches on the first of three constructors: the base case, which wraps a piece
of Boolean data from the syntactic domain. The implicant of the conclusion matches this
syntactic primitive as 𝑏𝑏𝑜𝑜𝑙𝑐𝑜𝑛𝑠𝑡, and wraps it with a data constructor in the conclusion,
placing it in the semantic domain. The definition closure matched in the implicant is
ignored, as no values from the environment are needed.

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸
′
⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸

′
⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢
𝑊⊤
𝑅⊤,𝐸⊤

, 𝐾⊤
𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢
⎧⎪
⎨⎪⎩

𝑊⊤
𝑅⊤,𝐸⊤

, 𝒞⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

⎛
⎜
⎝

∏
=
 𝐾⊤

𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

 ⎞⎟
⎠

⎫⎪
⎬⎪⎭

⇒
⎧⎪
⎨⎪⎩

𝒟⊤
𝑇⊤,𝐸⊤.𝑈⊤

⎛
⎜
⎝

∏
=
 𝐷⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

 ⎞⎟
⎠

⎫⎪
⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C.156)

Rule C.156 constructs a tuple of values. The implicant of the conclusion matches on the
definition closure and the tuple branch of the constructor for specifying the construction
of tuple expressions. This constructor takes as its single argument the n-ary Cartesisan
product of expressions, which are combined according to their index to build a data
tuple of type 𝑇 in the conclusion. The premise is invoked 𝑛 times, once for each expres-
sion in the tuple. Each such premise precipitates a recursive match on the expression-
matching rule.

364

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇

′
⊤

𝐸
′
⊤.𝑈⊤

, 𝑐′⊤
𝑇
′
⊤,𝐸

′
⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢
𝑊⊤
𝑅⊤,𝐸⊤

, 𝐾⊤
𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝐷⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐸⊤,
𝑅⊤

𝐸⊤.𝑈⊤
, 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

, 𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

, 𝑌⊤
𝐸⊤.𝑈⊤

, 𝑌
′
⊤

𝐸⊤.𝑈⊤

 𝑌⊤
𝐸⊤.𝑈⊤

= 𝒴⊤
𝐸⊤.𝑈⊤

 𝑇⊤
𝐸⊤.𝑈⊤

, 𝑐⊤
𝑇⊤,𝐸⊤.𝑈⊤

𝑌
′
⊤

𝐸⊤.𝑈⊤
= 𝒴⊤

𝐸⊤.𝑈⊤
𝑇
′
⊤

𝐸⊤.𝑈⊤
, 𝑐′⊤
𝑇
′
⊤,𝐸⊤.𝑈⊤

⊢ 𝑊⊤
𝑅⊤,𝐸⊤

, 𝒞⊤
𝑌⊤,𝑅⊤,𝐸⊤.𝑈⊤

 ⨁𝑣𝑣𝑎𝑟𝑖𝑑 → 𝐾⊤
𝑌
′
⊤,𝑅⊤,𝐸⊤.𝑈⊤

⇒ 𝒟⊤
𝑇⊤,𝐸⊤.𝑈⊤

 ⨁𝑣𝑣𝑎𝑟𝑖𝑑 →
𝐷⊤

𝑇
′
⊤,𝐸⊤.𝑈⊤

⎫⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎭

(C.157)

Rule C.157 is very similar to rule C.156, but instead deals with building a record from
an associative array of expressions. We use the now familiar notation for deconstructing
maps under an n-ary exclusive sum. Exchanging tuple indices for variable names bound
to 𝑣𝑣𝑎𝑟𝑖𝑑, the record rule has the same form as the tuple one, mutatus mutandis.

365

Appendix D

Further Harmonic Box
Coordination Language
formalization in Coq

D.1 Module types

D.1.1 Absract type of identifiers

Listing D.1: The identifier module signature
Require Import Coq.Structures.Equalities.
Require Coq.FSets.FMapInterface.
Require Import HBCL.Util.FMapRawIface.
Module Type Ids.

Parameter Id : Set.
Declare Module IdDecidable : DecidableTypeFull
with Definition t := Id.

End Ids.
Module Type IdPredType(idmod : Ids).

Parameter Pred : idmod.Id → Prop.
End IdPredType.
Module Type IdsPred (idmod : Ids)(idpmod : IdPredType idmod).

Definition PredID := sig idpmod.Pred.
Declare Module PredidDecidable : DecidableTypeFull

with Definition t := sig idpmod.Pred.
Axiom IdPredRelPirrel : ∀ x y p q,

idmod.IdDecidable.eq x y →
PredidDecidable.eq (exist idpmod.Pred x p) (exist idpmod.Pred y q).

End IdsPred.
Module Type VaridPredType(idmod : Ids) := IdPredType idmod.
Module Type Varid(idmod : Ids)(vpt : VaridPredType idmod)

:= IdsPred idmod vpt.
Module Type TypidPredType(idmod : Ids) := IdPredType idmod.
Module Type Typid(idmod : Ids)(vpt : TypidPredType idmod)

:= IdsPred idmod vpt.
Module Type BoxidPredType(idmod : Ids) := IdPredType idmod.
Module Type Boxid(idmod : Ids)(vpt : BoxidPredType idmod)

:= IdsPred idmod vpt.
Module Type IdPreds.

367

Declare Module ids : Ids.
Declare Module varidPredType : VaridPredType ids.
Declare Module varidPred : Varid ids varidPredType.
Declare Module typidPredType : TypidPredType ids.
Declare Module typidPred : Typid ids typidPredType.
Declare Module boxidPredType : BoxidPredType ids.
Declare Module boxidPred : Boxid ids boxidPredType.
Definition Varid := varidPred.PredID.
Definition Typid := typidPred.PredID.
Definition Boxid := boxidPred.PredID.
Require Import Coq.FSets.FMapWeakList.
Declare Module VaridMapModRaw : FMapIfaceRaw varidPred.PredidDecidable
with Definition t := fun elt ⇒ list (Varid × elt).

Declare Module VaridMapModPred : FMapModDatImplPred varidPred.PredidDecidable
VaridMapModRaw.

Declare Module VaridMapMod :
FMapIfaceRF varidPred.PredidDecidable
VaridMapModRaw VaridMapModPred with Definition key := Varid

with Module Raw := VaridMapModRaw.
End IdPreds.

D.1.2 Absract type of OIDs

Listing D.2: The OID module signature
Require Import Coq.Structures.Equalities.
Require Coq.FSets.FMapInterface.
Require Import HBCL.Util.FMapRawIface.
Module Type Oids.

Parameter Oid : Set.
Declare Module OidDecidable : DecidableTypeFull
with Definition t := Oid.
Parameter OidLength : Oid → nat.

End Oids.
Module Type OidPredType(oidmod : Oids).

Parameter Pred : oidmod.Oid → Prop.
End OidPredType.
Module Type OidsPred (oidmod : Oids)(oidpt : OidPredType oidmod).

Definition PredOid := sig oidpt.Pred.
Declare Module PredoidDecidable : DecidableTypeFull
with Definition t := PredOid.

End OidsPred.
Module Type OidUTPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidUTPred(oidmod : Oids)(utpt : OidUTPredType oidmod) :=

OidsPred oidmod utpt.
Module Type OidTTPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidTTPred(oidmod : Oids)(ttpt : OidTTPredType oidmod) :=

OidsPred oidmod ttpt.
Module Type OidMemBFPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidMemBFPred(oidmod : Oids)(mbfpt : OidMemBFPredType oidmod) :=

OidsPred oidmod mbfpt.
Module Type OidMemFBPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidMemFBPred(oidmod : Oids)(mfbpt : OidMemFBPredType oidmod) :=

OidsPred oidmod mfbpt.

368

Module Type OidLInstPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidLInstPred(oidmod : Oids)(lipt : OidLInstPredType oidmod) :=

OidsPred oidmod lipt.
Module Type OidLLibPredType(oidmod : Oids) := OidPredType oidmod.
Module Type OidLLibPred(oidmod : Oids)(llpt : OidLLibPredType oidmod) :=

OidsPred oidmod llpt.
Module Type OidPreds.

Declare Module oids : Oids.
Declare Module oidUTPredType : OidUTPredType oids.
Declare Module oidUTPred : OidUTPred oids oidUTPredType.
Declare Module oidTTPredType : OidTTPredType oids.
Declare Module oidTTPred : OidTTPred oids oidTTPredType.
Declare Module oidMemBFPredType : OidMemBFPredType oids.
Declare Module oidMemBFPred : OidMemBFPred oids oidMemBFPredType.
Declare Module oidMemFBPredType : OidMemFBPredType oids.
Declare Module oidMemFBPred : OidMemFBPred oids oidMemFBPredType.
Declare Module oidLInstPredType : OidLInstPredType oids.
Declare Module oidLInstPred : OidLInstPred oids oidLInstPredType.
Declare Module oidLLibPredType : OidLLibPredType oids.
Declare Module oidLLibPred : OidLLibPred oids oidLLibPredType.
Definition HBCL OidUT := oidUTPred.PredOid.
Definition HBCL OidTT := oidTTPred.PredOid.
Definition HBCL OidLLib := oidLLibPred.PredOid.
Definition HBCL OidLInst := oidLInstPred.PredOid.
Definition HBCL OidMemBF := oidMemBFPred.PredOid.
Definition HBCL OidMemFB := oidMemFBPred.PredOid.
Declare Module OidMapMod(opt : OidPredType oids)

(op : OidsPred oids opt) : FMapInterface.WSfun op.PredoidDecidable.
Declare Module LInstMapModRaw : FMapIfaceRaw oidLInstPred.PredoidDecidable

with Definition t := fun elt ⇒ list (HBCL OidLInst × elt).
Declare Module LInstMapModPred :

FMapModDatImplPred oidLInstPred.PredoidDecidable LInstMapModRaw.
Declare Module LInstMapMod :

FMapIfaceRF oidLInstPred.PredoidDecidable
LInstMapModRaw LInstMapModPred with Definition key := HBCL OidLInst

with Module Raw := LInstMapModRaw.
Declare Module LLibMapModRaw : FMapIfaceRaw oidLLibPred.PredoidDecidable

with Definition t := fun elt ⇒ list (HBCL OidLLib × elt).
Declare Module LLibMapModPred :

FMapModDatImplPred oidLLibPred.PredoidDecidable LLibMapModRaw.
Declare Module LLibMapMod :

FMapIfaceRF oidLLibPred.PredoidDecidable
LLibMapModRaw LLibMapModPred with Definition key := HBCL OidLLib

with Module Raw := LLibMapModRaw.
Parameter liblessInst : HBCL OidLInst → Prop.
Parameter instLessMemBF : HBCL OidMemBF → Prop.
Parameter instLessMemFB : HBCL OidMemFB → Prop.

Parameter concatLibInst : HBCL OidLLib → HBCL OidLInst →
HBCL OidLInst.

Parameter concatInstMemBF : sig liblessInst → HBCL OidMemBF →
HBCL OidMemBF.

Parameter concatInstMemFB : sig liblessInst → HBCL OidMemFB →
HBCL OidMemFB.

Parameter splitLInstOid : ∀ (i : HBCL OidLInst),
sig liblessInst + (HBCL OidLLib × HBCL OidLInst).

Parameter splitLiblessLInstOid : sig liblessInst →
sig liblessInst + (sig liblessInst × sig liblessInst).

Parameter splitMemBFOid : ∀ (m : HBCL OidMemBF),
sig instLessMemBF + (sig liblessInst × HBCL OidMemBF).

369

Parameter splitMemFBOid : ∀ (m : HBCL OidMemFB),
sig instLessMemFB + (sig liblessInst × HBCL OidMemFB).

End OidPreds.

D.1.3 The untimed (but sized) type system

The structure of the semantics is parametrized on a type system expressed in a module
with the signature of Listing D.3.

Listing D.3: The untimed type systemmodule signature

Module Type UTypeSys.
Parameter Size : Type.
Parameter TypeS : Size → Type.
Definition ProtoT := sigT TypeS.
Parameter ProtoEqT : ProtoT → ProtoT → Prop.
Parameter DataR : Type.
Parameter DataP : ProtoT → DataR → Prop.
Definition ProtoU(t : ProtoT) := sig (DataP t).
Definition UDataPST(t : sigT TypeS) := sig (DataP t).

End UTypeSys.

Exploring this module type to OCaml produces uncompilable code, which has to be
patched in order to work. The problem seems to be caused by the depth of the dependent
typing, which Coq cannot map to OCaml’s type system.

D.1.4 The untimed OID type system

Listing D.4: The untimed OID type systemmodule signature

Module Type UTypeSysOid(Import uts : UTypeSys)(opm : OidPreds).

Parameter T : opm.HBCL OidUT → ProtoT → Type.
Definition TEq(ut1 ut2 : sigTD T) :=

opm.oidUTPred.PredoidDecidable.eq (projTD1 ut1) (projTD1 ut2) ∧
ProtoEqT (projTD2 ut1) (projTD2 ut2).

Parameter V : ∀ o t, T o t → ProtoU t → Type.
End UTypeSysOid.

D.1.5 The timed type system

Any module instantiating the untimed type system module type can be turned into a
timed type system using a module functor with the signature of Listing D.5.

370

Listing D.5: The harmonic type system signature

Module Type HTypeSys (Import uts : UTypeSys)(Import opm : OidPreds)
(UTSparam : UTypeSysOid uts opm).
Inductive TimedTLocal :

HBCL OidTT → Freq → sigTD UTSparam.T → Type :=
| TType : ∀ (ou : HBCL OidUT)(ot : HBCL OidTT)

(f : Freq)(ut : sigTD UTSparam.T),
TimedTLocal ot f ut.

Definition TimedT := TimedTLocal.

Parameter TimedTEq : sigTT TimedT → sigTT TimedT → Prop.
Definition TimedTF(f : Freq) := fun o u ⇒ TimedT o f u.
Definition TimedTFEq (tt1 tt2 : sigTT TimedTF) : Prop.

Admitted.
Inductive TimedVLocal(ttimed : sigTT TimedT)(ttime : TTime (projTT2 ttimed)) :

Type :=
| MakeTimedV(u : option (uts.ProtoU (projTD2 (projTT3 ttimed)))) :

TimedVLocal ttimed ttime.
Definition TimedV := TimedVLocal.

Definition TimedVF(f : Freq) := sigTD (TimedTF f) → TTime f → Type.
End HTypeSys.

D.1.6 The untimed box abstraction

Listing D.6: The untimed box signature
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.ModSignatures.Ids.
Require Import HBCL.HBCL 0 1.ModSignatures.Oids.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSys.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSysOid.
Require Import HBCL.HBCL 0 1.ModSignatures.UCost.

Module Type UBox(Import ipm : IdPreds)(Import opm : OidPreds)
(Import UTSparam : UTypeSys)(Import UTSOidParam : UTypeSysOid UTSparam opm)
(Import uc : UCost UTSparam).

Parameter Encoding : Set.
Implicit Arguments UPot [CTDT CTDTP cb].

Implicit Arguments existT [A P].

Definition InpOutpTypes(CTDT : Type)
(CTDTP : ProtoT → CTDT → Prop) := ipm.VaridMapMod.t

({t : UTSparam.ProtoT &
{o : opm.HBCL OidUT & UTSOidParam.T o t} &
sig (CTDTP t)} × nat × nat).

Definition UDataPSTMatchesInpOutpTypes(CTDT : Type)
(CTDTP : ProtoT → CTDT → Prop)
(inpTypes : InpOutpTypes CTDT CTDTP)
(udat : ipm.VaridMapMod.t (sigT UDataPST)) : Prop :=
ipm.VaridMapMod.Equiv ProtoEqT
(ipm.VaridMapMod.map (projT1 (P := UDataPST)) udat)
(ipm.VaridMapMod.map

(fun inpOutpType ⇒ (sigTypes.projT1sigT2
(P := fun t ⇒

{o : opm.HBCL OidUT & UTSOidParam.T o t})
(Q := fun t ⇒ sig (CTDTP t)

371

)) (fst (fst inpOutpType))) inpTypes).

Record UExprLang := {

CTDT : Type;
CTDTP : ProtoT → CTDT → Prop;
costB : CostBase TypeS CTDT CTDTP DataR DataP;
AST : Set;

parse : Encoding → AST;
sso : InpOutpTypes CTDT CTDTP → InpOutpTypes CTDT CTDTP →

Type;
compile (itypes otypes : InpOutpTypes CTDT CTDTP) :
option (sso itypes otypes);

reduce (itypes otypes : InpOutpTypes CTDT CTDTP) :
sso itypes otypes →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP itypes) →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP otypes)

}.
End UBox.

D.1.7 The harmonic box abstraction

Listing D.7: The harmonic box signature
Require Import Coq.QArith.QArith base. Close Scope Q scope.
Require Export HBCL.HBCL 0 1.ModSignatures.HTypeSys.
Require Export HBCL.HBCL 0 1.ModSignatures.UCost.
Require Export HBCL.HBCL 0 1.ModSignatures.UBox.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.Util.Freq.
Require Coq.FSets.FMapInterface.
Require Coq.FSets.FMapWeakList.
Require Coq.Structures.DecidableType.
Require Coq.Structures.Equalities.
Module Type MDataType

(ipm : IdPreds)(Import opm : OidPreds)(Import uts : UTypeSys)
(Import UTSOidParam : UTypeSysOid uts opm)
(Import HTSparam : HTypeSys uts opm UTSOidParam).
Record MDatBoxFreqEltBase : Type :=

{ MDBFE Base Oid : oids.Oid;
MDBFE Base Freq : Freq;
MDBFE Base timt : sigTT HTSparam.TimedT;
MDBFE Base TTFL : TTFL;
MDBFE Base minSize : N;
MDBFE Base maxSize : positive

}.
Definition MDatBoxElt := MDatBoxFreqEltBase.
Inductive MemDatMode : Set := ReadEnabled | WriteEnabled.
Definition memDatModeTimeRel(m : MemDatMode) : Z :=
match m with
| ReadEnabled ⇒ (-1)%Z
| WriteEnabled ⇒ (1)%Z

end.
Definition MemDatListRaw :=

list (sigTD (TimedV)).

372

Implicit Arguments existTD [A B P].
Implicit Arguments existT [A P].
Inductive MemDatListPred(mode : MemDatMode)

(mdfe: MDatBoxFreqEltBase)
(baseTime : TTime (MDBFE Base Freq mdfe))
(ttime : TTime (projTT2 (MDBFE Base timt mdfe))) :
MemDatListRaw → Prop :=

| MemDatListBasePred
(tv : (TimedV (MDBFE Base timt mdfe) ttime)) :

TTseq ttime baseTime →
MemDatListPred mode mdfe baseTime ttime
(cons (existTD (MDBFE Base timt mdfe) ttime tv) nil)

| MemDatInd(prevLastTime : TTime (projTT2 (MDBFE Base timt mdfe)))
(tv : (TimedV (MDBFE Base timt mdfe) ttime))
(mdlr’ : MemDatListRaw) :
MemDatListPred mode mdfe baseTime prevLastTime mdlr’ →
((getTimeZ ttime) =

(getTimeZ prevLastTime) + memDatModeTimeRel mode)%Z →
((1 + (getTimeZ ttime) - (getTimeZ baseTime)))%Z
= Zpos (MDBFE Base maxSize mdfe) →
MemDatListPred mode mdfe baseTime ttime

(cons (existTD (MDBFE Base timt mdfe) ttime tv) mdlr’).
Definition MemDatTime(mode : MemDatMode)

(mdfe: MDatBoxFreqEltBase)
(baseTime : TTime (MDBFE Base Freq mdfe))
(ttime : TTime (projTT2 (MDBFE Base timt mdfe))) :=
sig (MemDatListPred mode mdfe baseTime ttime).

Definition MDatTimeElt :=

(MemDatListRaw)%type.
End MDataType.

Module Type MemModBox
(ipm : IdPreds)(Import opm : OidPreds)(Import uts : UTypeSys)
(Import UTSOidParam : UTypeSysOid uts opm)
(Import HTSparam : HTypeSys uts opm UTSOidParam)
(ott : OidPredType opm.oids)
(ot : OidsPred opm.oids ott)
(mdi : MDataType ipm opm uts UTSOidParam HTSparam).
Declare Module otm : FMapInterface.WSfun(ot.PredoidDecidable).
Module otmWPties :=

FMapFacts.WProperties fun ot.PredoidDecidable otm.
Import mdi.
Definition MDatTimeMapRaw :=

otm.t (MDatTimeElt).
Definition MDatBoxTimeMapPred(mode : MemDatMode)

(freqm : otm.t MDatBoxElt)(f : Freq)(t : TTime f)
(mdm : MDatTimeMapRaw) : Prop.

Admitted.
Definition MDatBoxTime(mode : MemDatMode)

(freqm : otm.t MDatBoxElt)(f : Freq)(t : TTime f) :=
sig (MDatBoxTimeMapPred mode freqm f t).

End MemModBox.
Module Type HBox (ipm : IdPreds)(Import opm : OidPreds)(Import uts : UTypeSys)

(Import uc : UCost uts)(Import UTSOidParam : UTypeSysOid uts opm)
(Import ubox : UBox ipm opm uts UTSOidParam uc)
(Import HTSparam : HTypeSys uts opm UTSOidParam).
Declare Module MDataInst : MDataType ipm opm uts UTSOidParam HTSparam.

Declare Module BoxTypeIdMapMod :
FMapInterface.WSfun(ipm.boxidPred.PredidDecidable).

Module ipmModVaridLCM :=
MapLCM ipm.varidPred.PredidDecidable ipm.VaridMapMod.

373

Module ipmModBoxidLCM :=
MapLCM ipm.boxidPred.PredidDecidable BoxTypeIdMapMod.

Declare Module InMemModBox : MemModBox ipm opm uts UTSOidParam HTSparam
opm.oidMemFBPredType opm.oidMemFBPred

MDataInst.
Declare Module OutMemModBox : MemModBox ipm opm uts UTSOidParam HTSparam

opm.oidMemBFPredType opm.oidMemBFPred

MDataInst.
Definition InMapVaridConvertPred

(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(ivm : InMemModBox.otm.t ipm.Varid)
(vm : sig (vpred f))
(im : InMemModBox.otm.t MDataInst.MDatBoxElt)
:= ∃ v,

∃ m, ipm.VaridMapMod.MapsTo v m (proj1 sig vm) →
∃ i, InMemModBox.otm.MapsTo i v ivm ∧

InMemModBox.otm.MapsTo i m im.
Definition InTypePredConvert

(uexprlang : ubox.UExprLang)
(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(im : InMemModBox.otm.t MDataInst.MDatBoxElt)
(utypes : InpOutpTypes)
(inpred : ∀(f : Freq)

(freqm : sig (vpred f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop)

(ivm : InMemModBox.otm.t ipm.Varid) :=
∃ vm, InMapVaridConvertPred vpred f ivm vm im ∧

inpred f vm utypes.
Definition OutMapVaridConvertPred

(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(ovm : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(om : OutMemModBox.otm.t MDataInst.MDatBoxElt)

(vm : sig (vpred f)) :=
∀ v, ∃ m, ipm.VaridMapMod.MapsTo v m (proj1 sig vm) →
∃ o, ipm.VaridMapMod.MapsTo v o ovm ∧

OutMemModBox.otm.MapsTo o m om.
Definition OutTypePredConvert

(uexprlang : ubox.UExprLang)
(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(om : OutMemModBox.otm.t MDataInst.MDatBoxElt)
(utypes : InpOutpTypes (ubox.CTDTP uexprlang))
(outpred : ∀(f : Freq)

(freqm : sig (vpred f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop)

(ovm : ipm.VaridMapMod.t opm.HBCL OidMemBF) :=
∃ vm, OutMapVaridConvertPred vpred f ovm om vm ∧

outpred f vm utypes.

Parameter HBoxSSORaw : Type.

Module VaridMapWPties :=
FMapFacts.WProperties fun ipm.varidPred.PredidDecidable ipm.VaridMapMod.

Parameter HBoxSSOPred : ∀ (f fi fo : Freq)

(ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt)

,
HBoxSSORaw → Prop.

374

Definition HBoxSSO(f fi fo : Freq)

(ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
:=
sig (HBoxSSOPred f fi fo ttmfIn ttmfOut).

Definition HBoxStepPred(f fmi fmo : Freq)
(t : TTime f)
(ti : TTime fmi)(to : TTime fmo)
(ttmfIn :)
(ttmfOut :)
(memvarmap : InMemModBox.otm.t ipm.Varid)
(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttmfIn’ :)
(ttmfOut’ :)

:
HBoxSSO f fmi fmo (ttmfIn) (ttmfOut) →
InMemModBox.MDatBoxTime MDataInst.ReadEnabled (ttmfIn’)
fmi ti →
OutMemModBox.MDatBoxTime MDataInst.WriteEnabled (ttmfOut’)
fmo to →
Prop.

Admitted.
Parameter HBoxStep : ∀(f fmi fmo : Freq)

(t : TTime f)
(ti : TTime fmi)(to : TTime fmo)
(ttmfIn :)
(ttmfOut :)
(memvarmap : InMemModBox.otm.t ipm.Varid)
(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttmfIn’ :)
(ttmfOut’ :)
(hbox : HBoxSSO f fmi fmo ttmfIn ttmfOut)
(inp : InMemModBox.MDatBoxTime MDataInst.ReadEnabled (ttmfIn’) fmi ti),
sig (HBoxStepPred f fmi fmo t ti to

ttmfIn ttmfOut memvarmap varmemmap ttmfIn’ ttmfOut’
hbox inp).

Record HBoxSSONonDep : Type := {
HBoxSSONonDep f : Freq;
HBoxSSONonDep fi : Freq;
HBoxSSONonDep fo : Freq;

HBoxSSONonDep ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt
;

HBoxSSONonDep ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt
;

HBoxSSONonDep HBoxSSO : HBoxSSO HBoxSSONonDep f HBoxSSONonDep fi
HBoxSSONonDep fo HBoxSSONonDep ttmfIn
HBoxSSONonDep ttmfOut

}.
End HBox.

D.1.8 The coordination language

Listing D.8: The coordination language

Module Type MemDataTypeInstType (ipm : IdPreds)(Import opm : OidPreds)
(Import uts : UTypeSys)
(Import UTSOidParam : UTypeSysOid uts opm)
(Import HTSparam : HTypeSys uts opm UTSOidParam)

375

(Import mDataType : MDataType ipm opm uts UTSOidParam HTSparam).
Record MDatFreqElt : Type := {

MDFE boxMemDat : MDatBoxFreqEltBase;
MDFE visible : bool

}.
End MemDataTypeInstType.
Module MemDataTypeInst (ipm : IdPreds)(opm : OidPreds)

(uts : UTypeSys)
(UTSOidParam : UTypeSysOid uts opm)
(HTSparam : HTypeSys uts opm UTSOidParam)
(mDataType : MDataType ipm opm uts UTSOidParam HTSparam) <:
MemDataTypeInstType ipm opm uts UTSOidParam HTSparam mDataType.
Record MDatFreqElt : Type := {

MDFE boxMemDat : mDataType.MDatBoxFreqEltBase;
MDFE visible : bool

}.
End MemDataTypeInst.
Module Type MemModInst (ipm : IdPreds)

(Import opm : OidPreds)
(Import uts : UTypeSys)(Import UTSOidParam : UTypeSysOid uts opm)
(Import HTSparam : HTypeSys uts opm UTSOidParam)
(ott : OidPredType opm.oids)
(ot : OidsPred opm.oids ott)
(Import mDataType : MDataType ipm opm uts UTSOidParam HTSparam)
(Import mDataInstType :

MemDataTypeInstType ipm opm uts UTSOidParam HTSparam mDataType)
(Import memBoxes : MemModBox ipm opm uts UTSOidParam HTSparam ott ot mDataType

).

Definition MDatFreqMapRaw := otm.t (MDatFreqElt).

Parameter RawFreqMapPred : ∀(f : Freq)(mf : MDatFreqMapRaw), Prop.
Definition MDatFreqMap(f : Freq) := sig (RawFreqMapPred f).
Parameter MDatFreqMapIOPred : ∀ (f : Freq)(mdf : MDatFreqMap f),
Prop.

Definition MDatFreqMapIO(f : Freq) := sig (MDatFreqMapIOPred f).

Parameter MDatFreqMapElt seq : MDatFreqElt → MDatFreqElt → Prop.
Definition MDatFreqMapEltOpt seq(o1 : option (MDatFreqElt))

(o2 : option (MDatFreqElt)) :=
match o1, o2 with
| Some mdf1, Some mdf2 ⇒ MDatFreqMapElt seq mdf1 mdf2
| , ⇒ False

end.
Parameter MDatMapFreqTimePred : ∀ (f : Freq)

(mf :
MDatFreqMap f), MDatTimeMapRaw → Prop.

Definition MDatMapTime(f : Freq)
(mf : MDatFreqMap f) :=

sig (MDatMapFreqTimePred f mf).
Parameter MDatMapModeReadPred

: ∀ (f : Freq) (t : TTime f) (mf : MDatFreqMap f),
MDatMapTime f mf → Prop.

Parameter MDatMapModeWritePred
: ∀ (f : Freq) (t : TTime f) (mf : MDatFreqMap f),

MDatMapTime f mf → Prop.
End MemModInst.

Module Type Coord (Import ipm : IdPreds)
(Import opm : OidPreds)(Import uts : UTypeSys)
(Import uc : UCost uts)(Import UTSOidParam : UTypeSysOid uts opm)
(Import ubox : UBox ipm opm uts UTSOidParam uc)
(Import HTSparam : HTypeSys uts opm UTSOidParam)

376

(Import hbox : HBox ipm opm uts uc UTSOidParam ubox HTSparam).
Parameter CoordAST : Set.
Parameter parse : Encoding → CoordAST.
Module MDataTypeInst <:

MemDataTypeInstType
ipm opm uts
UTSOidParam HTSparam MDataInst :=
MemDataTypeInst ipm opm uts
UTSOidParam HTSparam MDataInst.

Module SF MemModInst(ott : OidPredType opm.oids)
(ot : OidsPred opm.oids ott)
(memBoxes : MemModBox ipm opm uts

UTSOidParam HTSparam ott ot MDataInst
) <:

MemModInst ipm opm uts
UTSOidParam HTSparam ott ot MDataInst MDataTypeInst memBoxes.

Definition MDatFreqMapRaw := memBoxes.otm.t (MDataTypeInst.MDatFreqElt).

Definition RawFreqMapPred(f : Freq)(mf : MDatFreqMapRaw) : Prop.
Admitted.

Definition MDatFreqMap(f : Freq) := sig (RawFreqMapPred f).
Definition MDatFreqMapIOPred(f : Freq)(mdf : MDatFreqMap f) :
Prop.

Admitted.
Definition MDatFreqMapIO(f : Freq) := sig (MDatFreqMapIOPred f).

Definition MDatFreqMapElt seq : MDataTypeInst.MDatFreqElt →
MDataTypeInst.MDatFreqElt → Prop.

Admitted.
Definition MDatFreqMapEltOpt seq(o1 : option (MDataTypeInst.MDatFreqElt))

(o2 : option (MDataTypeInst.MDatFreqElt)) :=
match o1, o2 with
| Some mdf1, Some mdf2 ⇒ MDatFreqMapElt seq mdf1 mdf2
| , ⇒ False

end.
Definition MDatMapFreqTimePred : ∀ f : Freq,
∀ mf :
MDatFreqMap f , memBoxes.MDatTimeMapRaw → Prop.

Admitted.
Definition MDatMapTime(f : Freq)

(mf : MDatFreqMap f) := sig (MDatMapFreqTimePred f mf).
Print MDataTypeInst.MDatFreqElt.
Print MDataInst.MDatBoxFreqEltBase.
Print MDataInst.MDatTimeElt.

Definition MDatMapModeReadPred(f : Freq)
(t : TTime f)(mf : MDatFreqMap f)(mt : MDatMapTime f mf) :=
(∀ oid : (sig ott.Pred), memBoxes.otm.In oid (proj1 sig mt)) ∧
∀ (oid : (sig ott.Pred))(tme : MDataInst.MDatTimeElt),

memBoxes.otm.MapsTo oid tme (proj1 sig mt) →
∃ mfe, memBoxes.otm.MapsTo oid mfe (‘mf) ∧
∃ t’, ∃ t”, TTseq t t’ ∧ TTseq t t” ∧

MDataInst.MemDatListPred MDataInst.ReadEnabled
(MDataTypeInst.MDFE boxMemDat mfe) t’ t” tme.

Definition MDatMapModeWritePred(f : Freq)
(t : TTime f)(mf : MDatFreqMap f)(mt : MDatMapTime f mf) :=
(∀ oid : (sig ott.Pred), memBoxes.otm.In oid (proj1 sig mt)) ∧
∀ (oid : (sig ott.Pred))(tme : MDataInst.MDatTimeElt),

memBoxes.otm.MapsTo oid tme (proj1 sig mt) →
∃ mfe, memBoxes.otm.MapsTo oid mfe (‘mf) ∧
∃ t’, ∃ t”, TTseq t t’ ∧ TTseq t t” ∧

MDataInst.MemDatListPred MDataInst.WriteEnabled
(MDataTypeInst.MDFE boxMemDat mfe) t’ t” tme.

377

End SF MemModInst.
Module InMemModInst : MemModInst ipm opm uts

UTSOidParam HTSparam
oidMemFBPredType oidMemFBPred MDataInst MDataTypeInst InMemModBox :=
SF MemModInst oidMemFBPredType oidMemFBPred InMemModBox.

Module OutMemModInst : MemModInst ipm opm uts

UTSOidParam HTSparam
oidMemBFPredType oidMemBFPred MDataInst MDataTypeInst OutMemModBox :=
SF MemModInst oidMemBFPredType oidMemBFPred OutMemModBox.

Record LInstSignatureRaw : Type := {
InstSigFreqMemIn : Freq;
InstSigFreqMemOut : Freq;
InstSigInputMems : InMemModInst.MDatFreqMapIO InstSigFreqMemIn;
InstSigOutputMems : OutMemModInst.MDatFreqMapIO InstSigFreqMemOut

}.
Definition LInstSignature(f : Freq) :=
{ lisr : LInstSignatureRaw |

FreqDivide (InstSigFreqMemIn lisr) f ∧
FreqDivide (InstSigFreqMemOut lisr) f

}.
Inductive LInstSSORaw : Type :=

LInstSSORaw make(fmi fmo fmil fmol fmin fmon fl fn f : Freq) :

InMemModInst.MDatFreqMap fmil →
OutMemModInst.MDatFreqMap fmol →
InMemModInst.MDatFreqMap fmin →
OutMemModInst.MDatFreqMap fmon →
BoxTypeIdMapMod.t
(HBoxSSONonDep × (InMemModBox.otm.t Varid)
× (VaridMapMod.t opm.HBCL OidMemBF)) →

InMemModBox.otm.t (HBCL OidMemFB) →
OutMemModBox.otm.t (HBCL OidMemBF) →
VaridMapMod.t (HBCL OidMemBF × HBCL OidMemFB) →

LInstMapMod.Raw.t
(LInstSSORaw) →

LInstMapMod.t HBCL OidLInst →
LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw) →

LLibMapMod.Raw.t (LibSSORaw) →
LInstMapMod.t TTFL →

LLibMapMod.t (LInstMapMod.t LInstSignatureRaw) →

LInstSSORaw

with LibSSORaw : Type :=
LLibSSORaw make :

VaridMapMod.t (sigTD T) →
VaridMapMod.t (sigTT TimedT) →
LInstMapMod.Raw.t (LInstSSORaw) →

LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw) →

LLibMapMod.Raw.t (LibSSORaw) →
LLibMapMod.t (LInstMapMod.t LInstSignatureRaw) →

LibSSORaw .
Module opmModLInstLCM :=

MapLCM oidLInstPred.PredoidDecidable opm.LInstMapMod.
Definition FMapLCMQualLInst(f : Freq) := sig (opmModLInstLCM.FreqIsLCMMap f).

378

Definition HBoxMapPredF(f : Freq)(h : BoxTypeIdMapMod.t
(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF))) :=

ipmModBoxidLCM.FreqIsLCMMapFunc HBoxSSONonDep f f
(BoxTypeIdMapMod.map (fun m ⇒ fst (fst m)) h).

Definition HBoxLCMQual(f : Freq) := sig (HBoxMapPredF f).

Inductive LInstSSOPred :
∀ f , LInstSignature f → LInstMapMod.t LInstSignatureRaw →

LInstSSORaw
→ Prop :=
LInstSSO intro

(f fmi fmo fmil fmol fmin fmon fl fn f : Freq)

(hboxSSO : sigT HBoxLCMQual)
(obsMap : InMemModBox.otm.t (HBCL OidMemFB))
(manifMap : OutMemModBox.otm.t

(HBCL OidMemBF))
(fifoMap : VaridMapMod.t (HBCL OidMemBF × HBCL OidMemFB))
(instNestMap : LInstMapMod.t (LInstSSORaw))

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)

(instTypeMap : LInstMapMod.t HBCL OidLInst)
(instTShiftMap : LInstMapMod.t TTFL)

(instSigDatMap : LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw))

(libMap : LLibMapMod.t LibSSORaw)
(libmapsigmap : LLibMapMod.t

(LInstMapMod.t LInstSignatureRaw))
(instMemIn : InMemModInst.MDatFreqMapIO fmi)
(instMemOut : OutMemModInst.MDatFreqMapIO fmo)
(instMemInLoc : InMemModInst.MDatFreqMap fmil)
(instMemOutLoc : OutMemModInst.MDatFreqMap fmol)
(instMemInNest : InMemModInst.MDatFreqMap fmin)
(instMemOutNest : OutMemModInst.MDatFreqMap fmon)
(fmnest : sigT FMapLCMQualLInst)
(fmtref : sigT FMapLCMQualLInst):

FreqIsLCMList f (cons fmi (cons fmo (cons (projT1 hboxSSO)
(cons (projT1 fmnest) (cons (projT1 fmtref) nil))))) →

((∀ v, LInstMapMod.In v (proj1 sig (projT2 fmnest)) ↔
LInstMapMod.In v instNestMap) →
(∀ v,
∀ lir, LInstMapMod.MapsTo v lir instNestMap →
∀ f’, LInstMapMod.MapsTo v f’ (proj1 sig (projT2 fmnest)) →
∃ fmi’, ∃ fmo’,
∃ inmems, ∃ outmems, ∃ instTypeScopeMap’,
∃ fsmatch,

LInstSSOPred (f’) (exist (fun lisr ⇒
FreqDivide (InstSigFreqMemIn lisr) f’ ∧
FreqDivide (InstSigFreqMemOut lisr) f’)

(Build LInstSignatureRaw fmi’ fmo’ inmems outmems) fsmatch)
instTypeScopeMap’ (lir))

) →

∀ lisp,
LInstSSOPred (f)
(exist (Build LInstSignatureRaw fmi fmo instMemIn instMemOut) lisp)
instTypeScopeMap (LInstSSORaw make fmi fmo fmil fmol

379

fmin fmon fl fn f
(instMemInLoc) (instMemOutLoc) (instMemInNest) (instMemOutNest)
(proj1 sig (projT2 hboxSSO)) obsMap manifMap fifoMap
(LInstMapMod.this instNestMap) instTypeMap
instSigDatMap
(LLibMapMod.this libMap)

instTShiftMap libmapsigmap)

with LLibSSOPred : LInstMapMod.t LInstSignatureRaw → LibSSORaw → Prop :=
LLibSSO intro
(libsig : LInstMapMod.t LInstSignatureRaw)
(libenv : LInstMapMod.Raw.t LInstSignatureRaw)
(utypes : VaridMapMod.t (sigTD T))
(ttypes : VaridMapMod.t (sigTT TimedT))
(instMap : LInstMapMod.t LInstSSORaw)

(instSigDatMap : LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw))

(fminst : sigT FMapLCMQualLInst)
(libNestMap : LLibMapMod.t LibSSORaw)
(libmapsigmap :

LLibMapMod.t (LInstMapMod.t LInstSignatureRaw)) :

((∀ v, LInstMapMod.In v (proj1 sig (projT2 fminst)) ↔
LInstMapMod.In v instMap) →
(∀ v,
∀ lir, LInstMapMod.MapsTo v lir instMap →
∀ f’, LInstMapMod.MapsTo v f’ (proj1 sig (projT2 fminst)) →
∃ fmi’, ∃ fmo’,
∃ inmems, ∃ outmems, ∃ instTypeScopeMap,
∃ lisp,

LInstSSOPred (f’)
(exist (Build LInstSignatureRaw fmi’ fmo’ inmems outmems) lisp)
instTypeScopeMap lir)

)
→

((∀ v, VaridMapMod.In v ttypes → VaridMapMod.In v utypes) →
∀ v t u, VaridMapMod.MapsTo v t ttypes →
VaridMapMod.MapsTo v u utypes → UTSOidParam.TEq u (projTT3 t)) →

LLibSSOPred libsig (LLibSSORaw make utypes ttypes
(LInstMapMod.this instMap) instSigDatMap
(LLibMapMod.this libNestMap) libmapsigmap).

Definition LInstSSO(f : Freq)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)

:=
sig (LInstSSOPred (f)

linstsig instTypeScopeMap).
Definition LLibSSO(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=

sig (LLibSSOPred instTypeScopeMap).
Inductive LissoLibPred : ∀

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw),
LLibMapMod.t (sigT LLibSSO) → Prop :=.

Definition LissoLibDep(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=
sig (LissoLibPred instTypeScopeMap).

Definition LibClosRaw :=
list ((LInstMapMod.t LInstSignatureRaw) × (sigT LissoLibDep)).

Inductive LibClosPred :
LInstMapMod.t LInstSignatureRaw → LibClosRaw → Prop :=.

Definition LibClos(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=
sig (LibClosPred instTypeScopeMap).

Definition Lisso(f : Freq)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissoLibMap : LibClos instTypeScopeMap) :=

380

LInstSSO f linstsig instTypeScopeMap.
Inductive CoordStateRaw : Type :=
| CoordStateRaw make :

InMemModBox.MDatTimeMapRaw → OutMemModBox.MDatTimeMapRaw
→
LInstMapModRaw.t (CoordStateRaw) → CoordStateRaw.

Inductive CoordStateStaticPred(f : Freq)

(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)

(lisso : Lisso f linstsig instTypeScopeMap lissolib)

:
CoordStateRaw → Prop :=

| CoordStatePred intro(f’ fl fn fmi’ fmo’ : Freq)
(mfi’ : InMemModInst.MDatFreqMap fmi’)
(mfo’ : OutMemModInst.MDatFreqMap fmo’)
(mfiTrace’ : InMemModInst.MDatMapTime fmi’ mfi’)
(mfoTrace’ : OutMemModInst.MDatMapTime fmo’ mfo’)
(nestCSR : LInstMapMod.t (CoordStateRaw)) :

CoordStateStaticPred f linstsig instTypeScopeMap
lissolib lisso
(CoordStateRaw make

(‘mfiTrace’) (‘mfoTrace’)
(LInstMapMod.this nestCSR)).

Inductive CoordStateBoxesEnabled(f : Freq)
(t : TTime f)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateMemBFEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateInnerFIFOsEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateInnerMemFBEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=.

Definition CoordStateOuterFIFOsEnabled := CoordStateBoxesEnabled.

381

Definition CoordStateOuterMemFBEnabled := CoordStateInnerMemFBEnabled.
Record CSTempCorrectND
: Type := {

CSTempCorrectND f : Freq;
CSTempCorrectND t : TTime CSTempCorrectND f ;
CSTempCorrectND linstsig : LInstSignature CSTempCorrectND f ;
CSTempCorrectND instTypeScopeMap : LInstMapMod.t LInstSignatureRaw;
CSTempCorrectND lissolib : LibClos CSTempCorrectND instTypeScopeMap;
CSTempCorrectND lisso : Lisso CSTempCorrectND f

CSTempCorrectND linstsig
CSTempCorrectND instTypeScopeMap
CSTempCorrectND lissolib;

CSTempCorrectND CS :
sig (CoordStateStaticPred CSTempCorrectND f

CSTempCorrectND linstsig
CSTempCorrectND instTypeScopeMap CSTempCorrectND lissolib
CSTempCorrectND lisso)

}.
Definition InstMapMatchSSO(f fn : Freq)(linstsig : LInstSignature f)

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(csTemporalPred : ∀ f : Freq,

TTime f →
∀ (linstsig : LInstSignature f)

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib),

sig
(CoordStateStaticPred f linstsig instTypeScopeMap

lissolib lisso) → Prop)
(nestCSR : LInstMapMod.t (

(CSTempCorrectND))) : Prop.
Admitted.

Inductive InstBoxesNestPred
(f fn : Freq)(t : TTime f)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)

(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateInnerFIFOsEnabled))

(nestCSR’ : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateOuterFIFOsEnabled))

(traceEnab : ∀ (f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(cstate :

sig (CoordStateBoxesEnabled
f t linstsig instTypeScopeMap lissolib lisso))

,
Type) : Prop :=.

Definition isNextTimeStep(f : Freq)(t t’ : TTime f) :=
TTseq (tNext f t) t’.

Module BoxesStep .

Inductive StepSSOPred(f fmi fmo : Freq)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(ndmap : BoxTypeIdMapMod.t

(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF))) : Prop :=

382

| StepSSO intro :

StepSSOPred f fmi fmo mfi mfo ndmap.
Definition StepSSO(f fmi fmo : Freq)

(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
:= sig (StepSSOPred f fmi fmo mfi mfo).

Definition StepPred(f fmi fmo : Freq)
(t t’ : TTime f)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)
(mfo : OutMemModInst.MDatFreqMap fmo) :
StepSSO f fmi fmo mfi mfo →
isNextTimeStep f t t’ →
sig (InMemModInst.MDatMapModeReadPred ti mfi) →

sig (OutMemModInst.MDatMapModeWritePred to mfo) →

Prop.
Admitted.

End BoxesStep.
CoInductive TraceBoxesEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀

(cstate : sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap
lissolib lisso))

,
Type :=

| TraceBoxesStep (fl fn : Freq)(fmti fmto : Freq)
(tfl tfl’ : TTime fl)
(t’ : TTime f)(ti’ : TTime (InstSigFreqMemIn (‘linstsig)))
(tti tti’ : TTime fmti)(tto tto’ : TTime fmto)
(mfti : InMemModInst.MDatFreqMap fmti)
(mfto : OutMemModInst.MDatFreqMap fmto)
(bssso : BoxesStep.StepSSO fl fmti fmto mfti mfto)
(mftiState : InMemModInst.MDatMapTime fmti mfti)
(mftoState : OutMemModInst.MDatMapTime fmto mfto)
(mftiState’ : InMemModInst.MDatMapTime fmti mfti)
(mftoState’ : OutMemModInst.MDatMapTime fmto mfto)
(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso
CoordStateInnerFIFOsEnabled))

(nestCSR’ : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateOuterFIFOsEnabled))

(prfnxtim : isNextTimeStep fl tfl tfl’)
(bsteppre :

InMemModInst.MDatMapModeReadPred tti mfti mftiState)

(bsteppost :
OutMemModInst.MDatMapModeWritePred tto mfto mftoState)

(cstate :
sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap lissolib lisso))

(cstateNext :
sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib lisso))

:

BoxesStep.StepPred fl fmti fmto tfl tfl’ tti tti’ tto tto’

383

mfti mfto bssso prfnxtim
(exist bsteppre)
(exist bsteppost)

→
(InstBoxesNestPred f fn t linstsig instTypeScopeMap lissolib lisso

nestCSR nestCSR’ TraceBoxesEnab) →
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext
→
TraceBoxesEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceMemBFEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀
(cstate : sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap

lissolib lisso))
,
Type :=

| TraceMemBFStep

(cstate :
sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib lisso))

(cstateNext :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib

lisso)) :
TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext
→
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceFIFOsEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀

(cstate :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib

lisso))
,
Type
:=

| TraceFIFOsStep
(cstate :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib
lisso))

(cstateNext :
sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib

lisso))
:

TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext →
TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstate
| TraceFIFOsFinal (cstate :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib
lisso))

: OutMemModInst.MDatMapTime (‘ (InstSigOutputMems (‘linstsig))) →
TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceMemFBEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)

384

(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀
(cstate :

sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib
lisso))

,
Type :=
| TraceMemFBStepSkipIO
(cstate :

sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib
lisso))

(cstateNext :
sig (CoordStateBoxesEnabled f (tNext f t) linstsig instTypeScopeMap

lissolib lisso))
:
TraceBoxesEnab f (tNext t) linstsig instTypeScopeMap lissolib lisso
cstateNext →
TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso cstate.

Module LInstMapModWPties :=
FMapFacts.WProperties fun opm.oidLInstPred.PredoidDecidable
LInstMapMod.

Definition StatSemObj := sigTQ Lisso.
Module InMemBoxWPties :=

FMapFacts.WProperties fun opm.oidMemFBPred.PredoidDecidable
InMemModBox.otm.

Module OutMemBoxWPties :=
FMapFacts.WProperties fun opm.oidMemBFPred.PredoidDecidable
OutMemModBox.otm.

Lemma inclReflBoxid : ∀ elt m,
SetoidList.inclA (@BoxTypeIdMapMod.eq key elt elt) m m.

CoInductive InputStream(f : Freq)(mfi : InMemModInst.MDatFreqMapIO f)
(t : TTime f) : Type :=
| InputStreamFinal :

InputStream f mfi t
| InputStreamInd(tnext : TTime f) :

TTseq (tNext f t) tnext →
sig (InMemModInst.MDatMapModeReadPred f t (‘mfi)) →
InputStream f mfi tnext → InputStream f mfi t.

End Coord.

D.2 Correspondenceof coordination languageoperational
semantics with Coq code

Rule Type-theoretical
operational semantic
form

Coq form

FIFO step and entry point Rule C.133 Listing D.18

FIFO-box memory step Rule C.134 Listing D.20

Box step top level Rule C.135 Listing D.21

385

Rule Type-theoretical
operational semantic
form

Coq form

Box step local Rule C.136 Listing D.22

Box-FIFO memory step Rule C.141 Listing D.24

Nested box step Rule C.139 Listing D.25

Table D.1: Coordination language formalization correspon-
dence

D.3 Correspondence of expression language operational
semantics with Coq code

Rule Type-theoretical
operational semantic
form

Coq form

Function invocation Rule C.143 Listing D.36

Expression reduction Rule C.148, rule C.149,
and rule C.150

The three branches of
‘reduce’ in Listing D.37

Expression pattern
application

Rule C.151 Listing D.33

Expression tuple
construction

Rule C.156 Listing D.34

Expression record
construction

Rule C.157 Listing D.35

Table D.2: Expression language formalization correspon-
dence

D.4 Module instantiations

D.4.1 The ID implementation

Listing D.9: ID implementation
Require Import HBCL.HBCL 0 1.ModSignatures.Ids.
Require Import Coq.Structures.Equalities.
Require Import Coq.Bool.Bool.
Require Import Coq.Lists.List.
Require Import HBCL.Util.FMapRawIface.
Module HBCL 0 1 Id S <: IdPreds.

386

Module ids <: Ids.
Require Import Coq.Strings.Ascii.
Require Import Coq.Strings.String.
Module Ascii as MDT : MiniDecidableType with Definition t := ascii.

Definition t := ascii.
Definition eq dec := ascii dec.

End Ascii as MDT.
Module Ascii as UDT : UsualDecidableTypeBoth with Definition t := ascii :=

Make UDT Ascii as MDT.
Module Ascii as HEB : HasEqBool Ascii as UDT :=

HasEqDec2Bool Ascii as UDT Ascii as UDT.
Module AsciiDecidable : UsualDecidableTypeFull with Definition t := ascii :=

Ascii as UDT <+ Ascii as HEB.
Module String as MDT : MiniDecidableType with Definition t := string.

Definition t := string.
Definition eq dec := string dec.

End String as MDT.
Module String as UDT : UsualDecidableTypeBoth with Definition t := string :=

Make UDT String as MDT.
Module String as HEB : HasEqBool String as UDT :=

HasEqDec2Bool String as UDT String as UDT.
Module StringDecidable : UsualDecidableTypeFull with Definition t :=

string := String as UDT <+ String as HEB.
Require Import Coq.NArith.BinNat.
Require Import Coq.NArith.NOrderedType.
Require Import Coq.Structures.Orders.
Module N as OTF := OT to Full N as OT.
Module N as TTLB := OTF to TTLB (N as OTF).
Notation nOTF le := N as OTF.le.
Local Open Scope N scope.
Inductive isLetterN(na : N) : Prop :=
| isLetterUC : nOTF le 65 na ∧ nOTF le na 90 → isLetterN na
| isLetterLC : nOTF le 97 na ∧ nOTF le na 122 → isLetterN na.
Local Close Scope N scope.
Definition isLetter(a : ascii) : Prop := isLetterN (N of ascii a).
Definition isLetterBool(a : ascii) : bool :=

let na := N of ascii a in
(N as TTLB.leb 65 na && N as TTLB.leb na 90 ||

N as TTLB.leb 97 na && N as TTLB.leb na 122)%N.
Lemma isLetterCorrect : ∀(a : ascii),

isLetterBool a = true ↔ isLetter a.
Definition IdLocalPred(s : string) : Prop :=

match s with
| String a ⇒ isLetter a
| EmptyString ⇒ False

end.
Definition Id := sig IdLocalPred.
Require Import HBCL.Util.SigModuleFunctors.
Module idBaseSigPred <: SigPred StringDecidable

with Definition p := IdLocalPred.
Definition p := IdLocalPred.

End idBaseSigPred.
Module IdDecidable <: DecidableTypeSigF String as MDT

idBaseSigPred StringDecidable
:= MakeDTSFFromDT StringDecidable idBaseSigPred StringDecidable.

Theorem predDecRelPirrel : ∀ x y p q,
StringDecidable.eq x y →
IdDecidable.eq (exist idBaseSigPred.p x p) (exist idBaseSigPred.p y q).

End ids.

387

Module IdsPred(idpmod : IdPredType ids) : IdsPred ids idpmod.
Require Import Equalities.
Require Import HBCL.Util.SigModuleFunctors.
Import ids.
Definition PredID := sig idpmod.Pred.
Module idTyp : Typ with Definition t := Id.

Definition t := Id.
End idTyp.
Module idSigPred <: SigPred idTyp with Definition p := idpmod.Pred.

Definition p := idpmod.Pred.
End idSigPred.
Module PredidDecidable <: DecidableTypeSigF idTyp idSigPred ids.IdDecidable

:= MakeDTSFFromDT idTyp idSigPred ids.IdDecidable.
Theorem IdPredRelPirrel : ∀ x y p q,

ids.IdDecidable.eq x y →
PredidDecidable.eq (exist idSigPred.p x p) (exist idSigPred.p y q).

End IdsPred.
Module varidPredType <: VaridPredType ids.
Import ids.
Definition Pred := fun (: Id) ⇒ True.

End varidPredType.
Module varidPred <: Varid ids varidPredType := IdsPred varidPredType.
Module typidPredType <: TypidPredType ids.
Import ids.
Definition Pred := fun (: Id) ⇒ True.

End typidPredType.
Module typidPred <: Typid ids typidPredType := IdsPred typidPredType.
Module boxidPredType <: BoxidPredType ids.
Import ids.
Definition Pred := fun (: Id) ⇒ True.

End boxidPredType.
Module boxidPred <: Boxid ids boxidPredType := IdsPred boxidPredType.
Definition Varid := varidPred.PredID.
Definition Typid := typidPred.PredID.
Definition Boxid := boxidPred.PredID.
Require Coq.FSets.FMapInterface.
Require Coq.FSets.FMapWeakList.
Require Coq.Structures.DecidableType.
Module VaridMapModComplete <:

FMapInterface.WSfun varidPred.PredidDecidable
:=

FMapWeakList.Make varidPred.PredidDecidable.
Module VaridMapModRaw <: FMapIfaceRaw varidPred.PredidDecidable
with Definition t := fun elt ⇒ list (Varid × elt)

:=
VaridMapModComplete.Raw.

Module VaridMapModPred <: FMapModDatImplPred varidPred.PredidDecidable
VaridMapModRaw.

Definition NoDupType : ∀ elt,
VaridMapModRaw.t elt → Prop := fun elt ⇒

SetoidList.NoDupA (@VaridMapModRaw.PX.eqk elt).
End VaridMapModPred.

Module VaridMapMod <:
FMapIfaceRF varidPred.PredidDecidable
VaridMapModRaw VaridMapModPred with Definition key := Varid
with Module Raw := VaridMapModRaw.

Include VaridMapModComplete.
Definition Build t := Build slist.

388

End VaridMapMod.
End HBCL 0 1 Id S.

D.4.2 The OID implementation

Listing D.10: OID implementation
Require Import HBCL.HBCL 0 1.ModSignatures.Oids.
Require Import Coq.NArith.BinNat.
Require Import Coq.Structures.Equalities.
Require Coq.FSets.FMapInterface.
Require Coq.FSets.FMapWeakList.
Require Import Coq.Strings.Ascii.
Require Import Coq.Strings.String.
Definition N := string.
Require Import Coq.Lists.List.
Require Import HBCL.Util.SigModuleFunctors.
Require Import HBCL.Util.FMapRawIface.
Module HBCL 0 1 Oid S <: OidPreds with Definition oids.Oid := list N.

Module oids : Oids with Definition Oid := list N.
Definition Oid := list N.
Lemma oid dec : ∀ x y : Oid, {x = y} + {x ≠ y}.
Module OID as MDT : MiniDecidableType with Definition t := Oid.

Definition t := Oid.
Definition eq dec := oid dec.

End OID as MDT.
Module OID as UDT : UsualDecidableTypeBoth with Definition t := Oid :=

Make UDT OID as MDT.
Module OID as HEB : HasEqBool OID as UDT :=

HasEqDec2Bool OID as UDT OID as UDT.
Module OidDecidable : DecidableTypeFull with Definition t := Oid :=

OID as UDT <+ OID as HEB.
Definition OidLength(o : Oid) := length o.

End oids.
Module String as MDT : MiniDecidableType with Definition t := string.

Definition t := string.
Definition eq dec := string dec.

End String as MDT.
Module String as UDT : UsualDecidableTypeBoth with Definition t := string :=

Make UDT String as MDT.
Module String as HEB : HasEqBool String as UDT :=

HasEqDec2Bool String as UDT String as UDT.
Module StringDecidable : DecidableTypeFull with Definition t := string :=

String as UDT <+ String as HEB.
Module Type OidPredPrefix.

Parameter HBCL Oid Prefix : N.
End OidPredPrefix.
Module Type OidPredTypeBaseType

(Import oidmod : Oids with Definition Oid := list N).
Parameter HBCL OidRootArc : Oid.
Parameter HBCL Esc Tok : N.

End OidPredTypeBaseType.
Module Type OidPredTypeFuncRootType

(Import oidmod : Oids with Definition Oid := list N)

389

(Import bt : OidPredTypeBaseType oidmod).
Definition Pred(o : Oid) :=
∃ append, OidDecidable.eq o (append ++ HBCL OidRootArc).

End OidPredTypeFuncRootType.
Module Type OidPredTypeFuncStemType

(Import oidmod : Oids with Definition Oid := list N)
(opstem : OidPredType oidmod)
(Import bt : OidPredTypeBaseType oidmod)
(oppfix : OidPredPrefix)
(optfr : OidPredTypeFuncRootType oidmod bt)
<: OidPredType oidmod.
Inductive PredStem : Oid → Prop :=
| PredStemRoot(append : Oid) :

PredStem (append ++ oppfix.HBCL Oid Prefix :: HBCL OidRootArc)
| PredStemNonRoot(stem append : Oid) : opstem.Pred stem →

PredStem (append ++ oppfix.HBCL Oid Prefix :: HBCL Esc Tok :: stem).
Definition Pred(o : Oid) := optfr.Pred o ∧ PredStem o.

End OidPredTypeFuncStemType.
Module Type OidPredTypeFuncStemExtTermType

(Import oidmod : Oids with Definition Oid := list N)
(opstem : OidPredType oidmod)
(Import bt : OidPredTypeBaseType oidmod)
(oppfix : OidPredPrefix)
(optfr : OidPredTypeFuncRootType oidmod bt)

<: OidPredType oidmod.
Inductive PredStem : Oid → Prop :=
| PredStemRoot(append : N) :

PredStem (append :: oppfix.HBCL Oid Prefix :: HBCL OidRootArc)
| PredStemNonRoot(stem : Oid)(append : N) : opstem.Pred stem →

PredStem (append :: oppfix.HBCL Oid Prefix :: HBCL Esc Tok :: stem).
Definition Pred(o : Oid) := optfr.Pred o ∧ PredStem o.

End OidPredTypeFuncStemExtTermType.
Module OidPredTypeRootBase

(Import oidmod : Oids with Definition Oid := list N)
<: OidPredTypeBaseType oidmod.
Definition HBCL OidRootArc : Oid := nil.
Definition HBCL Esc Tok := (”ESC”)%string.

End OidPredTypeRootBase.
Module OidPredTypeFuncRoot

(Import oidmod : Oids with Definition Oid := list N)
(Import bt : OidPredTypeBaseType oidmod)
<: OidPredTypeFuncRootType oidmod bt.
Definition Pred(o : Oid) :=
∃ append, OidDecidable.eq o (append ++ HBCL OidRootArc).

End OidPredTypeFuncRoot.
Module OidPredTypeFuncStem

(Import oidmod : Oids with Definition Oid := list N)
(opstem : OidPredType oidmod)
(Import bt : OidPredTypeBaseType oidmod)
(oppfix : OidPredPrefix)
(optfr : OidPredTypeFuncRootType oidmod bt)
<: OidPredTypeFuncStemType oidmod opstem bt oppfix optfr.
Inductive PredStem : Oid → Prop :=
| PredStemRoot(append : Oid) :

PredStem (append ++ oppfix.HBCL Oid Prefix :: HBCL OidRootArc)
| PredStemNonRoot(stem append : Oid) : opstem.Pred stem →

PredStem (append ++ oppfix.HBCL Oid Prefix :: HBCL Esc Tok :: stem).
Definition Pred(o : Oid) := optfr.Pred o ∧ PredStem o.
Theorem PredImplPredRoot : ∀ o, Pred o → optfr.Pred o.

390

End OidPredTypeFuncStem.
Module OidPredTypeFuncStemExtTerm

(Import oidmod : Oids with Definition Oid := list N)
(opstem : OidPredType oidmod)
(Import bt : OidPredTypeBaseType oidmod)
(optfr : OidPredTypeFuncRootType oidmod bt)
(oppfix : OidPredPrefix)

<: OidPredTypeFuncStemExtTermType oidmod opstem bt oppfix optfr .
Inductive PredStem : Oid → Prop :=
| PredStemRoot(append : N) :

PredStem (append :: oppfix.HBCL Oid Prefix :: HBCL OidRootArc)
| PredStemNonRoot(stem : Oid)(append : N) : opstem.Pred stem →

PredStem (append :: oppfix.HBCL Oid Prefix :: HBCL Esc Tok :: stem).
Definition Pred(o : Oid) := optfr.Pred o ∧ PredStem o.

End OidPredTypeFuncStemExtTerm.
Module HBCL 0 1 OidsPred

(oidpmod : OidPredType oids) : OidsPred oids oidpmod.
Import oids.
Definition PredOid := sig oidpmod.Pred.
Module oidTyp : Typ with Definition t := Oid.

Definition t := Oid.
End oidTyp.
Module oidSigPred : SigPred oidTyp with Definition p := oidpmod.Pred.

Definition p := oidpmod.Pred.
End oidSigPred.
Module PredoidDecidable : DecidableTypeFull

with Definition t := sig oidpmod.Pred
:= MakeDTSFFromDT oidTyp oidSigPred oids.OidDecidable.

End HBCL 0 1 OidsPred.
Module oidLLibPrefix <: OidPredPrefix.

Definition HBCL Oid Prefix := (”LLib”)%string.
End oidLLibPrefix.
Module OidPredTypeRootBaseConc <: OidPredTypeBaseType oids :=

OidPredTypeRootBase oids.
Module OidPredTypeRootConc <: OidPredTypeFuncRootType oids

OidPredTypeRootBaseConc :=
OidPredTypeFuncRoot oids OidPredTypeRootBaseConc.

Module oidLLibPredType <: OidLLibPredType oids :=
OidPredTypeFuncStem oids OidPredTypeRootConc OidPredTypeRootBaseConc
oidLLibPrefix OidPredTypeRootConc.

Module oidLLibPred : OidLLibPred oids oidLLibPredType :=
HBCL 0 1 OidsPred oidLLibPredType.

Module oidUTPrefix <: OidPredPrefix.
Definition HBCL Oid Prefix := (”UT”)%string.

End oidUTPrefix.
Module oidUTPredType <: OidUTPredType oids :=

OidPredTypeFuncStemExtTerm oids oidLLibPredType OidPredTypeRootBaseConc
OidPredTypeRootConc oidUTPrefix.

Module oidUTPred : OidUTPred oids oidUTPredType :=
HBCL 0 1 OidsPred oidUTPredType.

Module oidTTPrefix <: OidPredPrefix.
Definition HBCL Oid Prefix := (”TT”)%string.

End oidTTPrefix.
Module oidTTPredType <: OidTTPredType oids :=

OidPredTypeFuncStemExtTerm oids oidLLibPredType OidPredTypeRootBaseConc
OidPredTypeRootConc oidTTPrefix.

Module oidTTPred : OidTTPred oids oidTTPredType :=

391

HBCL 0 1 OidsPred oidTTPredType.
Module oidLInstPrefix <: OidPredPrefix.
Definition HBCL Oid Prefix := (”LInst”)%string.

End oidLInstPrefix.
Module oidLInstPredType <: OidLInstPredType oids :=

OidPredTypeFuncStem oids oidLLibPredType OidPredTypeRootBaseConc
oidLInstPrefix OidPredTypeRootConc.

Module oidLInstPred : OidLInstPred oids oidLInstPredType :=
HBCL 0 1 OidsPred oidLInstPredType.

Module oidMemBFPrefix <: OidPredPrefix.
Definition HBCL Oid Prefix := (”MemBF”)%string.

End oidMemBFPrefix.
Module oidMemBFPredType <: OidMemBFPredType oids :=

OidPredTypeFuncStemExtTerm oids oidLInstPredType OidPredTypeRootBaseConc
OidPredTypeRootConc oidMemBFPrefix.

Module oidMemBFPred : OidMemBFPred oids oidMemBFPredType :=
HBCL 0 1 OidsPred oidMemBFPredType.

Module oidMemFBPrefix <: OidPredPrefix.
Definition HBCL Oid Prefix := (”MemFB”)%string.

End oidMemFBPrefix.
Module oidMemFBPredType <: OidMemFBPredType oids :=

OidPredTypeFuncStemExtTerm oids oidLInstPredType OidPredTypeRootBaseConc
OidPredTypeRootConc oidMemFBPrefix.

Module oidMemFBPred :
OidMemFBPred oids oidMemFBPredType :=
HBCL 0 1 OidsPred oidMemFBPredType.

Definition HBCL OidUT := oidUTPred.PredOid.
Definition HBCL OidTT := oidTTPred.PredOid.
Definition HBCL OidLLib := oidLLibPred.PredOid.
Definition HBCL OidLInst := oidLInstPred.PredOid.
Definition HBCL OidMemBF := oidMemBFPred.PredOid.
Definition HBCL OidMemFB := oidMemFBPred.PredOid.
Module OidMapMod(opt : OidPredType oids)(op : OidsPred oids opt) :=

FMapWeakList.Make op.PredoidDecidable.
Module LInstMapModComplete <:

FMapInterface.WSfun oidLInstPred.PredoidDecidable
:=

FMapWeakList.Make oidLInstPred.PredoidDecidable.
Module LInstMapModRaw <: FMapIfaceRaw oidLInstPred.PredoidDecidable
with Definition t := fun elt ⇒ list (HBCL OidLInst × elt)

:=
LInstMapModComplete.Raw.

Module LInstMapModPred <: FMapModDatImplPred oidLInstPred.PredoidDecidable
LInstMapModRaw.

Definition NoDupType : ∀ elt,
LInstMapModRaw.t elt → Prop := fun elt ⇒

SetoidList.NoDupA (@LInstMapModRaw.PX.eqk elt).
End LInstMapModPred.

Module LInstMapMod <:
FMapIfaceRF oidLInstPred.PredoidDecidable
LInstMapModRaw LInstMapModPred with Definition key := HBCL OidLInst
with Module Raw := LInstMapModRaw.

Include LInstMapModComplete.
Definition Build t := Build slist.

End LInstMapMod.
Module LLibMapModComplete <:

FMapInterface.WSfun oidLLibPred.PredoidDecidable
:=

FMapWeakList.Make oidLLibPred.PredoidDecidable.

392

Module LLibMapModRaw <: FMapIfaceRaw oidLLibPred.PredoidDecidable
with Definition t := fun elt ⇒ list (HBCL OidLLib × elt)

:=
LLibMapModComplete.Raw.

Module LLibMapModPred <: FMapModDatImplPred oidLLibPred.PredoidDecidable
LLibMapModRaw.

Definition NoDupType : ∀ elt,
LLibMapModRaw.t elt → Prop := fun elt ⇒

SetoidList.NoDupA (@LLibMapModRaw.PX.eqk elt).
End LLibMapModPred.

Module LLibMapMod <:
FMapIfaceRF oidLLibPred.PredoidDecidable
LLibMapModRaw LLibMapModPred with Definition key := HBCL OidLLib
with Module Raw := LLibMapModRaw.

Include LLibMapModComplete.
Definition Build t := Build slist.

End LLibMapMod.
Definition cutAfterFirstOmitDiscrim

(A :)(eqbA : A → A → bool)(x : A)(l : list A) :
(list A × list A)
:=
let fix indexOfFirst

(A :)(eqbA : A → A → bool)(x : A)(l : list A) : nat :=
match l with
| e :: l’ ⇒

match eqbA e x with
| true ⇒ O
| false ⇒ S (indexOfFirst eqbA x l’)

end
| nil ⇒ O

end in
let n := indexOfFirst eqbA x l

in (firstn n l, skipn (n + 1) l).
Implicit Arguments cutAfterFirstOmitDiscrim [A].

Definition liblessInst : HBCL OidLInst → Prop.
Admitted.

Definition splitLib(l : HBCL OidLLib) :
HBCL OidLLib + HBCL OidLLib × HBCL OidLLib.

Defined.
Definition concatLibInst(l : HBCL OidLLib)(i : HBCL OidLInst) :

HBCL OidLInst.
Defined.
Definition concatInstMemBF(i : sig liblessInst)(m : HBCL OidMemBF) :

HBCL OidMemBF.
Defined.
Definition concatInstMemFB(i : sig liblessInst)(m : HBCL OidMemFB) :

HBCL OidMemFB.
Defined.

Definition splitLInstOid(i : HBCL OidLInst) :
sig liblessInst + (HBCL OidLLib × HBCL OidLInst).

Defined.
Definition splitLiblessLInstOid(i : sig liblessInst) :

sig liblessInst + (sig liblessInst × sig liblessInst).
Defined.

Definition instLessMemBF : HBCL OidMemBF → Prop.
Admitted.

Definition instLessMemFB : HBCL OidMemFB → Prop.
Admitted.

Definition splitMemBFOid(m : HBCL OidMemBF) :
sig instLessMemBF + (sig liblessInst × HBCL OidMemBF).

Defined.

393

Definition splitMemFBOid(m : HBCL OidMemFB) :
sig instLessMemFB + (sig liblessInst × HBCL OidMemFB).

Defined.
End HBCL 0 1 Oid S.

D.4.3 The bit field type system

Listing D.11: The bit field type system
Require Export HBCL.HBCL 0 1.ModSignatures.UTypeSys.
Require Export HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Module HBCL 0 1 L UTS <: UTypeSys. Require Import Coq.Structures.Equalities.

Require Import Coq.Program.Program.
Require Coq.Lists.SetoidList.
Require Import Coq.Arith.NatOrderedType.
Require Import Coq.Arith.Arith base.
Require Import Coq.Logic.Eqdep dec.
Require Import Coq.Logic.EqdepFacts.
Require Import Coq.Lists.List.
Require Import Coq.Lists.SetoidList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.sigTypes.
Import HBCL 0 1 Id S.
Module VaridMapWFacts :=

FMapFacts.WFacts fun varidPred.PredidDecidable VaridMapMod.
Module VaridMapWPties :=

FMapFacts.WProperties fun varidPred.PredidDecidable VaridMapMod.

Inductive LBasetype : Set :=
| BasetypeBool : LBasetype.
Definition lbt eqb(bt bt’ : LBasetype) : bool :=
match bt, bt with BasetypeBool, BasetypeBool ⇒ true end.

Theorem lbt eqb eq(bt bt’ : LBasetype) : lbt eqb bt bt’ = true ↔ bt = bt’.

Import HBCL 0 1 Id S.
Require Coq.FSets.FMapWeakList.

Require Import Coq.Arith.Wf nat.
Definition Size := nat.
Inductive LTypeRaw(s : Size) : Type :=
| LBaseType : LBasetype → s = 1 → LTypeRaw s
| LTupleType : list (sigT LTypeRaw) → LTypeRaw s
| LRecordType : VaridMapModRaw.t (sigT LTypeRaw) →

LTypeRaw s.
Inductive LTypeRawCeiling(sceil: Size) : sigT LTypeRaw → Prop :=
| LTypeRawC intro(raw : sigT LTypeRaw) : projT1 raw < sceil →

LTypeRawCeiling sceil raw.
Definition mapSize(sceil : Size)(: Varid)

(dat : sig (LTypeRawCeiling sceil))(s : Size) :=
match dat with
| exist raw ⇒ s + (projT1 raw)

end.

Definition stripCeiling(sceil : Size)(rc : sig (LTypeRawCeiling sceil)) :
sigT LTypeRaw := ‘rc.

Program Definition raiseCeiling(s s’ : Size)(prfs : s ≤ s’)
(rc : sig (LTypeRawCeiling s)): sig (LTypeRawCeiling s’) := rc.

394

Obligation 1.
Notation SCP1 s rc := (projT1 (stripCeiling s rc)).
Notation SCP2 s rc := (projT2 (stripCeiling s rc)).
Lemma leAddInvar : ∀ n n’ n”, n = n’ + n” → n” ≤ n.
Implicit Arguments leAddInvar [n n’ n”].
Notation LTmapOK s :=

(SetoidList.NoDupA (@VaridMapModRaw.PX.eqk (sig (LTypeRawCeiling s)))).
Inductive LTypeP(s : Size) : LTypeRaw s → Prop :=
| LBaseTypeP(bt : LBasetype)(prfs : s = 1) : LTypeP s (LBaseType s bt prfs)
| TupleTypeP

(lts : list (sig (LTypeRawCeiling (s)))) : LTypesP (s) lts →
LTypeP s (LTupleType (s) (List.map (stripCeiling (s)) lts))

| RecordTypeP(rm : VaridMapModRaw.t (sig (LTypeRawCeiling (s))))
(mok : (LTmapOK s) rm):

LRTypesP (s) rm → LTypeP s (LRecordType (s)
(VaridMapMod.this (VaridMapMod.map (stripCeiling (s))

(VaridMapMod.Build slist mok))))

with LTypesP(s : Size) : list (sig (LTypeRawCeiling s)) → Prop :=
| LTypes(lts : list (sig (LTypeRawCeiling s))) :

s = 1 + List.fold right (listSize s) 0 lts →
(∀ t, List.In t lts → LTypeP (projT1 (stripCeiling s t))

(projT2 (stripCeiling s t))) → LTypesP s lts

with LRTypesP(s : Size) : VaridMapModRaw.t (sig (LTypeRawCeiling s)) →
Prop :=

| RTypes(ltr : VaridMapModRaw.t (sig (LTypeRawCeiling s)))
(mok : (LTmapOK s) ltr) :
(s = 1 + (VaridMapMod.fold (mapSize s) (VaridMapMod.Build slist mok) 0)) →
(∀ v t, VaridMapMod.MapsTo v t (VaridMapMod.Build slist mok) →

LTypeP (projT1 (stripCeiling s t)) (projT2 (stripCeiling s t))) →
LRTypesP s ltr.

Program Definition EmptyLTypesP(s : Size)(seq : s = 1) : LTypesP s nil :=
LTypes s nil .

Obligation 2.
Definition LTypePS(s : Size) := sig (LTypeP s).
Definition LTypesPS(s : Size) := sig (LTypesP s).
Definition LRTypesPS(s : Size) := sig (LRTypesP s).
Definition BuildBaseTypePS(s : Size)(bt : LBasetype)(seq : s = 1) :=

exist (LTypeP s) (LBaseType s bt seq) (LBaseTypeP s bt seq).
Definition BuildLTypesNil(s : Size)(seq : s = 1) :=

exist (LTypesP s) nil (EmptyLTypesP s seq).

Definition LRTypesPSRecoverMap(s : Size)(lrtps : LRTypesPS s) :
VaridMapMod.t (sig (LTypeRawCeiling (s))).

Defined.
Notation ” “ t ” := (proj2 sig t) (at level 10, t at next level).
Definition buildLTypePSFromTS(s : Size)(ts : LTypesPS s) : LTypePS s :=

exist (LTypeP s) (LTupleType s (List.map (stripCeiling s) (‘ts)))
(TupleTypeP s (‘ts) (“ts)).

Program Definition LTypesRecoverMok(s : Size)(lrtps : LRTypesPS s) :
sig (LTmapOK s) := lrtps.

Obligation 1.
Definition buildLTypePSFromRT(s : Size)(tr : LRTypesPS s) : LTypePS s :=

(exist (LTypeP s)
(LRecordType s (VaridMapModRaw.map (stripCeiling s)(‘tr)))
(RecordTypeP s (proj1 sig (LTypesRecoverMok s tr))

(proj2 sig (LTypesRecoverMok s tr)) (“tr))).
Print LTypeP.
Inductive LTypePSEq(s s’ : Size) : LTypePS s → LTypePS s’ → Prop :=
| LTE intro bt(bt1 bt2 : LBasetype)(seq : s = 1)(seq’: s’ = 1) : bt1 = bt2 →

LTypePSEq s s’ (BuildBaseTypePS s bt1 seq) (BuildBaseTypePS s’ bt2 seq’)
| LTE intro tt(lts : LTypesPS s)(lts’ : LTypesPS s’) :

395

LTypesPSEq s s’ lts lts’ →
LTypePSEq s s’ (buildLTypePSFromTS s lts) (buildLTypePSFromTS s’ lts’)

| LTE intro rt(ltr : VaridMapModRaw.t (sig (LTypeRawCeiling s)))
(ltr’ : VaridMapModRaw.t (sig (LTypeRawCeiling s’))) :
∀ mok mok’ mok2 mok2’ ltprf ltprf’ sfprf sfprf’,
LRTypesPSEq s s’ (exist (LRTypesP s) ltr (RTypes s ltr mok sfprf ltprf))
(exist (LRTypesP s’) ltr’ (RTypes s’ ltr’ mok’ sfprf’ ltprf’)) →
LTypePSEq s s’ (exist (LTypeP s) (LRecordType s (VaridMapMod.this

(VaridMapMod.map (stripCeiling s) (VaridMapMod.Build slist mok))))
(RecordTypeP s ltr mok (RTypes s ltr mok2 sfprf ltprf)))

(exist (LTypeP s’) (LRecordType s’ (VaridMapMod.this
(VaridMapMod.map (stripCeiling s’) (VaridMapMod.Build slist mok’))))
(RecordTypeP s’ ltr’ mok’ (RTypes s’ ltr’ mok2’ sfprf’ ltprf’)))

with LTypesPSEq(s s’ : Size) : LTypesPS s → LTypesPS s’ → Prop :=
| LTE intro tup(ls : LTypesPS s)(ls’ : LTypesPS s’) : s = s’ →

length (‘ls) = length (‘ls’) →
(∀ els, List.In els (List.combine (‘ls) (‘ls’)) →
∃ si, ∃ si’,
∃ pr : ((LTypePS si) × (LTypePS si’)),

LTypePSEq si si’ (fst pr) (snd pr) ∧
eq dep Size LTypeRaw (projT1 (proj1 sig (fst els)))
(projT2 (proj1 sig (fst els))) si (proj1 sig (fst pr)) ∧
eq dep Size LTypeRaw (projT1 (proj1 sig (snd els)))
(projT2 (proj1 sig (snd els))) si’ (proj1 sig (snd pr)))

→ LTypesPSEq s s’ ls ls’

with LRTypesPSEq(s s’ : Size) : LRTypesPS s → LRTypesPS s’ → Prop :=
| LTE intro rec(ltr : VaridMapModRaw.t (sig (LTypeRawCeiling s)))

(ltr’ : VaridMapModRaw.t (sig (LTypeRawCeiling s’))) : ∀
(mok : (LTmapOK s) ltr) (mok’ : (LTmapOK s’) ltr’)
(sfprf : (s = 1 + (VaridMapMod.fold (mapSize s)

(VaridMapMod.Build slist mok) 0)))
(sfprf’ : (s’ = 1 + (VaridMapMod.fold (mapSize s’)

(VaridMapMod.Build slist mok’) 0)))
(ltprf : (∀ v t, VaridMapMod.MapsTo v t

(VaridMapMod.Build slist mok) →
LTypeP (projT1 (stripCeiling s t)) (projT2 (stripCeiling s t))))

(ltprf’ : (∀ v t, VaridMapMod.MapsTo v t
(VaridMapMod.Build slist mok’) →
LTypeP (projT1 (stripCeiling s’ t)) (projT2 (stripCeiling s’ t)))),

s = s’ →
(∀ v : Varid, VaridMapMod.In v (VaridMapMod.Build slist mok) ↔

(VaridMapMod.In v (VaridMapMod.Build slist mok’))) →
(∀ (v : Varid)(el : sig (LTypeRawCeiling s))

(el’ : sig (LTypeRawCeiling s’)), s = s’ →
VaridMapMod.MapsTo v el (VaridMapMod.Build slist mok) →
VaridMapMod.MapsTo v el’ (VaridMapMod.Build slist mok’) →
∃ si, ∃ si’,
∃ pel : (LTypePS si), ∃ pel’ : (LTypePS si’),

LTypePSEq si si’ pel pel’ ∧
eq dep Size LTypeRaw (projT1 (proj1 sig el))
(projT2 (proj1 sig el)) si (proj1 sig pel) ∧
eq dep Size LTypeRaw (projT1 (proj1 sig el’))
(projT2 (proj1 sig el’)) si’ (proj1 sig pel’)) →

LRTypesPSEq s s’ (exist (LRTypesP s) ltr (RTypes s ltr mok sfprf ltprf))
(exist (LRTypesP s’) ltr’ (RTypes s’ ltr’ mok’ sfprf’ ltprf’)).

Implicit Arguments existT [A P].
Definition TypeS := LTypePS.
Definition ProtoT := sigT LTypePS.
Definition ProtoEqTSigT(t1 t2 : ProtoT) :=

LTypePSEq (projT1 t1) (projT1 t2) (projT2 t1) (projT2 t2).
Definition LTypePSListEqSigT(tl1 tl2 : list (sigT LTypePS)) :=

SetoidList.eqlistA ProtoEqTSigT tl1 tl2.
Definition LTypePSMapEqSigT(tl1 tl2 : VaridMapMod.t (sigT LTypePS)) :=

396

VaridMapMod.Equiv ProtoEqTSigT tl1 tl2.
Infix ”=t=” := ProtoEqTSigT (at level 70, no associativity).
Implicit Arguments existT [A P].
Definition extractType(n : nat)(ts : sigT LTypesPS)

(prf : n < length (‘ (projT2 ts))) : sigT LTypePS.
Definition extractTypeR

(v : Varid)(tr : sigT LRTypesPS)
(prf : VaridMapMod.In v (LRTypesPSRecoverMap (projT1 tr) (projT2 tr)))

: sigT LTypePS.
Definition sigifyLRaw3(s : Size)

(rm : sigT LTypeRaw)(prf : LTypeP (projT1 rm)(projT2 rm)) :
sigT (LTypePS) :=
existT (projT1 rm) (exist (LTypeP (projT1 rm)) (projT2 rm) prf).

Fixpoint sigifyListInner(s : Size)(l : (LTypesPS s))
(dl : list (sig (LTypeRawCeiling (s))))
(prf : List.incl dl (‘l)) { struct dl } : list (sigT LTypePS).

Definition sigifyList(s : Size)(l : (LTypesPS s)) :
list (sigT LTypePS) := sigifyListInner s l (proj1 sig l)

(List.incl refl (proj1 sig l)).
Lemma sigifyListLenInnerPrfIrrel : ∀ s ol il il’ p p’,

il = il’ →
length (sigifyListInner s ol il p) =
length (sigifyListInner s ol il’ p’).

Lemma sigifyListLenEq : ∀ ts,
length (sigifyList (projT1 ts) (projT2 ts)) = length (‘ (projT2 ts)).

Lemma LTCeilingListCombEq : ∀ s (tc tc’ : sig (LTypeRawCeiling s))
(ltc ltc’ : list (sig (LTypeRawCeiling s))),
List.In (tc, tc’) (List.combine ltc ltc’) →
List.map (stripCeiling s) ltc = List.map (stripCeiling s) ltc’ →
‘tc = ‘tc’.

Lemma LTMapsToRawEq : ∀ s s’ (tc : sig (LTypeRawCeiling s))
(tc’ : sig (LTypeRawCeiling s’))
(v : Varid)(ltr : VaridMapModRaw.t (sig (LTypeRawCeiling s)))

(ltr’ : VaridMapModRaw.t (sig (LTypeRawCeiling s’)))
(mok : (LTmapOK s) ltr) (mok’ : (LTmapOK s’) ltr’), s = s’ →

VaridMapMod.Raw.map (stripCeiling s) ltr =
VaridMapMod.Raw.map (stripCeiling s’) ltr’ →
VaridMapMod.MapsTo v tc (VaridMapMod.Build slist mok) →
VaridMapMod.MapsTo v tc’ (VaridMapMod.Build slist mok’) →
‘tc = ‘tc’.

Lemma LTypeMapEqExist : ∀ v s s’ (e : sig (LTypeRawCeiling s))
(ltr : VaridMapMod.t (sig (LTypeRawCeiling s)))
(ltr’ : VaridMapMod.t (sig (LTypeRawCeiling s’))),
VaridMapMod.MapsTo v e ltr → s = s’ →
VaridMapMod.map (stripCeiling s) ltr =
VaridMapMod.map (stripCeiling s’) ltr’ →
∃ e’ : sig (LTypeRawCeiling s’), VaridMapMod.MapsTo v e’ ltr’.

Lemma LTypeMapEqExistWeak : ∀ v s s’ (e : sig (LTypeRawCeiling s))
(ltr : VaridMapModRaw.t (sig (LTypeRawCeiling s)))
(ltr’ : VaridMapModRaw.t (sig (LTypeRawCeiling s’))),
VaridMapMod.Raw.PX.MapsTo v e ltr → s = s’ →
VaridMapMod.Raw.map (stripCeiling s) ltr =
VaridMapMod.Raw.map (stripCeiling s’) ltr’ →
(LTmapOK s) ltr → (LTmapOK s’) ltr’ →
∃ e’ : sig (LTypeRawCeiling s’), VaridMapMod.Raw.PX.MapsTo v e’ ltr’.

Lemma LTypePSPrfIrrel : ∀ s s’ (t : LTypePS s) (t’ : LTypePS s’),
EqdepFacts.eq dep Size LTypeRaw s (‘t) s’ (‘t’) →
LTypePSEq s s’ t t’.

Lemma sigifyListInnerTequivPrfIrrel : ∀ s ol il il’ p p’,
il = il’ → LTypePSListEqSigT
(sigifyListInner s ol il p) (sigifyListInner s ol il’ p’).

Lemma existTIdent : ∀ (A : Type) (P : A → Type) (x : sigT P),

397

x = existT (projT1 x) (projT2 x).
Record NonDepLTPPair : Type := { ndltps : Size;

ndltpType1 : LTypePS ndltps; ndltpType2 : LTypePS ndltps }.
Definition NonDepLTPPairMeas(p : NonDepLTPPair) := ndltps p.
Definition NonDepLTPPairWF :=

well founded ltof NonDepLTPPair NonDepLTPPairMeas.
Program Definition sigifyLRaw(s : Size)

(rm : sigT LTypeRaw)(l : (LTypesPS s))(prf : List.In
rm (List.map (stripCeiling s) l)) : LTypePS (projT1 rm).

Definition sigifyLCeil(s : Size)
(tc : sig (LTypeRawCeiling s))(l : (LTypesPS s))
(prf : List.In tc (‘l)) : LTypePS (projT1 (proj1 sig tc)).

Program Definition sigifyLCeilR(s : Size)(v : Varid)
(rm : sig (LTypeRawCeiling s))(m : (LRTypesPS s))(prf : VaridMapMod.MapsTo

v rm (VaridMapMod.map (stripCeiling s) (LRTypesPSRecoverMap s m))) :=
LTypePS (projT1 rm).

Definition sigifyLCeil2R(s : Size)(v : Varid)
(rm : sig (LTypeRawCeiling s))(m : (LRTypesPS s))(prf : VaridMapMod.MapsTo

v rm (LRTypesPSRecoverMap s m)) :
LTypePS (projT1 (proj1 sig rm)).

Definition sigifyLRaw2(s : Size)
(rm : sigT LTypeRaw)(prf : LTypeP (projT1 rm)(projT2 rm)) :
LTypePS (projT1 rm) :=
exist (LTypeP (projT1 rm)) (projT2 rm) prf .

Section SigifyMapLemmasS.
Variable s : Size.
Variable l : list (Varid × sig (LTypeRawCeiling s)).
Variable dl : list (Varid × sig (LTypeRawCeiling s)).
Hypothesis inclprf : inclA (@VaridMapMod.eq key elt) dl l.
Hypothesis inprf : ∀ pr : Varid × sig (LTypeRawCeiling s),

InA (@VaridMapMod.eq key elt) pr l →
LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr))).

Variable t : Varid × sig (LTypeRawCeiling s).
Variable ts : list (Varid × sig (LTypeRawCeiling s)).
Hypothesis H’ : t :: ts = dl.
Lemma LTypePInclImpl : LTypeP (SCP1 s (snd t)) (SCP2 s (snd t)).
Lemma LTypeInclInd : inclA (@VaridMapMod.eq key elt) ts l.
Lemma InAImplInclInd : ∀ pr : Varid × sig (LTypeRawCeiling s),

InA (@VaridMapMod.eq key elt) pr l →
LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr))).

End SigifyMapLemmasS.
Lemma inclReflLRPS : ∀ s (m : LRTypesPS s),

SetoidList.inclA (@VaridMapMod.eq key elt) (‘m) (‘m).
Lemma InprfFromLRPS : ∀ s (m : LRTypesPS s) pr,

SetoidList.InA (@VaridMapMod.eq key elt) pr
(VaridMapMod.elements (LRTypesPSRecoverMap s m)) →
LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr))).

Fixpoint sigifyMapInner(s : Size)
(l dl : list (Varid × (sig (LTypeRawCeiling s))))
(inclprf : SetoidList.inclA (@VaridMapMod.eq key elt) dl l)
(inprf : ∀ pr : (Varid × (sig (LTypeRawCeiling s))),

SetoidList.InA (@VaridMapMod.eq key elt) pr l →
LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr)))) { struct dl } :

VaridMapMod.t (sigT LTypePS) :=
match dl as dl return dl = → VaridMapMod.t (sigT LTypePS) with
| nil ⇒ fun ⇒ (VaridMapMod.empty (sigT LTypePS))
| (cons t ts) ⇒ fun J : (cons t ts) = dl ⇒

VaridMapMod.add (fst t) (sigifyLRaw3 s (stripCeiling s (snd t))
(LTypePInclImpl s l dl inclprf inprf t ts J))

(sigifyMapInner s l ts
(LTypeInclInd s l dl inclprf t ts J)
(InAImplInclInd s l dl inclprf inprf))

398

end eq refl.
Definition sigifyMap(s : Size)(m : (LRTypesPS s)) :

VaridMapMod.t (sigT LTypePS) :=
sigifyMapInner s (VaridMapMod.elements (LRTypesPSRecoverMap s m))
(VaridMapMod.elements (LRTypesPSRecoverMap s m)) (inclReflLRPS s m)
(InprfFromLRPS s m).

Infix ”=v=” := varidPred.PredidDecidable.eq (at level 70, no associativity).

Lemma sigifyExtractTSEquiv : ∀ s s’ ts ts’ t n n’ lp lprf ncp,
LTypePSEq s s’ (buildLTypePSFromTS s ts) (buildLTypePSFromTS s’ ts’)
→ n = n’ →
existT (projT1 (‘t))

(sigifyLCeil s’ t ts’ (nth certain in (n := n) lp ncp)) =t=
extractType n’ (existT s ts) lprf .

Lemma sigifyExtractTREquiv : ∀ s s’ v v’ t lrt mok sfprf ltprf mp tr inprf ,
LTypePSEq s s’
(buildLTypePSFromRT s (exist (LRTypesP s) lrt (RTypes s lrt mok sfprf ltprf)))
(buildLTypePSFromRT s’ tr) →
v =v= v’ →
existT (projT1 (‘t)) (sigifyLCeil2R s v t

(exist (LRTypesP s) lrt (RTypes s lrt mok sfprf ltprf)) mp) =t=
extractTypeR v’ (existT s’ tr) inprf .

Lemma extractTypeRInvar : ∀ v v’ tr t inprf mprf , v =v= v’ →
existT (projT1 (‘t)) (sigifyLCeil2R (projT1 tr) v t (projT2 tr) mprf) =t=
extractTypeR v’ tr inprf .

Print VaridMapMod.Raw.find.
Admitted.
Lemma sigifyInTRIff : ∀ v tr,

VaridMapMod.In v (sigifyMap (projT1 tr) (projT2 tr)) ↔
VaridMapMod.In v (LRTypesPSRecoverMap (projT1 tr) (projT2 tr)).

Lemma sigifyMapMapsToInv : ∀ tr v t t’,
VaridMapMod.MapsTo v t (sigifyMap (projT1 tr) (projT2 tr)) →
VaridMapMod.MapsTo v t’ (LRTypesPSRecoverMap (projT1 tr) (projT2 tr)) →
existT (projT1 t) (‘ (projT2 t)) = ‘t’.
Definition LTypeListEqualWFS(l1 l2 : sigT (LTypesPS))

(func : sigT LTypePS → sigT LTypePS → bool) : bool :=
let cmpPair (bin : bool)(p : (sigT LTypePS) × (sigT (LTypePS))) :=

(bin && func (fst p)(snd p))%bool in
let lSig1 := sigifyList (projT1 l1)(projT2 l1) in

let lSig2 := sigifyList (projT1 l2)(projT2 l2) in
(List.fold left cmpPair (List.combine lSig1 lSig2) true)%bool.

Definition LTypeListEqualWFS2(sceil : Size)
(l1 l2 : list (sig (LTypeRawCeiling sceil)))
(func : (sig (LTypeRawCeiling sceil)) → (sig (LTypeRawCeiling sceil)) →

bool) : bool :=
let cmpPair(bin : bool)

(p : (sig (LTypeRawCeiling sceil)) × (sig (LTypeRawCeiling sceil))) :=
(bin && func (fst p)(snd p))%bool in
((List.fold left cmpPair (List.combine l1 l2) true))%bool.

Definition sigTLTypePSInCeil(sceil : Size)(t : sigT LTypePS) :=
projT1 t < sceil.

Definition sigifyLRaw4(s : Size)
(rm : sigT LTypeRaw)(prft : LTypeP (projT1 rm)(projT2 rm))
(prfc : projT1 rm < s):
sig (sigTLTypePSInCeil s) :=
exist (sigTLTypePSInCeil s)
(existT (projT1 rm) (exist (LTypeP (projT1 rm)) (projT2 rm) prft))
prfc.

Program Definition sigifyLRaw5(s : Size)
(rmc : sig (LTypeRawCeiling s))
(prft : LTypeP (projT1 (‘rmc))(projT2 (‘rmc))) :
sig (sigTLTypePSInCeil s) :=
sigifyLRaw4 s (‘rmc)(prft) .

399

Obligation 1.
Definition sigifyList2(s : Size)(l : (LTypesPS s)) :
list (sig (sigTLTypePSInCeil s)).
Definition LTypeListEqualWFS3(sceil : Size)(l1 l2 : (LTypesPS sceil))

(func : sig (sigTLTypePSInCeil sceil) →
sig (sigTLTypePSInCeil sceil) → bool) : bool :=

let cmpPair(bin : bool)
(p : (sig (sigTLTypePSInCeil sceil)) × (sig (sigTLTypePSInCeil sceil)))
:=
(bin && func (fst p)(snd p))%bool in
let lSig1 := sigifyList2 sceil l1 in

let lSig2 := sigifyList2 sceil l2 in
((List.fold left cmpPair (List.combine lSig1 lSig2) true))%bool.

Definition ConvertSTLTPS (s s’ : Size)(t’ : LTypePS s’)
(prfseq : s = s’) : (LTypePS s).

Defined.
Implicit Arguments ConvertSTLTPS [s’].
Definition addCeiling(sceil : Size)(raw : sigT LTypeRaw)

(prfs : projT1 raw < sceil) : (sig (LTypeRawCeiling sceil)) :=
exist (LTypeRawCeiling sceil) raw (LTypeRawC intro sceil raw prfs).

Definition sizeListRawInner(el : sigT LTypeRaw)(cs : Size) :=
cs + projT1 el.

Definition sizeListRaw(l : list (sigT LTypeRaw)) : Size :=

List.fold right sizeListRawInner 0 l.
Lemma listSizeMonot : ∀ (s : Size)(n p : nat)

(a : sig (LTypeRawCeiling s)),
listSize s a n + p = listSize s a (n + p).

Lemma sizeListLeMonot : ∀ (n p : nat)(a : sigT LTypeRaw),
n ≤ p → n ≤ sizeListRawInner a p.
Lemma InListImpliesSmaller : ∀ (l : list (sigT LTypeRaw))

(t : sigT LTypeRaw), List.In t l → projT1 t ≤ sizeListRaw l.
Definition addCeilingFromList(sceil : Size)(dat : (sigT LTypeRaw))

(prf : ∃ lts : list (sigT LTypeRaw),
(∀ t : (sigT LTypeRaw), List.In t lts →

(LTypeRawCeiling sceil t)) ∧ List.In dat lts) :
sig (LTypeRawCeiling sceil).

Program Fixpoint sigifyToCeiling(sceil : Size)(lts : list (sigT LTypeRaw))
(prf : ∀ t : (sigT LTypeRaw), List.In t lts →

(LTypeRawCeiling sceil t)) : list (sig (LTypeRawCeiling sceil)) :=
match lts with
| nil ⇒ nil
| (t :: lts’)%list ⇒

((addCeiling sceil t) :: (sigifyToCeiling sceil lts’))%list
end.

Obligation 1.
Obligation 2.
Lemma sizeListEquiv : ∀(s : Size)(t : sig (LTypeRawCeiling s)),

sizeListRaw [stripCeiling s t] = listSize s t 0.

Lemma monotNatRFold : ∀(A : Type)(func : A → nat → nat),
(∀ (n p : nat)(a : A), func a n + p = func a (n + p)) →
(∀ (n’ p’ : nat)

(l : list A), List.fold right func n’ l + p’ =
List.fold right func (n’ + p’) l).

Implicit Arguments monotNatRFold [A].

Lemma sizeListEquivMap :
∀ (s : Size)(lts : list (sig (LTypeRawCeiling s))),
sizeListRaw (List.map (stripCeiling s) lts) =
List.fold right (listSize s) 0 lts.

Lemma sigifyInv : ∀ (sceil : Size)(lts : list (sigT LTypeRaw))

400

(prf : ∀ t : (sigT LTypeRaw), List.In t lts →
(LTypeRawCeiling sceil t)),

lts = (List.map (stripCeiling sceil) (sigifyToCeiling sceil lts prf)).
Lemma CeilingSubsetPrf : ∀(sceil : Size)(lts : list (sigT LTypeRaw)),

(∀ t : (sigT LTypeRaw), List.In t lts →
(∃ tc : (LTypeRawCeiling sceil t),

LTypeP (SCP1 sceil (exist (LTypeRawCeiling sceil) t tc))
(SCP2 sceil (exist (LTypeRawCeiling sceil) t tc)))) →

(∀ t : (sigT LTypeRaw), List.In t lts →
(LTypeRawCeiling sceil t)).

Lemma CeilingInImpl : ∀ (sceil : Size)(lts : list (sigT LTypeRaw))
(prf : ∀ t : (sigT LTypeRaw), List.In t lts →

(LTypeRawCeiling sceil t)),
∀ rt : sig (LTypeRawCeiling sceil),

List.In rt (sigifyToCeiling sceil lts prf) → List.In (‘rt) lts.
Lemma CeilingInImpl2 : ∀ (sceil : Size)(raw : sigT LTypeRaw)

(lts : list (sig (LTypeRawCeiling sceil)))(prfs : projT1 raw < sceil),
List.In raw (List.map (stripCeiling sceil) lts) →
∃ rceil : LTypeRawCeiling sceil raw,

List.In (exist (LTypeRawCeiling sceil) raw rceil) lts.
Check proj2 sig a.

Qed.
Definition sigifyToCeiling2(sceil : Size)(lts : list (sigT LTypeRaw))

(prf : (∀ t : (sigT LTypeRaw), List.In t lts →
(∃ tc : (LTypeRawCeiling sceil t),

LTypeP (SCP1 sceil (exist (LTypeRawCeiling sceil) t tc))
(SCP2 sceil (exist (LTypeRawCeiling sceil) t tc)))))

(prfC : sceil = 1 + sizeListRaw lts) :
LTypesPS sceil.

Defined.
Definition LTypeEqb(ltp : NonDepLTPPair) : bool.

Defined.
Inductive UBasetype(lt : LBasetype) : Set :=

UBTBool : lt = BasetypeBool → bool → UBasetype lt.

Inductive UDataRaw : Type :=
| UBaseData(blt : LBasetype)(ubt : UBasetype blt) : UDataRaw
| UTupleData(s : Size)(ts : LTypesPS s) : list UDataRaw → UDataRaw
| URecordData(s : Size)(tr : LRTypesPS s)

(rm : VaridMapModRaw.t UDataRaw) :
UDataRaw.

Definition LTypePSEqHet(s s’ : Size)(t : LTypePS s)(t’ : LTypePS s’)
:=
LTypePSEq s s’ t t’.

Inductive UDataP : sigT LTypePS →
UDataRaw → Prop :=

| UBaseDataP(blt : LBasetype)(t : sigT LTypePS)
(blu : UBasetype blt) :
LTypePSEq (projT1 t) 1 (projT2 t) (BuildBaseTypePS 1 blt eq refl) →
UDataP t (UBaseData blt blu)

| UTupleDataP(ts : sigT LTypesPS)(t : sigT LTypePS)
(lus : list UDataRaw) :
LTypePSEq (projT1 t)(projT1 ts) (projT2 t)
(buildLTypePSFromTS (projT1 ts)(projT2 ts)) →
UTupleP ts lus → UDataP t
(UTupleData (projT1 ts)(projT2 ts) lus)

| URecordDataP(tr : sigT LRTypesPS)(t : sigT LTypePS)
(lur : VaridMapMod.t UDataRaw) :
LTypePSEq (projT1 t) (projT1 tr) (projT2 t)
(buildLTypePSFromRT (projT1 tr)(projT2 tr)) →
URecordP tr (VaridMapMod.this lur) →
UDataP t

401

(URecordData (projT1 tr)(projT2 tr)
(VaridMapMod.this lur))

with UTupleP : sigT LTypesPS → list UDataRaw → Prop :=
| UTuplePIntro (ts : sigT LTypesPS)(lus : list (UDataRaw)) :

(∃ lus’ : list ((sigT LTypePS) × UDataRaw),
LTypePSListEqSigT (fst (List.split lus’))
(sigifyList (projT1 ts) (projT2 ts)) ∧
(snd (List.split lus’)) = lus ∧
(∀ pr, List.In pr lus’ → UDataP (fst pr) (snd pr))) →
UTupleP ts lus

with URecordP : sigT LRTypesPS →
VaridMapModRaw.t UDataRaw → Prop :=

| URecordPIntro (tr : sigT LRTypesPS)
(lur : VaridMapMod.t UDataRaw) :
(∃ tr’ : sigT LRTypesPS,

LRTypesPSEq (projT1 tr)(projT1 tr’)(projT2 tr)(projT2 tr’) ∧
(∀ v, VaridMapMod.In v

(LRTypesPSRecoverMap (projT1 tr)(projT2 tr)) →
∃ v’, v =v= v’ ∧
VaridMapMod.In v lur) ∧

(∀ v u ,
VaridMapMod.MapsTo v u lur → (∃ v’, v’ =v= v ∧

(∃ t: (sig (LTypeRawCeiling (projT1 tr))),
∃ t’ : sigT LTypePS,

(eq dep Size LTypeRaw (projT1 (‘t)) (projT2 (‘t))
(projT1 t’) (‘ (projT2 t’))) ∧

UDataP t’ u ∧
VaridMapMod.MapsTo v’ t
(LRTypesPSRecoverMap (projT1 tr) (projT2 tr)))))) →

URecordP tr (VaridMapMod.this lur).
Lemma LTypePSRefl : ∀ s t, LTypePSEq s s t t.
Lemma LTypePSSym : ∀ s s’ t t’, LTypePSEq s s’ t t’ → LTypePSEq s’ s t’ t.
Lemma LTypePSTrans : ∀ s s’ s” t t’ t”,

LTypePSEq s s’ t t’ → LTypePSEq s’ s” t’ t” → LTypePSEq s s” t t”.
Definition ProtoEqT := ProtoEqTSigT.
Lemma ProtoTEqTSigTRefl : ∀ t, ProtoEqTSigT t t.
Lemma ProtoTEqTSigTSym : ∀ t t’, ProtoEqTSigT t t’ → ProtoEqTSigT t’ t.
Lemma ProtoTEqTSigTTrans : ∀ t t’ t”,

ProtoEqTSigT t t’ → ProtoEqTSigT t’ t” → ProtoEqTSigT t t”.
Add Relation (ProtoT) (ProtoEqTSigT)
reflexivity proved by (@ProtoTEqTSigTRefl)
symmetry proved by (@ProtoTEqTSigTSym)
transitivity proved by (@ProtoTEqTSigTTrans)

as ProtoTEqTSigT rel.
Lemma UDataConvertP(t1 t2 : ProtoT)(u : UDataRaw)

(p : (UDataP t1 u))(teq : t1 =t= t2) : (UDataP t2 u).
Implicit Arguments UDataConvertP [t1 t2 u].
Definition UDataConvert(t1 t2 : ProtoT)

(u : sig (UDataP t1))(teq : t1 =t= t2) : sig (UDataP t2) :=
exist (UDataP t2) (‘u) (UDataConvertP (“u) teq).

Definition UDataPST(t : sigT LTypePS) := sig (UDataP t).
Definition UTuplePST(t : sigT LTypesPS) := sig (UTupleP t).
Definition URecordPST(t : sigT LRTypesPS) := sig (URecordP t).
Theorem UDataInhabited : ∀ t, inhabited (UDataPST t).
Definition UDataPS := sigTD UDataP.

402

Definition UTuplePS := sigTD UTupleP.
Definition URecordPS := sigTD URecordP.
Definition DataR := UDataRaw.
Definition DataP := UDataP.
Definition ProtoU := UDataPST.
Definition LTypeSConv(s s’ : Size)(t : LTypePS s’)(prfs : s = s’) : LTypePS s.
Defined.
Definition ProtoEqbTSigT(t1 t2 : ProtoT) :=

match Nat as UBE.eqb (projT1 t1) (projT1 t2) as deq return
Nat as UBE.eqb (projT1 t1) (projT1 t2) = deq → bool with
| true ⇒ fun H : (beq nat (projT1 t1) (projT1 t2) = true) ⇒

(LTypeEqb (Build NonDepLTPPair (projT1 t1) (projT2 t1)
(LTypeSConv (projT1 t1) (projT1 t2) (projT2 t2)

(proj1 (Nat as UBE.eqb eq (projT1 t1) (projT1 t2)) H))))
| false ⇒ fun ⇒ false

end eq refl.
Definition LTypesPSEqSigT(ts ts’ : sigT LTypesPS) :=

LTypesPSEq (projT1 ts) (projT1 ts’) (projT2 ts) (projT2 ts’).
Definition LRTypesPSEqSigT(tr tr’ : sigT LRTypesPS) :=

LRTypesPSEq (projT1 tr) (projT1 tr’) (projT2 tr) (projT2 tr’).
Lemma UTupleConvertP(ts1 ts2 : sigT LTypesPS)(ul : list UDataRaw)

(p : (UTupleP ts1 ul))(teq : LTypesPSEqSigT ts1 ts2) : (UTupleP ts2 ul).
Lemma URecordConvertP(tr1 tr2 : sigT LRTypesPS)

(ur : VaridMapModRaw.t UDataRaw)
(p : (URecordP tr1 ur))(teq : LRTypesPSEqSigT tr1 tr2) : (URecordP tr2 ur).

Definition buildProtoTFromSigTS(ts : sigT LTypesPS) :=
(existT (projT1 ts)

(buildLTypePSFromTS (projT1 ts) (projT2 ts))).
Definition buildProtoTFromSigTR(tr : sigT LRTypesPS) :=

(existT (projT1 tr)
(buildLTypePSFromRT (projT1 tr) (projT2 tr))).

Lemma LTypesPSInjEq : ∀ ts ts’, (buildProtoTFromSigTS ts) =t=
(buildProtoTFromSigTS ts’) → LTypesPSEqSigT ts ts’.

Lemma LRTypesPSInjEq : ∀ tr tr’, (buildProtoTFromSigTR tr) =t=
(buildProtoTFromSigTR tr’) → LRTypesPSEqSigT tr tr’.

Theorem ProtoTSigT eqb eq : ∀ t1 t2 : ProtoT,
ProtoEqbTSigT t1 t2 = true ↔ ProtoEqTSigT t1 t2.

Definition BTBoolSP1(lbt : LBasetype) : LTypePS 1 :=
exist (LTypeP 1) (LBaseType 1 lbt eq refl) (LBaseTypeP 1 lbt eq refl).

Definition BTBoolSPT(lbt : LBasetype) : ProtoT :=
existT 1 (BTBoolSP1 lbt).

Definition buildLTypePSFromTSSigT(ts : sigT LTypesPS) : sigT LTypePS :=
let t := buildLTypePSFromTS (projT1 ts) (projT2 ts)

in existT (projT1 ts) t.
Definition genTupleTFromTS(s : Size)(ts : LTypesPS s) :=

existT (P := LTypePS) s (exist (LTypeP s)
(LTupleType s (List.map (stripCeiling s) (‘ts)))
(TupleTypeP s (‘ts) (“ts))).

Definition genRecordTFromTR(s : Size)(tr : LRTypesPS s) :=
existT (P := LTypePS) s (exist (LTypeP s)

(LRecordType s
(VaridMapModRaw.map (stripCeiling s)(‘tr)))

(RecordTypeP s (proj1 sig (LTypesRecoverMok s tr))
(proj2 sig (LTypesRecoverMok s tr)) (“tr))).

Definition LTypePSEqHetEx(s s’ : Size)(t : LTypePS s)(t’ : LTypePS s’) :=
LTypePSEqHet s s’ t t’ .

Module LTypeTypMod <: Typ with Definition t := ProtoT.
Definition t := ProtoT.

End LTypeTypMod.
Module LTypeHasEqMod <: HasEq LTypeTypMod.

Definition eq := ProtoEqTSigT.

403

End LTypeHasEqMod.
Module LTypeEqMod := LTypeTypMod <+ LTypeHasEqMod.
Module LTypeEqNotationMod <: EqNotation LTypeEqMod.
Include EqNotation LTypeEqMod.

End LTypeEqNotationMod.
Module LTypeEq’Mod := LTypeEqMod <+ LTypeEqNotationMod.
Module LTypeHasEqBoolMod <: HasEqBool LTypeEq’Mod.
Definition eqb := ProtoEqbTSigT.
Definition eqb eq := ProtoTSigT eqb eq.

End LTypeHasEqBoolMod.
Module LTypeHasEqDecMod := HasEqBool2Dec LTypeEqMod LTypeHasEqBoolMod.
Module LTypeIsEqMod <: IsEq LTypeEqMod.
Instance eq equiv : Equivalence LTypeEqMod.eq := ProtoTEqTSigT rel.
End LTypeIsEqMod.
Module LTypeDecidableTypeMod <: Equalities.DecidableType
with Definition t := ProtoT

:= LTypeEqMod <+ LTypeIsEqMod <+ LTypeHasEqDecMod.

End HBCL 0 1 L UTS.

D.4.4 The untimed OID type system functor

Listing D.12: The untimed OID type system functor
Require Export HBCL.HBCL 0 1.ModSignatures.UTypeSys.
Require Export HBCL.HBCL 0 1.ModSignatures.Oids.
Require Export HBCL.HBCL 0 1.ModSignatures.UTypeSysOid.
Require Import HBCL.Util.sigTypes.

Module HBCL 0 1 L UTSOid (Import uts : UTypeSys)(opm : OidPreds) <:
UTypeSysOid uts opm.

Inductive TOid(o : opm.HBCL OidUT)
(t : ProtoT) : Type :=
MakeOidT : TOid o t.

Definition T := TOid.
Definition TEq(ut1 ut2 : sigTD T) :=

opm.oidUTPred.PredoidDecidable.eq (projTD1 ut1) (projTD1 ut2) ∧
ProtoEqT (projTD2 ut1) (projTD2 ut2).

Definition VOid := fun (o : opm.HBCL OidUT)(t : ProtoT)(to : T o t)
(u : ProtoU t) ⇒ Type.

Definition V := VOid.
End HBCL 0 1 L UTSOid.

D.4.5 The harmonic type system functor

Listing D.13: The harmonic type system functor
Module HTypeSys F (Import opm : OidPreds)

(UTSparam : UTypeSys)(UTSOidParam : UTypeSysOid UTSparam opm) <:
HTypeSys UTSparam opm UTSOidParam.
Inductive TimedTLocal :

HBCL OidTT → Freq → sigTD UTSOidParam.T → Type :=
| TType : ∀ (ou : HBCL OidUT)(ot : HBCL OidTT)

(f : Freq)(ut : sigTD UTSOidParam.T),
TimedTLocal ot f ut.

404

Definition TimedT := TimedTLocal.
Inductive TimedTEqLoc(tt1 tt2 : sigTT TimedT) : Prop :=

TimeTLocalEq Intro :
oidTTPred.PredoidDecidable.eq (projTT1 tt1) (projTT1 tt2) →
Freq eq (projTT2 tt1) (projTT2 tt2) →
UTSOidParam.TEq (projTT3 tt1) (projTT3 tt2) →
TimedTEqLoc tt1 tt2.

Definition TimedTEq := TimedTEqLoc.

Inductive TimedVLocal(ttimed : sigTT TimedT)(ttime : TTime (projTT2 ttimed)) :
Type :=
| MakeTimedV(u : option (UTSparam.ProtoU (projTD2 (projTT3 ttimed)))) :

TimedVLocal ttimed ttime.
Definition TimedV := TimedVLocal.
Definition TimedTF(f : Freq) := fun o u ⇒ TimedT o f u.
Definition TimedTFEq (tt1 tt2 : sigTT TimedTF) : Prop.

Admitted.
Definition TimedVF(f : Freq) := sigTD (TimedTF f) → TTime f → Type.

End HTypeSys F.

D.4.6 The expression language type classes

Listing D.14: The untimed box type
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.ModSignatures.Ids.
Require Import HBCL.HBCL 0 1.ModSignatures.Oids.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSys.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSysOid.
Require Import HBCL.HBCL 0 1.ModSignatures.UCost.
Require Import HBCL.HBCL 0 1.ModSignatures.UBox.
Module SF UBoxEmptyEnc(Import ipm : IdPreds)(Import opm : OidPreds)

(Import UTSparam : UTypeSys)(Import UTSOidParam : UTypeSysOid UTSparam opm)
(Import uc : UCost UTSparam) <: UBox ipm opm UTSparam UTSOidParam uc.

Definition Encoding := Empty set.
Implicit Arguments UPot [T uraw u CTDT CTDTP cb].

Definition InpOutpTypes(CTDT : Type)
(CTDTP : ProtoT → CTDT → Prop) := ipm.VaridMapMod.t

({t : UTSparam.ProtoT &
{o : opm.HBCL OidUT & UTSOidParam.T o t} &
sig (CTDTP t)} × nat × nat).

Definition UDataPSTMatchesInpOutpTypes(CTDT : Type)
(CTDTP : ProtoT → CTDT → Prop)
(inpTypes : InpOutpTypes CTDT CTDTP)
(udat : ipm.VaridMapMod.t (sigT UDataPST)) : Prop :=
ipm.VaridMapMod.Equiv ProtoEqT
(ipm.VaridMapMod.map (projT1 (P := UDataPST)) udat)
(ipm.VaridMapMod.map

(fun inpOutpType ⇒ (sigTypes.projT1sigT2
(P := fun t ⇒

{o : opm.HBCL OidUT & UTSOidParam.T o t})
(Q := fun t ⇒ sig (CTDTP t)

)) (fst (fst inpOutpType))) inpTypes).
Implicit Arguments existT [A P].

Check Size.
Check DataR.

405

Check DataP.
Record UExprLang := {

CTDT : Type;
CTDTP : ProtoT → CTDT → Prop;
costB : CostBase TypeS CTDT CTDTP DataR DataP;
AST : Set;
parse : Encoding → AST;
sso : InpOutpTypes CTDT CTDTP → InpOutpTypes CTDT CTDTP →

Type;
compile (itypes otypes : InpOutpTypes CTDT CTDTP) :

option (sso itypes otypes);
reduce (itypes otypes : InpOutpTypes CTDT CTDTP) :

sso itypes otypes →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP itypes) →
sig (UDataPSTMatchesInpOutpTypes CTDT CTDTP otypes)

}.
End SF UBoxEmptyEnc.

D.4.7 The harmonic box functor

Listing D.15: The harmonic box functor
Require Import Coq.QArith.QArith base.
Require Import Coq.NArith.BinNat.
Require Import Coq.NArith.BinPos.
Require Import Coq.ZArith.ZArith base.
Require Import Coq.Program.Program.
Require Import HBCL.Util.Freq.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.sigTypes.
Require Export HBCL.HBCL 0 1.ModSignatures.HBox.

Module MData (ipm : IdPreds)(Import opm : OidPreds)(Import uts : UTypeSys)
(Import UTSOidParam : UTypeSysOid uts opm)
(Import HTSparam : HTypeSys uts opm UTSOidParam) :
MDataType ipm opm uts UTSOidParam HTSparam.
Record MDatBoxFreqEltBase : Type :=

{ MDBFE Base Oid : oids.Oid;
MDBFE Base Freq : Freq;
MDBFE Base timt : sigTT HTSparam.TimedT;
MDBFE Base TTFL : TTFL;
MDBFE Base minSize : N;
MDBFE Base maxSize : positive

}.
Definition MDatBoxElt := MDatBoxFreqEltBase.
Inductive MemDatMode : Set := ReadEnabled | WriteEnabled.
Definition memDatModeTimeRel(m : MemDatMode) : Z :=
match m with
| ReadEnabled ⇒ (-1)%Z
| WriteEnabled ⇒ (1)%Z

end.
Definition DatListElType := (sigTD (TimedV)).
Definition MemDatListRaw :=

list DatListElType.
Implicit Arguments existTD [A B P].
Implicit Arguments existT [A P].
Inductive MemDatListPred(mode : MemDatMode)

(mdfe: MDatBoxFreqEltBase)
(baseTime : TTime (MDBFE Base Freq mdfe))
(ttime : TTime (projTT2 (MDBFE Base timt mdfe))) :

406

MemDatListRaw → Prop :=
| MemDatListBasePred

(tv : (TimedV (MDBFE Base timt mdfe) ttime)) :
TTseq ttime baseTime →
MemDatListPred mode mdfe baseTime ttime
(cons (existTD (MDBFE Base timt mdfe) ttime tv) nil)

| MemDatInd(prevLastTime : TTime (projTT2 (MDBFE Base timt mdfe)))
(tv : (TimedV (MDBFE Base timt mdfe) ttime))
(mdlr’ : MemDatListRaw) :
MemDatListPred mode mdfe baseTime prevLastTime mdlr’ →
((getTimeZ ttime) =

(getTimeZ prevLastTime) + memDatModeTimeRel mode)%Z →
((1 + (getTimeZ ttime) - (getTimeZ baseTime)))%Z
= Zpos (MDBFE Base maxSize mdfe) →
MemDatListPred mode mdfe baseTime ttime

(cons (existTD (MDBFE Base timt mdfe) ttime tv) mdlr’).

Definition MemDatTime(mode : MemDatMode)
(mdfe: MDatBoxFreqEltBase)
(baseTime : TTime (MDBFE Base Freq mdfe))
(ttime : TTime (projTT2 (MDBFE Base timt mdfe))) :=
sig (MemDatListPred mode mdfe baseTime ttime).

Definition MDatTimeElt :=

MemDatListRaw.
End MData.

Module SF MemModBox(ipm : IdPreds)(opm : OidPreds)
(uts : UTypeSys)
(uc : UCost uts)(UTSOidParam : UTypeSysOid uts opm)
(ubox : UBox ipm opm uts UTSOidParam uc)
(HTSparam : HTypeSys uts opm UTSOidParam)
(mdi : MDataType ipm opm uts UTSOidParam HTSparam)

(ott : OidPredType opm.oids)
(ot : OidsPred opm.oids ott)

<:
MemModBox ipm opm uts UTSOidParam HTSparam ott ot mdi.
Module otd := ot.
Module otm : FMapInterface.WSfun(otd.PredoidDecidable) :=

FMapWeakList.Make otd.PredoidDecidable.
Module otmWPties :=

FMapFacts.WProperties fun ot.PredoidDecidable otm.

Import mdi.
Definition MDatTimeMapRaw :=

otm.t (MDatTimeElt).
Definition MDatBoxTimeMapPred(mode : MemDatMode)

(freqm : otm.t MDatBoxElt)(f : Freq)(t : TTime f)
(mdm : MDatTimeMapRaw) : Prop.

Admitted.
Definition MDatBoxTime(mode : MemDatMode)

(freqm : otm.t MDatBoxElt)(f : Freq)(t : TTime f) :=
sig (MDatBoxTimeMapPred mode freqm f t).

End SF MemModBox.
Module SF HBox(ipm : IdPreds)(opm : OidPreds)

(Import uts : UTypeSys)
(Import uc : UCost uts)(UTSOidParam : UTypeSysOid uts opm)
(Import ubox : UBox ipm opm uts UTSOidParam uc)
(Import HTSparam : HTypeSys uts opm UTSOidParam) <:
HBox ipm opm uts uc UTSOidParam ubox HTSparam.
Module BoxTypeIdMapMod :

FMapInterface.WSfun(ipm.boxidPred.PredidDecidable) :=
FMapWeakList.Make ipm.boxidPred.PredidDecidable.

407

Module ipmModVaridLCM := MapLCM ipm.varidPred.PredidDecidable ipm.VaridMapMod.
Module ipmModBoxidLCM :=

MapLCM ipm.boxidPred.PredidDecidable BoxTypeIdMapMod.
Module MDataInst <: MDataType ipm opm uts UTSOidParam HTSparam :=

MData ipm opm uts UTSOidParam HTSparam.
Module InMemModBox <: MemModBox ipm opm uts UTSOidParam HTSparam

opm.oidMemFBPredType opm.oidMemFBPred
MDataInst

:=
SF MemModBox ipm opm uts uc UTSOidParam ubox HTSparam MDataInst
opm.oidMemFBPredType opm.oidMemFBPred.

Module OutMemModBox <: MemModBox ipm opm uts UTSOidParam HTSparam
opm.oidMemBFPredType opm.oidMemBFPred MDataInst :=
SF MemModBox ipm opm uts uc UTSOidParam ubox HTSparam MDataInst
opm.oidMemBFPredType opm.oidMemBFPred.

Import MDataInst.
Definition InMapVaridConvertPred

(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(ivm : InMemModBox.otm.t ipm.Varid)
(vm : sig (vpred f))
(im : InMemModBox.otm.t MDataInst.MDatBoxElt)
:= ∃ v,

∃ m, ipm.VaridMapMod.MapsTo v m (proj1 sig vm) →
∃ i, InMemModBox.otm.MapsTo i v ivm ∧

InMemModBox.otm.MapsTo i m im.
Definition InTypePredConvert

(uexprlang : ubox.UExprLang)
(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(im : InMemModBox.otm.t MDataInst.MDatBoxElt)
(utypes : InpOutpTypes)
(inpred : ∀(f : Freq)

(freqm : sig (vpred f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop)

(ivm : InMemModBox.otm.t ipm.Varid) :=
∃ vm, InMapVaridConvertPred vpred f ivm vm im ∧

inpred f vm utypes.
Definition OutMapVaridConvertPred

(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(ovm : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(om : OutMemModBox.otm.t MDataInst.MDatBoxElt)

(vm : sig (vpred f)) :=
∀ v, ∃ m, ipm.VaridMapMod.MapsTo v m (proj1 sig vm) →
∃ o, ipm.VaridMapMod.MapsTo v o ovm ∧

OutMemModBox.otm.MapsTo o m om.
Definition OutTypePredConvert

(uexprlang : ubox.UExprLang)
(vpred : Freq → ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop)
(f : Freq)
(om : OutMemModBox.otm.t MDataInst.MDatBoxElt)
(utypes : InpOutpTypes (ubox.CTDTP uexprlang))
(outpred : ∀(f : Freq)

(freqm : sig (vpred f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop)

(ovm : ipm.VaridMapMod.t opm.HBCL OidMemBF) :=
∃ vm, OutMapVaridConvertPred vpred f ovm om vm ∧

outpred f vm utypes.
Record HBoxAbs := {

uexprlang : ubox.UExprLang;
boxfreqcorrectin : Freq →

ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop;
boxfreqcorrectout : Freq →

408

ipm.VaridMapMod.t MDataInst.MDatBoxElt → Prop;
IOtypePredIn : ∀(f : Freq)

(freqm : sig (boxfreqcorrectin f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop;

IOtypePredOut : ∀(f : Freq)
(freqm : sig (boxfreqcorrectout f))
(tco : InpOutpTypes (ubox.CTDTP uexprlang)), Prop;

convertInp : ∀
(f : Freq)(tf : TTime f)
(memvarmap : InMemModBox.otm.t ipm.Varid)
(ttypes : sig

(fun tmap ⇒
∃ vm,

InMapVaridConvertPred boxfreqcorrectin f memvarmap vm tmap))
(utypes : InpOutpTypes),
InTypePredConvert uexprlang boxfreqcorrectin f (proj1 sig ttypes) utypes
IOtypePredIn memvarmap →
InMemModBox.MDatBoxTime MDataInst.ReadEnabled
(proj1 sig ttypes) f tf →
option (sig (ubox.UDataPSTMatchesInpOutpTypes utypes));

convertOutp : ∀
(f : Freq)(tf : TTime f)
(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttypes : sig

(fun tmap ⇒ ∃ vm,
OutMapVaridConvertPred boxfreqcorrectout f varmemmap tmap vm))

(utypes : InpOutpTypes (ubox.CTDTP uexprlang)),
OutTypePredConvert uexprlang boxfreqcorrectout f (proj1 sig ttypes)
utypes IOtypePredOut varmemmap →
sig (ubox.UDataPSTMatchesInpOutpTypes utypes) →
OutMemModBox.MDatBoxTime MDataInst.WriteEnabled (proj1 sig ttypes) f tf

}.

Inductive HBoxSSORawI : Type :=
HBoxSSORaw make
(hBoxType : HBoxAbs)
(itypes otypes : InpOutpTypes (ubox.CTDTP (uexprlang hBoxType)))
(usso : ubox.sso (uexprlang hBoxType) itypes otypes) :

HBoxSSORawI .
Definition HBoxSSORaw := HBoxSSORawI.

Module VaridMapWPties :=
FMapFacts.WProperties fun ipm.varidPred.PredidDecidable ipm.VaridMapMod.

Inductive HBoxSSOPredI(f fi fo : Freq)
(ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt)

:
HBoxSSORaw → Prop :=

| HBoxSSO intro
(hBoxType : HBoxAbs)
(itypes otypes : InpOutpTypes (ubox.CTDTP (uexprlang hBoxType)))
(usso : ubox.sso (uexprlang hBoxType) itypes otypes)

(ttmfInPred : boxfreqcorrectin hBoxType fi ttmfIn)
(ttmfOutPred : boxfreqcorrectout hBoxType fo ttmfOut) :
FreqIsLCM fi fo f →
IOtypePredIn hBoxType fi (exist ttmfInPred) itypes →
IOtypePredOut hBoxType fo (exist ttmfOutPred) otypes →
VaridMapWPties.Disjoint itypes otypes →
HBoxSSOPredI f fi fo ttmfIn ttmfOut
(HBoxSSORaw make hBoxType itypes otypes usso).

Definition HBoxSSOPred : ∀ (f fi fo : Freq)

(ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt)

,

409

HBoxSSORaw → Prop := HBoxSSOPredI.
Definition HBoxSSO(f fi fo : Freq)

(ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
:=
sig (HBoxSSOPred f fi fo ttmfIn ttmfOut).

Definition HBoxStepPred(f fmi fmo : Freq)
(t : TTime f)
(ti : TTime fmi)(to : TTime fmo)
(ttmfIn :)
(ttmfOut :)
(memvarmap : InMemModBox.otm.t ipm.Varid)
(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttmfIn’ :)
(ttmfOut’ :)

:
HBoxSSO f fmi fmo (ttmfIn) (ttmfOut) →
InMemModBox.MDatBoxTime MDataInst.ReadEnabled (ttmfIn’)
fmi ti →
OutMemModBox.MDatBoxTime MDataInst.WriteEnabled (ttmfOut’)
fmo to →
Prop.

Admitted.
Module InMemBoxWPties :=

FMapFacts.WProperties fun opm.oidMemFBPred.PredoidDecidable
InMemModBox.otm.

Module OutMemBoxWPties :=
FMapFacts.WProperties fun opm.oidMemBFPred.PredoidDecidable
OutMemModBox.otm.

Definition mapVaridMemToOtmIn(vm : ipm.VaridMapMod.t MDataInst.MDatBoxElt)
(memvarmap : InMemModBox.otm.t ipm.Varid) :
InMemModBox.otm.t MDataInst.MDatBoxElt.

Defined.
Definition mapVaridMemToOtmOut(vm : ipm.VaridMapMod.t MDataInst.MDatBoxElt)

(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF) :
OutMemModBox.otm.t MDataInst.MDatBoxElt.

Defined.
Lemma upcastBucketsDataPNOT ENOUGH ARGS : ∀

(mtype : MDatBoxElt) e,
DataP (projTD2 (projTT3 (MDBFE Base timt mtype))) e.

Fixpoint upcastBucketsToTime(mtype : MDatBoxElt)
(ul’ : list (option DataR))
(tv : TTime (projTT2 (MDataInst.MDBFE Base timt mtype)))
{struct ul’} : list
(sigTD HTSparam.TimedV).

Defined.
Lemma genBlankBucketTrainFDivTTimeConvNOT ENOUGH ARGS :
∀ mspec fmo,
FreqDivide (projTT2 (MDBFE Base timt mspec)) fmo.

Definition genBlankBucketTrain(mspec : MDatBoxElt)
(fmo : Freq)(to : TTime fmo) : list (sigTD HTSparam.TimedV).

Defined.
Definition genBlankOut(ttmfOut : OutMemModBox.otm.t MDatBoxElt)

(fmo : Freq)(to : TTime fmo) :
sig (OutMemModBox.MDatBoxTimeMapPred WriteEnabled ttmfOut fmo to).

Defined.
Definition HBoxStep(f fmi fmo : Freq)

(t : TTime f)
(ti : TTime fmi)(to : TTime fmo)
(ttmfIn :)
(ttmfOut :)
(memvarmap : InMemModBox.otm.t ipm.Varid)

410

(varmemmap : ipm.VaridMapMod.t opm.HBCL OidMemBF)
(ttmfIn’ :)
(ttmfOut’ :)
(hbox : HBoxSSO f fmi fmo ttmfIn ttmfOut)
(inp : InMemModBox.MDatBoxTime MDataInst.ReadEnabled (ttmfIn’) fmi ti) :
sig (HBoxStepPred f fmi fmo t ti to

ttmfIn ttmfOut memvarmap varmemmap ttmfIn’ ttmfOut’
hbox inp).

Defined.

Record HBoxSSONonDep : Type := {
HBoxSSONonDep f : Freq;
HBoxSSONonDep fi : Freq;
HBoxSSONonDep fo : Freq;

HBoxSSONonDep ttmfIn : ipm.VaridMapMod.t MDataInst.MDatBoxElt
;

HBoxSSONonDep ttmfOut : ipm.VaridMapMod.t MDataInst.MDatBoxElt
;

HBoxSSONonDep HBoxSSO : HBoxSSO HBoxSSONonDep f HBoxSSONonDep fi
HBoxSSONonDep fo HBoxSSONonDep ttmfIn
HBoxSSONonDep ttmfOut

}.
End SF HBox.

D.4.8 The coordination language functor

Listing D.16: The coordination language functor
Require Import Coq.Arith.Bool nat.
Require Import Coq.ZArith.BinInt.
Require Import Coq.ZArith.Zminmax.
Require Import Coq.ZArith.Zbool.
Require Coq.FSets.FMapInterface.
Require Coq.FSets.FMapWeakList.
Require Import Coq.Program.Program.
Require Import HBCL.Util.Freq.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.ModSignatures.Ids.
Require Import HBCL.HBCL 0 1.ModSignatures.Oids.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSys.
Require Import HBCL.HBCL 0 1.ModSignatures.UTypeSysOid.
Require Import HBCL.HBCL 0 1.ModSignatures.UCost.
Require Import HBCL.HBCL 0 1.ModSignatures.UBox.
Require Import HBCL.HBCL 0 1.ModSignatures.HBox.
Require Export HBCL.HBCL 0 1.ModSignatures.Coord.

Module SF Coord
(ipm : IdPreds)(opm : OidPreds)
(Import uts : UTypeSys)
(Import uc : UCost uts)(UTSOidParam : UTypeSysOid uts opm)
(ubox : UBox ipm opm uts UTSOidParam uc)
(Import HTSparam : HTypeSys uts opm UTSOidParam)
(Import hbox : HBox ipm opm uts uc UTSOidParam ubox HTSparam) <:
Coord ipm opm uts uc UTSOidParam ubox HTSparam hbox.

411

Import ipm.
Import opm.
Import uts.
Import UTSOidParam.
Definition CoordAST := unit.
Definition parse : ubox.Encoding → CoordAST := fun ⇒ tt.

Module LInstOidMapMod := FMapWeakList.Make oidLInstPred.PredoidDecidable.
Module MDataTypeInst <:

MemDataTypeInstType
ipm opm uts
UTSOidParam HTSparam MDataInst :=
MemDataTypeInst ipm opm uts
UTSOidParam HTSparam MDataInst.

Module SF MemModInst(ott : OidPredType opm.oids)
(ot : OidsPred opm.oids ott)
(memBoxes : MemModBox ipm opm uts

UTSOidParam HTSparam ott ot MDataInst
) <:

MemModInst ipm opm uts
UTSOidParam HTSparam ott ot MDataInst MDataTypeInst memBoxes.

Definition MDatFreqMapRaw := memBoxes.otm.t (MDataTypeInst.MDatFreqElt).

Definition RawFreqMapPred(f : Freq)(mf : MDatFreqMapRaw) : Prop.
Admitted.

Definition MDatFreqMap(f : Freq) := sig (RawFreqMapPred f).
Definition MDatFreqMapIOPred(f : Freq)(mdf : MDatFreqMap f) :
Prop.

Admitted.
Definition MDatFreqMapIO(f : Freq) := sig (MDatFreqMapIOPred f).

Definition MDatFreqMapElt seq : MDataTypeInst.MDatFreqElt →
MDataTypeInst.MDatFreqElt → Prop.

Admitted.
Definition MDatFreqMapEltOpt seq(o1 : option (MDataTypeInst.MDatFreqElt))

(o2 : option (MDataTypeInst.MDatFreqElt)) :=
match o1, o2 with
| Some mdf1, Some mdf2 ⇒ MDatFreqMapElt seq mdf1 mdf2
| , ⇒ False

end.
Definition MDatMapFreqTimePred : ∀ f : Freq,
∀ mf :
MDatFreqMap f , memBoxes.MDatTimeMapRaw → Prop.

Admitted.
Definition MDatMapTime(f : Freq)

(mf : MDatFreqMap f) := sig (MDatMapFreqTimePred f mf).
Print MDataTypeInst.MDatFreqElt.
Print MDataInst.MDatBoxFreqEltBase.
Print MDataInst.MDatTimeElt.

Definition MDatMapModeReadPred(f : Freq)
(t : TTime f)(mf : MDatFreqMap f)(mt : MDatMapTime f mf) :=
(∀ oid : (sig ott.Pred), memBoxes.otm.In oid (proj1 sig mt)) ∧
∀ (oid : (sig ott.Pred))(tme : MDataInst.MDatTimeElt),

memBoxes.otm.MapsTo oid tme (proj1 sig mt) →
∃ mfe, memBoxes.otm.MapsTo oid mfe (‘mf) ∧
∃ t’, ∃ t”, TTseq t t’ ∧ TTseq t t” ∧

MDataInst.MemDatListPred MDataInst.ReadEnabled
(MDataTypeInst.MDFE boxMemDat mfe) t’ t” tme.

Definition MDatMapModeWritePred(f : Freq)
(t : TTime f)(mf : MDatFreqMap f)(mt : MDatMapTime f mf) :=
(∀ oid : (sig ott.Pred), memBoxes.otm.In oid (proj1 sig mt)) ∧
∀ (oid : (sig ott.Pred))(tme : MDataInst.MDatTimeElt),

412

memBoxes.otm.MapsTo oid tme (proj1 sig mt) →
∃ mfe, memBoxes.otm.MapsTo oid mfe (‘mf) ∧
∃ t’, ∃ t”, TTseq t t’ ∧ TTseq t t” ∧

MDataInst.MemDatListPred MDataInst.WriteEnabled
(MDataTypeInst.MDFE boxMemDat mfe) t’ t” tme.

End SF MemModInst.
Module InMemModInst : MemModInst ipm opm uts

UTSOidParam HTSparam
oidMemFBPredType oidMemFBPred MDataInst MDataTypeInst InMemModBox :=
SF MemModInst oidMemFBPredType oidMemFBPred InMemModBox.

Module OutMemModInst : MemModInst ipm opm uts

UTSOidParam HTSparam
oidMemBFPredType oidMemBFPred MDataInst MDataTypeInst OutMemModBox :=
SF MemModInst oidMemBFPredType oidMemBFPred OutMemModBox.

Record LInstSignatureRaw : Type := {
InstSigFreqMemIn : Freq;
InstSigFreqMemOut : Freq;
InstSigInputMems : InMemModInst.MDatFreqMapIO InstSigFreqMemIn;
InstSigOutputMems : OutMemModInst.MDatFreqMapIO InstSigFreqMemOut

}.
Definition LInstSignature(f : Freq) :=
{ lisr : LInstSignatureRaw |

FreqDivide (InstSigFreqMemIn lisr) f ∧
FreqDivide (InstSigFreqMemOut lisr) f

}.
Inductive LInstSSORaw : Type :=

LInstSSORaw make(fmi fmo fmil fmol fmin fmon fl fn f : Freq) :

InMemModInst.MDatFreqMap fmil →
OutMemModInst.MDatFreqMap fmol →
InMemModInst.MDatFreqMap fmin →
OutMemModInst.MDatFreqMap fmon →

BoxTypeIdMapMod.t
(HBoxSSONonDep × (InMemModBox.otm.t Varid)
× (VaridMapMod.t opm.HBCL OidMemBF)) →

InMemModBox.otm.t (HBCL OidMemFB) →
OutMemModBox.otm.t (HBCL OidMemBF) →
VaridMapMod.t (HBCL OidMemBF × HBCL OidMemFB) →

LInstMapMod.Raw.t
(LInstSSORaw) →

LInstMapMod.t HBCL OidLInst →
LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw) →

LLibMapMod.Raw.t (LibSSORaw) →
LInstMapMod.t TTFL →

LLibMapMod.t (LInstMapMod.t LInstSignatureRaw) →

LInstSSORaw

with LibSSORaw : Type :=
LLibSSORaw make :

VaridMapMod.t (sigTD T) →
VaridMapMod.t (sigTT TimedT) →
LInstMapMod.Raw.t (LInstSSORaw) →

LInstMapMod.t

413

((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw) →

LLibMapMod.Raw.t (LibSSORaw) →
LLibMapMod.t (LInstMapMod.t LInstSignatureRaw) →

LibSSORaw .

Definition HBoxMapPredF(f : Freq)(h : BoxTypeIdMapMod.t
(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF))) :=

ipmModBoxidLCM.FreqIsLCMMapFunc HBoxSSONonDep f f
(BoxTypeIdMapMod.map (fun m ⇒ fst (fst m)) h).

Definition FMapLCMQualVarid(f : Freq) := sig (ipmModVaridLCM.FreqIsLCMMap f).
Module opmModLInstLCM :=

MapLCM oidLInstPred.PredoidDecidable opm.LInstMapMod.
Definition FMapLCMQualLInst(f : Freq) := sig (opmModLInstLCM.FreqIsLCMMap f).
Module opmModLLibLCM :=

MapLCM oidLLibPred.PredoidDecidable opm.LLibMapMod.
Definition FMapLCMQualLLib(f : Freq) := sig (opmModLLibLCM.FreqIsLCMMap f).
Definition HBoxLCMQual(f : Freq) := sig (HBoxMapPredF f).

Inductive LInstSSOPred :
∀ f , LInstSignature f → LInstMapMod.t LInstSignatureRaw →

LInstSSORaw
→ Prop :=
LInstSSO intro

(f fmi fmo fmil fmol fmin fmon fl fn f : Freq)

(hboxSSO : sigT HBoxLCMQual)
(obsMap : InMemModBox.otm.t (HBCL OidMemFB))
(manifMap : OutMemModBox.otm.t

(HBCL OidMemBF))
(fifoMap : VaridMapMod.t (HBCL OidMemBF × HBCL OidMemFB))
(instNestMap : LInstMapMod.t (LInstSSORaw))

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)

(instTypeMap : LInstMapMod.t HBCL OidLInst)
(instTShiftMap : LInstMapMod.t TTFL)

(instSigDatMap : LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw))

(libMap : LLibMapMod.t LibSSORaw)
(libmapsigmap : LLibMapMod.t

(LInstMapMod.t LInstSignatureRaw))
(instMemIn : InMemModInst.MDatFreqMapIO fmi)
(instMemOut : OutMemModInst.MDatFreqMapIO fmo)
(instMemInLoc : InMemModInst.MDatFreqMap fmil)
(instMemOutLoc : OutMemModInst.MDatFreqMap fmol)
(instMemInNest : InMemModInst.MDatFreqMap fmin)
(instMemOutNest : OutMemModInst.MDatFreqMap fmon)
(fmnest : sigT FMapLCMQualLInst)
(fmtref : sigT FMapLCMQualLInst):

FreqIsLCMList f (cons fmi (cons fmo (cons (projT1 hboxSSO)
(cons (projT1 fmnest) (cons (projT1 fmtref) nil))))) →

((∀ v, LInstMapMod.In v (proj1 sig (projT2 fmnest)) ↔
LInstMapMod.In v instNestMap) →
(∀ v,
∀ lir, LInstMapMod.MapsTo v lir instNestMap →
∀ f’, LInstMapMod.MapsTo v f’ (proj1 sig (projT2 fmnest)) →
∃ fmi’, ∃ fmo’,
∃ inmems, ∃ outmems, ∃ instTypeScopeMap’,
∃ fsmatch,

414

LInstSSOPred (f’) (exist (fun lisr ⇒
FreqDivide (InstSigFreqMemIn lisr) f’ ∧
FreqDivide (InstSigFreqMemOut lisr) f’)

(Build LInstSignatureRaw fmi’ fmo’ inmems outmems) fsmatch)
instTypeScopeMap’ (lir))

) →

∀ lisp,
LInstSSOPred (f)
(exist (Build LInstSignatureRaw fmi fmo instMemIn instMemOut) lisp)
instTypeScopeMap (LInstSSORaw make fmi fmo fmil fmol

fmin fmon fl fn f
(instMemInLoc) (instMemOutLoc) (instMemInNest) (instMemOutNest)
(proj1 sig (projT2 hboxSSO)) obsMap manifMap fifoMap
(LInstMapMod.this instNestMap) instTypeMap
instSigDatMap
(LLibMapMod.this libMap)

instTShiftMap libmapsigmap)

with LLibSSOPred : LInstMapMod.t LInstSignatureRaw → LibSSORaw → Prop :=
LLibSSO intro
(libsig : LInstMapMod.t LInstSignatureRaw)
(libenv : LInstMapMod.Raw.t LInstSignatureRaw)
(utypes : VaridMapMod.t (sigTD T))
(ttypes : VaridMapMod.t (sigTT TimedT))
(instMap : LInstMapMod.t LInstSSORaw)

(instSigDatMap : LInstMapMod.t
((sigT LInstSignature) × LInstMapMod.t LInstSignatureRaw))

(fminst : sigT FMapLCMQualLInst)
(libNestMap : LLibMapMod.t LibSSORaw)
(libmapsigmap :

LLibMapMod.t (LInstMapMod.t LInstSignatureRaw)) :

((∀ v, LInstMapMod.In v (proj1 sig (projT2 fminst)) ↔
LInstMapMod.In v instMap) →
(∀ v,
∀ lir, LInstMapMod.MapsTo v lir instMap →
∀ f’, LInstMapMod.MapsTo v f’ (proj1 sig (projT2 fminst)) →
∃ fmi’, ∃ fmo’,
∃ inmems, ∃ outmems, ∃ instTypeScopeMap,
∃ lisp,

LInstSSOPred (f’)
(exist (Build LInstSignatureRaw fmi’ fmo’ inmems outmems) lisp)
instTypeScopeMap lir)

)
→

((∀ v, VaridMapMod.In v ttypes → VaridMapMod.In v utypes) →
∀ v t u, VaridMapMod.MapsTo v t ttypes →
VaridMapMod.MapsTo v u utypes → UTSOidParam.TEq u (projTT3 t)) →

LLibSSOPred libsig (LLibSSORaw make utypes ttypes
(LInstMapMod.this instMap) instSigDatMap
(LLibMapMod.this libNestMap) libmapsigmap).

Definition LInstSSO(f : Freq)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)

:=
sig (LInstSSOPred (f)

linstsig instTypeScopeMap).
Definition LLibSSO(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=

sig (LLibSSOPred instTypeScopeMap).

415

Inductive LissoLibPred : ∀
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw),
LLibMapMod.t (sigT LLibSSO) → Prop :=.

Definition LissoLibDep(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=
sig (LissoLibPred instTypeScopeMap).

Definition LibClosRaw :=
list ((LInstMapMod.t LInstSignatureRaw) × (sigT LissoLibDep)).

Inductive LibClosPred :
LInstMapMod.t LInstSignatureRaw → LibClosRaw → Prop :=.

Module LInstMapModWPties :=
FMapFacts.WProperties fun opm.oidLInstPred.PredoidDecidable
LInstMapMod.

Module LLibMapModWPties :=
FMapFacts.WProperties fun opm.oidLLibPred.PredoidDecidable
LLibMapMod.

Definition LibClos(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw) :=
sig (LibClosPred instTypeScopeMap).

Definition Lisso(f : Freq)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissoLibMap : LibClos instTypeScopeMap) :=
LInstSSO f linstsig instTypeScopeMap.

Definition StatSemObj := sigTQ Lisso.
Module Type MemsEnabledSpec.
Parameter imemtrel : ∀ fmi, (TTime fmi) → (TTime fmi).
Parameter omemtrel : ∀ fmo, (TTime fmo) → (TTime fmo).
Parameter imemrwpred : ∀ (fmi : Freq)(tmi : TTime fmi)

(mfi : InMemModInst.MDatFreqMap fmi),
InMemModInst.MDatMapTime fmi mfi → Prop.

Parameter omemrwpred : ∀ (fmo : Freq)(tmo : TTime fmo)
(mfo : OutMemModInst.MDatFreqMap fmo),
OutMemModInst.MDatMapTime fmo mfo → Prop.

End MemsEnabledSpec.
Module Type MemsEnabledModType(Import mes : MemsEnabledSpec).
Parameter MemsEnabledPred : ∀ (f fmi fmo: Freq)

(t : TTime f)(tmi : TTime fmi)(tmo : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(mti : InMemModInst.MDatMapTime fmi mfi)
(mto : OutMemModInst.MDatMapTime fmo mfo), Prop.

End MemsEnabledModType.
Module MemsEnabledMod(Import mes : MemsEnabledSpec) : MemsEnabledModType mes.
Implicit Arguments imemtrel [fmi].
Implicit Arguments omemtrel [fmo].
Definition MemsEnabledPred(f fmi fmo: Freq)

(t : TTime f)(tmi : TTime fmi)(tmo : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(mti : InMemModInst.MDatMapTime fmi mfi)
(mto : OutMemModInst.MDatMapTime fmo mfo) :=
TTseq (t) tmi ∧ TTseq (t) tmo ∧
imemrwpred fmi (imemtrel tmi) mfi mti ∧
omemrwpred fmo (omemtrel tmo) mfo mto.

End MemsEnabledMod.
Module BoxesMemsEnabledSpec : MemsEnabledSpec.
Definition imemtrel := tId.
Definition omemtrel := tId.
Definition imemrwpred := InMemModInst.MDatMapModeReadPred.
Definition omemrwpred := OutMemModInst.MDatMapModeReadPred.

End BoxesMemsEnabledSpec.
Module MemBFMemsEnabledSpec : MemsEnabledSpec.
Definition imemtrel := tId.
Definition omemtrel := tNext.

416

Definition imemrwpred := InMemModInst.MDatMapModeReadPred.
Definition omemrwpred := OutMemModInst.MDatMapModeWritePred.

End MemBFMemsEnabledSpec.
Module FIFOsMemsEnabledSpec : MemsEnabledSpec.

Definition imemtrel := tId.
Definition omemtrel := tNext.
Definition imemrwpred := InMemModInst.MDatMapModeReadPred.
Definition omemrwpred := OutMemModInst.MDatMapModeReadPred.

End FIFOsMemsEnabledSpec.
Module MemFBMemsEnabledSpec : MemsEnabledSpec.

Definition imemtrel := tNext.
Definition omemtrel := tNext.
Definition imemrwpred := InMemModInst.MDatMapModeWritePred.
Definition omemrwpred := OutMemModInst.MDatMapModeReadPred.

End MemFBMemsEnabledSpec.
Module BoxesMemsEnabled : MemsEnabledModType BoxesMemsEnabledSpec

:= MemsEnabledMod BoxesMemsEnabledSpec.
Module MemBFMemsEnabled : MemsEnabledModType MemBFMemsEnabledSpec

:= MemsEnabledMod MemBFMemsEnabledSpec.
Module FIFOsMemsEnabled : MemsEnabledModType FIFOsMemsEnabledSpec

:= MemsEnabledMod FIFOsMemsEnabledSpec.
Module MemFBMemsEnabled : MemsEnabledModType MemFBMemsEnabledSpec

:= MemsEnabledMod MemFBMemsEnabledSpec.

Definition isNextTimeStep(f : Freq)(t t’ : TTime f) :=
TTseq (tNext f t) t’.

Lemma TTseq refl : ∀ (f : Freq)(t : TTime f), TTseq t t.
Lemma tNextIsNextTimeStep : ∀ f t, isNextTimeStep f t (tNext f t).
Module Type StepModType(mespre mespost : MemsEnabledSpec).

Declare Module SMemEnabledModPre : MemsEnabledModType mespre.
Declare Module SMemEnabledModPost : MemsEnabledModType mespost.

Parameter StepSSO : ∀ (f fmi fmo : Freq)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo),
Type.

Parameter StepPred : ∀ (f fmi fmo : Freq)
(t t’ : TTime f)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo),
StepSSO f fmi fmo mfi mfo →
isNextTimeStep f t t’ →
{ mts |
(SMemEnabledModPre.MemsEnabledPred f fmi fmo t ti to mfi mfo

(fst mts) (snd mts)) }→
{ mts |

(SMemEnabledModPost.MemsEnabledPred f fmi fmo t’ ti’ to’ mfi mfo
(fst mts) (snd mts)) }→

Prop.
End StepModType.
Module Type StepMod(mespre mespost : MemsEnabledSpec)

(stepmodtype : StepModType mespre mespost
).

Parameter StepFunc : ∀ (f fmi fmo : Freq)
(t t’ : TTime f)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(stepSSO : stepmodtype.StepSSO f fmi fmo mfi mfo)
(nexttimeprf : isNextTimeStep f t t’)
(instate : { mts |

(stepmodtype.SMemEnabledModPre.MemsEnabledPred f fmi fmo t ti to
mfi mfo (fst mts) (snd mts)) }),

sig (stepmodtype.StepPred f fmi fmo t t’ ti ti’ to to’ mfi mfo stepSSO
nexttimeprf instate).

End StepMod.

417

Module BoxesStep .

Inductive StepSSOPred(f fmi fmo : Freq)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(ndmap : BoxTypeIdMapMod.t

(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF))) : Prop :=

| StepSSO intro :

StepSSOPred f fmi fmo mfi mfo ndmap.
Definition StepSSO(f fmi fmo : Freq)

(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
:= sig (StepSSOPred f fmi fmo mfi mfo).

Definition StepPred(f fmi fmo : Freq)
(t t’ : TTime f)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)
(mfo : OutMemModInst.MDatFreqMap fmo) :
StepSSO f fmi fmo mfi mfo →
isNextTimeStep f t t’ →
sig (InMemModInst.MDatMapModeReadPred ti mfi) →

sig (OutMemModInst.MDatMapModeWritePred to mfo) →

Prop.
Admitted.

End BoxesStep.
Lemma inclReflBoxid : ∀ elt m,

SetoidList.inclA (@BoxTypeIdMapMod.eq key elt elt) m m.
Module InMemBoxWPties :=

FMapFacts.WProperties fun opm.oidMemFBPred.PredoidDecidable
InMemModBox.otm.

Module OutMemBoxWPties :=
FMapFacts.WProperties fun opm.oidMemBFPred.PredoidDecidable
OutMemModBox.otm.

Inductive CoordStateRaw : Type :=
| CoordStateRaw make :

InMemModBox.MDatTimeMapRaw → OutMemModBox.MDatTimeMapRaw
→
LInstMapModRaw.t (CoordStateRaw) → CoordStateRaw.

Print Lisso.

Inductive CoordStateStaticPred(f : Freq)

(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)

(lisso : Lisso f linstsig instTypeScopeMap lissolib)

:
CoordStateRaw → Prop :=

| CoordStatePred intro(f’ fl fn fmi’ fmo’ : Freq)
(mfi’ : InMemModInst.MDatFreqMap fmi’)
(mfo’ : OutMemModInst.MDatFreqMap fmo’)
(mfiTrace’ : InMemModInst.MDatMapTime fmi’ mfi’)
(mfoTrace’ : OutMemModInst.MDatMapTime fmo’ mfo’)
(nestCSR : LInstMapMod.t (CoordStateRaw)) :

CoordStateStaticPred f linstsig instTypeScopeMap
lissolib lisso
(CoordStateRaw make

(‘mfiTrace’) (‘mfoTrace’)

418

(LInstMapMod.this nestCSR)).

Inductive CoordStateBoxesEnabled(f : Freq)
(t : TTime f)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateMemBFEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateInnerFIFOsEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=

with CoordStateInnerMemFBEnabled(f : Freq)
(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
sig (CoordStateStaticPred f linstsig instTypeScopeMap lissolib lisso) →
Prop :=.

Definition CoordStateOuterFIFOsEnabled := CoordStateBoxesEnabled.
Definition CoordStateOuterMemFBEnabled := CoordStateInnerMemFBEnabled.

Record CSTempCorrectND
: Type := {

CSTempCorrectND f : Freq;
CSTempCorrectND t : TTime CSTempCorrectND f ;
CSTempCorrectND linstsig : LInstSignature CSTempCorrectND f ;
CSTempCorrectND instTypeScopeMap : LInstMapMod.t LInstSignatureRaw;
CSTempCorrectND lissolib : LibClos CSTempCorrectND instTypeScopeMap;
CSTempCorrectND lisso : Lisso CSTempCorrectND f

CSTempCorrectND linstsig
CSTempCorrectND instTypeScopeMap
CSTempCorrectND lissolib;

CSTempCorrectND CS :
sig (CoordStateStaticPred CSTempCorrectND f

CSTempCorrectND linstsig
CSTempCorrectND instTypeScopeMap CSTempCorrectND lissolib
CSTempCorrectND lisso)

}.
Definition CSTempCorrectND seq :
CSTempCorrectND →
CSTempCorrectND → Prop.

Admitted.

Check InMemModInst.MDatMapModeReadPred.
CoInductive InputStream(f : Freq)(mfi : InMemModInst.MDatFreqMapIO f)

419

(t : TTime f) : Type :=
| InputStreamFinal :

InputStream f mfi t
| InputStreamInd(tnext : TTime f) :

TTseq (tNext f t) tnext →
sig (InMemModInst.MDatMapModeReadPred f t (‘mfi)) →
InputStream f mfi tnext → InputStream f mfi t.

CoInductive OutputStream(f : Freq)(mfo : OutMemModInst.MDatFreqMapIO f)
(t : TTime f) : Type :=

| OutputStreamFinal :

OutputStream f mfo t
| OutputStreamInd(tnext : TTime f) :

TTseq (tNext f t) tnext →
sig (OutMemModInst.MDatMapFreqTimePred f (‘mfo)) →
OutputStream f mfo tnext → OutputStream f mfo t.

Definition LissoNestMatch(f : Freq)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(nestCSR : LInstMapMod.t LInstSSORaw) : Prop.

Admitted.
Definition InstMapMatchSSO(f fn : Freq)(linstsig : LInstSignature f)

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(csTemporalPred : ∀ f : Freq,

TTime f →
∀ (linstsig : LInstSignature f)

(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib),

sig
(CoordStateStaticPred f linstsig instTypeScopeMap

lissolib lisso) → Prop)
(nestCSR : LInstMapMod.t (

(CSTempCorrectND))) : Prop.
Admitted.

Inductive InstBoxesNestPred
(f fn : Freq)(t : TTime f)(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)

(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateInnerFIFOsEnabled))

(nestCSR’ : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateOuterFIFOsEnabled))

(traceEnab : ∀ (f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(cstate :

sig (CoordStateBoxesEnabled
f t linstsig instTypeScopeMap lissolib lisso))

,
Type) : Prop :=.

CoInductive TraceBoxesEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)

420

(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀

(cstate : sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap
lissolib lisso))

,
Type :=

| TraceBoxesStep (fl fn : Freq)(fmti fmto : Freq)
(tfl tfl’ : TTime fl)
(t’ : TTime f)(ti’ : TTime (InstSigFreqMemIn (‘linstsig)))
(tti tti’ : TTime fmti)(tto tto’ : TTime fmto)
(mfti : InMemModInst.MDatFreqMap fmti)
(mfto : OutMemModInst.MDatFreqMap fmto)
(bssso : BoxesStep.StepSSO fl fmti fmto mfti mfto)
(mftiState : InMemModInst.MDatMapTime fmti mfti)
(mftoState : OutMemModInst.MDatMapTime fmto mfto)
(mftiState’ : InMemModInst.MDatMapTime fmti mfti)
(mftoState’ : OutMemModInst.MDatMapTime fmto mfto)
(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso
CoordStateInnerFIFOsEnabled))

(nestCSR’ : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso
CoordStateOuterFIFOsEnabled))

(prfnxtim : isNextTimeStep fl tfl tfl’)
(bsteppre :

InMemModInst.MDatMapModeReadPred tti mfti mftiState)

(bsteppost :
OutMemModInst.MDatMapModeWritePred tto mfto mftoState)

(cstate :
sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap lissolib lisso))

(cstateNext :
sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib lisso))

:

BoxesStep.StepPred fl fmti fmto tfl tfl’ tti tti’ tto tto’
mfti mfto bssso prfnxtim
(exist bsteppre)
(exist bsteppost)

→
(InstBoxesNestPred f fn t linstsig instTypeScopeMap lissolib lisso

nestCSR nestCSR’ TraceBoxesEnab) →
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext
→
TraceBoxesEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceMemBFEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀
(cstate : sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap

lissolib lisso))
,
Type :=

| TraceMemBFStep

(cstate :
sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib lisso))

(cstateNext :

421

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib
lisso)) :

TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext
→
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceFIFOsEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀

(cstate :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib

lisso))
,
Type
:=

| TraceFIFOsStep
(cstate :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib
lisso))

(cstateNext :
sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib

lisso))
:

TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso cstateNext →
TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstate
| TraceFIFOsFinal (cstate :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap lissolib
lisso))

: OutMemModInst.MDatMapTime (‘ (InstSigOutputMems (‘linstsig))) →
TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso cstate

with TraceMemFBEnab(f : Freq)(t : TTime f)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib) :
∀
(cstate :

sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib
lisso))

,
Type :=
| TraceMemFBStepSkipIO
(cstate :

sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib
lisso))

(cstateNext :
sig (CoordStateBoxesEnabled f (tNext f t) linstsig instTypeScopeMap

lissolib lisso))
:
TraceBoxesEnab f (tNext t) linstsig instTypeScopeMap lissolib lisso
cstateNext →
TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso cstate.

End SF Coord.

422

D.5 Coordination language interpreter implementation (main
functions)

D.5.1 Super-step

Listing D.17: The FIFO-step wrapper
Definition traceFIFOsGenNFP(t : TTime f)

(currState :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap

lissolib lisso))
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig))))
(mti : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(traceMemFBGenFunc : ∀ csInnerMemFBEnabled mtiNest,

TraceMemFBEnab f t linstsig instTypeScopeMap
lissolib lisso csInnerMemFBEnabled)

: TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
let (csNext, mtiNest) :=

FIFOsStepCoordImpl t mti currState mtoNest in
TraceFIFOsStep f t linstsig instTypeScopeMap lissolib lisso
currState csNext
(traceMemFBGenFunc csNext mtiNest).

Listing D.18: The FIFO-step worker
Definition FIFOsStepCoordImpl(t : TTime f)

(mti : InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig))))

(cstate :
sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap

lissolib lisso))
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig))))
:
((sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap lissolib

lisso)) × InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig))))%type.
refine (

let fix FIFOsStepCoordImplInner(f’ :)(t’ : TTime f’)(linstsig’ :)
(instTypeScopeMap’ :)(lissolib’ :)(lisso’ :)
(mti’ : InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig’))))
(cstate’ :

sig (CoordStateInnerFIFOsEnabled f’ t’ linstsig’ instTypeScopeMap’
lissolib’ lisso’))(cstate’Acc : Acc CoordStateRecSizeLT (‘ (‘cstate’)))

{ struct cstate’Acc } :
((sig (CoordStateInnerMemFBEnabled f’ t’ linstsig’ instTypeScopeMap’

lissolib’ lisso’)) ×
InMemModInst.MDatMapTime (‘ (InstSigInputMems (‘linstsig)))
)%type :=

match cstate’ as cstate’ return = cstate’ → with
| exist csstatic cstp ⇒ fun J : cstate’ = exist csstatic cstp ⇒

match csstatic as csstatic return = csstatic → with
| exist csr cssp ⇒ fun J0 ⇒

match csr as csr return = csr → with
| CoordStateRaw make mti” mto’ csn
⇒
fun J1 ⇒

423

match (‘lisso’) with
LInstSSORaw make fmi’ fmo’ fmil fmol fmin fmon
fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts
insttshiftmap libmapsigmap ⇒

let mtiNestResolved :=

exist (inMemBoxMapKeys (resolveObsInstQual obs)
(‘ (mti’)))

in

let localUpdatedMti :
InMemModInst.MDatMapTime fmil mfi’ :=
let localMtiChanges :=

FilterInputMapLocal mtiNestResolved
in
mtiPrepend (‘ (ttimeConv fmil f’ t’))

(exist (InMemModInst.MDatMapFreqTimePred
mfi’)

mti”) localMtiChanges
in

let (newLocMap, newNestMap) :=
let nestedUpdatedMti :=

let nestedMtiChanges :=
FilterInputMapNested (‘linstsig’)
mtiNestResolved
in
(exist (InMemModInst.MDatMapFreqTimePred

mfin) (‘nestedMtiChanges))
in

processFIFOs f’ t’ fmil fmin
mfi’ mfin localUpdatedMti nestedUpdatedMti
linstsig’ instTypeScopeMap’ lissolib’
lisso’ cstate’
(VaridMapMod.elements fifos)
in

let newNestedCoordStates :
LInstMapMod.t CoordStateRaw :=
let csnmok :

LInstMapModPred.NoDupType csn :=
in
(LInstMapMod.Build t csnmok)
in

let newCSR := CoordStateRaw make
(InMemBoxWPties.update

(‘localUpdatedMti) (‘newLocMap))
mto’
(LInstMapMod.this

newNestedCoordStates)
in

let csStaticStrong := exist
(CoordStateStaticPred f’

424

linstsig’ instTypeScopeMap’
lissolib’ lisso’) newCSR

in
let newUpdatedNestData :=

exist
(InMemBoxWPties.update (‘mti)

(‘newNestMap))
in
(exist

(CoordStateInnerMemFBEnabled
f’ t’ linstsig’
instTypeScopeMap’ lissolib’
lisso’) csStaticStrong ,

newUpdatedNestData
)

end
end eq refl

end eq refl
end eq refl

in
FIFOsStepCoordImplInner f t linstsig instTypeScopeMap lissolib
lisso mti cstate

).
Defined.

Listing D.19: The FIFO-box memory step wrapper
Definition traceMemFBGenNFP(t : TTime f)

(currState :
sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap

lissolib lisso))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(traceBoxesGenFunc : ∀

csBoxesEnabled mtiNest, TraceBoxesEnab f (tNext t)
linstsig instTypeScopeMap lissolib lisso csBoxesEnabled) :

TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
let csNext := MemFBStepOuterCoordImpl t currState

in
TraceMemFBStepSkipIO f t linstsig instTypeScopeMap lissolib lisso
currState csNext (traceBoxesGenFunc csNext mtiNest).

Listing D.20: The FIFO-box memory step worker function
Definition MemFBStepOuterCoordImpl

(cstate :
sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap

lissolib lisso)) :
sig (CoordStateBoxesEnabled f (tNext t) linstsig instTypeScopeMap

lissolib lisso).
refine (

let fix MemFBStepOuterCoordImplInner(f’ :)(t’ : TTime f’)(linstsig’ :)
(instTypeScopeMap’ :)(lissolib’ :)(lisso’ :)
(cstate’ :

425

sig (CoordStateInnerMemFBEnabled f’ t’ linstsig’ instTypeScopeMap’
lissolib’ lisso’))(cstate’Acc : Acc CoordStateRecSizeLT (‘ (‘cstate’)))

{ struct cstate’Acc } :
sig (CoordStateBoxesEnabled f’ (tNext t’) linstsig’ instTypeScopeMap’

lissolib’ lisso’) :=
match cstate as cstate return = cstate → with
| exist csstatic cstp ⇒ fun J : cstate = exist csstatic cstp ⇒
match csstatic as csstatic return = csstatic → with
| exist csr cssp ⇒ fun J0 ⇒

match csr as csr return = csr → with
| CoordStateRaw make

mti mto csn ⇒
fun J1 ⇒

let mtiMemFreqMapActiveSubset :=
match (‘lisso’) with

LInstSSORaw make
fmi’ fmo’ fmil fmol fmin fmon fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts insttshiftmap
libmapsigmap ⇒
InMemBoxWPties.filter
(fun e ⇒ MemFBEnabledBool e t) (‘mfi’)

end
in
let mtoMemFreqMapActiveSubset :=

match (‘lisso’) with
LInstSSORaw make fmi’ fmo’ fmil fmol fmin fmon
fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts insttshiftmap
libmapsigmap ⇒
OutMemBoxWPties.filter
(fun e ⇒ MemBFEnabledBool e t) (‘mfo’)

end
in

let mtiMemTimeMapActiveSubset := InMemBoxWPties.filter
(fun k ⇒ InMemModBox.otm.mem k mtiMemFreqMapActiveSubset)
(mti)
in
let mtoMemTimeMapActiveSubset := OutMemBoxWPties.filter

(fun k ⇒ OutMemModBox.otm.mem k mtoMemFreqMapActiveSubset)
(mto)
in

let mtiMemsExecuted :=
InMemModBox.otm.map executeMem mtiMemTimeMapActiveSubset
in
let mtoMemsExecuted :=

OutMemModBox.otm.map executeMem mtoMemTimeMapActiveSubset
in

let mtiRawNew :=
InMemBoxWPties.update (mti) mtiMemsExecuted
in
let mtoRawNew :=

OutMemBoxWPties.update (mto) mtoMemsExecuted
in

426

let newCoordStateRaw :=
CoordStateRaw make mtiRawNew mtoRawNew csn
in
let newCoordStateRawStrongStatic :

sig (CoordStateStaticPred f’ linstsig’
instTypeScopeMap’ lissolib’ lisso’) :=

exist newCoordStateRaw
(depCoordStateStaticPredProcessNestedCSMapNOT ENOUGH ARGS

)
in
exist (CoordStateBoxesEnabled f’

(tNext t’)
linstsig’ instTypeScopeMap’ lissolib’
lisso’) newCoordStateRawStrongStatic

(depCoordStateOuterFIFOsEnabledProcessNestedCSMapNOT ENOUGH ARGS
)

end eq refl
end eq refl

end eq refl
in MemFBStepOuterCoordImplInner f t linstsig instTypeScopeMap lissolib
lisso cstate

).
Defined.

Listing D.21: The box step invocation function
Definition traceBoxesGenNFP(t : TTime f)

(currState :
sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap lissolib

lisso))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(traceNestBoxesGenFunc : ∀ fn

(csFIFOsEnabled :
sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateInnerFIFOsEnabled))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig)))),
(sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateOuterFIFOsEnabled) ×
sig (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))

((InstSigOutputMems (‘linstsig))))
)%type)

(traceMemBFGenFunc : ∀
csMemBFEnabled
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig)))),
TraceMemBFEnab f t linstsig instTypeScopeMap lissolib
lisso csMemBFEnabled

)
:
(TraceBoxesEnab f t linstsig instTypeScopeMap lissolib lisso currState
)%type.

[Function body omitted]
refine(

match lisso as lisso’ return
(TraceBoxesEnab f t linstsig instTypeScopeMap lissolib

lisso currState)%type with
| exist lissoraw lissopred ⇒

427

match lissoraw with
| LInstSSORaw make fmi fmo fmil fmol fmin fmon

fl fn f’ mfi mfo mfin mfon
hboxmap obs manif fifos nestedlinsts libinsts linstsigmap
libmap insttshiftmap libmapsigs ⇒

let fLocalDivPrf : FreqDivide fl f :=
in let instsigInDivPrf :

FreqDivide (InstSigFreqMemIn (‘linstsig)) f :=
in let fmiDivPrf : FreqDivide fmil f :=

in let fmoDivPrf : FreqDivide fmol f :=
in let prfnxtim : isNextTimeStep fl (‘ (ttimeConv fl f t fLocalDivPrf))

(tNext (‘ (ttimeConv fl f t fLocalDivPrf))) :=
tNextIsNextTimeStep

in let boxesStepPred : BoxesStep.StepSSOPred
fl fmil fmol mfi mfo hboxmap :=

in let lissoLeibLoc : FreqMemsInLissoLeib
fl fmil fmol mfi mfo
(‘ lisso) := in
let lissoLeibNest :

FreqNestInLissoLeib fn
(‘ lisso) := in

let nb := (traceNestBoxesGenFunc f
(currStateNestBoxes t currState f)) mtiNest

in

let tfl := (‘ (ttimeConv fl f t fLocalDivPrf)) in
let tfl’ := (tNext (‘ (ttimeConv fl f t fLocalDivPrf))) in

let tti := (‘ (ttimeConv fmil f t fmiDivPrf)) in
let tti’ := (‘ (ttimeConv fmil f (tNext t) fmiDivPrf)) in

let tto := (‘ (ttimeConv fmol f t fmoDivPrf)) in
let tto’ := (‘ (ttimeConv fmol f (tNext t) fmoDivPrf)) in

let mti :=
(mtiCurrStateMti

fl fmil fmol t mfi mfo currState lissoLeibLoc)
in let mto :=

(mtiCurrStateMto
fl fmil fmol t mfi mfo currState lissoLeibLoc) in

let nestCSR := (currStateNestBoxes t currState fn)

in let outp :=
BoxesStepImpl.StepFunc fl fmil fmol
tfl tfl’ tti tti’ tto tto’
mfi mfo (exist boxesStepPred)
(tNextIsNextTimeStep) (exist

(boxesPre fmil tti mfi mti))
in

let outpPrepended :=
mtoPrepend fmol fmol (‘ (ttimeConv fmol f t))
mfo mfo mto (‘ (‘outp))
in

let nestCSR’ := (exist (‘ (fst nb))) in

428

let cstateNext := (buildCurrStateMemBF fl fn fmil
fmol t tfl’ tti’ tto’ mfi mfo mti outpPrepended
nestCSR’) in

let traceBF :=
let mtoResolved :=

exist (outMemBoxMapKeys (resolveManifInstQualRev manif)

(‘ (‘ (snd nb))))
in
traceMemBFGenFunc cstateNext (‘ (snd nb))
in let bsteppre := in let bsteppost := in

TraceBoxesStep
f t linstsig instTypeScopeMap lissolib lisso fl fn
fmil fmol tfl tfl’ t
(‘ (ttimeConv (InstSigFreqMemIn (‘linstsig)) f t

instsigInDivPrf)) tti tti’ tto tto’ mfi mfo
(exist boxesStepPred) mti mto mti outpPrepended
nestCSR nestCSR’ prfnxtim bsteppre bsteppost currState cstateNext

traceBF

end
end

).
Defined.

Listing D.22: The box step worker function
Module BoxesStepImpl .

Section StepOneBoxS.
Variables f fmi fmo : Freq.
Variable t : TTime f .
Variable ti : TTime fmi.
Variable to : TTime fmo.
Variable mfi : InMemModInst.MDatFreqMap fmi.
Variable mfo : OutMemModInst.MDatFreqMap fmo.
Variable stepSSO : BoxesStep.StepSSO f fmi fmo mfi mfo.
Variable instate : sig (InMemModInst.MDatMapModeReadPred ti mfi).
Variable hbx : boxidPred.PredidDecidable.t ×

(HBoxSSONonDep × (InMemModBox.otm.t ipm.Varid)
× (ipm.VaridMapMod.t opm.HBCL OidMemBF)).

Hypothesis inprf : SetoidList.InA (@BoxTypeIdMapMod.eq key elt) hbx
(BoxTypeIdMapMod.elements (‘stepSSO)).

Definition stepOneBox : OutMemModBox.MDatTimeMapRaw.
refine (

match (snd hbx) as hbxt return = hbxt → with
| (Build HBoxSSONonDep hbf hbfi hbfo hbinmem hboutmem hbsso,

inmemmap, outmemmap) ⇒
fun J ⇒

match hbsso as hbsso return = hbsso → with
| exist hbraw hbpred ⇒ fun J1 ⇒

let thb := ‘ (ttimeConv hbf t)
in
let thfi := ‘ (ttimeConv hbfi ti)

in

429

let thfo := ‘ (ttimeConv hbfo to)
in

let inp :
InMemModBox.MDatBoxTime MDataInst.ReadEnabled
(InMemModBox.otm.map MDataTypeInst.MDFE boxMemDat (‘mfi)) hbfi thfi :=
exist (‘ ((‘instate)))
in

let hboxresult := HBoxStep hbf thb thfi
thfo

hbinmem hboutmem inmemmap outmemmap
(InMemModBox.otm.map (MDataTypeInst.MDFE boxMemDat) (‘mfi))
(OutMemModBox.otm.map (MDataTypeInst.MDFE boxMemDat) (‘mfo))
hbsso inp
in (‘ (‘ hboxresult))

end eq refl

end eq refl
).

Defined.

End StepOneBoxS.

Definition StepFunc(f fmi fmo : Freq)
(t t’ : TTime f CoordPhase)
(ti ti’ : TTime fmi)(to to’ : TTime fmo)
(mfi : InMemModInst.MDatFreqMap fmi)(mfo : OutMemModInst.MDatFreqMap fmo)
(stepSSO : BoxesStep.StepSSO f fmi fmo mfi mfo)
(nexttimeprf : isNextTimeStep f t t’)
(instate : sig (InMemModInst.MDatMapModeReadPred ti mfi)) :
sig (BoxesStep.StepPred

f fmi fmo t t’ ti ti’ to to’ mfi mfo stepSSO nexttimeprf instate).
refine (

let fix processBoxesMapAsList
(dl : list (ipm.boxidPred.PredidDecidable.t ×

(HBoxSSONonDep × InMemModBox.otm.t Varid × VaridMapMod.t HBCL OidMemBF)))
(inclprf : SetoidList.inclA (@BoxTypeIdMapMod.eq key elt) dl

(BoxTypeIdMapMod.elements
((‘ (stepSSO))))

) { struct dl }
: OutMemModBox.MDatTimeMapRaw :=
match dl as dl return = dl → with
| nil ⇒ fun ⇒ OutMemModBox.otm.empty
| (hbx :: dl’)%list ⇒ fun J : dl = (hbx :: dl’)%list ⇒

let
accumMap : OutMemModBox.MDatTimeMapRaw :=
processBoxesMapAsList dl’
in
OutMemBoxWPties.update
(accumMap)
(stepOneBox t ti to mfi mfo instate hbx)

end eq refl
in

let outputSubsetRaw : OutMemModInst.MDatMapTime fmo mfo := exist
(processBoxesMapAsList (BoxTypeIdMapMod.elements

(
(‘ (stepSSO))))

(inclReflBoxid))

430

in

let outputSubset := exist outputSubsetRaw in
exist (BoxesStep.StepPred

f fmi fmo t t’ ti ti’ to to’ mfi mfo stepSSO nexttimeprf instate)
outputSubset

).
Defined.
End BoxesStepImpl.

Listing D.23: The box-FIFO memory step wrapper
Definition traceMemBFGenNFP(t : TTime f)

(currState :
sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib

lisso))
(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))

(‘ (InstSigOutputMems (‘linstsig))))
(traceFIFOsGenFunc : ∀ csInnerFIFOsEnabled

(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))
(‘ (InstSigOutputMems (‘linstsig)))),

TraceFIFOsEnab f t linstsig instTypeScopeMap
lissolib lisso
csInnerFIFOsEnabled

)
: TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso currState.

refine (
let csNext := MemBFStepCoordImpl t currState

in
let mtoNest’ :=

let mtoNest’Raw := OutMemBoxWPties.update (‘mtoNest)
(‘ (coordStateMtoExternalFromInner csNext))
in exist mtoNest’Raw in
TraceMemBFStep f t linstsig instTypeScopeMap lissolib lisso
currState csNext
(traceFIFOsGenFunc csNext mtoNest’
)

).
Defined.

Listing D.24: The box-FIFO memory step worker function
Definition MemBFStepCoordImpl

(cstate : sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap
lissolib lisso)) :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap
lissolib lisso).

refine (
let fix MemBFStepCoordImplInner(f’ :)(t’ : TTime f’)(linstsig’ :)

(instTypeScopeMap’ :)(lissolib’ :)(lisso’ :)
(cstate’ :

sig (CoordStateMemBFEnabled f’ t’ linstsig’ instTypeScopeMap’
lissolib’ lisso’))(cstate’Acc : Acc CoordStateRecSizeLT (‘ (‘cstate’)))

{ struct cstate’Acc } :
sig (CoordStateInnerFIFOsEnabled f’ t’ linstsig’ instTypeScopeMap’

lissolib’ lisso’)
:=

431

match cstate as cstate return = cstate → with
| exist csstatic cstp ⇒ fun J : cstate = exist csstatic cstp ⇒

match csstatic as csstatic return = csstatic → with
| exist csr cssp ⇒ fun J0 ⇒

match csr as csr return = csr → with
| CoordStateRaw make

mti mto csn ⇒
fun J1 ⇒

let mtiMemFreqMapActiveSubset :=
match (‘lisso’) with

LInstSSORaw make fmi’ fmo’ fmil fmol fmin fmon
fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts insttshiftmap
libmapsigmap ⇒
InMemBoxWPties.filter
(fun e ⇒ MemFBEnabledBool e t) (‘mfi’)

end
in
let mtiMemTimeMapActiveSubset := InMemBoxWPties.filter

(fun k ⇒ InMemModBox.otm.mem k mtiMemFreqMapActiveSubset)
(mti)
in
let mtoMemFreqMapActiveSubset :=

match (‘lisso’) with
LInstSSORaw make fmi’ fmo’ fmil fmol fmin fmon
fl fn f”’
mfi’ mfo’ mfin mfon boxmap obs manif fifos
nestlinsts typeinsts instsigdat libinsts insttshiftmap
libmapsigmap ⇒
OutMemBoxWPties.filter
(fun e ⇒ MemBFEnabledBool e t) (‘mfo’)

end
in
let mtoMemTimeMapActiveSubset := OutMemBoxWPties.filter

(fun k ⇒ OutMemModBox.otm.mem k mtoMemFreqMapActiveSubset)
(mto)

in let mtiMemsExecuted :=
InMemModBox.otm.map executeMem mtiMemTimeMapActiveSubset
in let mtoMemsExecuted :=

OutMemModBox.otm.map executeMem mtoMemTimeMapActiveSubset

in let mtiRawNew :=
InMemBoxWPties.update (mti) mtiMemsExecuted
in let mtoRawNew :=

OutMemBoxWPties.update (mto) mtoMemsExecuted
in

let newCoordStateRaw :=
CoordStateRaw make mtiRawNew mtoRawNew

csn
in
let newCoordStateRawStrongStatic :

sig (CoordStateStaticPred f’ linstsig’
instTypeScopeMap’ lissolib’ lisso’) :=

exist newCoordStateRaw
(depCoordStateStaticPredProcessNestedCSMapNOT ENOUGH ARGS)
in exist (CoordStateInnerFIFOsEnabled f’ t’

linstsig’ instTypeScopeMap’ lissolib’
lisso’) newCoordStateRawStrongStatic

(depCoordStateInnerFIFOsEnabledProcessNestedCSMapNOT ENOUGH ARGS)
end eq refl

end eq refl
end eq refl
in MemBFStepCoordImplInner f t linstsig instTypeScopeMap lissolib lisso cstate

432

).
Defined.

Listing D.25: The nested box step
Definition traceNestBoxesGenNFP(fn : Freq)(t : TTime f)

(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso CoordStateInnerFIFOsEnabled))

(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig)))) :

(sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib
lisso CoordStateOuterFIFOsEnabled) ×

sig (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))
((InstSigOutputMems (‘linstsig))))

)%type.
refine(

let fix processNestedInst
(l dl : list (HBCL OidLInst × (CSTempCorrectND × TTFL)))
(inclprf : SetoidList.inclA (@LInstMapMod.eq key elt) dl l)
(inprf : boxesEnabNestPred t l)
(mapsofar : LInstMapMod.t CSTempCorrectND)
(outdatsofar : OutMemModBox.MDatTimeMapRaw)
: ((LInstMapMod.t CSTempCorrectND) × OutMemModBox.MDatTimeMapRaw)%type :=
match dl as dl return = dl → with
| nil ⇒ fun ⇒ (mapsofar, outdatsofar)
| cons (v, (cs, ttfl)) m’ ⇒ fun J : dl = cons (v, (cs, ttfl)) m’ ⇒

let mnew := processNestedInst
l m’ (inclNest inclprf J)

inprf mapsofar outdatsofar in

let csnew :=
match TTseqb (ttimeTTFLAdjust f (tPrev t) ttfl)

(CSTempCorrectND t cs)
as ttseqb return

= ttseqb → with

| true ⇒ fun J0 : TTseqb
(ttimeTTFLAdjust f (tPrev t) ttfl)
(CSTempCorrectND t cs) = true ⇒
let csbp := (inprf (v, (cs, ttfl)))

in

let mtiNest” :=
FilterInputMapNestedInst v
(‘ (CSTempCorrectND linstsig cs)) mtiNest
in

let fTrace :=
(traceFIFOsGenFunc

(CSTempCorrectND f cs)
(CSTempCorrectND linstsig cs)
(CSTempCorrectND instTypeScopeMap cs)
(CSTempCorrectND lissolib cs)
(CSTempCorrectND lisso cs)
((CSTempCorrectND t cs))

433

(exist (CoordStateInnerFIFOsEnabled (CSTempCorrectND f cs)
((CSTempCorrectND t cs))
(CSTempCorrectND linstsig cs)
(CSTempCorrectND instTypeScopeMap cs)
(CSTempCorrectND lissolib cs)
(CSTempCorrectND lisso cs))

(CSTempCorrectND CS cs) csbp)
)
mtiNest”
(exist (OutMemModBox.otm.empty)) in

let newcs := (processSubInstFinite
cs (inprf (v, (cs, ttfl))

(inprfNest inclprf J)
(ttseqCorr v cs ttfl t J0))

fTrace) in

({| CSTempCorrectND f := CSTempCorrectND f cs;
CSTempCorrectND t :=
(starvationLongstop cs);
CSTempCorrectND linstsig :=
CSTempCorrectND linstsig cs;
CSTempCorrectND instTypeScopeMap :=
CSTempCorrectND instTypeScopeMap cs;
CSTempCorrectND lisso := CSTempCorrectND lisso cs;
CSTempCorrectND CS := (‘ (fst newcs))

|}, (snd newcs))

| false ⇒ fun ⇒
(cs, exist (OutMemModBox.otm.empty))

end eq refl

in let vLiblessStrong := exist liblessInst v
in let extKeysLifted := outMemBoxMapKeys

(concatInstMemBF vLiblessStrong) (‘ (snd csnew))
in

((LInstMapMod.add v (fst csnew) (fst mnew)),
(OutMemBoxWPties.update (snd mnew) extKeysLifted)

)
end eq refl

in let processRaw :=
let linstttflmap :=

match (‘lisso) with
LInstSSORaw make

ttflinstmap ⇒ ttflinstmap
end in
let linstttflmapOK := in

processNestedInst
(LInstMapMod.elements (combineLInstMapModMaps (‘nestCSR) linstttflmap

linstttflmapOK))
(LInstMapMod.elements (combineLInstMapModMaps (‘nestCSR) linstttflmap

linstttflmapOK))
(inclRefl)
(coordStateMapBoxesNest t linstttflmap fn (‘nestCSR) (“nestCSR))
(LInstMapMod.empty)
(OutMemModBox.otm.empty)
in

434

let processPred : InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib lisso
CoordStateOuterFIFOsEnabled (fst processRaw) := in

let mtoExtTimeStrong := exist (snd processRaw) in
let mtoExtStrong := exist (mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))

(InstSigOutputMems (‘linstsig))) mtoExtTimeStrong in
(exist (fst processRaw) processPred, mtoExtStrong)

).
Defined.

Listing D.26: The coordination language cofixpoint super-step

CoFixpoint traceBoxesGen(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(t : TTime f)
(ti : TTime (InstSigFreqMemIn (‘linstsig)))
(ttieqi : TTseq t ti)
(is : InputStream (InstSigFreqMemIn (‘linstsig))

((InstSigInputMems (‘linstsig))) ti)
(tteq : nextCeil (proj1 (“linstsig)) t ti)(currState :

sig (CoordStateBoxesEnabled f t linstsig instTypeScopeMap
lissolib lisso))

(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig))))

: TraceBoxesEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
traceBoxesGenNFP f linstsig instTypeScopeMap lissolib lisso t currState mtiNest (fun fn nestCSR mtiNest’ ⇒

traceNestBoxesGenFix f linstsig instTypeScopeMap lissolib lisso t fn
nestCSR mtiNest’
(WFPNestCSRWF nestCSR))

(traceMemBFGen f linstsig instTypeScopeMap lissolib lisso t ti ttieqi
is tteq)

with traceMemBFGen(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(t : TTime f)(ti : TTime (InstSigFreqMemIn (‘linstsig)))
(ttieqi : TTseq t ti)
(is : InputStream (InstSigFreqMemIn (‘linstsig))

((InstSigInputMems (‘linstsig))) ti)
(tteq : nextCeil (proj1 (“linstsig)) t ti)
(currState :

sig (CoordStateMemBFEnabled f t linstsig instTypeScopeMap lissolib
lisso))

(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))
(‘ (InstSigOutputMems (‘linstsig))))

: TraceMemBFEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
traceMemBFGenNFP f linstsig instTypeScopeMap lissolib lisso t currState mtoNest

(traceFIFOsGen f linstsig instTypeScopeMap lissolib lisso t ti ttieqi
is tteq)

with traceFIFOsGen(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)

435

(t : TTime f)(ti : TTime (InstSigFreqMemIn (‘linstsig)))
(ttieqi : TTseq t ti)
(is : InputStream (InstSigFreqMemIn (‘linstsig))

((InstSigInputMems (‘linstsig))) ti)
(tteq : nextCeil (proj1 (“linstsig)) t ti)
(currState :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap
lissolib lisso))

(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))
(‘ (InstSigOutputMems (‘linstsig))))

: TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
match is with
| InputStreamFinal ⇒ TraceFIFOsFinal f t linstsig instTypeScopeMap

lissolib lisso currState mtoNest
| InputStreamInd tinext tinxtprf mtii isnext ⇒

traceFIFOsGenNFP f linstsig instTypeScopeMap lissolib lisso
t currState mtoNest (‘mtii)
(traceMemFBGen f linstsig instTypeScopeMap lissolib lisso t

tinext (TTSeqNextNOT ENOUGH ARGS)
isnext (nextCeil3NOT ENOUGH ARGS))

end

with traceMemFBGen(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(t : TTime f)(ti : TTime (InstSigFreqMemIn (‘linstsig)))
(ttieqi : TTseq (tNext t) ti)
(is : InputStream (InstSigFreqMemIn (‘linstsig))

((InstSigInputMems (‘linstsig))) ti)
(tteq : nextCeil (proj1 (“linstsig)) (tNext t) ti)
(currState :

sig (CoordStateInnerMemFBEnabled f t linstsig instTypeScopeMap
lissolib lisso))

(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig))))

: TraceMemFBEnab f t linstsig instTypeScopeMap lissolib lisso currState :=
(traceMemFBGenNFP f linstsig instTypeScopeMap lissolib lisso

t currState mtiNest
(traceBoxesGen f linstsig instTypeScopeMap lissolib lisso (tNext t)

ti ttieqi is
tteq)).

Listing D.27: The coordination language nesting fixpoint super-step

Fixpoint traceNestBoxesGenFix(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(t : TTime f)(fn : Freq)
(nestCSR : sig (InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib

lisso CoordStateInnerFIFOsEnabled))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

(‘ (InstSigInputMems (‘linstsig))))
(nestCSRAcc : Acc CoordStateNestMapSizeExistsLT

(LInstMapMod.map (fun e ⇒ (‘ (CSTempCorrectND CS e))) (‘nestCSR)))

{ struct nestCSRAcc } :
(sig

(InstMapMatchSSO f fn linstsig instTypeScopeMap lissolib lisso

436

CoordStateOuterFIFOsEnabled) ×
sig
(mtoExternalNestPred (InstSigFreqMemOut (‘linstsig))

(InstSigOutputMems (‘linstsig))))%type :=
let fix

traceFIFOsGenFix(f : Freq)
(linstsig : LInstSignature f)
(instTypeScopeMap : LInstMapMod.t LInstSignatureRaw)
(lissolib : LibClos instTypeScopeMap)
(lisso : Lisso f linstsig instTypeScopeMap lissolib)
(t tbase : TTime f)
(currState :

sig (CoordStateInnerFIFOsEnabled f t linstsig instTypeScopeMap
lissolib lisso))

(mti : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig))))

(mtoNest : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))
(‘ (InstSigOutputMems (‘linstsig))))

(wfp : AccTraceFix f t linstsig)
{ struct wfp }
: TraceFIFOsEnab f t linstsig instTypeScopeMap lissolib lisso currState :=

let traceMemBFGenFix(t’ : TTime f)
(currState :

sig (CoordStateMemBFEnabled f t’ linstsig instTypeScopeMap lissolib
lisso))

(mtoNest’ : OutMemModInst.MDatMapTime (InstSigFreqMemOut (‘linstsig))
(‘ (InstSigOutputMems (‘linstsig))))

(wfp : AccTraceFix f t’ linstsig)
: TraceMemBFEnab f t’ linstsig instTypeScopeMap lissolib lisso currState :=

let mti : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig))) :=
(exist (InMemModBox.otm.empty)

(MDatTimeStrongNOT ENOUGH ARGS)) in
traceMemBFGenNFP f linstsig instTypeScopeMap lissolib lisso
t’ currState mtoNest’
(fun currState mtoNest” ⇒

traceFIFOsGenFix f linstsig instTypeScopeMap lissolib lisso
t’ tbase currState mti mtoNest” wfp)

in let
traceBoxesGenFix(t’ : TTime f)
(currState :

sig (CoordStateBoxesEnabled f t’ linstsig instTypeScopeMap lissolib
lisso))

(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))
(‘ (InstSigInputMems (‘linstsig))))

(wfp : AccTraceFix f t’ linstsig)
: TraceBoxesEnab f t’ linstsig instTypeScopeMap lissolib lisso
currState :=

traceBoxesGenNFP f linstsig instTypeScopeMap lissolib lisso
t’ currState mtiNest (fun fn nestCSR mtiNest’ ⇒

traceNestBoxesGenFix
f linstsig instTypeScopeMap lissolib lisso t’ fn nestCSR mtiNest’
(WFPNestCSRAccInvNOT ENOUGH ARGS

nestCSRAcc)

)
(fun currState’ mtoNest’ ⇒ traceMemBFGenFix t’ currState’

mtoNest’ wfp)

in let traceMemFBGenFix(t’ : TTime f)(currState :
sig (CoordStateInnerMemFBEnabled f t’ linstsig instTypeScopeMap

lissolib lisso))
(mtiNest : InMemModInst.MDatMapTime (InstSigFreqMemIn (‘linstsig))

437

(‘ (InstSigInputMems (‘linstsig))))
(wfp : AccTraceFix f t’ linstsig)
: TraceMemFBEnab f t’ linstsig instTypeScopeMap lissolib lisso
currState :=
traceMemFBGenNFP f linstsig instTypeScopeMap lissolib lisso
t’ currState mtiNest
(fun currState mtiNest ⇒

traceBoxesGenFix (tNext t’) currState mtiNest
(WFPNOT ENOUGH ARGS wfp))

in
if TTleb (tNext tbase) t

then
TraceFIFOsFinal f t linstsig instTypeScopeMap lissolib lisso
currState mtoNest

else
traceFIFOsGenNFP f linstsig instTypeScopeMap lissolib lisso
t currState mtoNest mti
(fun currState mtiNest ⇒

traceMemFBGenFix t currState mtiNest wfp)
in

traceNestBoxesGenNFP f linstsig instTypeScopeMap lissolib lisso
(fun f’ linstsig’ instTypeScopeMap’ lissolib’ lisso’ t’

currState’ mti’ mtoNest’ ⇒
traceFIFOsGenFix f’ linstsig’ instTypeScopeMap’ lissolib’ lisso’
t’ t’ currState’ mti’ mtoNest’
(WFPNestNOT ENOUGH ARGS f f’ t t’ linstsig linstsig’

(FreqDivNOT ENOUGH ARGS) (AccTraceFixWF))
)
fn t nestCSR mtiNest.

D.6 Expression language

Listing D.28: The expression language
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.redFunc.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedAppBranch.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedPattBranch.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UTypeSysOid SB.

438

Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UBoxEmptyEnc SB.
Import HBCL 0 1 L UBoxEmtpy.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Section exprLangS.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Hypothesis ICostDRecTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDRecT)) = LRTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t u, CT PD interp(CostBase := ICostDT)

t (‘ (minC t)) u (“ (minC t)) = 0.
Definition Encoding := Empty set.
Definition AST : Set := unit.
Definition parse : Encoding → AST.
Defined.

Definition OidTypeIOMatch(map : InpOutpTypes CTDTP)(t : ProtoT) :=
∃ t’, t =t= t’ ∧
∃ mc : HBCL 0 1 Id S.VaridMapMod.t (sigT LTypeRaw),

mc = HBCL 0 1 Id S.VaridMapMod.map (fun t ⇒
existT (projT1 (sigTypes.projT1sigT2 (fst (fst t))))
(‘ (projT2 (sigTypes.projT1sigT2 (fst (fst t)))))) map ∧

∃ lp : LTypeP (projT1 t’)
(LRecordType (projT1 t’) (HBCL 0 1 Id S.VaridMapMod.this mc)),
(projT2 t’ = exist lp).

Inductive sso (uboxInp uboxOutp : InpOutpTypes CTDTP) : Type :=
| Make sso(t t’ : ProtoT)(c : sig (CTDTP t))(c’ : sig (CTDTP t’))

(v : HBCL 0 1 Id S.Varid)(r : Rsso ICostDT)
(wc : sigWssoClos CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC

minC r) :
funcExtractionPred CTDT CTDTP r t t’ c c’ v →
OidTypeIOMatch uboxInp t’ →
OidTypeIOMatch uboxOutp t →
sso uboxInp uboxOutp.

Definition compile(itypes otypes : InpOutpTypes CTDTP) :
option (sso itypes otypes) := None.

Section RedFitS.
Variables itypes otypes : InpOutpTypes CTDTP.
Variable ssoTypeInst : sso itypes otypes.
Variable inDat : sig (UDataPSTMatchesInpOutpTypes CTDTP itypes).

Definition redFuncInstance :=
redFunc.reduce CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDTInProtoT ICostDTupTInSigTTsEq ICostDRecTInSigTTsEq
minC minCMin.

Definition redFuncInstanceC :=
redFunc.reduce’ CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDTInProtoT ICostDTupTInSigTTsEq ICostDRecTInSigTTsEq
minC minCMin.

Definition crunchFunc :=

439

extractFuncFromEnv CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC minC minCMin.

Definition redAppInst := redApp CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDTInProtoT minC minCMin redFuncInstanceC.

Lemma LTypeCeilInLRTNOT ENOUGH ARGS : ∀ (t : ProtoT)
(e : {t : ProtoT & {o : HBCL 0 1 Oid S.HBCL OidUT & HBCL 0 1 L UTSOid.T o t}
& sig (CTDTP t)}),

LTypeRawCeiling (projT1 t)
(existT (projT1 (projT1sigT2 e)) (‘ (projT2 (projT1sigT2 e)))).

Lemma LRTypesLRTNOT ENOUGH ARGS : ∀ (t : ProtoT) lrtraw,
LRTypesP (projT1 t) lrtraw.

Definition LRTypesPSFromIOP(iotypes :)(t :) :
OidTypeIOMatch iotypes t →
LRTypesPS (projT1 t).

Defined.
Check LTypePS.
Implicit Arguments UPot [].
Check UPot LTypePS DataR DataP CTDT CTDTP ICostDT.
Check ProtoT.

Definition UDatToUPotMin(u : sigT UDataPST) :
UPot LTypePS DataR DataP CTDT CTDTP ICostDT
(projT1 u) (minC (projT1 u)).

Defined.
Definition UDatToFssoRaw(r’ : Rsso ICostDT)(u : sigT UDataPST) :

Fsso (ICostDT := ICostDT) (ICostDTupT := ICostDTupT)
(ICostDRecT := ICostDRecT) minC r’
(TssoGenDataT (existT (projT1 u) (minC))).

Defined.

Program Definition updateWclos(r r’ : Rsso ICostDT)
(wc : sigWssoClos CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC

minC r)
(w’ : WssoCpltSI CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC

r’) :
sigWssoClos CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC
minC (VaridMapWPties.update r r’) :=
(r, existT r’ (w’)) :: (‘wc).

Obligation 1.
Admitted.

Program Definition IOtypesConvertFromR
(iotypes : InpOutpTypes CTDTP)
(t : ProtoT) (iop : OidTypeIOMatch iotypes t)
(iodat : sig (UDataPSTMatchesInpOutpTypes iotypes)) :
UDataPST t :=
URecordData (projT1 t) (LRTypesPSFromIOP iotypes t iop)
(HBCL 0 1 Id S.VaridMapMod.this

(HBCL 0 1 Id S.VaridMapMod.map (fun u ⇒ (‘ (projT2 u))) (‘iodat))).
Obligation 1.
Admitted.
Lemma URIncl : ∀ (t : HBCL 0 1 Id S.Varid × UDataRaw) ts dl l, t

:: ts = dl →
SetoidList.inclA (@HBCL 0 1 Id S.VaridMapMod.eq key elt) dl l →
SetoidList.inclA (@HBCL 0 1 Id S.VaridMapMod.eq key elt) ts l.

Lemma URIn : ∀ p ps dl urm, p :: ps = dl →
SetoidList.inclA (@HBCL 0 1 Id S.VaridMapMod.eq key elt) dl
(HBCL 0 1 Id S.VaridMapMod.elements (elt:=UDataRaw) urm) →
HBCL 0 1 Id S.VaridMapMod.In (fst p) urm.

Fixpoint sigifyURInner
(dl : list (HBCL 0 1 Id S.Varid × UDataRaw))
(urm : HBCL 0 1 Id S.VaridMapMod.t UDataRaw)
(tr : sigT LRTypesPS)
(urp : URecordP tr (HBCL 0 1 Id S.VaridMapMod.this urm))
(inclprf : SetoidList.inclA

(@HBCL 0 1 Id S.VaridMapMod.eq key elt) dl

440

(HBCL 0 1 Id S.VaridMapMod.elements urm))
(inprf : ∀ v, HBCL 0 1 Id S.VaridMapMod.In v urm →

HBCL 0 1 Id S.VaridMapMod.In v
(LRTypesPSRecoverMap (projT1 tr) (projT2 tr))) { struct dl } :

HBCL 0 1 Id S.VaridMapMod.t (sigT UDataPST) :=
match dl as dl return dl = →

HBCL 0 1 Id S.VaridMapMod.t (sigT UDataPST) with
| nil ⇒ fun ⇒ (HBCL 0 1 Id S.VaridMapMod.empty (sigT UDataPST))
| (cons p ps) ⇒ fun J : (cons p ps) = dl ⇒

HBCL 0 1 Id S.VaridMapMod.add (fst p)
(existT (extractTypeR (fst p) tr (inprf (fst p)))

(extractDatR (fst p) tr (HBCL 0 1 Id S.VaridMapMod.this urm)
urp (inprf (fst p) (URIn p ps dl urm J inclprf))))

(sigifyURInner ps urm tr urp (URIncl p ps dl
(HBCL 0 1 Id S.VaridMapMod.elements (elt:=UDataRaw) urm)
J inclprf) inprf)

end eq refl.
Definition sigifyUR(tr : sigT LRTypesPS)

(urm : HBCL 0 1 Id S.VaridMapMod.Raw.t UDataRaw)(urp : URecordP tr
(urm)) :

HBCL 0 1 Id S.VaridMapMod.t (sigT UDataPST).
Defined.
Definition IOtypesConvertToR

(iotypes : InpOutpTypes CTDTP)
(t : ProtoT) (iop : OidTypeIOMatch iotypes t)
(iodat : UDataPST t) :
sig (UDataPSTMatchesInpOutpTypes iotypes).

Defined.
Definition computeFunc : sig (UDataPSTMatchesInpOutpTypes otypes).

Defined.

End RedFitS.
End exprLangS.
Local Close Scope program scope.

Definition CTDTtriv := nat.
Inductive CTDTPtriv(t : HBCL 0 1 L UTS.ProtoT)(c : CTDTtriv) : Prop :=

CTDTPtriv intro : c ≥ 0 → CTDTPtriv t c.
Definition triv interp(t : HBCL 0 1 L UTS.ProtoT)(cost : CTDTtriv) :
∀ u : sig (HBCL 0 1 L UTS.DataP t),

CTDTPtriv t cost → nat := fun ⇒ cost + 1.
Lemma triv interp prf : ∀ (t : sigT HBCL 0 1 L UTS.TypeS) (cd : CTDTtriv)

(u : sig (HBCL 0 1 L UTS.DataP t)) (p : CTDTPtriv t cd),
triv interp t cd u p ≥ 1.

Definition triv max(t : HBCL 0 1 L UTS.ProtoT)(c :sig (CTDTPtriv t)) : nat :=
proj1 sig c + 1.

Lemma triv maxCost prf :
∀ t : {t” : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t”)},
(∀ u : sig (HBCL 0 1 L UTS.DataP (projT1 t)),
triv interp (projT1 t) (‘ (projT2 t))%prg u (proj2 sig (projT2 t)) ≤
triv max (projT1 t) (projT2 t)) ∧

(∃ v : sig (HBCL 0 1 L UTS.DataP (projT1 t)),
triv interp (projT1 t) (‘ (projT2 t))%prg v (proj2 sig (projT2 t)) =
triv max (projT1 t) (projT2 t)).

Lemma triv UPredSeq : ∀ (ur : HBCL 0 1 L UTS.DataR)
(t t’ : sigT HBCL 0 1 L UTS.TypeS),
HBCL 0 1 L UTS.ProtoEqT t t’ →
HBCL 0 1 L UTS.DataP t ur → HBCL 0 1 L UTS.DataP t’ ur.

Definition triv eqbrel : sigT HBCL 0 1 L UTS.TypeS →
sigT HBCL 0 1 L UTS.TypeS → bool.

Defined.
Lemma triv eqb eqrel :
∀ x y : sigT HBCL 0 1 L UTS.TypeS,

441

triv eqbrel x y = true ↔ HBCL 0 1 L UTS.ProtoEqT x y.
Definition triv eq struct : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → Prop.
Admitted.
Definition triv eqb struct : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → bool.
Defined.
Lemma triv eqb eq struct : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv eqb struct x y = true ↔ triv eq struct x y.

Lemma triv eq struct c : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv eq struct x y → HBCL 0 1 L UTS.ProtoEqT (projT1 x) (projT1 y).

Lemma triv eq struct Equiv : RelationClasses.Equivalence triv eq struct.
Definition triv eq pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → Prop.
Admitted.
Definition triv eqb pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → bool.
Defined.
Lemma triv eqb eq pot : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv eqb pot x y = true ↔ triv eq pot x y.

Lemma triv eq pot c : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv eq pot x y → HBCL 0 1 L UTS.ProtoEqT (projT1 x) (projT1 y).

Instance triv eq pot Equiv : RelationClasses.Equivalence triv eq pot.
Admitted.
Lemma triv eq pot eq : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv eq pot x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.DataP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.DataP (projT1 y))),
triv interp (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) =
triv interp (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv costFuncConvertRespP :
∀ (t : {t : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t)}) t’,

HBCL 0 1 L UTS.ProtoEqT (projT1 t) t’ →
{t : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t)}.

Defined.
Lemma triv costFuncRespPCorrect :
∀ (t : {t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)})

(t’ : sigT HBCL 0 1 L UTS.TypeS)
(teq : HBCL 0 1 L UTS.ProtoEqT (projT1 t) t’),

triv eq pot t (triv costFuncConvertRespP t t’ teq).
Lemma triv max tcequiv : ∀ (t :

{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)})
(t’ : {t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)}),

triv eq pot t t’ →
triv max (projT1 t) (projT2 t) = triv max (projT1 t’) (projT2 t’).

Definition triv le pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →
sigT (fun t ⇒ sig (CTDTPtriv t)) → Prop.

Admitted.
Definition triv leb pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → bool.
Defined.
Lemma triv leb le pot : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv leb pot x y = true ↔ triv le pot x y.

Lemma triv le pot c : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},

442

triv le pot x y → HBCL 0 1 L UTS.ProtoEqT (projT1 x) (projT1 y).
Instance triv le pot Equivalence : RelationClasses.Equivalence triv le pot.
Admitted.
Instance triv le pot PreOrder : RelationClasses.PreOrder triv le pot.
Instance CT PD T le pot PartialOrder :

RelationClasses.PartialOrder triv eq pot triv le pot.
Admitted.
Lemma triv le pot eq : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv le pot x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.DataP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.DataP (projT1 y))),
triv interp (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) ≤
triv interp (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv lt pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →
sigT (fun t ⇒ sig (CTDTPtriv t)) → Prop.

Admitted.
Definition triv ltb pot : sigT (fun t ⇒ sig (CTDTPtriv t)) →

sigT (fun t ⇒ sig (CTDTPtriv t)) → bool.
Defined.
Lemma triv ltb lt pot : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv ltb pot x y = true ↔ triv lt pot x y.

Lemma triv lt pot c : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv lt pot x y → HBCL 0 1 L UTS.ProtoEqT (projT1 x) (projT1 y).

Instance triv lt pot StrOrd : RelationClasses.StrictOrder triv lt pot.
Admitted.
Lemma triv lt pot eq : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
triv lt pot x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.DataP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.DataP (projT1 y))),
triv interp (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) <
triv interp (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Lemma triv disj : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.TypeS & sig (CTDTPtriv t’)},
(triv lt pot x y ∨ triv eq pot x y) ∧
¬ (triv lt pot x y ∧ triv eq pot x y) ↔ triv le pot x y.

Instance instBTSCostBase : HBCL 0 1 L UTSCost.CostBase
(T := HBCL 0 1 L UTS.TypeS) CTDTtriv CTDTPtriv HBCL 0 1 L UTS.DataR
HBCL 0 1 L UTS.DataP := {

CT PD interp := triv interp;
CT PD interp prf := triv interp prf ;
CT PD max := triv max;
maxCost prf := triv maxCost prf ;
CT PD T eqrel := HBCL 0 1 L UTS.ProtoEqT;
CT PD UPredSeq := triv UPredSeq;
CT PD T eqbrel := triv eqbrel;
CT PD T eqb eqrel := triv eqb eqrel;
CT PD T eqrel Equiv := HBCL 0 1 L UTS.ProtoTEqTSigT rel;
CT PD T eq struct := triv eq struct;
CT PD T eqb struct := triv eqb struct;
CT PD T eqb eq struct := triv eqb eq struct;
CT PD T eq struct c := triv eq struct c;
CT PD T eq struct Equiv := triv eq struct Equiv;
CT PD T eq pot := triv eq pot;
CT PD T eqb pot := triv eqb pot;
CT PD T eqb eq pot := triv eqb eq pot;
CT PD T eq pot c := triv eq pot c;
CT PD T eq pot eq := triv eq pot eq;
CT PD T costFuncConvertRespP := triv costFuncConvertRespP;
CT PD T costFuncRespPCorrect := triv costFuncRespPCorrect;

443

CT PD max tcequiv := triv max tcequiv;
CT PD T le pot := triv le pot;
CT PD T leb pot := triv leb pot;
CT PD T leb le pot := triv leb le pot;
CT PD T le pot c := triv le pot c;
CT PD T le pot eq := triv le pot eq;
CT PD T lt pot := triv lt pot;
CT PD T ltb pot := triv ltb pot;
CT PD T ltb lt pot := triv ltb lt pot;
CT PD T lt pot c := triv lt pot c;
CT PD T lt pot eq := triv lt pot eq;
CT PD disj := triv disj

}.
Definition CTDTtrivT := nat.
Inductive CTDTPtrivT(t : sigT HBCL 0 1 L UTS.LTypesPS)(c : CTDTtrivT) : Prop :=

CTDTPtrivT intro : c > 0 → CTDTPtrivT t c.
Definition triv interpT(t : sigT HBCL 0 1 L UTS.LTypesPS)(cost : CTDTtrivT) :
∀ u : sig (HBCL 0 1 L UTS.UTupleP t),

CTDTPtrivT t cost → nat := fun ⇒ cost.
Lemma triv interp prfT :
∀ (t : sigT HBCL 0 1 L UTS.LTypesPS) (cd : CTDTtrivT)

(u : sig (HBCL 0 1 L UTS.UTupleP t)) (p : CTDTPtrivT t cd),
triv interpT t cd u p ≥ 1.

Definition triv maxT(t : sigT HBCL 0 1 L UTS.LTypesPS)
(c :sig (CTDTPtrivT t)) : nat :=
proj1 sig c.

Lemma triv maxCost prfT :
∀ t : {t” : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t”)},
(∀ u : sig (HBCL 0 1 L UTS.UTupleP (projT1 t)),
triv interpT (projT1 t) (‘ (projT2 t))%prg u (proj2 sig (projT2 t)) ≤
triv maxT (projT1 t) (projT2 t)) ∧

(∃ v : sig (HBCL 0 1 L UTS.UTupleP (projT1 t)),
triv interpT (projT1 t) (‘ (projT2 t))%prg v (proj2 sig (projT2 t)) =
triv maxT (projT1 t) (projT2 t)).

Lemma triv UPredSeqT : ∀ (ur : list HBCL 0 1 L UTS.DataR)
(t t’ : sigT HBCL 0 1 L UTS.LTypesPS),
HBCL 0 1 L UTS.LTypesPSEqSigT t t’ →
HBCL 0 1 L UTS.UTupleP t ur → HBCL 0 1 L UTS.UTupleP t’ ur.

Definition triv eqbrelT : sigT HBCL 0 1 L UTS.LTypesPS →
sigT HBCL 0 1 L UTS.LTypesPS → bool.

Defined.
Lemma triv eqb eqrelT :
∀ x y : sigT HBCL 0 1 L UTS.LTypesPS,
triv eqbrelT x y = true ↔ HBCL 0 1 L UTS.LTypesPSEqSigT x y.

Lemma triv eqrel EquivT :
RelationClasses.Equivalence HBCL 0 1 L UTS.LTypesPSEqSigT.

Definition triv eq structT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →
sigT (fun t ⇒ sig (CTDTPtrivT t)) → Prop.

Admitted.
Definition triv eqb structT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →

sigT (fun t ⇒ sig (CTDTPtrivT t)) → bool.
Defined.
Lemma triv eqb eq structT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv eqb structT x y = true ↔ triv eq structT x y.

Lemma triv eq struct cT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv eq structT x y → HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 x) (projT1 y).

Lemma triv eq struct EquivT : RelationClasses.Equivalence triv eq structT.
Definition triv eq potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →

sigT (fun t ⇒ sig (CTDTPtrivT t)) → Prop.
Admitted.

444

Definition triv eqb potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →
sigT (fun t ⇒ sig (CTDTPtrivT t)) → bool.

Defined.
Lemma triv eqb eq potT : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv eqb potT x y = true ↔ triv eq potT x y.

Lemma triv eq pot cT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv eq potT x y → HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv eq pot EquivT : RelationClasses.Equivalence triv eq potT.
Admitted.
Lemma triv eq pot eqT : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv eq potT x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.UTupleP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.UTupleP (projT1 y))),
triv interpT (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) =
triv interpT (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv costFuncConvertRespPT :
∀ (t : {t : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t)}) t’,

HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 t) t’ →
{t : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t)}.

Defined.
Lemma triv costFuncRespPCorrectT :
∀ (t : {t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)})

(t’ : sigT HBCL 0 1 L UTS.LTypesPS)
(teq : HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 t) t’),

triv eq potT t (triv costFuncConvertRespPT t t’ teq).
Lemma triv max tcequivT : ∀ (t :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)})
(t’ : {t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)}),

triv eq potT t t’ →
triv maxT (projT1 t) (projT2 t) = triv maxT (projT1 t’) (projT2 t’).

Definition triv le potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →
sigT (fun t ⇒ sig (CTDTPtrivT t)) → Prop.

Admitted.
Definition triv leb potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →

sigT (fun t ⇒ sig (CTDTPtrivT t)) → bool.
Defined.
Lemma triv leb le potT : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv leb potT x y = true ↔ triv le potT x y.

Lemma triv le pot cT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv le potT x y → HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv le pot EquivalenceT : RelationClasses.Equivalence triv le potT.
Admitted.
Instance triv le pot PreOrderT : RelationClasses.PreOrder triv le potT.
Instance CT PD T le pot PartialOrderT :

RelationClasses.PartialOrder triv eq potT triv le potT.
Admitted.
Lemma triv le pot eqT : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv le potT x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.UTupleP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.UTupleP (projT1 y))),
triv interpT (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) ≤
triv interpT (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv lt potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →
sigT (fun t ⇒ sig (CTDTPtrivT t)) → Prop.

Admitted.
Definition triv ltb potT : sigT (fun t ⇒ sig (CTDTPtrivT t)) →

445

sigT (fun t ⇒ sig (CTDTPtrivT t)) → bool.
Defined.
Lemma triv ltb lt potT : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv ltb potT x y = true ↔ triv lt potT x y.

Lemma triv lt pot cT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv lt potT x y → HBCL 0 1 L UTS.LTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv lt pot StrOrdT : RelationClasses.StrictOrder triv lt potT.
Admitted.
Lemma triv lt pot eqT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
triv lt potT x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.UTupleP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.UTupleP (projT1 y))),
triv interpT (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) <
triv interpT (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Lemma triv disjT : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LTypesPS & sig (CTDTPtrivT t’)},
(triv lt potT x y ∨ triv eq potT x y) ∧
¬ (triv lt potT x y ∧ triv eq potT x y) ↔ triv le potT x y.

Instance instBTSCostTuple : HBCL 0 1 L UTSCost.CostBase
(T := HBCL 0 1 L UTS.LTypesPS) CTDTtrivT CTDTPtrivT
(list HBCL 0 1 L UTS.DataR)
HBCL 0 1 L UTS.UTupleP := {

CT PD interp := triv interpT;
CT PD interp prf := triv interp prfT;
CT PD max := triv maxT;
maxCost prf := triv maxCost prfT;
CT PD T eqrel := HBCL 0 1 L UTS.LTypesPSEqSigT;
CT PD UPredSeq := triv UPredSeqT;
CT PD T eqbrel := triv eqbrelT;
CT PD T eqb eqrel := triv eqb eqrelT;
CT PD T eqrel Equiv := triv eqrel EquivT;
CT PD T eq struct := triv eq structT;
CT PD T eqb struct := triv eqb structT;
CT PD T eqb eq struct := triv eqb eq structT;
CT PD T eq struct c := triv eq struct cT;
CT PD T eq struct Equiv := triv eq struct EquivT;
CT PD T eq pot := triv eq potT;
CT PD T eqb pot := triv eqb potT;
CT PD T eqb eq pot := triv eqb eq potT;
CT PD T eq pot c := triv eq pot cT;
CT PD T eq pot eq := triv eq pot eqT;
CT PD T costFuncConvertRespP := triv costFuncConvertRespPT;
CT PD T costFuncRespPCorrect := triv costFuncRespPCorrectT;
CT PD max tcequiv := triv max tcequivT;
CT PD T le pot := triv le potT;
CT PD T leb pot := triv leb potT;
CT PD T leb le pot := triv leb le potT;
CT PD T le pot c := triv le pot cT;
CT PD T le pot eq := triv le pot eqT;
CT PD T lt pot := triv lt potT;
CT PD T ltb pot := triv ltb potT;
CT PD T ltb lt pot := triv ltb lt potT;
CT PD T lt pot c := triv lt pot cT;
CT PD T lt pot eq := triv lt pot eqT;
CT PD disj := triv disjT

}.
Definition CTDTtrivR := nat.
Inductive CTDTPtrivR(t : sigT HBCL 0 1 L UTS.LRTypesPS)(c : CTDTtrivR) : Prop :=

CTDTPtrivR intro : c > 0 → CTDTPtrivR t c.
Definition triv interpR(t : sigT HBCL 0 1 L UTS.LRTypesPS)(cost : CTDTtrivR) :
∀ u : sig (HBCL 0 1 L UTS.URecordP t),

446

CTDTPtrivR t cost → nat := fun ⇒ cost.
Lemma triv interp prfR :
∀ (t : sigT HBCL 0 1 L UTS.LRTypesPS) (cd : CTDTtrivR)

(u : sig (HBCL 0 1 L UTS.URecordP t)) (p : CTDTPtrivR t cd),
triv interpR t cd u p ≥ 1.

Definition triv maxR(t : sigT HBCL 0 1 L UTS.LRTypesPS)
(c :sig (CTDTPtrivR t)) : nat :=
proj1 sig c.

Lemma triv maxCost prfR :
∀ t : {t” : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t”)},
(∀ u : sig (HBCL 0 1 L UTS.URecordP (projT1 t)),
triv interpR (projT1 t) (‘ (projT2 t))%prg u (proj2 sig (projT2 t)) ≤
triv maxR (projT1 t) (projT2 t)) ∧

(∃ v : sig (HBCL 0 1 L UTS.URecordP (projT1 t)),
triv interpR (projT1 t) (‘ (projT2 t))%prg v (proj2 sig (projT2 t)) =
triv maxR (projT1 t) (projT2 t)).

Lemma triv UPredSeqR : ∀ (ur : HBCL 0 1 Id S.VaridMapMod.Raw.t
HBCL 0 1 L UTS.DataR)
(t t’ : sigT HBCL 0 1 L UTS.LRTypesPS),
HBCL 0 1 L UTS.LRTypesPSEqSigT t t’ →
HBCL 0 1 L UTS.URecordP t ur →
HBCL 0 1 L UTS.URecordP t’ ur.

Definition triv eqbrelR : sigT HBCL 0 1 L UTS.LRTypesPS →
sigT HBCL 0 1 L UTS.LRTypesPS → bool.

Defined.
Lemma triv eqb eqrelR :
∀ x y : sigT HBCL 0 1 L UTS.LRTypesPS,
triv eqbrelR x y = true ↔ HBCL 0 1 L UTS.LRTypesPSEqSigT x y.

Lemma triv eqrel EquivR :
RelationClasses.Equivalence HBCL 0 1 L UTS.LRTypesPSEqSigT.

Definition triv eq structR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →
sigT (fun t ⇒ sig (CTDTPtrivR t)) → Prop.

Admitted.
Definition triv eqb structR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →

sigT (fun t ⇒ sig (CTDTPtrivR t)) → bool.
Defined.
Lemma triv eqb eq structR : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv eqb structR x y = true ↔ triv eq structR x y.

Lemma triv eq struct cR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv eq structR x y → HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 x) (projT1 y).

Lemma triv eq struct EquivR : RelationClasses.Equivalence triv eq structR.
Definition triv eq potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →

sigT (fun t ⇒ sig (CTDTPtrivR t)) → Prop.
Admitted.
Definition triv eqb potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →

sigT (fun t ⇒ sig (CTDTPtrivR t)) → bool.
Defined.
Lemma triv eqb eq potR : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv eqb potR x y = true ↔ triv eq potR x y.

Lemma triv eq pot cR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv eq potR x y → HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv eq pot EquivR : RelationClasses.Equivalence triv eq potR.
Admitted.
Lemma triv eq pot eqR : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv eq potR x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.URecordP (projT1 x)))

447

(v : sig (HBCL 0 1 L UTS.URecordP (projT1 y))),
triv interpR (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) =
triv interpR (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv costFuncConvertRespPR :
∀ (t : {t : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t)}) t’,

HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 t) t’ →
{t : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t)}.

Defined.
Lemma triv costFuncRespPCorrectR :
∀ (t : {t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)})

(t’ : sigT HBCL 0 1 L UTS.LRTypesPS)
(teq : HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 t) t’),

triv eq potR t (triv costFuncConvertRespPR t t’ teq).
Lemma triv max tcequivR : ∀ (t :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)})

(t’ : {t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)}),
triv eq potR t t’ →
triv maxR (projT1 t) (projT2 t) = triv maxR (projT1 t’) (projT2 t’).

Definition triv le potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →
sigT (fun t ⇒ sig (CTDTPtrivR t)) → Prop.

Admitted.
Definition triv leb potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →

sigT (fun t ⇒ sig (CTDTPtrivR t)) → bool.
Defined.
Lemma triv leb le potR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv leb potR x y = true ↔ triv le potR x y.

Lemma triv le pot cR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv le potR x y → HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv le pot EquivalenceR : RelationClasses.Equivalence triv le potR.
Admitted.
Instance triv le pot PreOrderR : RelationClasses.PreOrder triv le potR.
Instance CT PD T le pot PartialOrderR :

RelationClasses.PartialOrder triv eq potR triv le potR.
Admitted.
Lemma triv le pot eqR : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv le potR x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.URecordP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.URecordP (projT1 y))),
triv interpR (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) ≤
triv interpR (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Definition triv lt potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →
sigT (fun t ⇒ sig (CTDTPtrivR t)) → Prop.

Admitted.
Definition triv ltb potR : sigT (fun t ⇒ sig (CTDTPtrivR t)) →

sigT (fun t ⇒ sig (CTDTPtrivR t)) → bool.
Defined.
Lemma triv ltb lt potR : ∀ x y :

{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv ltb potR x y = true ↔ triv lt potR x y.

Lemma triv lt pot cR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv lt potR x y → HBCL 0 1 L UTS.LRTypesPSEqSigT (projT1 x) (projT1 y).

Instance triv lt pot StrOrdR : RelationClasses.StrictOrder triv lt potR.
Admitted.
Lemma triv lt pot eqR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
triv lt potR x y ↔
(∀ (u : sig (HBCL 0 1 L UTS.URecordP (projT1 x)))

(v : sig (HBCL 0 1 L UTS.URecordP (projT1 y))),

448

triv interpR (projT1 x) (‘ (projT2 x))%prg u (proj2 sig (projT2 x)) <
triv interpR (projT1 y) (‘ (projT2 y))%prg v (proj2 sig (projT2 y))).

Lemma triv disjR : ∀ x y :
{t’ : sigT HBCL 0 1 L UTS.LRTypesPS & sig (CTDTPtrivR t’)},
(triv lt potR x y ∨ triv eq potR x y) ∧
¬ (triv lt potR x y ∧ triv eq potR x y) ↔ triv le potR x y.

Instance instBTSCostRecord : HBCL 0 1 L UTSCost.CostBase
(T := HBCL 0 1 L UTS.LRTypesPS) CTDTtrivR CTDTPtrivR
(HBCL 0 1 Id S.VaridMapMod.Raw.t HBCL 0 1 L UTS.DataR)

HBCL 0 1 L UTS.URecordP
:= {

CT PD interp := triv interpR;
CT PD interp prf := triv interp prfR;
CT PD max := triv maxR;
maxCost prf := triv maxCost prfR;
CT PD T eqrel := HBCL 0 1 L UTS.LRTypesPSEqSigT;
CT PD UPredSeq := triv UPredSeqR;
CT PD T eqbrel := triv eqbrelR;
CT PD T eqb eqrel := triv eqb eqrelR;
CT PD T eqrel Equiv := triv eqrel EquivR;
CT PD T eq struct := triv eq structR;
CT PD T eqb struct := triv eqb structR;
CT PD T eqb eq struct := triv eqb eq structR;
CT PD T eq struct c := triv eq struct cR;
CT PD T eq struct Equiv := triv eq struct EquivR;
CT PD T eq pot := triv eq potR;
CT PD T eqb pot := triv eqb potR;
CT PD T eqb eq pot := triv eqb eq potR;
CT PD T eq pot c := triv eq pot cR;
CT PD T eq pot eq := triv eq pot eqR;
CT PD T costFuncConvertRespP := triv costFuncConvertRespPR;
CT PD T costFuncRespPCorrect := triv costFuncRespPCorrectR;
CT PD max tcequiv := triv max tcequivR;
CT PD T le pot := triv le potR;
CT PD T leb pot := triv leb potR;
CT PD T leb le pot := triv leb le potR;
CT PD T le pot c := triv le pot cR;
CT PD T le pot eq := triv le pot eqR;
CT PD T lt pot := triv lt potR;
CT PD T ltb pot := triv ltb potR;
CT PD T ltb lt pot := triv ltb lt potR;
CT PD T lt pot c := triv lt pot cR;
CT PD T lt pot eq := triv lt pot eqR;
CT PD disj := triv disjR

}.

Program Definition minCtriv :
∀ t : HBCL 0 1 L UTS.ProtoT, sig (CTDTPtriv t) :=

fun ⇒ 0.
Obligation 1.
Lemma TEqEquiv:

HBCL 0 1 L UTSCost.CT PD T eqrel = HBCL 0 1 L UTS.ProtoEqT.
Lemma TSEqEquiv:

HBCL 0 1 L UTSCost.CT PD T eqrel = HBCL 0 1 L UTS.LTypesPSEqSigT.
Lemma TREqEquiv:
HBCL 0 1 L UTSCost.CT PD T eqrel = HBCL 0 1 L UTS.LRTypesPSEqSigT.
Check computeFunc.
Lemma minCMinTriv : ∀ t u,

HBCL 0 1 L UTSCost.CT PD interp(CostBase := instBTSCostBase)
t (proj1 sig (minCtriv t)) u (proj2 sig (minCtriv t)) = 0.

Require Import Coq.Strings.String.
Print sso.

Definition UBitLang : HBCL 0 1 L UBoxEmtpy.UExprLang := {|

449

HBCL 0 1 L UBoxEmtpy.CTDT := CTDTtriv;
HBCL 0 1 L UBoxEmtpy.CTDTP := CTDTPtriv;
HBCL 0 1 L UBoxEmtpy.costB := instBTSCostBase;
HBCL 0 1 L UBoxEmtpy.AST := AST;
HBCL 0 1 L UBoxEmtpy.parse := parse;
HBCL 0 1 L UBoxEmtpy.sso := sso CTDTtrivT CTDTtrivR
CTDTPtrivT CTDTPtrivR (ICostDTupT := instBTSCostTuple)
(ICostDRecT := instBTSCostRecord) minCtriv;
HBCL 0 1 L UBoxEmtpy.compile := compile ;

HBCL 0 1 L UBoxEmtpy.reduce := computeFunc (ICostDT := instBTSCostBase) TEqEquiv TSEqEquiv TREqEquiv
minCMinTriv

|}.

Listing D.29: The expression language expression type
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Lt.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.
Module VaridMapWFacts :=

FMapFacts.WFacts fun varidPred.PredidDecidable VaridMapMod.
Module VaridMapWPties :=

FMapFacts.WProperties fun varidPred.PredidDecidable VaridMapMod.
Implicit Arguments existT [A P].
Implicit Arguments existTD [A B P].
Implicit Arguments existTT [A B C P].
Notation varidEqb := varidPred.PredidDecidable.eqb.
Infix ”=v=” := varidPred.PredidDecidable.eq (at level 70, no associativity).
Infix ”=t=” := ProtoEqTSigT (at level 70, no associativity).
Section AST.

Definition Cost := {n : nat | 1 ≤ n}.
Inductive Boolconst : Set := bcTrue | bcFalse.
Inductive Baseconst : Set :=

BaseconstBool : Boolconst → Baseconst.
Inductive Vardeclprim : Set :=
| vardeclprimVar : Varid → TypeRepres → Vardeclprim

450

| vardeclprimFun : Varid → TypeRepres → TypeRepres → Cost → Vardeclprim

with TypeRepres : Set :=
| TypeRepresBase : LBasetype → TypeRepres
| TypeRepresTup : list (TypeRepres) → TypeRepres
| TypeRepresRecord : list (Vardeclprim) → TypeRepres.
Inductive PattEl : Set :=
| pattVarid : Varid → PattEl
| pattPosParam : nat → PattEl.
Inductive Patt : Set :=
| patt : Varid → list PattEl → Patt.
Inductive Expr : Set :=
| exprConstr : Constr → Expr
| exprPatt : Patt → Expr
| exprApp : Patt → Expr → Expr

with Constr : Set :=
| constrBase : Baseconst → Constr
| constrTup : list Expr → Constr
| constrRecord : list (Patt × Expr) → Constr.
Inductive Vardefprim : Set :=

vardefprim : Varid → Expr → Vardefprim.
Inductive Vardef : Set :=
| vardefExpr : Expr → Vardef
| vardefFun : Varid → Expr → Vardef .
Inductive Vardecl : Set :=
| vardeclVardeclprim : Vardeclprim → Vardecl
| vardeclVardef : Vardeclprim → Vardef → Vardecl.
Inductive Decl : Set :=
| declVardecl : Vardecl → Decl
| declVardef : Vardefprim → Decl.
Definition Decls := list Decl.
Inductive Program : Set :=

program : Decls → Program.
End AST.

Section EssoS.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t c u, CT PD interp(CostBase := ICostDT)

t (‘c) u (“c) = 0.

Lemma minTCeq : ∀ t t’, t =t= t’ →
existT t (minC t) =tc= existT t’ (minC t’).

Definition maxCostLt(t t’ : {t : ProtoT & sig (CTDTP t)}) : Prop :=
∀ u v,

CT PD interp (projT1 t) (proj1 sig (projT2 t)) u (proj2 sig (projT2 t)) <
CT PD interp (projT1 t’) (proj1 sig (projT2 t’)) v (proj2 sig (projT2 t’))
∧
¬ (∃ v’,

CT PD interp (projT1 t’) (proj1 sig (projT2 t’)) v
(proj2 sig (projT2 t’)) <
CT PD interp (projT1 t’) (proj1 sig (projT2 t’)) v’

451

(proj2 sig (projT2 t’))).
Instance maxCostLtTrans : Transitive maxCostLt.
Instance maxCostLtIrrflx : Irreflexive maxCostLt.
Instance maxCostStrOrd : StrictOrder maxCostLt :=

{| StrictOrder Transitive := maxCostLtTrans;
StrictOrder Irreflexive := maxCostLtIrrflx |}.

Definition minCSig(t : ProtoT) :=
existT (P := fun t’ ⇒ sig (CTDTP t’)) t (minC t).

Lemma minCSigMin : ∀ (t : ProtoT)(t’ : {t : ProtoT & sig (CTDTP t)}),
¬ (t’ =tc= (minCSig (projT1 t’))) → maxCostLt (minCSig t) t’.

Lemma TssoLeInjFunc : ∀ v t1 t2 v’ t1’ t2’,
v =v= v’ → t1 =t= t1’ → t2 <tc= t2’ →
TssoGenFunc v t1 t2 <TC= TssoGenFunc v’ t1’ t2’.

Lemma ProtoT eq refl : ∀ t, t =t= t.
Implicit Arguments ProtoT eq refl [t].
Definition CostD(T : Size → Type)(CTDT’ : Type)

(CTDTP’ : (sigT T) → CTDT’ → Prop) := {t : sigT T & sig (CTDTP’ t)}.
Definition CTCombAppPrf

(t t’: ProtoT)
(c : sig (CTDTP t))(c’ : sig (CTDTP t’))(c” : sig (CTDTP t’)) :=
∀ u u’,

CT PD interp t (‘c) u (“c) +
CT PD interp t’ (‘c’) u’ (“c’) =
CT PD interp t’ (‘c”) u’ (“c”).

Implicit Arguments CTCombAppPrf [t t’].
Definition tInTList(t : ProtoT)(ts : sigT LTypesPS) :=
∃ t’, t =t= t’ ∧
List.In (existT (projT1 t’) (proj1 sig (projT2 t’)))
(List.map (stripCeiling (projT1 ts)) (proj1 sig (projT2 ts))).

Definition tInTMap(t : ProtoT)(tr : sigT LRTypesPS) :=
∃ v, ∃ t’, t =t= t’ ∧

VaridMapMod.MapsTo v (existT (projT1 t’) (proj1 sig (projT2 t’)))
(VaridMapMod.map (stripCeiling (projT1 tr))
(LRTypesPSRecoverMap (projT1 tr) (projT2 tr))).

Definition tListInT(ts : sigT LTypesPS)(t : ProtoT) :=
∃ ts’ : sigT LTypesPS, SetoidList.eqlistA ProtoEqTSigT

(sigifyList (projT1 ts) (projT2 ts))
(sigifyList (projT1 ts’) (projT2 ts’)) →
t = buildProtoTFromSigTS ts’.

Definition tMapInT(tr : sigT LRTypesPS)(t : ProtoT) :=
∃ tr’ : sigT LRTypesPS, VaridMapMod.Equiv ProtoEqTSigT

(sigifyMap (projT1 tr) (projT2 tr))
(sigifyMap (projT1 tr’) (projT2 tr’)) →
t = buildProtoTFromSigTR tr’.

Inductive EssoRaw : Type :=
| essoConstr(t : ProtoT)(c : sig (CTDTP t)): CssoRaw → EssoRaw
| essoPatt(t : ProtoT)(c : sig (CTDTP t)) : Patt → EssoRaw
| essoApp(t : ProtoT)(c : sig (CTDTP t))

(e : EssoRaw) : String.string → EssoRaw

with CssoRaw : Type :=
| cssoBase(lbt : LBasetype)(ubt : UBasetype lbt)

(c : sig (CTDTP (existT 1 (BuildBaseTypePS 1 lbt eq refl)))) : CssoRaw
| cssoTuple(ts : sigT LTypesPS)(cs : sig (CTDTP TUP ts)) :

list EssoRaw → CssoRaw
| cssoRecord(tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr)) :

VaridMapModRaw.t EssoRaw → CssoRaw.

Inductive EssoRawCeilingL(ts : sigT LTypesPS)(cceil: sig (CTDTP TUP ts)) :
EssoRaw → Prop :=

| EssoCeil introL(raw : EssoRaw) :
tInTList (projT1 (getEssoRawTC raw)) ts →
CT PD LT HET tInTList ICostDT ICostDTupT (projT2 (getEssoRawTC raw))

452

cceil → EssoRawCeilingL ts cceil raw.
Inductive EssoRawCeilingR(tr : sigT LRTypesPS)(cceil: sig (CTDTP REC tr)) :

EssoRaw → Prop :=
| EssoCeil introR (raw : EssoRaw) :

tInTMap (projT1 (getEssoRawTC raw)) tr →
CT PD LT HET tInTMap ICostDT ICostDRecT (projT2 (getEssoRawTC raw))
cceil → EssoRawCeilingR tr cceil raw.

Record UCost : Type := {
ucType : sigT LTypePS;
ucCost : sig (CTDTP ucType);
ucDat : sig (UDataP ucType)

}.
Record UCostTup : Type := {

ucTupTypes : sigT LTypesPS;
ucTupCost : sig (CTDTP TUP ucTupTypes);
ucTupDat : sig (UTupleP ucTupTypes)

}.
Record UCostRec : Type := {

ucRecTypes : sigT LRTypesPS;
ucRecCost : sig (CTDTP REC ucRecTypes);
ucRecDat : sig (URecordP ucRecTypes)

}.
Definition UDatInterp(t : { t : (sigT LTypePS) & sig (CTDTP t)})

(u : sig (UDataP (projT1 t))) : Potential :=
CT PD interp (projT1 t) (‘ (projT2 t)) u (“ (projT2 (t))).

Definition UDatListFoldFunc(u : UCost)(inPot : Potential) : Potential :=
inPot + UDatInterp (existT (ucType u) (ucCost u)) (ucDat u).

Definition UDatMapFoldFunc(: Varid)(u : UCost)(inPot : Potential) :
Potential :=
inPot + UDatInterp (existT (ucType u) (ucCost u)) (ucDat u).

Section UCostTupSigifyLemmasSect.
Variable tcl : list {t” : ProtoT & sig (CTDTP t”)}.
Variable udl : list UDataRaw.
Hypothesis inprf : ∀ pr : {t” : ProtoT & sig (CTDTP t”)} × UDataRaw,

In pr (combine tcl udl) → UDataP (projT1 (fst pr)) (snd pr).
Variable l : list {t” : ProtoT & sig (CTDTP t”)}.
Variable l0 : list UDataRaw.
Variable tc : {t” : ProtoT & sig (CTDTP t”)}.
Variable tcl’ : list {t” : ProtoT & sig (CTDTP t”)}.
Variable ud : UDataRaw.
Variable udl’ : list UDataRaw.
Variable J : (tc :: tcl’, ud :: udl’) = (tcl, udl).
Lemma UCostTupSigUDataP : UDataP (projT1 tc) ud.
Lemma UCostTupInPrfRec :
∀ pr : {t” : ProtoT & sig (CTDTP t”)} × UDataRaw,

In pr (combine tcl’ udl’) → UDataP (projT1 (fst pr)) (snd pr).
End UCostTupSigifyLemmasSect.
Fixpoint UCostTupSigifyListAssistInner

(tcl : list ({t” : ProtoT & sig (CTDTP t”)})) (udl : list UDataRaw)
(inprf : ∀ pr, List.In pr (List.combine

tcl udl) →
UDataP (projT1 (fst pr)) (snd pr)) { struct udl } : list UCost
:= match (tcl, udl) as tup return tup = → list UCost with

| (tc :: tcl’, ud :: udl’) ⇒
fun J : (tc :: tcl’, ud :: udl’) = (tcl, udl) ⇒
{| ucType := (projT1 tc); ucCost := (projT2 tc);

ucDat := exist (UDataP (projT1 tc)) ud
(UCostTupSigUDataP tcl udl inprf tc tcl’ ud udl’ J) |} ::

(UCostTupSigifyListAssistInner tcl’ udl’
(UCostTupInPrfRec tcl udl inprf tc tcl’ ud udl’ J))

| ⇒ fun ⇒ nil
end eq refl.

Definition UCostTupSigifyListAssist(ul : list UDataRaw)(erl’ : list EssoRaw)

453

(uprf : ∀ pr : {t : ProtoT & sig (CTDTP t)} × UDataRaw,
In pr (combine (map (fun e : EssoRaw ⇒ getEssoRawTC e) erl’) ul) →
UDataP (projT1 (fst pr)) (snd pr)) : list UCost :=

UCostTupSigifyListAssistInner
(List.map (fun e ⇒ (getEssoRawTC e)) erl’) ul uprf .
Section UCostRecSigifyLemmasSect.
Variable tcm : VaridMapMod.t {t” : ProtoT & sig (CTDTP t”)}.
Variable um : VaridMapMod.t UDataRaw.
Variable udl : list (Varid × UDataRaw).
Hypothesis inclprf : SetoidList.inclA (@VaridMapMod.eq key elt) udl

(VaridMapMod.elements (elt:=UDataRaw) um).
Hypothesis inprf : ∀ pr, VaridMapMod.MapsTo (fst pr) (snd pr) um →
∃ t, VaridMapMod.MapsTo (fst pr) t tcm ∧

UDataP (projT1 t) (snd pr).
Variable u : Varid × UDataRaw.
Variable us : list (Varid × UDataRaw).
Hypothesis J : u :: us = udl.
Section UCostRecSfyLemmInS.

Variable tc : {t” : ProtoT & sig (CTDTP t”)}.
Hypothesis J0 : VaridMapMod.find (fst u) tcm = Some tc.
Lemma UDataPSfyRec : UDataP (projT1 tc) (snd u).
Lemma PSfyRecNewInclPrf :

SetoidList.inclA (@VaridMapMod.eq key elt) us
(VaridMapMod.elements (elt:=UDataRaw) um).

End UCostRecSfyLemmInS.
Lemma PSfyNotInFalse : ¬ VaridMapMod.find (fst u) tcm = None.

End UCostRecSigifyLemmasSect.
Fixpoint UCostRecSigifyMapAssistInner

(tcm : VaridMapMod.t {t” : ProtoT & sig (CTDTP t”)})
(um : VaridMapMod.t UDataRaw)
(udl : list (Varid × UDataRaw))
(inclprf : SetoidList.inclA (@VaridMapMod.eq key elt) udl

(VaridMapMod.elements um))
(inprf : ∀ pr, VaridMapMod.MapsTo (fst pr) (snd pr) um →
∃ t, VaridMapMod.MapsTo (fst pr) t tcm ∧

UDataP (projT1 t) (snd pr)) { struct udl } :
VaridMapMod.t UCost :=
match udl as udl return udl = → VaridMapMod.t UCost with
| u :: us ⇒ fun J : u :: us = udl ⇒

match (VaridMapMod.find (fst u) tcm) as tf return = tf → with
| Some tc ⇒ fun J0 ⇒ VaridMapMod.add (fst u)
{| ucType := projT1 tc; ucCost := projT2 tc;

ucDat := exist (UDataP (projT1 tc)) (snd u)
(UDataPSfyRec tcm um udl inclprf inprf u us J tc J0)

|}
(UCostRecSigifyMapAssistInner tcm um us

(PSfyRecNewInclPrf tcm um udl inclprf u us J tc J0) inprf)
| None ⇒ fun J0 ⇒

False rect (PSfyNotInFalse tcm um udl inclprf inprf u us J J0)
end eq refl

| nil ⇒ fun ⇒ (VaridMapMod.empty UCost)
end eq refl.

Lemma UCostRecPrfImpl : ∀ um erm’,
((∀ v : VaridMapMod.key,

VaridMapMod.In (elt:=UDataRaw) v um ↔
VaridMapMod.In (elt:=EssoRaw) v erm’) ∧

(∀ (v : VaridMapMod.key) (ur : UDataRaw),
VaridMapMod.MapsTo v ur um →

∃ er : EssoRaw,
VaridMapMod.MapsTo v er erm’ ∧
UDataP (projT1 (getEssoRawTC er)) ur)) →

(∀ pr : Varid × UDataRaw,
SetoidList.InA (@VaridMapMod.eq key elt) pr (VaridMapMod.elements um) →

454

∃ t : {t” : ProtoT & sig (CTDTP t”)},
VaridMapMod.MapsTo (fst pr) t
(VaridMapMod.map (fun e : EssoRaw ⇒ getEssoRawTC e) erm’) ∧
UDataP (projT1 t) (snd pr)).

Lemma UDatImplRecAssist : ∀ erm’ um, (∀ pr : Varid × UDataRaw,
SetoidList.InA (@VaridMapMod.eq key elt) pr
(VaridMapMod.elements (elt:=UDataRaw) um) →
∃ t : {t” : ProtoT & sig (CTDTP t”)},

VaridMapMod.MapsTo (fst pr) t
(VaridMapMod.map (fun e : EssoRaw ⇒ getEssoRawTC e) erm’) ∧
UDataP (projT1 t) (snd pr)) →

(∀ pr : VaridMapMod.key × UDataRaw,
VaridMapMod.MapsTo (fst pr) (snd pr) um →
∃ t : {t” : ProtoT & sig (CTDTP t”)},

VaridMapMod.MapsTo (fst pr) t
(VaridMapMod.map (fun e : EssoRaw ⇒ getEssoRawTC e) erm’) ∧
UDataP (projT1 t) (snd pr)).

Lemma udatInclRefl : ∀ um, SetoidList.inclA
(@VaridMapMod.eq key elt)
(VaridMapMod.elements (elt:=UDataRaw) um)
(VaridMapMod.elements (elt:=UDataRaw) um).

Definition UCostRecSigifyMapAssist(um : VaridMapMod.t UDataRaw)
(erm’ : VaridMapMod.t EssoRaw)
(uprf : (∀ v, VaridMapMod.In v um ↔ VaridMapMod.In v erm’) ∧
(∀ v ur, VaridMapMod.MapsTo v ur um →
∃ er, VaridMapMod.MapsTo v er erm’ ∧

UDataP (projT1 (getEssoRawTC er)) ur)) : VaridMapMod.t UCost :=
UCostRecSigifyMapAssistInner
(VaridMapMod.map (fun e ⇒ (getEssoRawTC e)) erm’) um
(VaridMapMod.elements um) (udatInclRefl um)
(UDatImplRecAssist erm’ um (UCostRecPrfImpl um erm’ uprf)).

Section UDataPredExtractSect.
Variable ut : UCostTup.
Variable erl’ : list EssoRaw.
Hypothesis uctprf : LTypePSListEqSigT

(sigifyList (projT1 (ucTupTypes ut)) (projT2 (ucTupTypes ut)))
(map (fun e : EssoRaw ⇒ projT1 (getEssoRawTC e)) erl’).

Lemma UDataPredExtract :
∀ pr : {t : ProtoT & sig (CTDTP t)} × UDataRaw,
In pr (combine (map (fun e : EssoRaw ⇒ getEssoRawTC e) erl’)

(‘ (ucTupDat ut))) → UDataP (projT1 (fst pr)) (snd pr).
End UDataPredExtractSect.
Lemma URecordMapRecoverNoDup : ∀ lrtps (urps : sig (URecordP lrtps)),

SetoidList.NoDupA (@VaridMapMod.Raw.PX.eqk) (‘urps).
Definition URecordPSRecoverUDRMap(lrtps : sigT LRTypesPS)

(urps : sig (URecordP lrtps)) : VaridMapMod.t UDataRaw :=
VaridMapMod.Build slist (this := (‘urps))
(URecordMapRecoverNoDup lrtps urps).

Section UDataPredExtractRSect.
Variable ur : UCostRec.
Variable erm : VaridMapMod.t EssoRaw.
Hypothesis uctprf : LTypePSMapEqSigT

(sigifyMap (projT1 (ucRecTypes ur)) (projT2 (ucRecTypes ur)))
(VaridMapMod.map (fun e : EssoRaw ⇒ projT1 (getEssoRawTC e))

erm).
Section sigifyMapInnerEquivInAssistS.

Variable s : Size.
Variable l : (fun s’ : Size ⇒ list (Varid × sig (LTypeRawCeiling s’))) s.
Variable dl :

(fun s’ : Size ⇒ list (Varid × sig (LTypeRawCeiling s’))) s.
Hypothesis inclp : SetoidList.inclA (@VaridMapMod.eq key elt) dl l.
Hypothesis inpredp : ∀ pr : Varid × sig (LTypeRawCeiling s),

SetoidList.InA (@VaridMapMod.eq key elt) pr l →

455

LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr))).
Variable s’ : Size.
Variable l’ :

(fun s’ : Size ⇒ list (Varid × sig (LTypeRawCeiling s’))) s’.
Variable dl’ :

(fun s’ : Size ⇒ list (Varid × sig (LTypeRawCeiling s’))) s’.
Hypothesis inclp’ : SetoidList.inclA (@VaridMapMod.eq key elt) dl’ l’.
Hypothesis inpredp’ : ∀ pr : Varid × sig (LTypeRawCeiling s’),

SetoidList.InA (@VaridMapMod.eq key elt) pr l’ →
LTypeP (projT1 (‘ (snd pr))) (projT2 (‘ (snd pr))).

Hypothesis H : s = s’.
Hypothesis H0 : existT s l = existT s’ l’.
Hypothesis H1 : existT s dl = existT s’ dl’.
Variable v : VaridMapMod.key.
Lemma sigifyMapInnerEquivInAssist : (∃ e : ProtoT,
SetoidList.InA (@VaridMapMod.eq key elt) (v, e)

(VaridMapMod.elements (elt:=ProtoT)
(sigifyMapInner s l dl inclp inpredp))) →

∃ e : ProtoT,
SetoidList.InA (@VaridMapMod.eq key elt) (v, e)
(VaridMapMod.elements (elt:=ProtoT)

(sigifyMapInner s’ l’ dl’ inclp’ inpredp’)).
End sigifyMapInnerEquivInAssistS.
Lemma sigifyMapInnerEquiv :
∀ s l dl inclp inpredp s’ l’ dl’ inclp’ inpredp’,

s = s’ → existT s l = existT s’ l’ →
existT s dl = existT s’ dl’ → VaridMapMod.Equiv ProtoEqTSigT
(sigifyMapInner s l dl inclp inpredp)
(sigifyMapInner s’ l’ dl’ inclp’ inpredp’).

Add Parametric Morphism elt (R : relation elt) : (@VaridMapMod.In elt)
with signature varidPred.PredidDecidable.eq ==> VaridMapMod.Equiv R

==> iff as In m.
Theorem MapsToEquivExist : ∀ elt (m m’ : VaridMapMod.t elt) x e R,

VaridMapMod.Equiv R m m’ → VaridMapMod.MapsTo x e m →
∃ e’, R e e’ ∧ VaridMapMod.MapsTo x e’ m’.

Implicit Arguments MapsToEquivExist [elt R].
Lemma sigifyMapInvIn : ∀ v (tr : sigT LRTypesPS),

(∃ mok, VaridMapMod.In v (VaridMapMod.Build slist
(this := (‘ (projT2 tr))) mok)) ↔

VaridMapMod.In v (sigifyMap (projT1 tr) (projT2 tr)).
Lemma sigifyMapInvInRM : ∀ v tr,

VaridMapMod.In v (LRTypesPSRecoverMap (projT1 tr) (projT2 tr)) ↔
VaridMapMod.In v (sigifyMap (projT1 tr) (projT2 tr)).

Lemma eqkEltImplEqkIn : ∀ elt p l,
SetoidList.InA (@VaridMapMod.eq key elt elt) p l →
SetoidList.InA (@VaridMapMod.eq key elt) p l.

Lemma eqkEltImplEqkIn2 : ∀ elt k e e’ l,
SetoidList.InA (@VaridMapMod.eq key elt elt) (k, e) l →
SetoidList.InA (@VaridMapMod.eq key elt) (k, e’) l.

Lemma eqkEltImplEqkIncl : ∀ elt l l’,
SetoidList.inclA (@VaridMapMod.eq key elt elt) l l’ →
SetoidList.inclA (@VaridMapMod.eq key elt) l l’.

Lemma InAKEltKeyImpl : ∀ elt p l,
SetoidList.InA (@VaridMapMod.eq key elt elt) p l →
SetoidList.InA (@VaridMapMod.eq key) p l.
Lemma sigifyMapInvMapRM : ∀ v tr t,

VaridMapMod.MapsTo v t (LRTypesPSRecoverMap (projT1 tr) (projT2 tr)) →
∃ t’, ‘t = existT (projT1 t’) (‘ (projT2 t’)) ∧
∃ t”, t’ =t= t” ∧
VaridMapMod.MapsTo v t” (sigifyMap (projT1 tr) (projT2 tr)).

Lemma UDataPredExtractR :
(∀ v : VaridMapMod.key,

VaridMapMod.In (elt:=UDataRaw) v

456

(URecordPSRecoverUDRMap (ucRecTypes ur) (ucRecDat ur)) ↔
VaridMapMod.In (elt:=EssoRaw) v erm) ∧

(∀ (v : VaridMapMod.key) (ur’ : UDataRaw),
VaridMapMod.MapsTo v ur’
(URecordPSRecoverUDRMap (ucRecTypes ur) (ucRecDat ur)) →
∃ er : EssoRaw,

VaridMapMod.MapsTo v er erm ∧ UDataP (projT1 (getEssoRawTC er)) ur’).
End UDataPredExtractRSect.
Definition UCostTupSigifyList(ut : UCostTup)(erl : list EssoRaw)

(uctprf : LTypePSListEqSigT (sigifyList (projT1 (ucTupTypes ut))
(projT2 (ucTupTypes ut)))

(List.map (fun e ⇒ (projT1 (getEssoRawTC e))) erl)) : list UCost :=
UCostTupSigifyListAssist
(‘ (ucTupDat ut)) erl (UDataPredExtract ut erl uctprf).

Definition ListCostLe (ut : UCostTup)(erl : list EssoRaw)
(uctprf : LTypePSListEqSigT (sigifyList (projT1 (ucTupTypes ut))

(projT2 (ucTupTypes ut)))
(List.map (fun e ⇒ (projT1 (getEssoRawTC e))) erl)) :=
List.fold right UDatListFoldFunc 0 (UCostTupSigifyList ut erl uctprf) ≤
CT PD interp (ucTupTypes ut) (‘ (ucTupCost ut)) (ucTupDat ut)
(“(ucTupCost ut)).

Definition ListCostLeTQuant(ts : sigT LTypesPS)(cs : sig (CTDTP TUP ts))
(erl : list EssoRaw) :=
∀ (us : sig (UTupleP ts)),

let ut := Build UCostTup ts cs us in
∀ (uctprf : LTypePSListEqSigT (sigifyList (projT1 (ucTupTypes ut))

(projT2 (ucTupTypes ut)))
(List.map (fun e ⇒ (projT1 (getEssoRawTC e))) erl)),
ListCostLe ut erl uctprf .

Definition UCostRecSigifyMap(ur : UCostRec)(erm : VaridMapMod.t EssoRaw)
(uctprf : LTypePSMapEqSigT (sigifyMap (projT1 (ucRecTypes ur))

(projT2 (ucRecTypes ur)))
(VaridMapMod.map (fun e ⇒ (projT1 (getEssoRawTC e))) erm)) :
VaridMapMod.t UCost :=
UCostRecSigifyMapAssist
(URecordPSRecoverUDRMap (ucRecTypes ur) (ucRecDat ur)) erm
(UDataPredExtractR ur erm uctprf).

Definition MapCostLe (ur : UCostRec)(erm : VaridMapMod.t EssoRaw)
(uctprf : LTypePSMapEqSigT (sigifyMap (projT1 (ucRecTypes ur))

(projT2 (ucRecTypes ur)))
(VaridMapMod.map (fun e ⇒ (projT1 (getEssoRawTC e))) erm)) :=
VaridMapMod.fold UDatMapFoldFunc (UCostRecSigifyMap ur erm uctprf) 0 ≤

CT PD interp (ucRecTypes ur) (‘ (ucRecCost ur)) (ucRecDat ur)
(“(ucRecCost ur)).

Definition MapCostLeTQuant(tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr))
(erm : VaridMapMod.t EssoRaw) :=
∀ (us : sig (URecordP tr)),

let ur := Build UCostRec tr cr us in
∀ (uctprf : LTypePSMapEqSigT (sigifyMap (projT1 (ucRecTypes ur))

(projT2 (ucRecTypes ur)))
(VaridMapMod.map (fun e ⇒ (projT1 (getEssoRawTC e))) erm)),
MapCostLe ur erm uctprf .

Let RssoI := Rsso ICostDT.
Inductive PattElsP(s s’ : Size)(t : LTypePS s)(t’ : LTypePS s’) :

list PattEl → Prop :=
| pattPBase : LTypePSEqHetEx s s’ t t’ → PattElsP s s’ t t’ nil
| pattPInd(l : list PattEl)(pe : PattElP s s’ t t’ l) : s > s’ →

PattElsP s s’ t t’ l

with PattElP(s s’ : Size)(t : LTypePS s)(t’ : LTypePS s’) :
list PattEl → Prop :=

| PattElVarid(v : Varid)
(lrt : HBCL 0 1 Id S.VaridMapMod.Raw.t (sig (LTypeRawCeiling s)))
(l : list PattEl) : ∀ mok ltprf sfprf ,

457

((∃ t” : (sig (LTypeRawCeiling s)),
(∃ mp : (VaridMapMod.MapsTo v t” (VaridMapMod.Build slist mok)),

(existT s t) =t= buildProtoTFromSigTR
(existT s (exist (LRTypesP s) lrt (RTypes s lrt mok sfprf ltprf))) ∧
PattElsP (projT1 (‘t”)) s’ (sigifyLCeil2R s v t”

(exist (LRTypesP s) lrt
(RTypes s lrt mok sfprf ltprf)) mp) t’ l))) →

PattElP s s’ t t’ (pattVarid v :: l)
| PattElPosParam(p : nat)(lts : LTypesPS s)(l : list PattEl) :

(∃ t” : (sig (LTypeRawCeiling s)),
∃ lp : p < length (‘lts),
∃ ncp : nth certain (‘lts) p lp = t”,

(existT s t) =t= buildProtoTFromSigTS (existT s lts) ∧
PattElsP (projT1 (‘t”)) s’
(sigifyLCeil s t” lts (nth certain in lp ncp)) t’ l) →

PattElP s s’ t t’ (pattPosParam p :: l).
Definition pattRel(pel : list PattEl)(t t’ : sigT LTypePS) :=

PattElsP (projT1 t) (projT1 t’) (projT2 t) (projT2 t’) pel.
Inductive PattP(r : RssoI)(t : sigT LTypePS)(c : sig (CTDTP t)) :

Patt → Prop :=
| PattP intro(v : Varid)(pes : list PattEl) :

(∃ s, ∃ t’, ∃ c’, VaridMapMod.MapsTo v
(TssoGenDataT (existT (existT s t’) c’))
r ∧ PattElsP s (projT1 t) t’ (projT2 t) pes ∧
CT PD LT HET (pattRel pes) ICostDT ICostDT c’ c) →

PattP r t c (patt v pes).
Inductive EssoP(r : RssoI) : ∀ t (c : sig (CTDTP t)),

EssoRaw → Prop :=
| essoConstrP(r’ : RssoI)(t : ProtoT)(c : sig (CTDTP t))

(cr : CssoRaw) :
r’ <r= r → CssoP r’ t c cr → EssoP r t c (essoConstr t c cr)

| essoPattP(r’ : RssoI)(p : Patt)(t : ProtoT)(c : sig (CTDTP t)) :
r’ <r= r → PattP r’ t c p → EssoP r t c (essoPatt t c p)

| essoAppP(t : ProtoT)(c : sig (CTDTP t))
(v : Varid)

(r” : RssoI)
(e’ : EssoRaw) :
EssoP r” (projT1 (getEssoRawTC e’)) (projT2 (getEssoRawTC e’)) e’
→

(∃ tso, ∃ tso’, ∃ varg, ∃ c”,
VaridMapMod.MapsTo v tso r ∧ tso’ =TC= tso ∧
CTCombAppPrf (projT2 (getEssoRawTC e’))
c” c ∧ tso’ = (TssoGenFunc varg (projT1 (getEssoRawTC e’))

(existT (t) c”))) → r” <r= r →
EssoP r t c (essoApp t c e’ (‘ (‘ v)))

with CssoP(r : RssoI) : ∀ t (c : sig (CTDTP t)),
CssoRaw → Prop :=

| cssoBaseP(lbt : LBasetype)(ubt : UBasetype lbt)
(c : sig (CTDTP (BTBoolSPT lbt))) : CssoP r (BTBoolSPT lbt) c
(cssoBase lbt ubt c)

| cssoTupleP (ts : sigT LTypesPS)(tc : sig (CTDTP TUP ts))
(c : sig (CTDTP (buildProtoTFromSigTS ts)))
(les : list EssoRaw) :
CT PD LT HET tListInT ICostDTupT ICostDT tc c →
EssoTupP r ts tc les → CssoP r (buildProtoTFromSigTS ts) c
(cssoTuple ts tc les)

| cssoRecordP (tr : sigT LRTypesPS)(tc : sig (CTDTP REC tr))
(c : sig (CTDTP (buildProtoTFromSigTR tr)))
(er : VaridMapMod.t EssoRaw) :
CT PD LT HET tMapInT ICostDRecT ICostDT tc c →
EssoRecP r tr tc (VaridMapMod.this er) →
CssoP r (buildProtoTFromSigTR tr) c

458

(cssoRecord tr tc (VaridMapMod.this er
))

with EssoTupP(r : RssoI) :
∀ (ts : sigT LTypesPS)(ct : sig (CTDTP TUP ts)),
list EssoRaw → Prop :=

| EssoTupPIntro (ts : sigT LTypesPS)
(cs : sig (CTDTP TUP ts))
(les : list EssoRaw) :
LTypePSListEqSigT
(List.map (fun pr’ ⇒ (projT1 (getEssoRawTC pr’))) les)
(sigifyList (projT1 ts) (projT2 ts)) →
(∀ pr : EssoRaw, List.In pr les → EssoRawCeilingL ts cs pr ∧
∃ r’, r’ <r= r ∧ EssoP r’ (projT1 (getEssoRawTC pr))

(projT2 (getEssoRawTC pr)) pr) →
ListCostLeTQuant ts cs les
→ EssoTupP r ts cs les

with EssoRecP(r : RssoI) :
∀ (tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr)),

VaridMapModRaw.t EssoRaw → Prop :=
| EssoRecPIntro(tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr))

(er : VaridMapMod.t EssoRaw) :
((∀ v, VaridMapMod.In v (LRTypesPSRecoverMap (projT1 tr) (projT2 tr))
↔
VaridMapMod.In v er)) ∧

(∀ v e, VaridMapMod.MapsTo v e er → ∃ r’,
∃ t, ∃ t’ : sig (LTypeRawCeiling (projT1 tr)),

r’ <r= r ∧ t =t= (projT1 (getEssoRawTC e)) ∧
(existT (projT1 t) (proj1 sig (projT2 t))) = (‘t’) ∧
VaridMapMod.MapsTo v t’
(LRTypesPSRecoverMap (projT1 tr) (projT2 tr))
∧ EssoRawCeilingR tr cr e ∧
EssoP r’ (projT1 (getEssoRawTC e))
(projT2 (getEssoRawTC e)) e

) → MapCostLeTQuant tr cr er →
EssoRecP r tr cr (VaridMapMod.this er).

Definition OneStr : Cost := exist (fun n ⇒ (1 ≤ n)) 1 (le refl 1).
Definition EssoPS(r : RssoI)(t : ProtoT) (c : sig (CTDTP t)) :=

sig (EssoP r t c).
Definition EssoWFInR(r : RssoI)(e : sigTT EssoPS) := r <r= (projTT1 e).
Definition EssoMapWFInR(r : RssoI)(em : VaridMapMod.t (sigTT EssoPS)) :=
∀(v : Varid)(e : sigTT EssoPS), VaridMapMod.MapsTo v e em →

(((projTT1 e) <r= r) ∧
(∃ t, VaridMapMod.MapsTo v (TssoGenDataT t) r ∧

(projT1 t) =t= (projTT2 e) ∧
(existT (projTT2 e) (projTT3 e)) <tc= t)) ∨

(∃ varg, ∃ t : ProtoT, ∃ t’,
VaridMapMod.MapsTo v (TssoGenFunc varg t t’) r ∧
(projTT1 e) <r= (VaridMapMod.add varg

(TssoGenDataT (existT t (minC))) r) ∧
(projT1 t’) =t= (projTT2 e) ∧
(existT (projTT2 e) (projTT3 e)) <tc= t’).

Lemma EssoERIncl : ∀ r r’ t c er, EssoP r t c er → r <r= r’ →
EssoP r’ t c er.

Add Morphism (@EssoMapWFInR)
with signature (R2ContainsR1 (ICostDT := ICostDT))

++> eq ++> impl as EssoMapRecRWContains.
Implicit Arguments UPot [T uraw u CTDT CTDTP cb].
Inductive FssoRaw : Type :=
| FssoVal(t : ProtoT) :

UPot t (minC) → FssoRaw
| FssoBFunc(v : Varid)(t t’ : ProtoT)(c : sig (CTDTP t’))

(func : sig (UDataP t) → UPot t’ c) : FssoRaw
| FssoDat(r’ : RssoI)(t : ProtoT)(c : sig (CTDTP t))(e : EssoRaw) : FssoRaw

459

| FssoEFunc(r’ : RssoI)(v : Varid)(t t’ : ProtoT)(c : sig (CTDTP t’))
(e : EssoRaw) : FssoRaw.

Inductive FssoP(r : RssoI) : TssoGen CTDT CTDTP → FssoRaw → Prop :=
| FssoValP(t : ProtoT)(up : UPot t (minC)) :

FssoP r (TssoGenDataT (existT t (minC))) (FssoVal t up)
| FssoBFuncP(v : Varid)(t t’ : ProtoT)(c : sig (CTDTP t’))

(func : sig (UDataP t) → UPot t’ c) :
FssoP r (TssoGenFunc v t (existT t’ c)) (FssoBFunc v t t’ c func)

| FssoDatP(r’ : RssoI)(t : ProtoT)(c : sig (CTDTP t))(e : EssoRaw) :
r’ <r= r → EssoP r’ t c e →
FssoP r (TssoGenDataT (existT t c)) (FssoDat r’ t c e)

| FssoEFuncP(r’ : RssoI)(v : Varid)(t t’ : ProtoT)(c : sig (CTDTP t’))
(e : EssoRaw) : r’ <r= r →
EssoP (VaridMapMod.add v (TssoGenDataT (existT t (minC t))) r’) t’ c e →
FssoP r (TssoGenFunc v t (existT t’ c)) (FssoEFunc r’ v t t’ c e).

Definition Fsso(r : RssoI)(T : TssoGen CTDT CTDTP) := sig (FssoP r T).
Definition FssoMapWFInR(r : RssoI)(em : VaridMapMod.t (sigTD Fsso)) :=
∀(v : Varid)(e : sigTD Fsso), VaridMapMod.MapsTo v e em →

(((projTD1 e) <r= r) ∧
(∃ T, VaridMapMod.MapsTo v T r ∧ (projTD2 e) <TC= T)).

Definition Wsso(r : RssoI) := sig (FssoMapWFInR r).
Definition updateRInWDisjPred(r r’ : RssoI)(w : Wsso r’) :=
∀ v : Varid, VaridMapMod.In v r →¬ VaridMapMod.In v (‘w).

Lemma InWImpInR : ∀(r : RssoI)(w : Wsso r)(v : Varid),
VaridMapMod.In v (‘w) → VaridMapMod.In v r.

Lemma R2ContainsR1Disj : ∀ r r’, VaridMapWPties.Disjoint r r’ →
r <r= (VaridMapWPties.update r r’).

Add Morphism (@FssoMapWFInR) with signature
(R2ContainsR1 (ICostDT := ICostDT)) ++> eq ++> impl

as FssoMapRecRWContains.
Program Definition updateRInWDisj(r r’: RssoI)(w : Wsso r)

(pf : VaridMapWPties.Disjoint r r’) :
sig (updateRInWDisjPred r’ (VaridMapWPties.update r r’)) := w.

Obligation 1.
Obligation 2.
Definition WssoCplt(r : RssoI)(w : Wsso r) := ∀ v, VaridMapMod.In v r →

VaridMapMod.In v (‘w).
Definition WssoCpltS(r : RssoI) := sig (WssoCplt r).
Definition WssoST := sigT WssoCpltS.
Definition WssoCpltSI := WssoCpltS.
Definition WssoCpltSIL := list (RssoI × sigT WssoCpltSI).
Definition emptyRsso : RssoI := VaridMapMod.empty (TssoGen CTDT CTDTP).
Inductive WssoCpltClos : RssoI → WssoCpltSIL → Prop :=
| WssoCWFPrBase(r : RssoI)(w : WssoCpltSI r) :

WssoCpltClos r ((emptyRsso, existT r w) :: nil)
| WssoCWFPrInd(r r’ : RssoI)(w : WssoCpltSI r’)

(wl : WssoCpltSIL) : WssoCpltClos r wl →
WssoCpltClos (VaridMapWPties.update r r’) ((r, existT r’ w) :: wl).

Definition sigWssoClos(r : RssoI) := sig (WssoCpltClos r).
Definition buildUDataBase(lbt : LBasetype)(ubt : UBasetype lbt)

(t : sigT LTypePS)(prf : LTypePSEq (projT1 t) 1 (projT2 t)
(BuildBaseTypePS 1 lbt eq refl)) : sig (UDataP t) :=

exist ((UDataP t)) (
UBaseData lbt ubt) (UBaseDataP lbt t ubt prf).

Lemma ProtoTSImpl : ∀ t1 t2 : ProtoT, t1 =t= t2 → projT1 t2 = projT1 t1.
Implicit Arguments ProtoTSImpl [t1 t2].
Implicit Arguments UDataConvert [t1 t2].
Implicit Arguments uPPot [T uraw u CTDT CTDTP cb].
Implicit Arguments uPDat [T uraw u CTDT CTDTP cb].
Definition UPotConvert(t t’ : ProtoT)(c : sig (CTDTP t))(c’ : sig (CTDTP t’))

(upin : UPot t c)(teq : t =t= t’)

460

(cle : CT PD LE HET ProtoEqTSigT ICostDT ICostDT c c’) : UPot t’ c’.
Implicit Arguments UPotConvert [t t’ c c’].
Definition UPotOptionConvert(t t’ : ProtoT)

(c : sig (CTDTP t))(c’ : sig (CTDTP t’))
(upin : option (UPot t c))
(teq : t =t= t’)(cle : CT PD LE HET ProtoEqTSigT ICostDT ICostDT c c’) :
option (UPot t’ c’) :=
match upin with
| Some upin ⇒ Some (UPotConvert upin teq cle)
| None ⇒ None

end.
Implicit Arguments UPotOptionConvert [t t’ c c’].
Lemma CssoPRIncl : ∀ r r’ t c cr, CssoP r t c cr → r <r= r’ →

CssoP r’ t c cr.
Lemma EssoPImplCssoP : ∀ exprType’ exprCost’ er recLocal’ cstrct,

er = essoConstr exprType’ exprCost’ cstrct →
EssoP recLocal’ exprType’ exprCost’ er →
CssoP recLocal’ exprType’ exprCost’ cstrct.

Section sigify2ExprSect.
Variable r : RssoI.
Variable etp : sigTT (EssoTupP r).
Hypothesis erlprf : ∀ er, List.In er (projTT3 etp) →

EssoP r (projT1 (getEssoRawTC er))
(projT2 (getEssoRawTC er)) er.

Hypothesis erlcprf : ∀ er, List.In er (projTT3 etp) →
EssoRawCeilingL (projTT1 etp) (projTT2 etp) er.

Let ts := projTT1 etp.
Let tssf := (sigifyList (projT1 ts) (projT2 ts)).
Let cs := projTT2 etp.
Let erl : list EssoRaw := projTT3 etp.
Hypothesis etpprf : LTypePSListEqSigT tssf

(List.map (fun er ⇒ projT1 (getEssoRawTC er)) erl).
Variable rett : ProtoT.
Variable retc : sig (CTDTP rett).
Let buildProtoTFromSTTS(ts’ : sigT LTypesPS) :=

(existT (projT1 ts’)(buildLTypePSFromTS (projT1 ts’) (projT2 ts’))).
Let LTypeB := fun ts ⇒

existT (projT1 ts)(buildLTypePSFromTS (projT1 ts) (projT2 ts)).
Let tsTConstrCmp(ts : sigT LTypesPS)(t : sigT LTypePS) :=

ProtoEqTSigT (LTypeB ts) t.
Hypothesis rettPrf : rett =t= buildProtoTFromSTTS ts.
Hypothesis retcPrf : CT PD LT HET tsTConstrCmp ICostDTupT ICostDT cs retc.
Let ExprDQualP := sig2

(EssoRawCeilingL ts cs)
(fun erp : EssoRaw ⇒

EssoP r (projT1 (getEssoRawTC erp)) (projT2 (getEssoRawTC erp)) erp).
Section sig2ifyHelpersSect.

Variable cl : list EssoRaw .
Variable prf : incl cl erl.
Variable e : EssoRaw .
Variable es : list EssoRaw .
Variable H : e :: es = cl.
Lemma sig2ifyHelper1 :

EssoP r (projT1 (getEssoRawTC e)) (projT2 (getEssoRawTC e)) e.
Lemma sig2ifyHelper1a :

EssoRawCeilingL (projTT1 etp) (projTT2 etp) e.
Lemma sig2ifyHelper2 : incl es (projTT3 etp).

End sig2ifyHelpersSect.

Fixpoint sig2ifyExprListInner
(cl : list EssoRaw)
(prf : List.incl cl erl) {struct cl} :

461

list ExprDQualP :=
match cl as cl return cl = →

list ExprDQualP with
| nil ⇒ fun ⇒ nil
| cons e es ⇒ fun H : (cons e es) = cl ⇒

cons (exist2 e (sig2ifyHelper1a cl prf e es H)
(sig2ifyHelper1 cl prf e es H))

(sig2ifyExprListInner es (sig2ifyHelper2 cl prf e es H))
end eq refl.

Definition sig2ifyExprList : list ExprDQualP :=
sig2ifyExprListInner erl (List.incl refl erl).

Let exprSig2Proj(er : ExprDQualP) := exist (EssoRawCeilingL ts cs)
(proj1 sig2 er) (proj2 sig2 er).

Lemma sigifyExprInvInduc : ∀ (e : EssoRaw)
(l es : list EssoRaw)
(lin : incl l erl)(H : l = e :: es),
es = map (proj1 sig2 (P := EssoRawCeilingL ts cs)

(Q := fun er ⇒ EssoP r (projT1 (getEssoRawTC er))
(projT2 (getEssoRawTC er)) er))

(sig2ifyExprListInner es (sig2ifyHelper2 l lin e es (eq sym H)))
→
l = map (proj1 sig2 (P := EssoRawCeilingL ts cs)

(Q := fun er ⇒ EssoP r (projT1 (getEssoRawTC er))
(projT2 (getEssoRawTC er)) er))

(sig2ifyExprListInner l lin).
Lemma sig2ifyProj :

erl = List.map (proj1 sig2
(P := EssoRawCeilingL (projTT1 etp) (projTT2 etp))
(Q := fun er ⇒ EssoP r (projT1 (getEssoRawTC er))

(projT2 (getEssoRawTC er)) er))
sig2ifyExprList.

Lemma sig2ifyLength :
length (projTT3 etp) = length (List.map (proj1 sig2

(P := EssoRawCeilingL (projTT1 etp) (projTT2 etp))
(Q := fun er ⇒ EssoP r (projT1 (getEssoRawTC er))

(projT2 (getEssoRawTC er)) er))
sig2ifyExprList).

Lemma typeExprLengthEq :
length (sigifyList (projT1 ts) (projT2 ts)) = length sig2ifyExprList.

End sigify2ExprSect.
Section sigify2ExprRSect.
Variable r : RssoI.
Variable erp : sigTT (EssoRecP r).
Hypothesis ermapok : SetoidList.NoDupA

(@VaridMapMod.Raw.PX.eqk EssoRaw
) (projTT3 erp).

Let erm := VaridMapMod.Build slist ermapok.
Hypothesis ermprf : ∀ v er, VaridMapMod.In v erm →

VaridMapMod.MapsTo v er erm →
EssoP r (projT1 (getEssoRawTC er)) (projT2 (getEssoRawTC er)) er.

Hypothesis ermcprf : ∀ v er, VaridMapMod.In v erm →
VaridMapMod.MapsTo v er erm →
EssoRawCeilingR (projTT1 erp) (projTT2 erp) er.

Let tr := projTT1 erp.
Let trsf := (sigifyMap (projT1 tr) (projT2 tr)).
Let cr := projTT2 erp.
Hypothesis etpprf : (VaridMapMod.Equiv ProtoEqTSigT) trsf

(VaridMapMod.map (fun er ⇒ projT1 (getEssoRawTC er)) erm).
Variable rett : ProtoT.
Variable retc : sig (CTDTP rett).
Let buildProtoTFromSTTR(tr’ : sigT LRTypesPS) :=

(existT (projT1 tr’)(buildLTypePSFromRT (projT1 tr’) (projT2 tr’))).

462

Let LTypeB := fun tr ⇒
existT (projT1 tr)(buildLTypePSFromRT (projT1 tr) (projT2 tr)).

Let trTConstrCmp(tr : sigT LRTypesPS)(t : sigT LTypePS) :=
ProtoEqTSigT (LTypeB tr) t.

Hypothesis rettPrf : rett =t= buildProtoTFromSTTR tr.
Hypothesis retcPrf : CT PD LT HET trTConstrCmp

ICostDRecT ICostDT cr retc.
Let datListPotMax := CT PD max (CostBase := ICostDRecT) tr cr.
Let retPotMax := datListPotMax + 1.
Let ExprDQualP := sig2

(EssoRawCeilingR tr cr) (fun er : EssoRaw ⇒
EssoP r (projT1 (getEssoRawTC er)) (projT2 (getEssoRawTC er)) er).

Section sig2ifyHelpersSect.
Variable cl : list (Varid × EssoRaw).
Variable prf : SetoidList.inclA (@VaridMapMod.eq key elt) cl

(VaridMapMod.elements (elt:=EssoRaw) erm).
Variable e : Varid × EssoRaw.
Variable es : list (Varid × EssoRaw).
Variable H’ : e :: es = cl.
Lemma sig2ifyFstEInErm : VaridMapMod.In (elt:=EssoRaw) (fst e) erm.
Lemma sig2ifyEMapsToErm : VaridMapMod.MapsTo (fst e) (snd e) erm.
Lemma sig2ifyMapHelper1 :

EssoP r (projT1 (getEssoRawTC (snd e))) (projT2 (getEssoRawTC (snd e)))
(snd e).

Lemma sig2ifyMapHelper1a : EssoRawCeilingR tr cr (snd e).
Lemma sig2ifyMapHelper2 : SetoidList.inclA (@VaridMapMod.eq key elt) es

(VaridMapMod.elements (elt:=EssoRaw) erm).
End sig2ifyHelpersSect.
Fixpoint sig2ifyExprMapInner

(cl : list (Varid × EssoRaw))
(prf : SetoidList.inclA (@VaridMapMod.eq key elt) cl

(VaridMapMod.elements erm)) { struct cl }:
VaridMapMod.t ExprDQualP :=
match cl as cl return cl = → VaridMapMod.t ExprDQualP with
| nil ⇒ fun ⇒ (VaridMapMod.empty ExprDQualP)
| e :: es ⇒ fun H’ : e :: es = cl ⇒

VaridMapMod.add (fst e)
((exist2) (snd e)
(sig2ifyMapHelper1a cl prf e es H’)
(sig2ifyMapHelper1 cl prf e es H’))
(sig2ifyExprMapInner es (sig2ifyMapHelper2 cl prf e es H’))

end eq refl.
Lemma inclReflErmEls : SetoidList.inclA (@VaridMapMod.eq key elt)

(VaridMapMod.elements erm)
(VaridMapMod.elements erm).

Definition sig2ifyExprMap : VaridMapMod.t ExprDQualP :=
sig2ifyExprMapInner (VaridMapMod.elements erm) inclReflErmEls.

End sigify2ExprRSect.
Section uPotCostLeSect.

Variable r : RssoI.
Variable etp : sigTT (EssoTupP r).
Hypothesis EssoTListConsist : LTypePSListEqSigT

(sigifyList (projT1 (projTT1 etp)) (projT2 (projTT1 etp)))
(map (fun e : EssoRaw ⇒ projT1 (getEssoRawTC e))

(projTT3 etp)).
Variable datList : list (sigTD (UPot (CTDT := CTDT) (CTDTP := CTDTP)
(cb := ICostDT))).
Let extractUDataRaw(up : (sigTD (UPot (CTDT := CTDT) (CTDTP := CTDTP)

(cb := ICostDT)))) :=
‘ (uPDat (projTD1 up) (projTD2 up) (projTD3 up)).

463

Let foldFuncPot(dat : (sigTD (UPot (CTDT := CTDT) (CTDTP := CTDTP)
(cb := ICostDT))))(inpot : Potential) : Potential :=
inpot + uPPot (projTD1 dat) (projTD2 dat) (projTD3 dat).

Variable uTuplePSig : sig (UTupleP (projTT1 etp)).
Definition UPotCostMap(up : (sigTD (UPot (CTDT := CTDT) (CTDTP := CTDTP)

(cb := ICostDT)))) : UCost :=
{| ucType := projTD1 up; ucCost := projTD2 up; ucDat :=

uPDat (projTD1 up) (projTD2 up) (projTD3 up) |}.
Hypothesis UCostPotEquivPot :

fold right UDatListFoldFunc 0 (map UPotCostMap datList) =
fold right UDatListFoldFunc 0
(UCostTupSigifyList

{|
ucTupTypes := projTT1 etp;
ucTupCost := projTT2 etp;
ucTupDat := uTuplePSig |}

(projTT3 etp) EssoTListConsist).
Lemma uPotCostLe : fold right foldFuncPot 0 datList ≤

fold right UDatListFoldFunc 0
(UCostTupSigifyList

{|
ucTupTypes := projTT1 etp;
ucTupCost := projTT2 etp;
ucTupDat := uTuplePSig |}

(projTT3 etp) EssoTListConsist).
End uPotCostLeSect.
Section UPotCostMapSect.
Variable r : RssoI.
Variable etp : sigTT (EssoTupP r).
Let extractUDataRaw(up : (sigTD (UPot (CTDT := CTDT) (CTDTP := CTDTP)

(cb := ICostDT)))) :=
‘ (uPDat (projTD1 up) (projTD2 up) (projTD3 up)).
Lemma UCostTupSLAInnerNil : ∀ tcl inprf ,

UCostTupSigifyListAssistInner tcl nil inprf = nil.
Lemma UCostTupSLAInnerNil2 : ∀ udl inprf ,

UCostTupSigifyListAssistInner nil udl inprf = nil.
Let ExprDQualP := sig2 (EssoRawCeilingL (projTT1 etp) (projTT2 etp))

(fun erp : EssoRaw ⇒
EssoP r (projT1 (getEssoRawTC erp))
(projT2 (getEssoRawTC erp)) erp).

Let evalEls(x : sigT LTypesPS)(y : sig (CTDTP TUP x))(redfunc : ∀
(na : sig2 (EssoRawCeilingL x y)

(fun erp : EssoRaw ⇒
EssoP r (projT1 (getEssoRawTC erp)) (projT2 (getEssoRawTC erp))
erp)), UPot (projT1 (getEssoRawTC (proj1 sig2 na)))

(projT2 (getEssoRawTC (proj1 sig2 na)))) :=
fun er ⇒

existTD (projT1 (getEssoRawTC (proj1 sig2 er)))
(projT2 (getEssoRawTC (proj1 sig2 er)))
(redfunc er).

Lemma UPotCostMapCorrect : ∀ erlprf erlcprf redfunc H H0,
fold right UDatListFoldFunc 0
(map UPotCostMap (map (evalEls (projTT1 etp) (projTT2 etp) redfunc)

(sig2ifyExprList r etp erlprf erlcprf))) =
fold right UDatListFoldFunc 0
(UCostTupSigifyList

{|
ucTupTypes := projTT1 etp;
ucTupCost := projTT2 etp;
ucTupDat := exist (UTupleP (projTT1 etp))
(map extractUDataRaw

(map (evalEls (projTT1 etp) (projTT2 etp) redfunc)
(sig2ifyExprList r etp erlprf erlcprf)))

464

(UTuplePIntro (projTT1 etp)
(map extractUDataRaw

(map (evalEls (projTT1 etp) (projTT2 etp) redfunc)
(sig2ifyExprList r etp erlprf erlcprf)))

H) |} (projTT3 etp)
H0).

End UPotCostMapSect.
End EssoS.
Local Close Scope program scope.

Listing D.30: The expression language large type
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Bool.Bool.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.FuncLibs.UCost.UCostFacts.
Module UCostFactsSB := UCostFacts HBCL 0 1 L UTS HBCL 0 1 L UTSCost.
Export UCostFactsSB.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.
Module VaridMapWFacts :=

FMapFacts.WFacts fun varidPred.PredidDecidable VaridMapMod.
Module VaridMapWPties :=

FMapFacts.WProperties fun varidPred.PredidDecidable VaridMapMod.
Notation varidEqb := varidPred.PredidDecidable.eqb.
Infix ”=v=” := varidPred.PredidDecidable.eq (at level 70, no associativity).
Infix ”=t=” := ProtoEqTSigT (at level 70, no associativity).
Section TssoS.

Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).

Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t c u, CT PD interp(CostBase := ICostDT)

t (‘c) u (“c) = 0.

465

Lemma equivEq : ∀(ptm ptm’ : VaridMapMod.t ProtoT),
VaridMapMod.equal ProtoEqbTSigT ptm ptm’ = true →
VaridMapMod.Equiv ProtoEqTSigT ptm ptm’.

Implicit Arguments equivEq [ptm ptm’].
Implicit Arguments ProtoTSigT eqb eq [t1 t2].

Definition BTBoolSPTC(lbt : LBasetype) : {t : ProtoT & sig (CTDTP t)} :=
existT (BTBoolSPT lbt) (minC (BTBoolSPT lbt)).

Definition buildProtoTFromTSC
(ts : {ts : sigT LTypesPS & sig (CTDTP TUP ts)}) :=
(existT (projT1 (projT1 ts)) (buildLTypePSFromTS (projT1 (projT1 ts))

(projT2 (projT1 ts)))).
Definition buildProtoT(T T’ : Size → Type)
(CTDT’ : Type)(CTDTP’ : (sigT T) → CTDT’ → Prop)
(func : (∀ s : Size, T s → T’ s))
(arg : {arg : sigT T & sig (CTDTP’ arg)}) :=
(existT (projT1 (projT1 arg))

(func (projT1 (projT1 arg))
(projT2 (projT1 arg)))).

Implicit Arguments buildProtoT [T T’ CTDT’ CTDTP’].
Definition buildProtoTSigT(T T’ : Size → Type)
(CTDT’ : Type)(CTDTP’ : (sigT T) → CTDT’ → Prop)
(func : sigT T → sigT T’)
(arg : {arg : sigT T & sig (CTDTP’ arg)}) := func (projT1 arg).
Definition buildProtoTFromRTC

(tr : {tr : sigT LRTypesPS & sig (CTDTP REC tr)}) :=
(existT (projT1 (projT1 tr))

(buildLTypePSFromRT (projT1 (projT1 tr))
(projT2 (projT1 tr)))).

Definition BuildLTypePSTC(ts : {ts : sigT LTypesPS & sig (CTDTP TUP ts)})
(c : sig (CTDTP (buildProtoTFromTSC ts))): {t : ProtoT & sig (CTDTP t)} :=
existT (buildProtoTFromTSC ts) c.

Definition BuildLTypePSRC(tr : {tr : sigT LRTypesPS & sig (CTDTP REC tr)})
(c : sig (CTDTP (buildProtoTFromRTC tr))): {t : ProtoT & sig (CTDTP t)} :=
existT (buildProtoTFromRTC tr) c.

Inductive TssoGen : Type :=
| TssoGenDataT : {t : ProtoT & sig (CTDTP t)}→ TssoGen
| TssoGenFunc : Varid → ProtoT → {t : ProtoT & sig (CTDTP t)}→

TssoGen.
Definition TssoGenStructEqb

(t1 t2 : TssoGen) : bool :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒

CT PD T eqb struct l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒ varidEqb v v’ &&

ProtoEqbTSigT i i’ && ProtoEqbTSigT (projT1 o) (projT1 o’) &&
CT PD T eqb struct o o’
| , ⇒ false

end.
Definition TssoGenStructEq (t1 t2 : TssoGen) : Prop :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒ CT PD T eq struct l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒

v =v= v’ ∧ ProtoEqTSigT i i’ ∧ ProtoEqTSigT (projT1 o) (projT1 o’) ∧
CT PD T eq struct o o’

| , ⇒ False
end.

Infix ”=TS=” := TssoGenStructEq (at level 70, no associativity).
Lemma TssoGenStructEqbIff : ∀(t1 t2 : TssoGen),

TssoGenStructEqb t1 t2 = true ↔ TssoGenStructEq t1 t2.
Lemma TssoGen struct eq refl : ∀ x : TssoGen, TssoGenStructEq x x.
Lemma TssoGen struct eq sym :
∀ x y : TssoGen, TssoGenStructEq x y →

466

TssoGenStructEq y x.
Theorem TssoGen struct eq trans: ∀ x y z : TssoGen,

TssoGenStructEq x y → TssoGenStructEq y z → TssoGenStructEq x z.
Add Relation (TssoGen) (TssoGenStructEq)
reflexivity proved by (@TssoGen struct eq refl)
symmetry proved by (@TssoGen struct eq sym)

transitivity proved by (@TssoGen struct eq trans)
as TssoGen struct eq rel.

Definition TssoGenCostEqb
(t1 t2 : TssoGen) : bool :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒

CT PD T eqb pot l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒ varidEqb v v’ &&

ProtoEqbTSigT i i’ && ProtoEqbTSigT (projT1 o) (projT1 o’) &&
CT PD T eqb pot o o’
| , ⇒ false

end.
Definition TssoGenCostEq (t1 t2 : TssoGen) : Prop :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒ CT PD T eq pot l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒

v =v= v’ ∧ ProtoEqTSigT i i’ ∧ ProtoEqTSigT (projT1 o) (projT1 o’) ∧
CT PD T eq pot o o’

| , ⇒ False
end.

Infix ”=TC=” := TssoGenCostEq (at level 70, no associativity).
Lemma TssoGenCostEqbIff : ∀(t1 t2 : TssoGen),

TssoGenCostEqb t1 t2 = true ↔ t1 =TC= t2.
Lemma TssoGen cost eq refl : ∀ x : TssoGen, x =TC= x.
Lemma TssoGen cost eq sym :
∀ x y : TssoGen, x =TC= y → y =TC= x.

Theorem TssoGen cost eq trans: ∀ x y z : TssoGen,
TssoGenCostEq x y → TssoGenCostEq y z → TssoGenCostEq x z.

Add Relation (TssoGen) (TssoGenCostEq)
reflexivity proved by (@TssoGen cost eq refl)
symmetry proved by (@TssoGen cost eq sym)

transitivity proved by (@TssoGen cost eq trans)
as TssoGen cost eq rel.

Definition TssoGenCostLeb
(t1 t2 : TssoGen) : bool :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒

CT PD T leb pot l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒ varidEqb v v’ &&

ProtoEqbTSigT i i’ && ProtoEqbTSigT (projT1 o) (projT1 o’) &&
CT PD T leb pot o o’
| , ⇒ false

end.
Definition TssoGenCostLe (t1 t2 : TssoGen) : Prop :=

match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒ CT PD T le pot l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒

v =v= v’ ∧ ProtoEqTSigT i i’ ∧ ProtoEqTSigT (projT1 o) (projT1 o’) ∧
CT PD T le pot o o’

| , ⇒ False
end.

Definition TssoGenCostLt (t1 t2 : TssoGen) : Prop :=
match t1, t2 with
| TssoGenDataT l, TssoGenDataT m ⇒ CT PD T lt pot l m
| TssoGenFunc v i o, TssoGenFunc v’ i’ o’ ⇒

v =v= v’ ∧ ProtoEqTSigT i i’ ∧ ProtoEqTSigT (projT1 o) (projT1 o’) ∧
CT PD T lt pot o o’

467

| , ⇒ False
end.

Infix ”<TC=” := TssoGenCostLe (at level 70, no associativity).
Infix ”<TC<” := TssoGenCostLt (at level 70, no associativity).
Lemma TssoGenCostLebIff : ∀(t1 t2 : TssoGen),

TssoGenCostLeb t1 t2 = true ↔ t1 <TC= t2.
Lemma TssoGen Cost le refl : ∀ x : TssoGen, x <TC= x.
Theorem TssoGen Cost le trans: ∀ x y z : TssoGen,

x <TC= y → y <TC= z → x <TC= z.
Theorem TssoGen Cost le antisym : ∀ {x y},

x <TC= y → y <TC= x → x =TC= y.
End TssoS.
Implicit Arguments TssoGenCostEq [CTDT CTDTP ICostDT].
Definition vmmE(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) :=
VaridMapMod.Equiv (TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP)
(ICostDT := ICostDT)).

Implicit Arguments vmmE [CTDT CTDTP ICostDT].
Infix ”=r=” := vmmE (at level 70, no associativity).
Implicit Arguments TssoGenDataT [CTDT CTDTP].
Implicit Arguments TssoGenFunc [CTDT CTDTP].
Implicit Arguments TssoGenCostLe [CTDT CTDTP ICostDT].
Implicit Arguments TssoGenCostLt [CTDT CTDTP ICostDT].
Infix ”=TC=” := TssoGenCostEq (at level 70, no associativity).
Infix ”<TC=” := TssoGenCostLe (at level 70, no associativity).
Infix ”<TC<” := TssoGenCostLt (at level 70, no associativity).
Add Parametric Relation (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) : (TssoGen CTDT CTDTP)
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT))
reflexivity proved by (@TssoGen cost eq refl CTDT CTDTP ICostDT)
symmetry proved by (@TssoGen cost eq sym CTDT CTDTP ICostDT)
transitivity proved by (@TssoGen cost eq trans CTDT CTDTP ICostDT)
as TssoGenParam cost eq rel.

Check TssoGenParam cost eq rel.
Add Parametric Relation (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) : (TssoGen CTDT CTDTP)
(TssoGenStructEq CTDT CTDTP)
reflexivity proved by (@TssoGen struct eq refl CTDT CTDTP ICostDT)
symmetry proved by (@TssoGen struct eq sym CTDT CTDTP ICostDT)
transitivity proved by (@TssoGen struct eq trans CTDT CTDTP ICostDT)
as TssoGenParam eq rel.

Instance TssoGen ReflI (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
Reflexive (TssoGenCostLe (CTDT := CTDT) (CTDTP := CTDTP)

(ICostDT := ICostDT)) :=
{ reflexivity := TssoGen Cost le refl CTDT CTDTP}.

Instance TssoGen TransI(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
Transitive (TssoGenCostLe (CTDT := CTDT) (CTDTP := CTDTP)

(ICostDT := ICostDT)):=
{ transitivity := TssoGen Cost le trans CTDT CTDTP}.

Instance TssoGenCostPreOrder(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
PreOrder (TssoGenCostLe (CTDT := CTDT) (CTDTP := CTDTP)

(ICostDT := ICostDT)) := {
PreOrder Reflexive := TssoGen ReflI CTDT CTDTP ICostDT;
PreOrder Transitive := TssoGen TransI CTDT CTDTP ICostDT

}.
Instance TssoGenCostPOI(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP)
: PartialOrder (TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP)

(ICostDT := ICostDT))

468

(TssoGenCostLe (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)).

Definition Rsso(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :=
(VaridMapMod.t (TssoGen CTDT CTDTP)).

Implicit Arguments Rsso [CTDT CTDTP].
Definition R2ContainsR1(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP)(r1 r2 : Rsso ICostDT) : Prop :=

(∀ k, VaridMapMod.In k r1 → VaridMapMod.In k r2) ∧
(∀ k t u, VaridMapMod.MapsTo k t r1 → VaridMapMod.MapsTo k u r2 →

t =TC= u).
Implicit Arguments R2ContainsR1 [CTDT CTDTP ICostDT].
Infix ”<r=” := R2ContainsR1 (at level 70, no associativity).
Theorem Rsso equiv refl(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP)
:
∀ x : Rsso ICostDT, VaridMapMod.Equiv

(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) x x.
Theorem Rsso equiv sym(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
∀ x y : (Rsso ICostDT), VaridMapMod.Equiv

(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) x y
→ VaridMapMod.Equiv
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) y x.

Theorem Rsso equiv trans(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP): ∀ x y z :

(Rsso ICostDT),
VaridMapMod.Equiv
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) x y →
VaridMapMod.Equiv
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) y z →
VaridMapMod.Equiv
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)) x z.

Add Parametric Relation (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (Rsso ICostDT)
(VaridMapMod.Equiv

(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)))
reflexivity proved by (@Rsso equiv refl CTDT CTDTP ICostDT)
symmetry proved by (@Rsso equiv sym CTDT CTDTP ICostDT)

transitivity proved by (@Rsso equiv trans CTDT CTDTP ICostDT)
as Rsso vmmE param rel.

Definition vmmEqb(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :=
VaridMapMod.equal (TssoGenCostEqb CTDT CTDTP).
Implicit Arguments vmmEqb [CTDT CTDTP ICostDT].
Lemma vmmEquivEqb(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : ∀ m1 m2 :

(VaridMapMod.t (TssoGen CTDT CTDTP)),
vmmEqb m1 m2 = true ↔ m1 =r= m2.

Add Parametric Morphism (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (@VaridMapMod.In (TssoGen CTDT CTDTP))

with signature varidPred.PredidDecidable.eq ==>
(VaridMapMod.Equiv (TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP)
(ICostDT := ICostDT))) ==> iff as In RssoEquiv.

Add Parametric Morphism (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (@vmmE CTDT CTDTP ICostDT)

with signature (VaridMapMod.Equiv
(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT))) ==>
(VaridMapMod.Equiv

(TssoGenCostEq (CTDT := CTDT) (CTDTP := CTDTP) (ICostDT := ICostDT)))
==> iff as RssoEquivEquiv.

Instance R2ContainsR1SubRel(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

469

(ICostDT : CostDT CTDT CTDTP) :
subrelation (@vmmE CTDT CTDTP ICostDT) (@R2ContainsR1 CTDT CTDTP ICostDT).

Theorem R2Contains refl(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : ∀ x : Rsso ICostDT, x <r= x.
Theorem R2Contains trans(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP): ∀ x y z : Rsso ICostDT,

x <r= y → y <r= z → x <r= z.
Theorem R2Contains antisym(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : ∀ {x y}, x <r= y → y <r= x → x =r= y.
Instance R2ContainsReflI(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
Reflexive (R2ContainsR1 (ICostDT := ICostDT)) :=
{ reflexivity := R2Contains refl CTDT CTDTP ICostDT}.
Instance R2ContainsTransI(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :

Transitive (R2ContainsR1 (ICostDT := ICostDT)) :=
{ transitivity := R2Contains trans CTDT CTDTP ICostDT}.

Instance R2ContainsPreOrder(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
PreOrder (R2ContainsR1 (ICostDT := ICostDT)) := {

PreOrder Reflexive := R2ContainsReflI CTDT CTDTP ICostDT;
PreOrder Transitive := R2ContainsTransI CTDT CTDTP ICostDT

}.
Instance R2ContainsPOI(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
PartialOrder (vmmE (ICostDT := ICostDT)) (R2ContainsR1 (ICostDT := ICostDT)).
Add Parametric Morphism (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (R2ContainsR1 (ICostDT := ICostDT))

with signature eq ==>
(VaridMapMod.Equiv (TssoGenCostEq (ICostDT := ICostDT))) ==>
iff as R2ContainsR1 RssoEqToEqEquiv.

Add Parametric Morphism(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (R2ContainsR1 (ICostDT := ICostDT))
with signature

(VaridMapMod.Equiv (TssoGenCostEq (ICostDT := ICostDT))) ==> eq ==>
iff as R2ContainsR1 RssoEqEquivToEq.

Add Parametric Morphism(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : (R2ContainsR1 (ICostDT := ICostDT))
with signature

(VaridMapMod.Equiv (TssoGenCostEq (ICostDT := ICostDT)))
==> (VaridMapMod.Equiv (TssoGenCostEq (ICostDT := ICostDT))) ==>
iff as R2ContainsR1 RssoEquiv.

Add Parametric Morphism(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
(VaridMapMod.In (elt := (TssoGen CTDT CTDTP)))

with signature varidPred.PredidDecidable.eq ++>
(R2ContainsR1 (ICostDT := ICostDT)) ++> impl as In RssoInContains.

Lemma R2C1MapsToExistTsso(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : ∀ v t r r’, VaridMapMod.MapsTo v t r →
r <r= r’ → (∃ t’, VaridMapMod.MapsTo v t’ r’ ∧ t =TC= t’).

Implicit Arguments R2C1MapsToExistTsso [CTDT CTDTP ICostDT].
Lemma R2C1MapsToExistProtoT(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) : ∀ v t r r’,
VaridMapMod.MapsTo v (TssoGenDataT t) r → r <r= r’ →
(∃ t’, VaridMapMod.MapsTo v (TssoGenDataT t’) r’ ∧ t =tc= t’).

Implicit Arguments R2C1MapsToExistProtoT [CTDT CTDTP ICostDT].
Lemma R2C1MapsToExistFunc(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) : ∀ v v’ t1 t2 r r’,
VaridMapMod.MapsTo v (TssoGenFunc v’ t1 t2) r → r <r= r’ →
(∃ v”, ∃ t1’, ∃ t2’,

VaridMapMod.MapsTo v (TssoGenFunc v” t1’ t2’) r’ ∧
v’ =v= v” ∧ t1’ =t= t1 ∧ t2 =tc= t2’).

Implicit Arguments R2C1MapsToExistFunc [CTDT CTDTP ICostDT].

470

Add Parametric Morphism (CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
(VaridMapMod.add (elt := TssoGen CTDT CTDTP))
with signature varidPred.PredidDecidable.eq ++>

(TssoGenCostEq (ICostDT := ICostDT)) ++>
(R2ContainsR1 (ICostDT := ICostDT)) ++>
(R2ContainsR1 (ICostDT := ICostDT)) as R2ContainsUnderMAdd.

Lemma AddRssoEquivR2C(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
∀ (t t’ : TssoGen CTDT CTDTP)(v v’ : Varid)(r : Rsso ICostDT),
v =v= v’ → t =TC= t’ →
(VaridMapMod.add v t r) <r= (VaridMapMod.add v’ t’ r).

Implicit Arguments AddRssoEquivR2C [CTDT CTDTP ICostDT].
Lemma AddRssoEquivEq(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) :
∀ (t t’ : TssoGen CTDT CTDTP)(v v’ : Varid)(r : Rsso ICostDT),
v =v= v’ → t =TC= t’ →
(VaridMapMod.add v t r) =r= (VaridMapMod.add v’ t’ r).

Implicit Arguments AddRssoEquivEq [CTDT CTDTP ICostDT].
Lemma TssoLeInjDat(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)

(ICostDT : CostDT CTDT CTDTP) :
∀ t t’, t <tc= t’ → (TssoGenDataT t) <TC=
(TssoGenDataT t’).

Lemma TssoEqInjDat(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) :
∀ t t’, t =tc= t’ → (TssoGenDataT t) =TC=
(TssoGenDataT t’).

Lemma updateROvwrt(CTDT : Type)(CTDTP : ProtoT → CTDT → Prop)
(ICostDT : CostDT CTDT CTDTP) : ∀ (r r’ : Rsso ICostDT),

r <r= (VaridMapWPties.update r’ r).

Listing D.31: The expression language built-in types

Require Export HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Export HBCL 0 1 L UTS.
Require Import Program.
Definition BaseTypeBool :=

BuildBaseTypePS 1 HBCL 0 1 L UTS.BasetypeBool eq refl.
Definition BaseTypeBoolRaw : sigT LTypeRaw :=

existT (‘BaseTypeBool).
Definition pairListRaw :=

(BaseTypeBoolRaw :: BaseTypeBoolRaw :: nil)%list.
Definition pairRawTup := LTupleType 2 pairListRaw.
Program Definition pairTupStrong : LTypesPS 2 :=

(BaseTypeBoolRaw :: BaseTypeBoolRaw :: nil)%list.
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Obligation 3.
Admitted.
Program Definition bitPair : sig (LTypeP 2) := pairRawTup.
Obligation 1.
Admitted.

471

Listing D.32: The expression language built-in functions
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UBoxEmptyEnc SB.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UTypeSysOid SB.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.exprLang.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.builtInTypes.
Import sigTypes.
Import String.
Definition emptyRsso : TypeSSO.Rsso instBTSCostBase :=

HBCL 0 1 Id S.VaridMapMod.empty (TypeSSO.TssoGen CTDTtriv CTDTPtriv).

Program Definition notId : sig HBCL 0 1 Id S.varidPredType.Pred :=
(”not”)%string.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition BoolNotCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT 1 BaseTypeBool)) :=
2.

Obligation 1.
Admitted.
Definition notRetType :
{t : HBCL 0 1 L UTS.ProtoT & sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)}
:= existT (existT 1 BaseTypeBool) BoolNotCost.

Definition notFuncTsso := TypeSSO.TssoGenFunc

notId (existT 1 BaseTypeBool) notRetType.

Definition RssoWithNotFunc :=
HBCL 0 1 Id S.VaridMapMod.add notId notFuncTsso emptyRsso.

Section notFuncS.
Variable inDat : sig (HBCL 0 1 L UTS.UDataP (existT 1 BaseTypeBool)).
Definition notFunc :

HBCL 0 1 L UTSCost.UPot (existT 1 BaseTypeBool) BoolNotCost.
Defined.

End notFuncS.
Definition notFuncFssoRaw :=

ExprSSO.FssoBFunc CTDTPtriv CTDTPtrivT CTDTPtrivR
minCtriv notId (existT 1 BaseTypeBool) (existT 1 BaseTypeBool)
BoolNotCost notFunc.

Program Definition notFuncFsso :=
sigTypes.existTD (P := ExprSSO.Fsso) RssoWithNotFunc
notFuncTsso
(exist (ExprSSO.FssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithNotFunc notFuncTsso) notFuncFssoRaw).

Obligation 1.
Admitted.
Definition emptyFssoMap := HBCL 0 1 Id S.VaridMapMod.empty

(sigTypes.sigTD (ExprSSO.Fsso minCtriv
(ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord))).

Definition FssoMapNotFunc := HBCL 0 1 Id S.VaridMapMod.add notId notFuncFsso
emptyFssoMap.

Program Definition negFuncWFInR : sig
(ExprSSO.FssoMapWFInR (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithNotFunc) := FssoMapNotFunc.

Obligation 1.
Admitted.

Program Definition xorId : sig HBCL 0 1 Id S.varidPredType.Pred :=

472

(”xor”)%string.
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition BoolXorCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT BaseTypeBool)) :=
2.

Obligation 1.
Admitted.
Definition xorRetType :

{t : HBCL 0 1 L UTS.ProtoT & sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)}
:= existT (existT 1 BaseTypeBool) BoolXorCost.

Print TypeSSO.TssoGenFunc.
Definition xorFuncTsso := TypeSSO.TssoGenFunc

xorId (existT bitPair) xorRetType.

Definition RssoWithXorFunc :=
HBCL 0 1 Id S.VaridMapMod.add xorId xorFuncTsso emptyRsso.

Definition RssoWithNotAndXorFunc :=
HBCL 0 1 Id S.VaridMapMod.add xorId xorFuncTsso RssoWithNotFunc.

Section xorFuncS.
Variable inDat : sig (HBCL 0 1 L UTS.UDataP (existT bitPair)).
Definition xorFunc : HBCL 0 1 L UTSCost.UPot

(existT BaseTypeBool) BoolXorCost.
Defined.

End xorFuncS.
Definition xorFuncFssoRaw :=

ExprSSO.FssoBFunc CTDTPtriv CTDTPtrivT CTDTPtrivR
minCtriv xorId (existT bitPair) (existT 1 BaseTypeBool)
BoolXorCost xorFunc.

Program Definition xorFuncFsso :=
sigTypes.existTD (P := ExprSSO.Fsso) RssoWithXorFunc
xorFuncTsso
(exist (ExprSSO.FssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithXorFunc xorFuncTsso) xorFuncFssoRaw).

Obligation 1.
Admitted.
Definition FssoMapNotAndXorFunc :=

HBCL 0 1 Id S.VaridMapMod.add xorId xorFuncFsso FssoMapNotFunc.
Program Definition negAndXorFuncWFInR : sig

(ExprSSO.FssoMapWFInR (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithNotAndXorFunc) := FssoMapNotAndXorFunc.

Obligation 1.
Admitted.

Program Definition orId : sig HBCL 0 1 Id S.varidPredType.Pred :=
(”or”)%string.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition BoolOrCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT BaseTypeBool)) :=
2.

Obligation 1.
Admitted.
Definition orRetType :

{t : HBCL 0 1 L UTS.ProtoT & sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)}
:= existT (existT 1 BaseTypeBool) BoolOrCost.

473

Print TypeSSO.TssoGenFunc.
Definition orFuncTsso := TypeSSO.TssoGenFunc

orId (existT bitPair) orRetType.

Definition RssoWithOrFunc :=
HBCL 0 1 Id S.VaridMapMod.add orId orFuncTsso emptyRsso.

Definition cumRssoWithOrFunc :=
HBCL 0 1 Id S.VaridMapMod.add orId orFuncTsso RssoWithNotAndXorFunc.

Section orFuncS.
Variable inDat : sig (HBCL 0 1 L UTS.UDataP (existT bitPair)).
Definition orFunc : HBCL 0 1 L UTSCost.UPot

(existT BaseTypeBool) BoolOrCost.
Defined.

End orFuncS.
Definition orFuncFssoRaw :=

ExprSSO.FssoBFunc CTDTPtriv CTDTPtrivT CTDTPtrivR
minCtriv orId (existT bitPair) (existT 1 BaseTypeBool)
BoolOrCost orFunc.

Program Definition orFuncFsso :=
sigTypes.existTD (P := ExprSSO.Fsso) RssoWithOrFunc
orFuncTsso
(exist (ExprSSO.FssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithOrFunc orFuncTsso) orFuncFssoRaw).

Obligation 1.
Admitted.
Definition cumFssoMapWithOrFunc :=

HBCL 0 1 Id S.VaridMapMod.add orId orFuncFsso FssoMapNotAndXorFunc.
Program Definition cumFuncOrFuncWFInR : sig

(ExprSSO.FssoMapWFInR (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv cumRssoWithOrFunc) := cumFssoMapWithOrFunc.

Obligation 1.
Admitted.

Program Definition andId : sig HBCL 0 1 Id S.varidPredType.Pred :=
(”and”)%string.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition BoolAndCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT BaseTypeBool)) :=
2.

Obligation 1.
Admitted.
Definition andRetType :

{t : HBCL 0 1 L UTS.ProtoT & sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)}
:= existT (existT 1 BaseTypeBool) BoolAndCost.

Print TypeSSO.TssoGenFunc.
Definition andFuncTsso := TypeSSO.TssoGenFunc

andId (existT bitPair) andRetType.

Definition RssoWithAndFunc :=
HBCL 0 1 Id S.VaridMapMod.add andId andFuncTsso emptyRsso.

Definition cumRssoWithAndFunc :=
HBCL 0 1 Id S.VaridMapMod.add andId andFuncTsso cumRssoWithOrFunc.

Section andFuncS.
Variable inDat : sig (HBCL 0 1 L UTS.UDataP (existT bitPair)).
Definition andFunc : HBCL 0 1 L UTSCost.UPot

(existT BaseTypeBool) BoolAndCost.
Defined.

474

End andFuncS.
Definition andFuncFssoRaw :=

ExprSSO.FssoBFunc CTDTPtriv CTDTPtrivT CTDTPtrivR
minCtriv andId (existT bitPair) (existT 1 BaseTypeBool)
BoolAndCost andFunc.

Program Definition andFuncFsso :=
sigTypes.existTD (P := ExprSSO.Fsso) RssoWithAndFunc
andFuncTsso
(exist (ExprSSO.FssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv RssoWithAndFunc andFuncTsso) andFuncFssoRaw).

Obligation 1.
Admitted.
Definition cumFssoMapWithAndFunc :=

HBCL 0 1 Id S.VaridMapMod.add andId andFuncFsso cumFssoMapWithOrFunc.
Program Definition cumFuncAndFuncWFInR : sig

(ExprSSO.FssoMapWFInR (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv cumRssoWithAndFunc) := cumFssoMapWithAndFunc.

Obligation 1.
Admitted.

Definition builtinsRsso := cumRssoWithAndFunc.
Program Definition builtinsWC :

ExprSSO.sigWssoClos (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv builtinsRsso :=
((builtinsRsso, existT builtinsRsso cumFuncAndFuncWFInR)

:: nil)%list.
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Obligation 3.
Admitted.

Program Definition mainId : sig HBCL 0 1 Id S.varidPredType.Pred :=
(”main”)%string.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition mainArgId : sig HBCL 0 1 Id S.varidPredType.Pred :=

(”env”)%string.
Obligation 1.
Admitted.
Obligation 2.
Admitted.

D.6.1 Expression reduction

Listing D.33: The expression language reduction function: pattern branch
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.

475

Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Lt.
Require Import Coq.Arith.Wf nat.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Section UPattMakeSect.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t u, CT PD interp(CostBase := ICostDT)

t (‘ (minC t)) u (“ (minC t)) = 0.
Let RssoI := Rsso ICostDT.
Let EssoPI := EssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoTupPI := EssoTupP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRawI := EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let UPotI := UPot CTDT CTDTP ICostDT.
Let EssoRawCeilingT(r : RssoI)(t : sigT LTypePS)(c : sig (CTDTP t))

(t’ : sigT LTypePS)(c’ : sig (CTDTP t’))(ep : sig (EssoPI r t’ c’)) :=
existT t’ c’ <tc< existT t c.

Implicit Arguments sigWssoClos [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments emptyRsso [CTDT CTDTP ICostDT].
Implicit Arguments WssoCpltClos [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT minC].
Implicit Arguments WssoCpltSIL [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments WssoCpltSI [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments WssoCpltS [CTDT CTDT TUP CTDT REC CTDTP

CTDTP TUP CTDTP REC].
Implicit Arguments PattP [CTDT CTDTP].
Implicit Arguments UDataConvert [t1 t2].
Lemma extractTypSigLEquiv : ∀ n slt ts prf prf’,

LTypePSListEqSigT slt (sigifyList (projT1 ts) (projT2 ts)) →
(nth certain slt n prf) =t= (extractType n ts prf’).

Definition extractDat(n : nat)(ts : sigT LTypesPS)(lu : list UDataRaw)
(utp : UTupleP ts lu)(prf : n < length (‘ (projT2 ts))) :
sig (UDataP (extractType n ts prf)).

476

Lemma LTypeMapEqExistFromLRT : ∀ s s’ ltr ltr’ lrps lrps’ v e,
LRTypesPSEq s s’
(exist (LRTypesP s) ltr lrps) (exist (LRTypesP s’) ltr’ lrps’) →
VaridMapMod.Raw.PX.MapsTo v e ltr → (LTmapOK s) ltr → (LTmapOK s’) ltr’ →
∃ e’ : sig (LTypeRawCeiling s’), VaridMapMod.Raw.PX.MapsTo v e’ ltr’.

Lemma sigifyLCeil2Rinv : ∀ s (e : sig (LTypeRawCeiling s)) v lrt mp,
‘e = existT (projT1 (‘e)) (‘ (sigifyLCeil2R s v e lrt mp)).

Lemma sigifyLCeilInv : ∀ s (e : sig (LTypeRawCeiling s)) lts mp,
‘e = existT (projT1 (‘e)) (‘ (sigifyLCeil s e lts mp)).

Lemma LTypePSEqSeq : ∀ s s’ t t’, LTypePSEq s s’ t t’ → s = s’.

Section pattElsPEquivAssistS.
Variable sn : Size.
Variable sn’ : Size.
Variable sr : Size.
Variable tn : LTypePS sn.
Variable tn’ : LTypePS sn’.
Variable tr : LTypePS sr.
Variable pel : list PattEl.
Variable H : existT sn tn =t= existT sn’ tn’.
Variable H0 : PattElsP sn sr tn tr pel.
Variable pel’ : list PattEl.
Variable snn : Size.
Variable snn’ : Size.
Variable tnn : LTypePS snn.
Variable tnn’ : LTypePS snn’.
Variable teq : existT snn tnn =t= existT snn’ tnn’.
Variable pep : PattElsP snn sr tnn tr pel’.
Variable pe : PattEl.
Variable pel” : list PattEl.
Variable J : pel’ = pe :: pel”.
Variable pattElsPEquivInner : ∀ (peli’ : list PattEl)

(snn snn’ : Size) (tnn : LTypePS snn)
(tnn’ : LTypePS snn’),
existT snn tnn =t= existT snn’ tnn’ →
PattElsP snn sr tnn tr peli’ →
length peli’ < length pel’ →
PattElsP snn’ sr tnn’ tr peli’.

Section pattElsPEquivAssistRecS.
Variable v : Varid.
Variable J0 : pe = pattVarid v.
Lemma PattElsPRecAss : PattElsP snn’ sr tnn’ tr pel’.

End pattElsPEquivAssistRecS.
Section pattElsPEquivAssistTupS.

Variable p : nat.
Variable J0 : pe = pattPosParam p.
Lemma PattElsPTupAss : PattElsP snn’ sr tnn’ tr pel’.

End pattElsPEquivAssistTupS.
End pattElsPEquivAssistS.
Lemma pattElsPEquiv : ∀ sn sn’ sr tn tn’ tr pel,

existT sn tn =t= existT sn’ tn’ →
PattElsP sn sr tn tr pel → PattElsP sn’ sr tn’ tr pel.

Lemma PattPRImpl : ∀ r r’ t c p, r <r= r’→
PattP ICostDT r t c p → PattP ICostDT r’ t c p.

Lemma extractTypeRInvar : ∀ v v’ tr t inprf mprf , v =v= v’ →
existT (projT1 (‘t)) (sigifyLCeil2R (projT1 tr) v t (projT2 tr) mprf) =t=
extractTypeR v’ tr inprf .

Definition extractDatR(v : Varid)(tr : sigT LRTypesPS)
(ru : VaridMapModRaw.t UDataRaw)(rup : URecordP tr ru)
(inprf : VaridMapMod.In v (LRTypesPSRecoverMap (projT1 tr) (projT2 tr))) :
sig (UDataP (extractTypeR v tr inprf)).

Definition pattExtract (r : RssoI)(t : sigT LTypePS)(c : sig (CTDTP t))

477

(t’ : sigT LTypePS)(c’ : sig (CTDTP t’))(upin : UPotI t c)
(pelps : sig (PattElsP (projT1 t) (projT1 t’) (projT2 t) (projT2 t’)))
(costconstr : CT PD LT HET (pattRel (‘pelps)) ICostDT ICostDT c c’)
: UPotI t’ c’.

Lemma TEquivRIncl : ∀ v T T’ r r’, r <r= r’ →
VaridMapMod.MapsTo v T r → VaridMapMod.MapsTo v T’ r’ →
T =TC= T’.

Section extractDatNavWClosS.
Variable r : RssoI.
Variable t : ProtoT.
Variable c : sig (CTDTP t).
Variable p : sig (PattP ICostDT r t c).
Variable wc : sigWssoClos minC r.

Variable rfunc : ∀ (t’ : sigT LTypePS)
(c’ : sig (CTDTP t’)) r’, (sigWssoClos minC r’) →
sig (EssoRawCeilingT r’ t c t’ c’) → UPotI t’ c’.

Variable v : Varid.
Variable lpe : list PattEl.
Hypothesis pp : PattP ICostDT r t c (patt v lpe).
Let patMapPred(r’ : RssoI) :=
∃ s : Size,
∃ t’ : LTypePS s,
∃ c’ : sig (CTDTP (existT s t’)),

VaridMapMod.MapsTo v (TssoGenDataT (existT (existT s t’) c’)) r’ ∧
PattElsP s (projT1 t) t’ (projT2 t) lpe ∧
CT PD LT HET (pattRel lpe) ICostDT ICostDT c’ c.

Section DatExtractAssistS.
Variable ri : RssoI.
Variable wcir : WssoCpltSIL minC.
Variable wcp : WssoCpltClos ri wcir.
Variable wpl : list (Rsso ICostDT × sigT (WssoCpltSI minC)).
Variable rn : Rsso ICostDT.
Variable wt : sigT (WssoCpltSI minC).
Variable J0 : wcir = (rn, wt) :: wpl.
Variable f :

sigTD (Fsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC).
Variable J1 : VaridMapMod.MapsTo v f (‘ (‘ (projT2 wt))).
Hypothesis H : patMapPred ri.
Lemma riWtProjEq : (projT1 wt) <r= ri.
Definition DatExtractAssist : UPotI t c.

End DatExtractAssistS.
Definition extractDatNavWClos : UPotI t c.

End extractDatNavWClosS.
Definition extractDatFromEnv(r : RssoI)(t : ProtoT)(c : sig (CTDTP t))

(p : sig (PattP ICostDT r t c))(wc : sigWssoClos minC r)
(rfunc : ∀ (t’ : sigT LTypePS)

(c’ : sig (CTDTP t’)) r’, (sigWssoClos minC r’) →
sig (EssoRawCeilingT r’ t c t’ c’) → UPotI t’ c’) : UPotI t c.

End UPattMakeSect.
Local Close Scope program scope.

Listing D.34: The expression language reduction function: tuple branch
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.

478

Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Plus.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Section UTupleMakeSect.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t c u, CT PD interp(CostBase := ICostDT)

t (‘c) u (“c) = 0.
Let RssoI := Rsso ICostDT.
Let EssoPI := EssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoTupPI := EssoTupP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRawI := EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let UPotI := UPot CTDT CTDTP ICostDT.
Implicit Arguments getEssoRawTC [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC].
Implicit Arguments EssoRawCeilingL [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT].
Implicit Arguments sig2ifyExprList [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments sig2ifyProj [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDTupT ICostDRecT].
Implicit Arguments uPPot [CTDT CTDTP].
Implicit Arguments uPDat [CTDT CTDTP].
Implicit Arguments ListCostLeTQuant [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT].
Implicit Arguments UDatListFoldFunc [CTDT CTDTP ICostDT].
Implicit Arguments UCostTupSigifyList [CTDT CTDT TUP CTDT REC CTDTP

CTDTP TUP CTDTP REC].
Implicit Arguments Build UPot [CTDT CTDTP].
Implicit Arguments uPPot [T uraw u CTDT CTDTP cb].
Implicit Arguments uPDat [T uraw u CTDT CTDTP cb].
Variable r : RssoI.
Variable etp : sigTT (EssoTupPI r).
Hypothesis erlprf : ∀ er, List.In er (projTT3 etp) →

479

EssoPI r (projT1 (getEssoRawTC er))
(projT2 (getEssoRawTC er)) er.

Hypothesis erlcprf : ∀ er, List.In er (projTT3 etp) →
EssoRawCeilingL (projTT1 etp) (projTT2 etp) er.

Let ts := projTT1 etp.
Let tssf := (sigifyList (projT1 ts) (projT2 ts)).
Let cs := projTT2 etp.
Let erl := projTT3 etp.
Hypothesis etpprf : LTypePSListEqSigT tssf

(List.map (fun er ⇒ projT1 (getEssoRawTC er)) erl).
Variable rett : ProtoT.
Variable retc : sig (CTDTP rett).
Let buildProtoTFromSTTS(ts’ : sigT LTypesPS) :=

(existT (projT1 ts’)(buildLTypePSFromTS (projT1 ts’) (projT2 ts’))).
Let LTypeB := fun ts ⇒

existT (projT1 ts)(buildLTypePSFromTS (projT1 ts) (projT2 ts)).
Let tsTConstrCmp(ts : sigT LTypesPS)(t : sigT LTypePS) :=

ProtoEqTSigT (LTypeB ts) t.
Hypothesis rettPrf : rett =t= buildProtoTFromSTTS ts.
Hypothesis retcPrf : CT PD LT HET tsTConstrCmp

ICostDTupT ICostDT cs retc.
Let datListPotMax := CT PD max (CostBase := ICostDTupT) ts cs.
Let retPotMax := datListPotMax + 1.
Let ExprDQualP := sig2

(EssoRawCeilingL (ICostDT := ICostDT) (ICostDTupT := ICostDTupT) ts cs)
(fun erp : EssoRawI ⇒

EssoPI r (projT1 (getEssoRawTC erp)) (projT2 (getEssoRawTC erp)) erp).
Variable (redfunc : ∀ na : ExprDQualP,

(UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))
(projT2 (getEssoRawTC (proj1 sig2 na))))).

Let evalEls(er : ExprDQualP) :=
(existTD (projT1 (getEssoRawTC (proj1 sig2 er)))

(projT2 (getEssoRawTC (proj1 sig2 er))) (redfunc er)).
Let datList := List.map evalEls (sig2ifyExprList r etp erlprf erlcprf).
Let foldFuncPot(dat : sigTD UPotI)(inpot : Potential) : Potential :=

inpot + uPPot (projTD1 dat) (projTD2 dat) (projTD3 dat).
Let actualListPot := List.fold right foldFuncPot 0 datList.
Let extractUDataRaw(up : sigTD UPotI) :=
‘ (uPDat (projTD1 up) (projTD2 up) (projTD3 up)).
Let uDataRawList := List.map extractUDataRaw datList.
Let extractTFromEDQ(edq : ExprDQualP) :=

projT1 (getEssoRawTC (proj1 sig2 edq)).
Lemma datListTypInf : ∀ pr, List.In pr (combine tssf datList) →

fst pr =t= (projTD1 (snd pr)).

Lemma uDataPSigPrf : LTypePSEq (projT1 rett) (projT1 ts) (projT2 rett)
(buildLTypePSFromTS (projT1 ts) (projT2 ts)).

Lemma uTuplePSig assist : ∃ lus’ : list (sigT LTypePS × UDataRaw),
LTypePSListEqSigT (fst (split lus’))

(sigifyList (projT1 ts) (projT2 ts)) ∧
snd (split lus’) = uDataRawList ∧
(∀ pr : sigT LTypePS × UDataRaw,
In pr lus’ → UDataP (fst pr) (snd pr)).

Let uDataPSig : sig (UDataP rett) :=
exist (UDataP rett) (UTupleData (projT1 ts) (projT2 ts) uDataRawList)
(UTupleDataP ts rett uDataRawList uDataPSigPrf

(UTuplePIntro ts uDataRawList uTuplePSig assist)).
Let uTuplePSig : sig (UTupleP (projTT1 etp)) :=

exist (UTupleP (projTT1 etp)) uDataRawList
(UTuplePIntro ts uDataRawList uTuplePSig assist).

Let extractUDataPot := fun up : sigTD UPotI ⇒

480

‘(uPPot (projTD1 up) (projTD2 up) (projTD3 up)).
Lemma tcCorrect : ListCostLeTQuant (ICostDT := ICostDT)

(ICostDTupT := ICostDTupT) ts cs (projTT3 etp).
Lemma uTupleInterpEq : fold right foldFuncPot 0 datList ≤

CT PD interp (projTT1 etp) (‘cs) uTuplePSig (“cs).
Theorem retPotCorrectStrong :

actualListPot < CT PD interp rett (‘ retc) uDataPSig (“retc).
Lemma retPotCorrectWeak : actualListPot < CT PD max rett retc.
Lemma retPotCorrectWeakS : actualListPot + 1 ≤ CT PD max rett retc.
Lemma retPotCorrectStrongS :

actualListPot + 1 ≤ CT PD interp rett (‘ retc) uDataPSig (“retc).
Definition UTupleMake : UPotI rett retc :=

Build UPot ICostDT rett retc (actualListPot + 1) uDataPSig
retPotCorrectStrongS.

End UTupleMakeSect.
Local Close Scope program scope.

Listing D.35: The expression language reduction function: record branch
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Plus.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.MapLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Module VaridMapAuxFacts := MapAuxFacts varidPred.PredidDecidable VaridMapMod.
Section URecordMakeSect.

Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

481

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t c u, CT PD interp(CostBase := ICostDT)

t (‘c) u (“c) = 0.
Let RssoI := Rsso ICostDT.
Let EssoPI := EssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRecPI := EssoRecP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRawI := EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let UPotI := UPot CTDT CTDTP ICostDT.
Implicit Arguments getEssoRawTC [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC].
Implicit Arguments EssoRawCeilingR [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDRecT].
Implicit Arguments sig2ifyExprMap [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments sig2ifyProj [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDTupT ICostDRecT].
Implicit Arguments ListCostLeTQuant [CTDT CTDT TUP CTDTP CTDTP TUP

ICostDT ICostDTupT].
Implicit Arguments MapCostLeTQuant [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDRecT].
Implicit Arguments UDatMapFoldFunc [CTDT CTDTP ICostDT].
Implicit Arguments UCostRecSigifyMap [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC].
Implicit Arguments Build UPot [CTDT CTDTP].
Implicit Arguments uPPot [T uraw u CTDT CTDTP cb].
Implicit Arguments uPDat [T uraw u CTDT CTDTP cb].
Variable r : RssoI.
Variable erp : sigTT (EssoRecPI r).
Hypothesis ermapok : SetoidList.NoDupA

(@VaridMapMod.Raw.PX.eqk) (projTT3 erp).
Let erm := VaridMapMod.Build slist ermapok.
Hypothesis ermprf : ∀ v er, VaridMapMod.In v erm →

VaridMapMod.MapsTo v er erm →
EssoPI r (projT1 (getEssoRawTC er)) (projT2 (getEssoRawTC er)) er.

Hypothesis ermcprf : ∀ v er, VaridMapMod.In v erm →
VaridMapMod.MapsTo v er erm →
EssoRawCeilingR (projTT1 erp) (projTT2 erp) er.

Let tr := projTT1 erp.
Let trsf := (sigifyMap (projT1 tr) (projT2 tr)).
Let cr := projTT2 erp.
Hypothesis erpprf : (VaridMapMod.Equiv ProtoEqTSigT) trsf

(VaridMapMod.map (fun er ⇒ projT1 (getEssoRawTC er)) erm).
Variable rett : ProtoT.
Variable retc : sig (CTDTP rett).
Let buildProtoTFromSTTR(tr’ : sigT LRTypesPS) :=

(existT (projT1 tr’)(buildLTypePSFromRT (projT1 tr’) (projT2 tr’))).
Let LTypeB := fun tr ⇒

existT (projT1 tr)(buildLTypePSFromRT (projT1 tr) (projT2 tr)).
Let trTConstrCmp(tr : sigT LRTypesPS)(t : sigT LTypePS) :=

ProtoEqTSigT (LTypeB tr) t.
Hypothesis rettPrf : rett =t= buildProtoTFromSTTR tr.
Hypothesis retcPrf : CT PD LT HET trTConstrCmp

ICostDRecT ICostDT cr retc.
Let datListPotMax := CT PD max (CostBase := ICostDRecT) tr cr.
Let retPotMax := datListPotMax + 1.
Let ExprDQualP := sig2

(EssoRawCeilingR (ICostDT := ICostDT) (ICostDRecT := ICostDRecT) tr cr)
(fun er : EssoRawI ⇒

EssoPI r (projT1 (getEssoRawTC er)) (projT2 (getEssoRawTC er)) er).

482

Variable (redfunc : ∀ na : ExprDQualP,
(UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))

(projT2 (getEssoRawTC (proj1 sig2 na))))).
Let evalEls(er : ExprDQualP) :=

(existTD (projT1 (getEssoRawTC (proj1 sig2 er)))
(projT2 (getEssoRawTC (proj1 sig2 er))) (redfunc er)).

Let datMap := VaridMapMod.map evalEls
(sig2ifyExprMap r erp ermapok ermprf ermcprf).

Let foldFuncPot(: Varid)(dat : sigTD UPotI)(inpot : Potential) :
Potential := inpot + uPPot (projTD1 dat) (projTD2 dat) (projTD3 dat).

Let actualListPot := VaridMapMod.fold foldFuncPot datMap 0.
Let extractUDataRaw(up : sigTD UPotI) :=
‘ (uPDat (projTD1 up) (projTD2 up) (projTD3 up)).

Let uDataRawMap := VaridMapMod.map extractUDataRaw datMap.
Let extractTFromEDQ(edq : ExprDQualP) :=

projT1 (getEssoRawTC (proj1 sig2 edq)).

Lemma uDataPSigPrf : LTypePSEq (projT1 rett) (projT1 tr) (projT2 rett)
(buildLTypePSFromRT (projT1 tr) (projT2 tr)).

Lemma uRecordPSig assist : (∃ tr’ : sigT LRTypesPS,
LRTypesPSEq (projT1 tr) (projT1 tr’) (projT2 tr) (projT2 tr’) ∧
(∀ v : VaridMapMod.key,
VaridMapMod.In (elt:=sig (LTypeRawCeiling (projT1 tr))) v

(LRTypesPSRecoverMap (projT1 tr) (projT2 tr)) →
∃ v’ : varidPred.PredidDecidable.t,

v =v= v’ ∧ VaridMapMod.In (elt:=UDataRaw) v uDataRawMap) ∧
(∀ (v : VaridMapMod.key) (u : UDataRaw),
VaridMapMod.MapsTo v u uDataRawMap →
∃ v’ : varidPred.PredidDecidable.t,

v’ =v= v ∧
(∃ t : sig (LTypeRawCeiling (projT1 tr)),

∃ t’ : sigT LTypePS,
EqdepFacts.eq dep Size LTypeRaw (projT1 (‘t))

(projT2 (‘t)) (projT1 t’) (‘ (projT2 t’)) ∧
UDataP t’ u ∧
VaridMapMod.MapsTo v’ t

(LRTypesPSRecoverMap (projT1 tr) (projT2 tr))))).
Let uDataPSig : sig (UDataP rett) :=

exist (UDataP rett) (URecordData (projT1 tr) (projT2 tr)
(VaridMapMod.this uDataRawMap))

(URecordDataP tr rett uDataRawMap uDataPSigPrf
(URecordPIntro tr uDataRawMap uRecordPSig assist)).

Let uRecordPSig : sig (URecordP (projTT1 erp)) :=
exist (URecordP (projTT1 erp)) (VaridMapMod.this uDataRawMap)
(URecordPIntro tr uDataRawMap uRecordPSig assist).

Let extractUDataPot := fun up : sigTD UPotI ⇒
‘(uPPot (projTD1 up) (projTD2 up) (projTD3 up)).

Lemma FoldFuncTranspose :
VaridMapWPties.transpose neqkey eq (UDatMapFoldFunc (ICostDT := ICostDT)).

Add Morphism (UDatMapFoldFunc (ICostDT := ICostDT)) with signature
(varidPred.PredidDecidable.eq ==> eq ==> eq ==> eq) as

UDatMapFoldFuncVaridLeibM.
Lemma UDatMapFoldFuncEqual : ∀ uc uc’ n,

VaridMapMod.Equal uc uc’ →
VaridMapMod.fold (UDatMapFoldFunc (ICostDT := ICostDT)) uc n =

VaridMapMod.fold (UDatMapFoldFunc (ICostDT := ICostDT)) uc’ n.
Lemma ExprMapEqual : ∀

(eraw eraw’: VaridMapMod.Raw.t (EssoRaw CTDT CTDT TUP CTDT REC
CTDTP CTDTP TUP CTDTP REC))

(erawp : SetoidList.NoDupA (@VaridMapMod.Raw.PX.eqk) eraw)
(erawp’ : SetoidList.NoDupA (@VaridMapMod.Raw.PX.eqk) eraw’),
eraw = eraw’ → VaridMapMod.Equal
{| VaridMapMod.this := eraw; VaridMapMod.NoDup := erawp |}

483

{| VaridMapMod.this := eraw’; VaridMapMod.NoDup := erawp’ |}.
Lemma FindInMapsToInv : ∀ elt elt’ k l (e : elt) m m’

(x : ∀ (t : elt’), VaridMapMod.find l m = Some t → VaridMapMod.t elt)
(x’ : ∀ (t : elt’),

VaridMapMod.find l m’ = Some t → VaridMapMod.t elt)
(nm : VaridMapMod.find l m = None → False)
(nm’ : VaridMapMod.find l m’ = None → False)
ef ef’,
(∀ t t’ e e’, VaridMapMod.Equal (x t e) (x’ t’ e’)) → (

VaridMapMod.MapsTo k e
(match (VaridMapMod.find (elt := elt’) l m) as tf return

(VaridMapMod.find l m) = tf → VaridMapMod.t elt with
| Some tc ⇒ fun J0 ⇒ x tc J0
| None ⇒ fun J0 ⇒ False rect (nm J0)

end ef) ↔
VaridMapMod.MapsTo k e
(match (VaridMapMod.find (elt := elt’) l m’) as tf return

(VaridMapMod.find l m’) = tf → VaridMapMod.t elt with
| Some tc ⇒ fun J0 ⇒ x’ tc J0
| None ⇒ fun J0 ⇒ False rect (nm’ J0)

end ef’)).
Lemma UCostRecSfyEq : ∀ tcm tcm’ um udl inclprf inclprf’ inprf inprf’,

VaridMapMod.Equal tcm tcm’ →
VaridMapMod.Equal
(UCostRecSigifyMapAssistInner CTDT CTDTP tcm um udl inclprf inprf)
(UCostRecSigifyMapAssistInner CTDT CTDTP tcm’ um udl inclprf’ inprf’).

Lemma ExpMapEqImplUCostRecSigEqual : ∀ tr cr ud em em’ uctprf uctprf’,
VaridMapMod.Equal em em’ →
VaridMapMod.Equal
(UCostRecSigifyMap (CTDTP := CTDTP) (CTDTP TUP := CTDTP TUP)

(Build UCostRec CTDT REC CTDTP REC tr cr ud) em uctprf)
(UCostRecSigifyMap

(Build UCostRec CTDT REC CTDTP REC tr cr ud) em’ uctprf’).

Lemma tcCorrect : MapCostLeTQuant (ICostDT := ICostDT)
(ICostDRecT := ICostDRecT) tr cr erm.

Lemma uRecordInterpEq : VaridMapMod.fold foldFuncPot datMap 0 ≤
CT PD interp (projTT1 erp) (‘cr) uRecordPSig (“cr).

Check UCostRecSigifyMap.
Admitted.

Theorem retPotCorrectStrong :
actualListPot < CT PD interp rett (‘ retc) uDataPSig (“retc).

Lemma retPotCorrectStrongS :
actualListPot + 1 ≤ CT PD interp rett (‘ retc) uDataPSig (“retc).

Definition URecordMake : UPotI rett retc :=
Build UPot ICostDT rett retc (actualListPot + 1) uDataPSig
retPotCorrectStrongS.

End URecordMakeSect.
Local Close Scope program scope.

Listing D.36: The expression language reduction function: application branch
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.

484

Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Plus.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Wellfounded.Inverse Image.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Section UAppMakeSect.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t u, CT PD interp(CostBase := ICostDT)

t (‘ (minC t)) u (“ (minC t)) = 0.
Let RssoI := Rsso ICostDT.
Let EssoPI := EssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRawI := EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let UPotI := UPot CTDT CTDTP ICostDT.

Implicit Arguments WssoCpltS [CTDT CTDT TUP CTDT REC CTDTP
CTDTP TUP CTDTP REC].

Implicit Arguments PattP [CTDT CTDTP].
Implicit Arguments UDataConvert [t1 t2].
Implicit Arguments CTCombAppPrf [CTDT CTDTP t t’].
Implicit Arguments uPPot [T uraw u CTDT CTDTP cb].
Implicit Arguments uPDat [T uraw u CTDT CTDTP cb].
Definition addR(v : Varid)(t : ProtoT)(r : RssoI) :=

(VaridMapMod.add v (TssoGenDataT (existT t (minC t))) r).
Program Definition emptyWsso(r : RssoI) :

(Wsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC r) :=
VaridMapMod.empty (sigTD

(Fsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC)).
Obligation 1.

red.
intros v e H.
apply VaridMapWFacts.empty mapsto iff in H.
exfalso; assumption.

Qed.
Implicit Arguments sigWssoClos [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments emptyRsso [CTDT CTDTP ICostDT].
Implicit Arguments WssoCpltClos [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT minC].

485

Implicit Arguments WssoCpltSIL [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDT ICostDTupT ICostDRecT].

Implicit Arguments WssoCpltSI [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC ICostDT ICostDTupT ICostDRecT].

Definition bindVar(r : RssoI)(v : Varid)(t : ProtoT)(u : sig (UDataP t))
(wc : sigWssoClos minC r) : sigWssoClos minC (addR v t r).

refine (
let upot := Build UPot CTDT CTDTP ICostDT t (minC t) 1 u in

let fv := FssoVal CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC minC t upot in
let nfps :=

exist (FssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC
(addR v t emptyRsso) (TssoGenDataT (existT t (minC t))))

fv in
let fsso := existTD

(P := (Fsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC))
(addR v t emptyRsso) (TssoGenDataT (existT t (minC t))) nfps in
let wraw :=

VaridMapMod.add v fsso (VaridMapMod.empty (sigTD
(Fsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC)))

in let fwf :
FssoMapWFInR CTDT CTDT TUP CTDT REC CTDTP
CTDTP TUP CTDTP REC minC (addR v t emptyRsso) wraw := in

let wso := exist
(FssoMapWFInR CTDT CTDT TUP CTDT REC CTDTP

CTDTP TUP CTDTP REC minC (addR v t emptyRsso)) wraw fwf in
let wcplt := exist

(WssoCplt CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC
(addR v t emptyRsso)) wso

in
exist (WssoCpltClos (VaridMapWPties.update r (addR v t emptyRsso)))
((r, (existT (addR v t emptyRsso) wcplt)) :: (‘wc))

).
Proof.
apply CT PD interp prf .
exact (FssoValP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC

(addR v t emptyRsso) t upot).
subst wraw.
red.
intros v’ e H.
apply VaridMapWFacts.add mapsto iff in H.
red in wc.
destruct H.
split.
destruct H as [H H0].
rewrite← H0.
subst fsso.
simpl.
reflexivity.
∃ (TssoGenDataT (existT t (minC t))).
destruct H as [H H0].
split.
rewrite← H.
unfold addR.
simpl.
apply VaridMapWFacts.add mapsto iff .
left.
split; reflexivity.
rewrite← H0.
subst fsso.
simpl.
reflexivity.
destruct H as [H H0].
apply VaridMapWFacts.empty mapsto iff in H0.
exfalso; assumption.
red.

486

intros v’ H.
subst wso.
simpl.
assert (v =v= v’) as H0.
unfold addR in H.
apply VaridMapWFacts.add in iff in H.
destruct H.
assumption.
apply VaridMapWFacts.empty in iff in H.
exfalso; assumption.
rewrite← H0.
apply VaridMapWFacts.add in iff .
left.
reflexivity.
simpl.
eapply WssoCWFPrInd.
exact (“wc).

Defined.
Section FuncExtractAssistS.

Variables t t’ : ProtoT.
Variable c : sig (CTDTP t).
Variable c’ : sig (CTDTP t’).
Variable ri : RssoI.
Variable wci : sigWssoClos minC ri.
Variable wfp : Acc lt (length ((‘wci))).
Variable w : WssoCpltSIL minC.
Variable wt : sigT (WssoCpltSI minC).
Variable wl : list (RssoI × sigT (WssoCpltSI minC)).
Variable rn : RssoI.
Variable J0 : (‘wci) = ((rn, wt) :: wl).
Variable f :

sigTD (Fsso CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC minC).
Variable v : Varid.
Variable J1 : VaridMapMod.MapsTo v f (‘ (‘ (projT2 wt))).
Variable upin : UPotI t’ c’.
Variable rincl : projT1 wt <r= ri.
Variable H : ∃ tso : TssoGen CTDT CTDTP,

∃ tso’ : TssoGen CTDT CTDTP,
∃ varg : Varid,
∃ c” : sig (CTDTP t),

VaridMapMod.MapsTo v tso (projT1 wt) ∧
tso’ =TC= tso ∧
CTCombAppPrf ICostDT c’ c” c ∧
tso’ = TssoGenFunc varg t’ (existT t c”).

Variable newRed : ∀ (v’ : Varid) (r’ : Rsso ICostDT)
(t” : sigT LTypePS)
(c” : (fun t’ : sigT LTypePS ⇒ sig (CTDTP t’)) t”),
existT t” c” <tc< existT t c →
sigWssoClos minC (addR v’ t’ r’) →
sig (EssoPI (addR v’ t’ r’) t” c”) → UPotI t c.

Definition FuncExtractAssist : UPotI t c.
refine (

match (‘ (projTD3 f)) as ft return = ft → (UPotI t c) with
| FssoVal t” upot ⇒ fun J ⇒ !
| FssoBFunc v’ ti to toc func ⇒ fun J ⇒

let uorig := uPDat t’ c’ upin in
let uretp := in
let uret : UPotI to toc :=

func (exist (UDataP ti) (‘uorig) uretp)
in UPotConvert CTDT CTDTP to t toc c uret

| FssoDat r’ t” c” e ⇒ fun J ⇒ !
| FssoEFunc r’ v’ ti to toc e ⇒ fun J ⇒

let uorig := uPDat t’ c’ upin in
let newWCEnv := bindVar ri v’ t’ uorig wci in

let ep := (exist (EssoPI (addR v’ t’ ri) to toc) e)
in newRed v’ ri to toc newWCEnv ep

487

end eq refl
).
destruct H as [tso H0].
destruct H0 as [tso’ H1].
destruct H1 as [varg H2].
destruct H2 as [c” H3].
decompose [and] H3.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H8 H9].
assert (H10 := VaridMapWFacts.MapsTo fun H0 H8).
rewrite← H10 in H9.
rewrite← H2 in H9.
rewrite H5 in H9.
red in H9.
assumption.
destruct uorig as [u up].
simpl.
eapply UDataConvertP; eauto.
destruct H as [tso H0].
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H8 H9].
assert (H10 := VaridMapWFacts.MapsTo fun H1 H8).
rewrite← H10 in H9.
rewrite← H3 in H9.
rewrite H5 in H9.
red in H9.
decompose [and] H9.
symmetry; assumption.
destruct H as [tso H0].
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.

488

clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H8 H9].
assert (H10 := VaridMapWFacts.MapsTo fun H1 H8).
rewrite← H10 in H9.
rewrite← H3 in H9.
rewrite H5 in H9.
red in H9.
decompose [and] H9.
simpl in H11.
assumption.
destruct H as [tso H0].
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H8 H9].
assert (H10 := VaridMapWFacts.MapsTo fun H1 H8).
rewrite← H10 in H9.
rewrite← H3 in H9.
rewrite H5 in H9.
red in H9.
decompose [and] H9.
red in H2.
red.
intros u u’ H15.
rewrite← H2 with (u := uorig).
rewrite CT PD T le pot eq in H14.
simpl in H14.
assert (H16 := H14 u u’).
rewrite plus comm.
replace (CT PD interp to (‘toc) u (“toc)) with

(CT PD interp to (‘toc) u (“toc) + 0).
eapply plus le compat; eauto.
apply le 0 n.
auto.
destruct H as [tso H0].
destruct H0 as [tso’ H1].
destruct H1 as [varg H2].
destruct H2 as [c”’ H3].
decompose [and] H3.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].

489

destruct H8 as [H10 H11].
assert (H12 := VaridMapWFacts.MapsTo fun H0 H10).
rewrite← H12 in H11.
rewrite← H2 in H11.
rewrite H5 in H11.
red in H11.
assumption.
destruct H as [tso H0].
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.
dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H10 H11].
assert (H12 := VaridMapWFacts.MapsTo fun H1 H10).
rewrite← H12 in H11.
rewrite← H3 in H11.
rewrite H5 in H11.
red in H11.
decompose [and] H11.
simpl in H13.
red.
unfold addR.
eapply EssoERIncl; eauto.
assert (r’ <r= ri) as H17.
transitivity x.
assumption.
rewrite← rincl.
assumption.
rewrite H17.
assert (TssoGenDataT (existT ti (minC ti)) =TC=

TssoGenDataT (existT t’ (minC t’))) as H18.
red.
apply CT PD T eq pot eq.
intros u u’.
simpl.
rewrite minCMin.
rewrite minCMin.
reflexivity.
rewrite H18.
reflexivity.
destruct H as [tso H0].
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
assert (H6 := (“(‘ (projT2 wt)))).
red in H6.
assert (H7 := H6 v f J1).
destruct H7 as [H7 H8].
destruct f .
red in f0.
destruct f0.
simpl in ×.
clear J1.
rewrite J in f0.

490

dependent destruction f0.
destruct H8 as [T H8].
destruct H8 as [H10 H11].
assert (H12 := VaridMapWFacts.MapsTo fun H1 H10).
rewrite← H12 in H11.
rewrite← H3 in H11.
rewrite H5 in H11.
red in H11.
decompose [and] H11.
simpl in H11.
red in H2.
apply CT PD T lt pot eq.
rewrite CT PD T le pot eq in H16.
intros u u’.
simpl in ×.
assert (H17 := H16 u u’).
assert (H18 := H2 uorig u’).
rewrite← H18.
red.
rewrite plus comm.
replace (S (CT PD interp to (‘toc) u (“toc))) with

((CT PD interp to (‘toc) u (“toc)) + 1).
apply plus le compat.
assumption.
apply CT PD interp prf .
apply plus comm.

Defined.
End FuncExtractAssistS.
Definition funcExtractionPred(r : RssoI)(t t’ : ProtoT)(c : sig (CTDTP t))

(c’ : sig (CTDTP t’))(v : Varid) :=
(∃ tso : TssoGen CTDT CTDTP,
∃ tso’ : TssoGen CTDT CTDTP,
∃ varg : Varid,
∃ c” : sig (CTDTP t),

VaridMapMod.MapsTo v tso r ∧
tso’ =TC= tso ∧
CTCombAppPrf ICostDT c’ c” c ∧
tso’ = TssoGenFunc varg t’ (existT t c”)).

Definition extractFuncFromEnv(r : RssoI)(t t’ : ProtoT)(c : sig (CTDTP t))
(c’ : sig (CTDTP t’))(v : Varid)(wc : sigWssoClos minC r)
(newRed : ∀ v’ r’ t” c”, existT t” c” <tc< existT t c →

sigWssoClos minC (addR v’ t’ r’) →
sig (EssoPI (addR v’ t’ r’) t” c”) → UPotI t c) :

funcExtractionPred r t t’ c c’ v →
UPotI t’ c’ → UPotI t c.

intros H upin.
Check FuncExtractAssist.
refine (

let fix extractFuncInner(ri : RssoI)
(wcir : WssoCpltSIL minC)(wcp : WssoCpltClos ri wcir)

(H’ : funcExtractionPred ri t t’ c c’ v) :=
match wcir as wcp return = wcp → with
| nil ⇒ fun J0 : wcir = nil ⇒ !
| (rn, wt) :: wpl ⇒ fun J0 ⇒
match (VaridMapMod.find v (‘ (‘ (projT2 wt)))) as fo

return = fo → with
| Some f ⇒ fun J1 ⇒

| None ⇒ fun J1 ⇒
extractFuncInner rn wpl

end eq refl

491

end eq refl
in extractFuncInner r (‘wc) (“wc) H

).
Proof.

destruct wcp; discriminate.
refine (FuncExtractAssist t t’ c c’ ri

(exist (WssoCpltClos ri) wcir wcp) wt f v upin newRed).
apply VaridMapWFacts.find mapsto iff in J1.
assumption.
destruct wcp.
replace wt with (existT r0 w).
simpl.
reflexivity.
injection J0; auto.
replace (projT1 wt) with r’.
apply updateROvwrt.
injection J0; intros H1 H2 H3.
rewrite← H2.
auto.
destruct H’ as [tso H’].
destruct H’ as [tso’ H’].
destruct H’ as [varg H’].
destruct H’ as [c” H’].
decompose [and] H’.
∃ tso.
∃ tso’.
∃ varg.
∃ c”.
split.
apply VaridMapWFacts.find mapsto iff in J1.
simpl in ×.
dependent destruction wcp.
replace (projT1 wt) with r0.
assumption.
injection J0; intros H5 H6 H7.
rewrite← H6; auto.
apply VaridMapWPties.update mapsto iff in H0.
destruct H0.
replace (projT1 wt) with r’.
assumption.
injection J0; intros H5 H6 H7.
auto.
destruct wt.
simpl in ×.
injection H6; auto.
destruct wt.
assert (VaridMapMod.In v r’) as H5a.
destruct w as [w].
simpl in ×.
destruct w0.
destruct x0.
simpl in ×.
red in w.
destruct w.
simpl in ×.
red in f0.
assert (H5 := f0 v f J1).
destruct H5 as [H5 H6].
destruct H6 as [T H6].
destruct H6 as [H6 H7].
red.
red.
∃ T.
replace r’ with x.
assumption.
injection J0; auto.
destruct H0 as [H0 H0a].

492

contradict H0a.
assumption.
split; try assumption.
split; assumption.
apply VaridMapWFacts.not find in iff in J1.
simpl in ×.
rewrite J0 in wcp.
dependent destruction wcp.
red in w.
red in w.
destruct w.
simpl in ×.
red in w.
contradict J1.
apply w.
destruct H’.
destruct H0 as [tso’ H0].
destruct H0 as [varg H0].
destruct H0 as [c” H0].
decompose [and] H0.
red.
red.
∃ x0.
assumption.
assumption.
red.
destruct H’ as [tso H’].
destruct H’ as [tso’ H’].
destruct H’ as [varg H’].
destruct H’ as [c” H’].
decompose [and] H’.
∃ tso.
∃ tso’.
∃ varg.
∃ c”.
split.
apply VaridMapWFacts.not find in iff in J1.
simpl in ×.
dependent destruction wcp.
replace r0 with (projT1 wt) in H0.
destruct wt.
destruct w0.
red in w0.
simpl in ×.
contradict J1.
apply w0.
red.
red.
∃ tso.
assumption.
injection J0; intros H5 H6 H7.
rewrite← H6; auto.
apply VaridMapWPties.update mapsto iff in H0.
destruct H0.
contradict J1.
replace wt with (existT r’ w).
simpl.
destruct w.
red in w.
simpl in ×.
apply w.
red.
red.
∃ tso.
assumption.
simpl.
injection J0; auto.

493

destruct H0 as [H0 H0a].
replace rn with r0.
assumption.
injection J0; auto.
split; try assumption.
split; assumption.

Defined.
End UAppMakeSect.

Local Close Scope program scope.

Listing D.37: The expression language reduction functions
Require Import Coq.Setoids.Setoid.
Require Import Coq.Classes.SetoidClass.
Require Import Coq.Classes.SetoidDec.
Require Import Coq.Lists.List.
Require Import Coq.Program.Utils.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Equality.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Arith.EqNat.
Require Import Coq.Arith.Le.
Require Import Coq.Arith.Lt.
Require Import Coq.Arith.Plus.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Arith.Wf nat.
Require Import Coq.Wellfounded.Inverse Image.
Require Import Coq.Wellfounded.Inclusion.
Require Coq.Lists.SetoidList.
Require Coq.FSets.FMapWeakList.
Require Coq.FSets.FMapFacts.
Require Import HBCL.Util.ListLemmas.
Require Import HBCL.Util.ArithLemmas.
Require Import HBCL.Util.sigTypes.
Require Import HBCL.HBCL 0 1.BaseLibs.Ids.Ids S.
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.costAbstract.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.TypeSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.ExprSSO.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedTupBranch.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedRecBranch.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedPattBranch.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.reduction.RedAppBranch.
Import HBCL 0 1 Id S.
Import HBCL 0 1 L UTS.
Local Open Scope program scope.

Section reduceSect.
Variables (CTDT CTDT TUP CTDT REC : Type).
Variable (CTDTP : (ProtoT → CTDT → Prop)).
Variable (CTDTP TUP : ((sigT LTypesPS) → CTDT TUP → Prop)).
Variable (CTDTP REC : ((sigT LRTypesPS) → CTDT REC → Prop)).
Context ‘{ICostDT : CostDT CTDT CTDTP}.
Context ‘{ICostDTupT : CostDTupT CTDT TUP CTDTP TUP}.
Context ‘{ICostDRecT : CostDRecT CTDT REC CTDTP REC}.
Hypothesis ICostDTInProtoT :

(CT PD T eqrel (CostBase := ICostDT)) = ProtoEqTSigT.
Hypothesis ICostDTupTInSigTTsEq :

(CT PD T eqrel (CostBase := ICostDTupT)) = LTypesPSEqSigT.
Hypothesis ICostDRecTInSigTTsEq :

494

(CT PD T eqrel (CostBase := ICostDRecT)) = LRTypesPSEqSigT.
Variable minC : ∀ t : ProtoT, sig (CTDTP t).
Hypothesis minCMin : ∀ t u, CT PD interp(CostBase := ICostDT)

t (‘ (minC t)) u (“ (minC t)) = 0.

Let RssoI := Rsso ICostDT.
Let EssoPI := EssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let CssoPI := CssoP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let PattPI := PattP CTDT CTDTP.
Let EssoTupPI := EssoTupP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRecPI := EssoRecP CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let EssoRawI := EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Let UPotI := UPot CTDT CTDTP ICostDT.
Implicit Arguments getEssoRawTC [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP
CTDTP REC].
Implicit Arguments EssoRawCeilingL [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT].
Implicit Arguments EssoRawCeilingR [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDRecT].
Implicit Arguments sig2ifyExprList [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments sig2ifyProj [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC ICostDT ICostDTupT ICostDRecT].
Implicit Arguments ListCostLeTQuant [CTDT CTDT TUP CTDTP CTDTP TUP

ICostDT ICostDTupT].
Implicit Arguments UDatListFoldFunc [CTDT CTDTP ICostDT].
Implicit Arguments UCostTupSigifyList [CTDT CTDT TUP CTDTP CTDTP TUP].
Implicit Arguments Build UPot [T uraw u CTDT CTDTP].
Implicit Arguments uPPot [T uraw u CTDT CTDTP].
Implicit Arguments uPDat [T uraw u CTDT CTDTP].
Implicit Arguments WssoCpltS [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments sigWssoClos [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments extractDatFromEnv [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments extractFuncFromEnv [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments UTupleMake [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments URecordMake [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments extractDatFromEnv [CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP

CTDTP REC].
Implicit Arguments addR [CTDT CTDTP].
Let WssoCpltSI := WssoCpltS ICostDT ICostDTupT ICostDRecT minC.
Let sigWssoClosI := sigWssoClos ICostDT ICostDTupT ICostDRecT minC.
Let ExprDQualP(r : RssoI)(ts : sigT LTypesPS)(cs : sig (CTDTP TUP ts)) :=

sig2 (EssoRawCeilingL ts cs)
(fun erp : EssoRawI ⇒

EssoPI r (projT1 (getEssoRawTC erp)) (projT2 (getEssoRawTC erp)) erp).
Let ExprDQualPR(r : RssoI)(tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr)) :=

sig2 (EssoRawCeilingR tr cr)
(fun erp : EssoRawI ⇒

EssoPI r (projT1 (getEssoRawTC erp)) (projT2 (getEssoRawTC erp)) erp).
Let EssoRawCeilingT(r : RssoI)(t : sigT LTypePS)(c : sig (CTDTP t))
(t’ : sigT LTypePS)(c’ : sig (CTDTP t’))(ep : sig (EssoPI r t’ c’)) :=
existT t’ c’ <tc< existT t c.
Let extractDatFromEnvI := extractDatFromEnv ICostDT ICostDTupT ICostDRecT

ICostDTInProtoT minC minCMin.
Let extractFuncFromEnvI := extractFuncFromEnv ICostDT ICostDTupT ICostDRecT

minC minCMin.
Let redfuncP(t : sigT LTypePS)(c : sig (CTDTP t)) :=
∀ (t’ : sigT LTypePS)(c’ : sig (CTDTP t’)) r,

495

(sigWssoClosI r) → sig (EssoRawCeilingT r t c t’ c’) →
UPotI t’ c’.

Let addRI := addR ICostDT minC.
Let redfuncA(t t’ : sigT LTypePS)(c : sig (CTDTP t)) :=
∀ (v : Varid) (r’ : Rsso ICostDT)

(t” : sigT LTypePS)
(c” : sig (CTDTP t”)),
existT t” c” <tc< existT t c →
sigWssoClosI (addRI v t’ r’) →
sig (EssoPI (addRI v t’ r’) t” c”) → UPotI t c.

Let redfuncTup(r : RssoI)(ts : sigT LTypesPS)(cs : sig (CTDTP TUP ts)) :=
∀ na : ExprDQualP r ts cs,

(UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))
(projT2 (getEssoRawTC (proj1 sig2 na)))).

Let redfuncRec(r : RssoI)(tr : sigT LRTypesPS)(cr : sig (CTDTP REC tr)) :=
∀ na : ExprDQualPR r tr cr,

(UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))
(projT2 (getEssoRawTC (proj1 sig2 na)))).

Definition maxCostPred(pmax : Potential)
(t : {t : ProtoT & sig (CTDTP t)}) : Prop :=
(∀ u, CT PD interp (projT1 t) (proj1 sig (projT2 t)) u

(proj2 sig (projT2 t)) ≤ pmax) ∧
(∃ v, CT PD interp (projT1 t) (proj1 sig (projT2 t)) v

(proj2 sig (projT2 t)) = pmax).
Definition maxCostSig(p : Potential) := (sig (maxCostPred p)).
Definition maxCostSigLt(t t’ : sigT maxCostSig) := projT1 t < projT1 t’.
Definition maxCostSigWF := well founded ltof (sigT maxCostSig)

(projT1 (P := maxCostSig)).
Definition costSigDat(t : sigT maxCostSig) := (‘ (projT2 t)).

Record ExprExArgs : Type := {
recEnv : RssoI;
wcEnv : sigWssoClosI recEnv;
exprType : ProtoT;
exprCost : sig (CTDTP exprType);
expr : sig (EssoPI recEnv exprType exprCost)

}.
Definition potOfExprArgs(eargs : ExprExArgs) :=

CT PD interp (exprType eargs).
Definition exprArgsMeas(eargs : ExprExArgs) : nat :=

CT PD max (exprType eargs) (exprCost eargs).
Definition ExprExArgsWF(eargs : ExprExArgs) :=
well founded ltof

(ExprExArgs) (exprArgsMeas) eargs.
Definition maxCostSigSigT(t : {t : ProtoT & sig (CTDTP t)}) : sigT maxCostSig :=

existT (P := maxCostSig) (CT PD max (projT1 t) (projT2 t))
(exist (maxCostPred (CT PD max (projT1 t) (projT2 t))) t (maxCost prf t)).

Definition maxCostSigSigTWF := wf inverse image
{t : ProtoT & sig (CTDTP t)} (sigT maxCostSig)
maxCostSigLt maxCostSigSigT maxCostSigWF.

Lemma maxCostIncl : inclusion {t : ProtoT & sig (CTDTP t)}
CT PD T lt pot
(fun x y : {t : ProtoT & sig (CTDTP t)}⇒

maxCostSigLt (maxCostSigSigT x) (maxCostSigSigT y)).
Definition costLtWF := wf incl {t : ProtoT & sig (CTDTP t)} CT PD T lt pot

(fun x y : {t : ProtoT & sig (CTDTP t)}⇒
maxCostSigLt (maxCostSigSigT x) (maxCostSigSigT y))

maxCostIncl maxCostSigSigTWF.
Check UBaseDataP.
Lemma CssoPIndentTImpl : ∀ r t t’ c c’ cr,

EssoPI r t c (essoConstr CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC
t’ c’ cr) →

496

CssoPI r t c cr → CssoPI r t’ c’ cr.
Lemma LTypeDiscrimBaseTup : ∀ ts blt,
¬ LTypePSEq (projT1 ts) 1 (buildLTypePSFromTS (projT1 ts) (projT2 ts))
(BuildBaseTypePS 1 blt eq refl).

Lemma LTypeDiscrimBaseRec : ∀ tr blt,
¬ LTypePSEq (projT1 tr) 1 (buildLTypePSFromRT (projT1 tr) (projT2 tr))
(BuildBaseTypePS 1 blt eq refl).

Lemma LTypeDiscrimTupRec : ∀ ts tr, ¬ LTypePSEq (projT1 ts) (projT1 tr)
(buildLTypePSFromTS (projT1 ts) (projT2 ts))
(buildLTypePSFromRT (projT1 tr) (projT2 tr)).

Check EssoERIncl.
Implicit Arguments EssoERIncl [r r’ t c er].
Lemma EssoTupInfer : ∀ r ts cs ert t c t’ c’ er cr,

EssoPI r t c er → er = essoConstr CTDT CTDT TUP CTDT REC CTDTP
CTDTP TUP CTDTP REC t’ c’ cr →
cr = cssoTuple CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC ts cs ert →
EssoTupPI r ts cs ert.

Lemma EssoRecInfer : ∀ r tr cr erm t c t’ c’ er csr,
EssoPI r t c er → er = essoConstr CTDT CTDT TUP CTDT REC CTDTP
CTDTP TUP CTDTP REC t’ c’ csr →
csr = cssoRecord CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC tr cr erm
→ EssoRecPI r tr cr erm.

Section redTupS.
Variable t : ProtoT.
Variable c : sig (CTDTP t).
Variable r : RssoI.
Variable e : sig (EssoPI r t c).
Variable wc : sigWssoClosI r.
Let ea := {|

recEnv := r;
wcEnv := wc;
exprType := t;
exprCost := c;
expr := e |} : ExprExArgs.

Variable args : ExprExArgs.
Variable reduce’ : ∀ args’ : ExprExArgs,

ltof ExprExArgs exprArgsMeas args’ args →
UPotI (exprType args’) (exprCost args’).

Variable recEnv’ : RssoI.
Variable wcEnv’ : sigWssoClosI recEnv’.
Variable exprType’ : ProtoT.
Variable exprCost’ : sig (CTDTP exprType’).
Variable expr’ : sig (EssoPI recEnv’ exprType’ exprCost’).
Hypothesis J : args =

{|
recEnv := recEnv’;
wcEnv := wcEnv’;
exprType := exprType’;
exprCost := exprCost’;
expr := expr’ |}.

Variable er : EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Variable t’ : ProtoT.
Variable c’ : sig (CTDTP t’).
Variable cstrct : CssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Hypothesis ep : EssoPI recEnv’ exprType’ exprCost’ er.
Hypothesis J0 : er =

essoConstr CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC t’ c’
cstrct.

Hypothesis H : CssoPI recEnv’ exprType’ exprCost’ cstrct.
Section MakeTupS.

Variable ts : sigT LTypesPS.
Variable cs : sig (CTDTP TUP ts).
Variable ert :

list (EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC).

497

Hypothesis J1 : cstrct =
cssoTuple CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC ts cs ert.

Variable newRed : ∀ na : ExprDQualP recEnv’ ts cs,
UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))
(projT2 (getEssoRawTC (proj1 sig2 na))).

Definition MakeTup : UPotI exprType’ exprCost’.
End MakeTupS.
Section MakeRecS.
Variable tr : sigT LRTypesPS.
Variable cr : sig (CTDTP REC tr).
Variable erm : VaridMapModRaw.t

(EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC).
Hypothesis J1 : cstrct =

cssoRecord CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC tr cr erm.
Variable newRed : ∀ na : ExprDQualPR recEnv’ tr cr,

UPotI (projT1 (getEssoRawTC (proj1 sig2 na)))
(projT2 (getEssoRawTC (proj1 sig2 na))).

Definition MakeRec : UPotI exprType’ exprCost’.
End MakeRecS.

End redTupS.
Print exprArgsMeas.
Check Acc.
Definition cMeasLt(tc tc’ : {t : ProtoT & sig (CTDTP t)}) :=

CT PD max (projT1 tc)(projT2 tc) < CT PD max (projT1 tc’)(projT2 tc’).
Definition newRedConst(tc tc’ : {t : ProtoT & sig (CTDTP t)})

(reduce’ : ∀ (tc : {t : ProtoT & sig (CTDTP t)}) (r : RssoI),
sig (EssoPI r (projT1 tc) (projT2 tc)) →
sigWssoClosI r → Acc cMeasLt tc → UPotI (projT1 tc) (projT2 tc))

(wfp : Acc cMeasLt tc) :
redfuncA (projT1 tc) (projT1 tc’) (projT2 tc).

Defined.
Section redHelpersS.

Variable reduce’ : ∀ (tc : {t : ProtoT & sig (CTDTP t)}) (r : RssoI),
sig (EssoPI r (projT1 tc) (projT2 tc)) →
sigWssoClosI r → Acc cMeasLt tc → UPotI (projT1 tc) (projT2 tc).

Variable tc : {t : ProtoT & sig (CTDTP t)}.
Variable r : RssoI.
Variable expr’ : sig (EssoPI r (projT1 tc) (projT2 tc)).
Variable wc : sigWssoClosI r.
Hypothesis wfp : Acc cMeasLt tc.
Variable er : EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Hypothesis ep : EssoPI r (projT1 tc) (projT2 tc) er.
Hypothesis J : expr’ = exist (EssoPI r (projT1 tc) (projT2 tc)) er ep.
Section redConstrS.
Variable t’ : ProtoT.
Variable c’ : sig (CTDTP t’).
Variable cstrct : CssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Hypothesis J0 : er =

essoConstr CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC t’ c’
cstrct.

Definition redConstructors : UPotI (projT1 tc) (projT2 tc).
Defined.
End redConstrS.
Section redPattS.
Variable t’ : ProtoT.
Variable c’ : sig (CTDTP t’).
Variable p : Patt.
Hypothesis J0 :

er = essoPatt CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC t’ c’ p.
Definition redPatts : UPotI (projT1 tc) (projT2 tc).

498

Defined.
End redPattS.
Section redAppS.

Variable t’ : ProtoT.
Variable c’ : sig (CTDTP t’).
Variable er0 : EssoRaw CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC.
Variable v : String.string.
Variable J0 : er =

essoApp CTDT CTDT TUP CTDT REC CTDTP CTDTP TUP CTDTP REC t’ c’ er0 v.
Let expr” :

sig (EssoPI r (projT1 (getEssoRawTC er0)) (projT2 (getEssoRawTC er0))).
Defined.
Let applicandRed : UPot CTDT CTDTP ICostDT (projT1 (getEssoRawTC er0))

(projT2 (getEssoRawTC er0)).
Defined.
Definition newRed :

redfuncA (projT1 tc) (projT1 (getEssoRawTC er0)) (projT2 tc).
Defined.
Definition redApp : UPotI (projT1 tc) (projT2 tc).
Defined.

End redAppS.
End redHelpersS.
Fixpoint reduce’(tc : {t : ProtoT & sig (CTDTP t)})(r : RssoI)

(expr’ : sig (EssoPI r (projT1 tc) (projT2 tc)))
(wc : sigWssoClosI r)(wfp : Acc cMeasLt tc) {struct wfp}
: (UPotI (projT1 tc) (projT2 tc)) :=
match expr’ as expr’ return = expr’ → with
| exist er ep ⇒ fun J : expr’ = exist er ep ⇒

match er as er return = er →
(UPotI (projT1 tc) (projT2 tc)) with
| essoConstr t’ c’ cstrct ⇒ fun J0 ⇒

redConstructors reduce’ tc r expr’ wc wfp er ep J t’ c’ cstrct J0
| essoPatt t’ c’ p ⇒ fun J0 ⇒

redPatts reduce’ tc r wc wfp er ep t’ c’ p J0
| essoApp t’ c’ er0 v ⇒ fun J0 ⇒

redApp reduce’ tc r expr’ wc wfp er ep
J t’ c’ er0 v J0

end eq refl
end eq refl.

Lemma cMeasLtWf : well founded cMeasLt.
Definition reduce(t : ProtoT)(c : sig (CTDTP t))

(r : RssoI)(e : sig (EssoPI r t c))(wc : sigWssoClosI r) : (UPotI t c).
Defined.

End reduceSect.
Local Close Scope program scope.

499

Appendix E

Listings of further Harmonic Box
Coordination Language examples

E.1 Gate and fan-out instance library

Listing E.1: The Boolean box library

1 llib boolBoxLib {
2
3 linst andGateInst {
4
5 mem(fb) inAMem : commonDat.tDatBool64 [64, tfl(0)];
6 mem(fb) inBMem : commonDat.tDatBool64 [64, tfl(0)];
7 mem(bf) andOut : commonDat.tDatBool64 [64, tfl(0)];
8
9 observe {

10 inAMem;
11 inBMem;
12 }
13
14 manifest {
15 andOut;
16 }
17
18 hbox andGate : (inAMem , inBMem) -> andOut [64]
19 {
20 main : { memInA : (bool); memInB : (bool) }
21 -> { andOut : (bool) } :=
22 { andOut = (and memInA .0 memInB .0) };
23 }
24 }
25
26 linst orGateInst {
27
28 mem(fb) inAMem : commonDat.tDatBool64 [64, tfl(0)];
29 mem(fb) inBMem : commonDat.tDatBool64 [64, tfl(0)];
30 mem(bf) orOut : commonDat.tDatBool64 [64, tfl(0)];
31
32 observe {
33 inAMem;
34 inBMem;

501

35 }
36
37 manifest {
38 orOut;
39 }
40
41 hbox orGate : (inAMem , inBMem) -> orOut [64]
42 {
43 main : { memInA : (bool); memInB : (bool) }
44 -> { orOut : (bool) } :=
45 { orOut = (or memInA .0 memInB .0) };
46 }
47 }
48
49 linst xorGateInst {
50
51 mem(fb) inAMem : commonDat.tDatBool64 [64, tfl(0)];
52 mem(fb) inBMem : commonDat.tDatBool64 [64, tfl(0)];
53 mem(bf) xorOut : commonDat.tDatBool64 [64, tfl(0)];
54
55 observe {
56 inAMem;
57 inBMem;
58 }
59
60 manifest {
61 xorOut;
62 }
63
64 hbox xorGate : (inAMem , inBMem) -> xorOut [64]
65 {
66 main : { memInA : (bool); memInB : (bool) }
67 -> { xorOut : (bool) } :=
68 { xorOut = (xor memInA .0 memInB .0) };
69 }
70 }
71
72 linst fanout2Inst {
73
74 mem(fb) inMem : commonDat.tDatBool64 [64, tfl(0)];
75 mem(bf) fanoutA : commonDat.tDatBool64 [64, tfl(0)];
76 mem(bf) fanoutB : commonDat.tDatBool64 [64, tfl(0)];
77
78 observe {
79 inMem;
80 }
81
82 manifest {
83 fanoutA;
84 fanoutB;
85 }
86
87 hbox fanout2 : (inMem) -> (fanoutA , fanoutB) [64]
88 {
89 main : { memIn : (bool) }
90 -> { fanoutA : (bool); fanoutB : (bool) } :=
91 { fanoutA = (memIn .0); fanoutB = (memIn .0) };
92 }

502

93 }
94
95 linst fanout3Inst {
96
97 mem(fb) inMem : commonDat.tDatBool64 [64, tfl(0)];
98 mem(bf) fanoutA : commonDat.tDatBool64 [64, tfl(0)];
99 mem(bf) fanoutB : commonDat.tDatBool64 [64, tfl(0)];

100 mem(bf) fanoutC : commonDat.tDatBool64 [64, tfl(0)];
101
102 observe {
103 inMem;
104 }
105
106 manifest {
107 fanoutA;
108 fanoutB;
109 fanoutC;
110 }
111
112 hbox fanout3 : (inMem) -> (fanoutA , fanoutB , fanoutC) [64]
113 {
114 main : { memIn : (bool) }
115 -> { fanoutA : (bool); fanoutB : (bool); fanoutC : (bool) } :=
116 { fanoutA = (memIn .0); fanoutB = (memIn .0); fanoutC = (memIn .0) };
117 }
118 }
119 }

E.2 Boolean source and sink instance library

Listing E.2: The source and sink library

1 llib sourceSinkLib {
2
3 linst source0Inst {
4
5 mem(bf) bOut : commonDat.tDatBool64 [64, tfl(0)];
6
7 observe {
8
9 }

10
11 manifest {
12 bOut;
13 }
14
15 hbox source0 : () -> bOut [64]
16 {
17 main : { }
18 -> { bOut : (bool) } := { bOut = (false) };
19 }
20 }
21

503

22 linst source1Inst {
23
24 mem(bf) bOut : commonDat.tDatBool64 [64, tfl(0)];
25
26 observe {
27
28 }
29
30 manifest {
31 bOut;
32 }
33
34 hbox source1 : () -> bOut [64]
35 {
36 main : { }
37 -> { bOut : (bool) } := { bOut = (true) };
38 }
39 }
40
41 linst sinkInst {
42
43 mem(fb) inMem : commonDat.tDatBool64 [64, tfl(0)];
44
45 observe {
46 inMem;
47 }
48
49 manifest {
50
51 }
52
53 hbox orGate : (inMem) -> () [64]
54 {
55 main : { memIn : (bool) }
56 -> { } := { };
57 }
58 }
59 }

E.3 Boolean voter library

Listing E.3: The voter library

1 llib votersLib {
2
3 linst voter3Inst {
4
5 mem(fb) inMemA : commonDat.tDatBool64 [64, tfl(0)];
6 mem(fb) inMemB : commonDat.tDatBool64 [64, tfl(0)];
7 mem(fb) inMemC : commonDat.tDatBool64 [64, tfl(0)];
8 mem(bf) voter3Out : commonDat.tDatBool64 [64, tfl(0)];
9

10 observe {

504

11 inMemA;
12 inMemB;
13 inMemC;
14 }
15
16 manifest {
17 voter3Out;
18 }
19
20 hbox voter3 : (inMemA , inMemB , inMemC) -> (voter3Out) [64]
21 {
22 main : { memInA : (bool); memInB : (bool); memInC : (bool); }
23 -> { voter3Out : (bool) } :=
24 { voter3Out = (or
25 (or (and memInA .0 memInB .0) (and memInB .0 memInC .0))
26 (and memInA .0 memInC .0)) };
27 }
28 }
29 }

E.4 Coq code for negator example

We now provide the complete hand-compiled code for the negator example. The har-
monic box interface file is necessary to avoid a universe inconsistency, which is a limi-
tation of Coq’s current type and module system variant.

Listing E.4: The negator harmonic box interface object
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.

Require Import HBCL.Util.Freq.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Import String.
Definition freqMapIn : Freq := freq64.
Definition freqMapOut : Freq := freq64.
Print HBCL 0 1 L HBox.MDataInst.MDatBoxElt.
Print HBCL 0 1 L HBox.MDataInst.MDatBoxFreqEltBase.
Program Definition posInMemOid : HBCL 0 1 Oid S.HBCL OidMemFB :=

((”posIn”)%string :: (”MemFB”)%string :: nil)%list.
Obligation 1.
Admitted.
Program Definition posInMemVarid : HBCL 0 1 Id S.Varid :=

(”posIn”)%string.
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Require Import Coq.ZArith.ZArith base.

Definition posInMem : HBCL 0 1 L HBox.MDataInst.MDatBoxElt :=
HBCL 0 1 L HBox.MDataInst.Build MDatBoxFreqEltBase
(proj1 sig posInMemOid) freqMapIn tDatDoublePair (0)%Z (0)%N (2)%positive.

Definition negatorBoxInMemMap :

505

HBCL 0 1 Id S.VaridMapMod.t HBCL 0 1 L HBox.MDataInst.MDatBoxElt
:= HBCL 0 1 Id S.VaridMapMod.add posInMemVarid posInMem
(HBCL 0 1 Id S.VaridMapMod.empty).

Program Definition negOutMemOid : HBCL 0 1 Oid S.HBCL OidMemBF :=
((”negOut”)%string :: (”MemBF”)%string :: nil)%list.

Obligation 1.
Admitted.
Program Definition negOutMemVarid : HBCL 0 1 Id S.Varid :=

(”negOut”)%string.
Obligation 1.
Admitted.
Obligation 2.
Admitted.

Definition negOutMem : HBCL 0 1 L HBox.MDataInst.MDatBoxElt :=
HBCL 0 1 L HBox.MDataInst.Build MDatBoxFreqEltBase
(proj1 sig negOutMemOid) freqMapOut tDatTriple (-2)%Z (0)%N (2)%positive.

Definition negatorBoxOutMemMap :
HBCL 0 1 Id S.VaridMapMod.t HBCL 0 1 L HBox.MDataInst.MDatBoxElt
:= HBCL 0 1 Id S.VaridMapMod.add negOutMemVarid negOutMem
(HBCL 0 1 Id S.VaridMapMod.empty).

Print HBCL 0 1 L HBox.HBoxSSO.
Definition negatorBoxOverallFreq := freq64.

Listing E.5: The negator untimed box object
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UBoxEmptyEnc SB.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.exprLang.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorDatTempify.
Require Import HBCL.HBCL 0 1.BaseLibs.ExprLangs.bitLang.builtIn.
Import sigTypes.
Import String.
Program Definition posInId : sig HBCL 0 1 Id S.varidPredType.Pred :=

(”posIn”)%string.
Obligation 1.
Admitted.
Obligation 2.
Qed.
Program Definition negOutId : sig HBCL 0 1 Id S.varidPredType.Pred :=

(”negOut”)%string.
Obligation 1.
Admitted.
Obligation 2.
Qed.
Definition posInCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang doublePairProt).
Defined.
Definition negOutCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang uDatTripleProt).
Defined.
Definition negSSOInMap : HBCL 0 1 Id S.VaridMapMod.t

({t : HBCL 0 1 L UTS.ProtoT &
{o : HBCL 0 1 Oid S.HBCL OidUT & HBCL 0 1 L UTSOid.T o t} &
sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)} × nat × nat) :=

let posIn :=
((existT2 doublePairProt

(existT (P := fun o ⇒ HBCL 0 1 L UTSOid.T o doublePairProt)
(projTD1 uDatDoublePairOidT) (projTD3 uDatDoublePairOidT))

506

posInCost), 1, 1)
in
HBCL 0 1 Id S.VaridMapMod.add posInId posIn (HBCL 0 1 Id S.VaridMapMod.empty).
Definition negSSOOutMap : HBCL 0 1 Id S.VaridMapMod.t

({t : HBCL 0 1 L UTS.ProtoT &
{o : HBCL 0 1 Oid S.HBCL OidUT & HBCL 0 1 L UTSOid.T o t} &
sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)} × nat × nat)

:=
let negOut :=
((existT2 uDatTripleProt

(existT (P := fun o ⇒ HBCL 0 1 L UTSOid.T o uDatTripleProt)
(projTD1 uDatTripleOidT) (projTD3 uDatTripleOidT))

negOutCost), 1, 1)
in
HBCL 0 1 Id S.VaridMapMod.add negOutId negOut
(HBCL 0 1 Id S.VaridMapMod.empty).

Definition posInTypeBucketTuple := bitPairPairStrong.
Definition posInTypeBucket : HBCL 0 1 L UTS.ProtoT := doublePairProt.
Definition posInBucketTrainTupRaw := (existT (projT1 posInTypeBucket)

(proj1 sig (projT2 posInTypeBucket)) :: nil)%list.
Program Definition posInTypeBucketTupleStrong :

HBCL 0 1 L UTS.LTypesPS 3 := (existT (projT1 posInTypeBucket)
(proj1 sig (projT2 posInTypeBucket)) :: nil)%list.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition posInTypeBucketTrain : HBCL 0 1 L UTS.ProtoT :=

existT 3 (HBCL 0 1 L UTS.LTupleType 3 posInBucketTrainTupRaw).
Obligation 1.
Admitted.
Program Definition mainInType : HBCL 0 1 L UTS.ProtoT :=

existT 4 (HBCL 0 1 L UTS.LRecordType 4
(HBCL 0 1 Id S.VaridMapMod.this

(
HBCL 0 1 Id S.VaridMapMod.add posInId
(existT (projT1 posInTypeBucketTrain)

(proj1 sig (projT2 posInTypeBucketTrain)))
(HBCL 0 1 Id S.VaridMapMod.empty)

)
)

).
Obligation 1.
Admitted.

Definition mainOutTypeBucketTuple := uDatTripleTupStrong.
Definition mainOutTypeBucket : HBCL 0 1 L UTS.ProtoT := uDatTripleProt.
Program Definition mainOutTypeBucketC : {t : HBCL 0 1 L UTS.ProtoT &

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)} :=
existT mainOutTypeBucket 10.
Obligation 1.
Admitted.
Definition bucketTrainTupRaw := (existT (projT1 mainOutTypeBucket)

(proj1 sig (projT2 mainOutTypeBucket)) :: nil)%list.
Program Definition mainOutTypeTupleStrong :

HBCL 0 1 L UTS.LTypesPS 3 := (existT (projT1 mainOutTypeBucket)
(proj1 sig (projT2 mainOutTypeBucket)) :: nil)%list.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition mainOutTypeBucketTrain : HBCL 0 1 L UTS.ProtoT :=

existT 3 (HBCL 0 1 L UTS.LTupleType 3 bucketTrainTupRaw).

507

Obligation 1.
Admitted.
Program Definition mainOutTypeBucketTrainC : {t : HBCL 0 1 L UTS.ProtoT &

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)} :=
existT mainOutTypeBucketTrain 12.
Obligation 1.
Admitted.
Program Definition mainOutTypeRecord :

HBCL 0 1 L UTS.LRTypesPS 4 :=
HBCL 0 1 Id S.VaridMapMod.this
(

HBCL 0 1 Id S.VaridMapMod.add negOutId
(existT (projT1 mainOutTypeBucketTrain)

(proj1 sig (projT2 mainOutTypeBucketTrain)))
(HBCL 0 1 Id S.VaridMapMod.empty)

).
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Check HBCL 0 1 L UTS.LRecordType.
Check proj1 sig mainOutTypeRecord.
Program Definition mainOutType : HBCL 0 1 L UTS.ProtoT :=

existT 4 (HBCL 0 1 L UTS.LRecordType 4
(HBCL 0 1 Id S.VaridMapMod.this

(
HBCL 0 1 Id S.VaridMapMod.add negOutId
(existT (projT1 mainOutTypeBucketTrain)

(proj1 sig (projT2 mainOutTypeBucketTrain)))
(HBCL 0 1 Id S.VaridMapMod.empty)

)
)

).
Obligation 1.
Admitted.
Program Definition mainOutTypeC : {t : HBCL 0 1 L UTS.ProtoT &

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang t)} :=
existT mainOutType 13.
Obligation 1.
Admitted.

Definition mainTsso :=
TypeSSO.TssoGenFunc (CTDTP := HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang)
mainId mainInType mainOutTypeC.

Definition negEssoR : TypeSSO.Rsso instBTSCostBase :=
HBCL 0 1 Id S.VaridMapMod.add mainId mainTsso RssoWithNotAndXorFunc.

Program Definition costIn : sig (CTDTPtriv mainInType) := 1.
Obligation 1.
Admitted.

Print ExprSSO.PattEl.
Print ExprSSO.PattElP.
Program Definition pattElsA : sig

(ExprSSO.PattElsP (projT1 mainInType) 1 (projT2 mainInType) BaseTypeBool) :=
(ExprSSO.pattVarid posInId ::

ExprSSO.pattPosParam 0 :: ExprSSO.pattPosParam 0 :: nil)%list.
Obligation 1.
Admitted.
Program Definition pattElsB : sig

(ExprSSO.PattElsP (projT1 mainInType) 1 (projT2 mainInType) BaseTypeBool) :=
(ExprSSO.pattVarid posInId ::

ExprSSO.pattPosParam 0 :: ExprSSO.pattPosParam 1 ::
ExprSSO.pattPosParam 0 :: nil)%list.

Obligation 1.

508

Admitted.
Program Definition pattElsC : sig

(ExprSSO.PattElsP (projT1 mainInType) 1 (projT2 mainInType) BaseTypeBool) :=
(ExprSSO.pattVarid posInId ::

ExprSSO.pattPosParam 0 :: ExprSSO.pattPosParam 1 ::
ExprSSO.pattPosParam 1 :: nil)%list.

Obligation 1.
Admitted.
Program Definition BoolLookupCost :

sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT 1 BaseTypeBool)) :=
1.

Obligation 1.
Admitted.
Program Definition pattA : sig

(ExprSSO.PattP (ICostDT := instBTSCostBase)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

ExprSSO.patt mainArgId (proj1 sig pattElsA).
Obligation 1.
Admitted.
Program Definition pattB : sig

(ExprSSO.PattP (ICostDT := instBTSCostBase)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

ExprSSO.patt mainArgId (proj1 sig pattElsB).
Obligation 1.
Admitted.
Program Definition pattC : sig

(ExprSSO.PattP (ICostDT := instBTSCostBase)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

ExprSSO.patt mainArgId (proj1 sig pattElsC).
Obligation 1.
Admitted.
Definition exprA : sig

(ExprSSO.EssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

exist
(ExprSSO.essoPattP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(HBCL 0 1 Id S.VaridMapMod.add mainArgId
(TypeSSO.TssoGenDataT

(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)
(proj1 sig pattA)
(existT 1 BaseTypeBool) BoolLookupCost
(TypeSSO.R2Contains refl)
(proj2 sig pattA)).

Definition exprB : sig
(ExprSSO.EssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

exist
(ExprSSO.essoPattP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)

509

(HBCL 0 1 Id S.VaridMapMod.add mainArgId
(TypeSSO.TssoGenDataT

(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(proj1 sig pattB)
(existT 1 BaseTypeBool) BoolLookupCost
(TypeSSO.R2Contains refl)
(proj2 sig pattB)).

Definition exprC : sig
(ExprSSO.EssoP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT (existT mainInType (minCtriv mainInType)))
RssoWithNotFunc) (existT 1 BaseTypeBool) BoolLookupCost) :=

exist
(ExprSSO.essoPattP (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add mainArgId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(HBCL 0 1 Id S.VaridMapMod.add mainArgId
(TypeSSO.TssoGenDataT

(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)
(proj1 sig pattC)
(existT 1 BaseTypeBool) BoolLookupCost
(TypeSSO.R2Contains refl)
(proj2 sig pattC)).

Program Definition BoolNotCostApp :
sig (HBCL 0 1 L UBoxEmtpy.CTDTP UBitLang (existT 1 BaseTypeBool)) :=
3.

Obligation 1.
Admitted.
Program Definition notA :

sig (ExprSSO.EssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(existT 1 BaseTypeBool) BoolNotCostApp) :=
ExprSSO.essoApp CTDTPtriv CTDTPtrivT CTDTPtrivR
(existT 1 BaseTypeBool) BoolNotCostApp (proj1 sig exprA)
(proj1 sig (proj1 sig notId)).

Obligation 1.
Admitted.
Program Definition notB :

sig (ExprSSO.EssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(existT 1 BaseTypeBool) BoolNotCostApp) :=
ExprSSO.essoApp CTDTPtriv CTDTPtrivT CTDTPtrivR
(existT 1 BaseTypeBool) BoolNotCostApp (proj1 sig exprB)
(proj1 sig (proj1 sig notId)).

Obligation 1.
Admitted.
Program Definition notC :

sig (ExprSSO.EssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(existT 1 BaseTypeBool) BoolNotCostApp) :=

510

ExprSSO.essoApp CTDTPtriv CTDTPtrivT CTDTPtrivR
(existT 1 BaseTypeBool) BoolNotCostApp (proj1 sig exprC)
(proj1 sig (proj1 sig notId)).

Obligation 1.
Admitted.
Program Definition outBucketConstructCost :

sig (CTDTPtrivT (existT 3 mainOutTypeBucketTuple)) :=
9.

Obligation 1.
Admitted.
Program Definition outBucketConstr :

sig (ExprSSO.CssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

mainOutTypeBucket (projT2 mainOutTypeBucketC))
:= ExprSSO.cssoTuple CTDTPtriv CTDTPtrivT CTDTPtrivR

(existT 3 mainOutTypeBucketTuple) outBucketConstructCost
((proj1 sig notA) :: (proj1 sig notB) :: (proj1 sig notC) :: nil)%list.
Obligation 1.
Admitted.
Program Definition outBucketExpr : sig (ExprSSO.EssoP

(ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(projT1 mainOutTypeBucketC) (projT2 mainOutTypeBucketC)) :=
ExprSSO.essoConstr CTDTPtriv CTDTPtrivT CTDTPtrivR
(projT1 mainOutTypeBucketC) (projT2 mainOutTypeBucketC)
(proj1 sig outBucketConstr).
Obligation 1.
Admitted.
Program Definition OutBucketTrainConstructCost :

sig (CTDTPtrivT (existT 3 mainOutTypeTupleStrong)) :=
11.

Obligation 1.
Admitted.
Program Definition outBucketTrainConstr :

sig (ExprSSO.CssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

mainOutTypeBucket (projT2 mainOutTypeBucketTrainC))
:= ExprSSO.cssoTuple CTDTPtriv CTDTPtrivT CTDTPtrivR

(existT 3 mainOutTypeTupleStrong) OutBucketTrainConstructCost
((proj1 sig outBucketExpr) :: nil)%list.
Obligation 1.
Admitted.
Obligation 2.
Admitted.
Program Definition outBucketTrainExpr : sig (ExprSSO.EssoP

(ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(projT1 mainOutTypeBucketTrainC) (projT2 mainOutTypeBucketTrainC)) :=
ExprSSO.essoConstr CTDTPtriv CTDTPtrivT CTDTPtrivR
(projT1 mainOutTypeBucketTrainC) (projT2 mainOutTypeBucketTrainC)
(proj1 sig outBucketTrainConstr).
Obligation 1.
Admitted.

511

Program Definition OutRecordConstructCost :
sig (CTDTPtrivR (existT mainOutTypeRecord)) := 12.

Obligation 1.
Admitted.
Program Definition outConstr :

sig (ExprSSO.CssoP (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(projT1 mainOutTypeC) (projT2 mainOutTypeC))
:= ExprSSO.cssoRecord CTDTPtriv CTDTPtrivT CTDTPtrivR
(existT mainOutTypeRecord) OutRecordConstructCost
(HBCL 0 1 Id S.VaridMapMod.this (HBCL 0 1 Id S.VaridMapMod.add

negOutId (proj1 sig outBucketTrainExpr)
(HBCL 0 1 Id S.VaridMapMod.empty))).

Obligation 1.
Admitted.
Program Definition outExpr : sig (ExprSSO.EssoP

(ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
(HBCL 0 1 Id S.VaridMapMod.add posInId

(TypeSSO.TssoGenDataT
(existT mainInType (minCtriv mainInType))) RssoWithNotFunc)

(projT1 mainOutTypeC) (projT2 mainOutTypeC)) :=
ExprSSO.essoConstr CTDTPtriv CTDTPtrivT CTDTPtrivR
(projT1 mainOutTypeC) (projT2 mainOutTypeC)
(proj1 sig outConstr).
Obligation 1.
Admitted.

Lemma rssoIncl : TypeSSO.R2ContainsR1 RssoWithNotFunc negEssoR.
Print ExprSSO.FssoRaw.
Print ExprSSO.FssoP.
Check ExprSSO.FssoEFunc CTDTPtriv CTDTPtrivT CTDTPtrivR

(ICostDT := instBTSCostBase) minCtriv negEssoR posInId (projT1 mainOutTypeC)
mainInType (minCtriv) (proj1 sig outExpr).

Print ExprSSO.FssoEFunc.
Check ExprSSO.FssoDat.
Definition mainFssoRaw :=
(ExprSSO.FssoEFunc CTDTPtriv CTDTPtrivT CTDTPtrivR
(ICostDT := instBTSCostBase) minCtriv negEssoR mainArgId (projT1 mainOutTypeC)
mainInType (minCtriv) (proj1 sig outExpr)).
Print ExprSSO.Fsso.
Program Definition mainFsso :=

sigTypes.existTD (P := ExprSSO.Fsso)
negEssoR mainTsso
(exist (ExprSSO.FssoP

(ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord) minCtriv
negEssoR mainTsso)

mainFssoRaw
).

Obligation 1.
Admitted.

Definition FssoMapMainFunc := HBCL 0 1 Id S.VaridMapMod.add mainId mainFsso
FssoMapNotFunc.

Program Definition negEssoWFInR : sig
(ExprSSO.FssoMapWFInR (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv negEssoR) := FssoMapMainFunc.

Obligation 1.
Admitted.
Program Definition negEssoWC :

512

ExprSSO.sigWssoClos (ICostDT := instBTSCostBase)
(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv negEssoR := ((negEssoR, existT negEssoR negEssoWFInR) :: nil)%list.

Obligation 1.
Admitted.
Obligation 2.
Admitted.
Obligation 3.
Admitted.
Lemma funcExtractPredMain : RedAppBranch.funcExtractionPred

CTDTtriv CTDTPtriv negEssoR mainOutType mainInType
(projT2 mainOutTypeC) costIn mainId.

Lemma inIOTypeMatch :
exprLang.OidTypeIOMatch CTDTtriv CTDTPtriv negSSOInMap mainInType.

Lemma outIOTypeMatch :
exprLang.OidTypeIOMatch CTDTtriv CTDTPtriv negSSOOutMap mainOutType.

Check exprLang.Make sso.
Definition negSSO :

HBCL 0 1 L UBoxEmtpy.sso UBitLang negSSOInMap negSSOOutMap :=
(exprLang.Make sso (ICostDT := instBTSCostBase)

(ICostDTupT := instBTSCostTuple) (ICostDRecT := instBTSCostRecord)
minCtriv negSSOInMap negSSOOutMap mainOutType mainInType

(projT2 mainOutTypeC) costIn mainId negEssoR negEssoWC)
funcExtractPredMain
inIOTypeMatch
outIOTypeMatch.

Definition computeFuncInst :=
HBCL 0 1 L UBoxEmtpy.reduce UBitLang negSSOInMap negSSOOutMap negSSO.

Check computeFuncInst.

Check proj1 sig (projT2 doublePairProt).
Program Definition posInBucketInstance :

sig (HBCL 0 1 L UTS.UDataP doublePairProt) :=
outerPair (true, (true, true)).

Obligation 1.
Admitted.
Definition posInBucketTrainTuple :=

HBCL 0 1 L UTS.UTupleData posInTypeBucketTuple
(proj1 sig posInBucketInstance :: nil).

Program Definition samplePosInBucketData :
sig (HBCL 0 1 L UTS.UDataP posInTypeBucketTrain) := posInBucketTrainTuple.

Obligation 1.
Admitted.
Definition udatIn :

HBCL 0 1 Id S.VaridMapMod.t (sigT HBCL 0 1 L UTS.UDataPST) :=
HBCL 0 1 Id S.VaridMapMod.add posInId
(existT posInTypeBucketTrain samplePosInBucketData)
(HBCL 0 1 Id S.VaridMapMod.empty).

Check HBCL 0 1 L UBoxEmtpy.UDataPSTMatchesInpOutpTypes.
Program Definition sampleDatMatches :

sig (HBCL 0 1 L UBoxEmtpy.UDataPSTMatchesInpOutpTypes
CTDTtriv CTDTPtriv negSSOInMap) :=

udatIn.
Obligation 1.
Admitted.
Check computeFuncInst.

Listing E.6: The negator harmonic box data binder object
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.

513

Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.
Require Import HBCL.Util.Freq.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Import HBCL 0 1 L HBox.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorHIface.
Program Definition baseTypeGen(b : bool) :

sig (HBCL 0 1 L UTS.UDataP (existT 1 BaseTypeBool)) :=
HBCL 0 1 L UTS.UBaseData HBCL 0 1 L UTS.BasetypeBool
(HBCL 0 1 L UTS.UBTBool HBCL 0 1 L UTS.BasetypeBool eq refl b).

Obligation 1.
Admitted.

Section InDatSliceEmbedS.
Variable indatCoq : (bool × (bool × bool)).
Variable tTimeTDatDoublePair : TTime (sigTypes.projTT2 tDatDoublePair).
Variable posInMemOid : HBCL 0 1 Oid S.HBCL OidMemFB.
Definition innerPair := HBCL 0 1 L UTS.UTupleData 2 pairTupStrong

(proj1 sig (baseTypeGen (fst (snd indatCoq))) ::
proj1 sig (baseTypeGen (snd (snd indatCoq))) :: nil)%list.

Definition outerPair := HBCL 0 1 L UTS.UTupleData 3 bitPairPairStrong
(proj1 sig (baseTypeGen (fst indatCoq)) :: innerPair :: nil)%list.

Definition posInBucketInstance :
sig (HBCL 0 1 L UTS.UDataP doublePairProt).

Defined.
Definition posInTimedVInstance : HBCL 0 1 L HTS.TimedV

tDatDoublePair tTimeTDatDoublePair :=
HBCL 0 1 L HTS.MakeTimedV tDatDoublePair tTimeTDatDoublePair
(Some posInBucketInstance).

Definition posInTimeDatInstance :
HBCL 0 1 L HBox.MDataInst.MDatTimeElt :=
((sigTypes.existTD posInTimedVInstance :: nil)%list).

Definition timeSliceRaw : HBCL 0 1 L HBox.InMemModBox.MDatTimeMapRaw :=
HBCL 0 1 L HBox.InMemModBox.otm.add posInMemOid posInTimeDatInstance
(HBCL 0 1 L HBox.InMemModBox.otm.empty).

End InDatSliceEmbedS.

Listing E.7: The negator harmonic box object
Require Import HBCL.Util.Freq.
Require Import HBCL.HBCL 0 1.BaseLibs.BoxLangs.bitExprBoxLang.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorUbox.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorHIface.
Definition negHBoxRaw :=

HBCL 0 1 L HBox.HBoxSSORaw make HBoxUBitLang negSSOInMap negSSOOutMap negSSO.

Program Definition HBoxSSOMemSpec : HBCL 0 1 L HBox.HBoxSSO
negatorBoxOverallFreq freqMapIn freqMapOut
negatorBoxInMemMap negatorBoxOutMemMap :=
negHBoxRaw.

Obligation 1.
Admitted.

Listing E.8: The negator coordination object
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.

514

Import HBCL 0 1 L HBox.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.CoordInterp1 SBLT.
Import HBCL 0 1 L Coord.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorHIface.
Require Import HBCL.Util.Freq.
Require Import Coq.QArith.QArith base.
Close Scope Q scope.
Require Import Coq.Program.Program.
Import String.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UTypeSysOid SB.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HTypeSys SB.

Section negCoordS.
Variable HBoxSSOMemSpec : HBoxSSO
negatorBoxOverallFreq freqMapIn freqMapOut
negatorBoxInMemMap negatorBoxOutMemMap.
Definition inMemMapIO : InMemModInst.MDatFreqMapIO freqMapIn.
Defined.
Definition outMemMapIO : OutMemModInst.MDatFreqMapIO freqMapOut.
Defined.
Definition negatorLInstFreq := freq64.
Definition negatorClosSigRaw :

HBCL 0 1 Oid S.LInstMapMod.t LInstSignatureRaw :=
HBCL 0 1 Oid S.LInstMapMod.empty .

Program Definition negatorLInstSig : LInstSignature negatorLInstFreq :=
{| InstSigFreqMemIn := freqMapIn;

InstSigFreqMemOut := freqMapIn;
InstSigInputMems := inMemMapIO;
InstSigOutputMems := outMemMapIO

|}.
Obligation 1.
Admitted.
Program Definition freqNul : Freq := MakeFreq (0 # 1)%Q.

Obligation 1.
Admitted.

Program Definition EmptyNestMapIn : InMemModInst.MDatFreqMap freqNul :=
InMemModBox.otm.empty MDataTypeInst.MDatFreqElt.

Obligation 1.
Admitted.

Program Definition EmptyNestMapOut : OutMemModInst.MDatFreqMap freqNul :=
OutMemModBox.otm.empty MDataTypeInst.MDatFreqElt.

Obligation 1.
Admitted.
Program Definition negatorBoxid : HBCL 0 1 Id S.Boxid :=

(”negator”)%string.
Obligation 1.
Admitted.
Obligation 2.
Admitted.

Definition negatorHBoxMap : HBCL 0 1 L HBox.BoxTypeIdMapMod.t
(HBoxSSONonDep × (InMemModBox.otm.t

HBCL 0 1 Id S.Varid)
× (HBCL 0 1 Id S.VaridMapMod.t HBCL 0 1 Oid S.HBCL OidMemBF)) :=

let negatorNonDep : HBoxSSONonDep :=
{|

HBoxSSONonDep f := ;
HBoxSSONonDep fi := ;
HBoxSSONonDep fo := ;
HBoxSSONonDep ttmfIn := ;
HBoxSSONonDep ttmfOut := ;
HBoxSSONonDep HBoxSSO := HBoxSSOMemSpec
|}

in

515

let inmemvarmap : InMemModBox.otm.t
HBCL 0 1 Id S.Varid
:= InMemModBox.otm.add posInMemOid posInMemVarid

(InMemModBox.otm.empty)
in
let varoutmemmap :

HBCL 0 1 Id S.VaridMapMod.t HBCL 0 1 Oid S.HBCL OidMemBF
:= HBCL 0 1 Id S.VaridMapMod.add negOutMemVarid negOutMemOid
(HBCL 0 1 Id S.VaridMapMod.empty)

in
BoxTypeIdMapMod.add negatorBoxid
(negatorNonDep, inmemvarmap, varoutmemmap)
(BoxTypeIdMapMod.empty).

Definition negatorObsMap :
InMemModBox.otm.t

HBCL 0 1 Oid S.HBCL OidMemFB :=
InMemModBox.otm.add posInMemOid posInMemOid

(InMemModBox.otm.empty).
Definition negatorManifMap :

OutMemModBox.otm.t
HBCL 0 1 Oid S.HBCL OidMemBF :=

OutMemModBox.otm.add negOutMemOid negOutMemOid

(OutMemModBox.otm.empty).
Definition negatorFIFOMap : HBCL 0 1 Id S.VaridMapMod.t

(HBCL 0 1 Oid S.HBCL OidMemBF × HBCL 0 1 Oid S.HBCL OidMemFB) :=
HBCL 0 1 Id S.VaridMapMod.empty .

Definition negatorNestedEmbeddedLInstMap : HBCL 0 1 Oid S.LInstMapMod.Raw.t
LInstSSORaw := HBCL 0 1 Oid S.LInstMapMod.this
(HBCL 0 1 Oid S.LInstMapMod.empty LInstSSORaw).

Definition negatorNestedLLibLInstMap :
HBCL 0 1 Oid S.LInstMapMod.t HBCL 0 1 Oid S.HBCL OidLInst :=
HBCL 0 1 Oid S.LInstMapMod.empty .

Definition negatorNestedExternalLLibInstEnvMap :
HBCL 0 1 Oid S.LInstMapMod.t
(sigT LInstSignature × HBCL 0 1 Oid S.LInstMapMod.t LInstSignatureRaw) :=
HBCL 0 1 Oid S.LInstMapMod.empty .

Definition negatorLocalLibMap : HBCL 0 1 Oid S.LLibMapMod.Raw.t LibSSORaw :=
HBCL 0 1 Oid S.LLibMapMod.this (HBCL 0 1 Oid S.LLibMapMod.empty).

Definition negatorLocalLibEnv : HBCL 0 1 Oid S.LLibMapMod.t
(HBCL 0 1 Oid S.LInstMapMod.t LInstSignatureRaw) :=
HBCL 0 1 Oid S.LLibMapMod.empty .

Definition negatorNestedInstTShift : HBCL 0 1 Oid S.LInstMapMod.t TTFL :=
HBCL 0 1 Oid S.LInstMapMod.empty .
Program Definition negatorLInstSSO : LInstSSO negatorLInstFreq negatorLInstSig

negatorClosSigRaw :=
LInstSSORaw make freqMapIn freqMapOut freqMapIn freqMapOut

freqNul freqNul negatorLInstFreq freqNul negatorLInstFreq
(‘ inMemMapIO)
(‘ outMemMapIO)
EmptyNestMapIn
EmptyNestMapOut
negatorHBoxMap
negatorObsMap
negatorManifMap
negatorFIFOMap
negatorNestedEmbeddedLInstMap
negatorNestedLLibLInstMap
negatorNestedExternalLLibInstEnvMap
negatorLocalLibMap
negatorNestedInstTShift
negatorLocalLibEnv.

516

Obligation 1.
Admitted.

Program Definition negatorInstOid : HBCL 0 1 Oid S.HBCL OidLInst :=
((”negatorInst”)%string :: (”LInst”)%string :: nil)%list.

Obligation 1.
Admitted.
Definition negatorLLibInstSigMap := HBCL 0 1 Oid S.LInstMapMod.add

negatorInstOid (‘negatorLInstSig) (HBCL 0 1 Oid S.LInstMapMod.empty).
Definition negatorLLibInstMap := HBCL 0 1 Oid S.LInstMapMod.add

negatorInstOid (‘negatorLInstSSO) (HBCL 0 1 Oid S.LInstMapMod.empty).
Definition negatorLibInstSigMap :
HBCL 0 1 Oid S.LInstMapMod.t

(sigT LInstSignature × HBCL 0 1 Oid S.LInstMapMod.t LInstSignatureRaw) :=
HBCL 0 1 Oid S.LInstMapMod.add negatorInstOid
(existT negatorLInstSig, negatorClosSigRaw)
(HBCL 0 1 Oid S.LInstMapMod.empty).

Definition negatorLibLibInstSigMap : HBCL 0 1 Oid S.LLibMapMod.t
(HBCL 0 1 Oid S.LInstMapMod.t LInstSignatureRaw) :=
HBCL 0 1 Oid S.LLibMapMod.empty .

Program Definition negatorLLibSSO : LLibSSO negatorLLibInstSigMap :=
LLibSSORaw make
(HBCL 0 1 Id S.VaridMapMod.empty)
(HBCL 0 1 Id S.VaridMapMod.empty)
negatorLLibInstMap
negatorLibInstSigMap
negatorLocalLibMap
negatorLibLibInstSigMap.

Obligation 1.
Admitted.
Program Definition negatorLibMap : LibClos negatorClosSigRaw := nil.
Obligation 1.
Admitted.

End negCoordS.

Listing E.9: The negator initial state object
Require Import HBCL.HBCL 0 1.BaseLibs.UTypeSystems.bitTSys.BFUTypeSys.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.
Require Import HBCL.Util.Freq.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Import HBCL 0 1 L HBox.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorCoord.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorHIface.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.Coord SBLT.
Import HBCL 0 1 L Coord.

Definition tZero : TTime negatorLInstFreq :=
C Time 0.

Definition posInMemEl : MDataInst.MDatTimeElt := nil.
Definition negOutMemEl : MDataInst.MDatTimeElt := nil.
Definition inMemMapNul : InMemModBox.MDatTimeMapRaw :=
InMemModBox.otm.add posInMemOid posInMemEl
(InMemModBox.otm.empty).
Definition outMemMapNul : OutMemModBox.MDatTimeMapRaw :=
OutMemModBox.otm.add negOutMemOid negOutMemEl
(OutMemModBox.otm.empty).
Definition initStateRaw : CoordStateRaw :=

CoordStateRaw make inMemMapNul outMemMapNul
(HBCL 0 1 Oid S.LInstMapMod.this

517

(HBCL 0 1 Oid S.LInstMapMod.empty)).
Section negatorCStateInitS.

Variable HBoxSSOMemSpec : HBoxSSO
negatorBoxOverallFreq freqMapIn freqMapOut
negatorBoxInMemMap negatorBoxOutMemMap.

Let negatorLInstSSOLoc := negatorLInstSSO HBoxSSOMemSpec.
Definition initState : sig

(CoordStateInnerFIFOsEnabled negatorLInstFreq tZero
negatorLInstSig negatorClosSigRaw negatorLibMap
negatorLInstSSOLoc).

Defined.
End negatorCStateInitS.

Listing E.10: The negator test harness
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HBox SBLT.
Import HBCL 0 1 L HBox.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.CoordInterp1 SBLT.
Import HBCL 0 1 L Coord.
Import HBCL 0 1 L CoordInterp1.
Require Import HBCL.HBCL 0 1.Examples.libs.commonDat.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorDatTempify.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorInitState.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorHIface.
Require Import HBCL.Util.Freq.
Require Import Coq.QArith.QArith base.
Close Scope Q scope.
Require Import Coq.Program.Program.
Import String.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.UTypeSysOid SB.
Require Import HBCL.HBCL 0 1.Instances.bitLangRFreq1.HTypeSys SB.
Require Import HBCL.HBCL 0 1.Examples.libs.negator.negatorCoord.

Section negCoordS.
Variable HBoxSSOMemSpec : HBoxSSO
negatorBoxOverallFreq freqMapIn freqMapOut
negatorBoxInMemMap negatorBoxOutMemMap.
Let negatorLInstSSOLoc := negatorLInstSSO HBoxSSOMemSpec.
Section calcResultS.
Definition tZero : TTime negatorLInstFreq :=

C Time 0.
Definition tiZero : TTime (InstSigFreqMemIn (‘negatorLInstSig)) :=

C Time 0.
Lemma tTiZeroEq : TTseq tZero tiZero.
Lemma tTiNextCeil : nextCeil (proj1 (proj2 sig negatorLInstSig)) tZero

tiZero.
Variable inpStream : InputStream (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) tiZero.
Definition resultTrace := traceFIFOsGenOutpInit negatorLibMap

negatorLInstSSOLoc tZero tiZero tTiZeroEq inpStream tTiNextCeil
(initState HBoxSSOMemSpec).

End calcResultS.
Print InMemModInst.MDatMapFreqTimePred.
Print HBCL 0 1 L HBox.InMemModBox.MDatTimeMapRaw.
Print HBCL 0 1 L HBox.MDataInst.MDatTimeElt.
Print HBCL 0 1 L HBox.MDataInst.MemDatListRaw.
Print HBCL 0 1 L HTS.TimedV.
Print HBCL 0 1 L HTS.TimedVLocal.

518

Definition sampleSlice0FormOK :
sig (InMemModInst.MDatMapFreqTimePred (InstSigFreqMemIn (‘negatorLInstSig))
(‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition sampleSlice0 :

sig (InMemModInst.MDatMapModeReadPred (InstSigFreqMemIn (‘negatorLInstSig))
(C Time 0) (‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition sampleSlice1FormOK :

sig (InMemModInst.MDatMapFreqTimePred (InstSigFreqMemIn (‘negatorLInstSig))
(‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition sampleSlice1 :

sig (InMemModInst.MDatMapModeReadPred (InstSigFreqMemIn (‘negatorLInstSig))
(C Time 1) (‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition sampleSlice2FormOK :

sig (InMemModInst.MDatMapFreqTimePred (InstSigFreqMemIn (‘negatorLInstSig))
(‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition sampleSlice2 :

sig (InMemModInst.MDatMapModeReadPred (InstSigFreqMemIn (‘negatorLInstSig))
(C Time 2) (‘ (InstSigInputMems (‘negatorLInstSig)))).

Defined.
Definition InStream3 : InputStream (InstSigFreqMemIn (‘negatorLInstSig))

(InstSigInputMems (‘negatorLInstSig)) (C Time 3) :=
InputStreamFinal .

Lemma tnext2 3 : TTseq
(tNext (InstSigFreqMemIn (‘negatorLInstSig))

(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 2))
(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 3).

Definition InStream2 : InputStream (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 2) :=
InputStreamInd (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 2) (C Time 3)
tnext2 3 sampleSlice2 InStream3.

Lemma tnext1 2 : TTseq
(tNext (InstSigFreqMemIn (‘negatorLInstSig))

(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 1))
(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 2).

Definition InStream1 : InputStream (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 1) :=
InputStreamInd (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 1) (C Time 2)
tnext1 2 sampleSlice1 InStream2.

Lemma tnext0 1 : TTseq
(tNext (InstSigFreqMemIn (‘negatorLInstSig))

(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 0))
(C Time (InstSigFreqMemIn (‘negatorLInstSig)) 1).

Definition InStream0 : InputStream (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 0) :=
InputStreamInd (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) (C Time 0) (C Time 1)
tnext0 1 sampleSlice0 InStream1.

Definition sampleInStream : InputStream (InstSigFreqMemIn (‘negatorLInstSig))
(InstSigInputMems (‘negatorLInstSig)) tiZero
:= InStream0.

End negCoordS.
Check resultTrace.

519

Appendix F

Further Harmonic Box
Coordination Language execution
traces

F.1 Parallel composition

Listing F.1 is the continuation of Listing 6.3.

Listing F.1(i): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

521

Listing F.1(ii): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

Listing F.1(iii): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))
.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

522

Listing F.1(iv): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

Listing F.1(v): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

523

Listing F.1(vi): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

Listing F.1(vii): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

524

Listing F.1(viii): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((F,T,T),F)

freq: Hz; valid at: /s ((F,T,T),F)

525

Listing F.1(ix): The parallel composition of a negator and parity box
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.parOut

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,T,T),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((T,F,F),T)

freq: Hz; valid at: /s ((F,T,T),F)

freq: Hz; valid at: /s ((F,T,T),F)

F.2 Simple pipeline

Listing F.2 is the continuation of Listing 6.4.

526

Listing F.2(i): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

Listing F.2(ii): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

527

Listing F.2(iii): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

Listing F.2(iv): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

528

Listing F.2(v): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

Listing F.2(vi): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

529

Listing F.2(vii): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

530

Listing F.2(viii): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

531

Listing F.2(ix): The pipeline example
freq: Hz; time: /s

.LInst.nInst
freq: Hz; time: /s

.MemFB.posIn

freq: Hz; valid at: /s (F,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (T,(T,T))

.MemBF.negOut

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

.LInst.pInst

freq: Hz; time: /s

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,T)

freq: Hz; valid at: /s (F,F,F)

.MemBF.parOut

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,T),T)

freq: Hz; valid at: /s ((F,F,F),F)

freq: Hz; valid at: /s ((F,F,F),F)

F.3 Simple checksum

Listing F.3 is the continuation of Listing 6.5.

532

Listing F.3(i): The simple checksum example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

Listing F.3(ii): The simple checksum example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (F,(T,T))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (F,T,T)

F.4 Pipelined checksum

Listing F.4 is the continuation of Listing 6.6.

533

Listing F.4(i): The pipelined checksum example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

Listing F.4(ii): The pipelined checksum example
freq: Hz; time: /s

.LInst.checksumInstConc
freq: Hz; time: /s

.MemFB.checkIn
freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (F,F,F)

.MemFB.datIn
freq: Hz; valid at: /s (F,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (T,T,T)

.MemBF.checkOutDoublePair
freq: Hz; valid at: /s (T,(T,T))

freq: Hz; valid at: /s (T,(F,F))

freq: Hz; valid at: /s (F,(T,T))

.MemBF.checkOutTriple

freq: Hz; valid at: /s (F,F,F)

freq: Hz; valid at: /s (T,T,T)

freq: Hz; valid at: /s (T,F,F)

freq: Hz; valid at: /s (F,T,T)

F.5 Half adder

Listing F.5 is the continuation of Listing 6.8.

534

Listing F.5(i): The half adder example
freq: Hz; time: /s

.LInst.hAdderInst
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

535

Listing F.5(ii): The half adder example
freq: Hz; time: /s

.LInst.hAdderInst
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.andOut
freq: Hz; valid at: /s T

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.xorOut
freq: Hz; valid at: /s F

536

537

Listing F.5(iii): The half adder example
freq: Hz; time: /s

.LInst.hAdderInst
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

538

F.6 Full adder

Listing F.6(i): The full adder example
freq: Hz; time: s

.LInst.fAdderInst
freq: Hz; time: s

.LInst.hAdderInst1
freq: Hz; time: s

.LInst.fanoutInst1
freq: Hz; time: s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

.LInst.fanoutInst2
freq: Hz; time: s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

539

Listing F.6(ii): The full adder example
freq: Hz; time: s

.LInst.fAdderInst
freq: Hz; time: s

.LInst.hAdderInst1
freq: Hz; time: s

.LInst.andGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut

.LInst.xorGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut

Listing F.6(iii): The full adder example
freq: Hz; time: s

.LInst.fAdderInst
freq: Hz; time: s

.LInst.hAdderInst2
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn

.MemBF.fanoutA

.MemBF.fanoutB

540

Listing F.6(iv): The full adder example
freq: Hz; time: s

.LInst.fAdderInst
freq: Hz; time: s

.LInst.hAdderInst2
freq: Hz; time: − /s

.LInst.andGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut

.LInst.xorGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut

Listing F.6(v): The full adder example
freq: Hz; time: s

.LInst.fAdderInst
freq: Hz; time: s

.LInst.orCarryInst

freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.orOut

541

Listing F.6(vi): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

542

Listing F.6(vii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut
freq: Hz; valid at: s

.LInst.xorGateInst
freq: Hz; time: s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut
freq: Hz; valid at: s

543

Listing F.6(viii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

544

Listing F.6(ix): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: − /s

.LInst.andGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.andOut
freq: Hz; valid at: − /s

.LInst.xorGateInst
freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.xorOut
freq: Hz; valid at: − /s

Listing F.6(x): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: − /s

.MemFB.memInA

.MemFB.memInB

.MemBF.orOut
freq: Hz; valid at: − /s

545

Listing F.6(xi): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

546

Listing F.6(xii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s T

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

547

Listing F.6(xiii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: s

.LInst.fanoutInst1
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: s

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

.LInst.fanoutInst2
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

548

Listing F.6(xiv): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: s

.LInst.andGateInst
freq: Hz; time: − /s

.MemFB.memInA
freq: Hz; valid at: − /s

.MemFB.memInB
freq: Hz; valid at: − /s

.MemBF.andOut
freq: Hz; valid at: − /s

.LInst.xorGateInst
freq: Hz; time: − /s

.MemFB.memInA
freq: Hz; valid at: − /s

.MemFB.memInB
freq: Hz; valid at: − /s

.MemBF.xorOut
freq: Hz; valid at: − /s

Listing F.6(xv): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: − /s

.MemFB.memInA
freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: − /s

.MemBF.orOut
freq: Hz; valid at: − /s

549

Listing F.6(xvi): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

550

Listing F.6(xvii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

551

Listing F.6(xviii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

552

Listing F.6(xix): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: s

.MemFB.memInA
freq: Hz; valid at: s

freq: Hz; valid at: − /s

.MemFB.memInB
freq: Hz; valid at: s

freq: Hz; valid at: − /s

.MemBF.andOut
freq: Hz; valid at: s

.LInst.xorGateInst
freq: Hz; time: s

.MemFB.memInA
freq: Hz; valid at: s

freq: Hz; valid at: − /s

.MemFB.memInB
freq: Hz; valid at: s

freq: Hz; valid at: − /s

.MemBF.xorOut
freq: Hz; valid at: s

553

Listing F.6(xx): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: − /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: − /s

freq: Hz; valid at: − /s

.MemBF.orOut
freq: Hz; valid at: − /s

554

Listing F.6(xxi): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

555

Listing F.6(xxii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemBF.xorOut
freq: Hz; valid at: /s F

556

Listing F.6(xxiii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

557

Listing F.6(xxiv): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

558

Listing F.6(xxv): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: s

freq: Hz; valid at: − /s

.MemBF.orOut
freq: Hz; valid at: s

559

Listing F.6(xxvi): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

560

Listing F.6(xxvii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.andOut
freq: Hz; valid at: /s T

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

.MemBF.xorOut
freq: Hz; valid at: /s F

561

Listing F.6(xxviii): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

562

Listing F.6(xxix): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.andGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.andOut
freq: Hz; valid at: /s F

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

.MemBF.xorOut
freq: Hz; valid at: /s F

563

Listing F.6(xxx): The full adder example
freq: Hz; time: /s

.LInst.fAdderInst
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s T

564

F.7 Cascade adder

Listing F.7(i): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst1
freq: Hz; time: /s

.LInst.hAdderInst1
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.LInst.fanoutInst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

565

Listing F.7(ii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst2
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

566

Listing F.7(iii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst3
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

567

Listing F.7(iv): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst4
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

568

Listing F.7(v): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst5
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

569

Listing F.7(vi): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst6
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

570

Listing F.7(vii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst7
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

571

Listing F.7(viii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst8
freq: Hz; time: − /s

.LInst.hAdderInst1
freq: Hz; time: − /s

.LInst.fanoutInst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.fanoutInst2
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

572

Listing F.7(ix): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst1
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s F

.MemBF.xorOut
freq: Hz; valid at: /s T

573

Listing F.7(x): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst1
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

574

Listing F.7(xi): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst2
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

575

Listing F.7(xii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst2
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

576

Listing F.7(xiii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst3
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

577

Listing F.7(xiv): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst3
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

578

Listing F.7(xv): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst4
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

579

Listing F.7(xvi): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst4
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

580

Listing F.7(xvii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst5
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

581

Listing F.7(xviii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst5
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

582

Listing F.7(xix): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst6
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

583

Listing F.7(xx): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst6
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

584

Listing F.7(xxi): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst7
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

585

Listing F.7(xxii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst7
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

586

Listing F.7(xxiii): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst8
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

587

Listing F.7(xxiv): The cascade adder
freq: Hz; time: /s

.LInst.cAdderInst
freq: Hz; time: /s

.LInst.fAdderInst8
freq: Hz; time: /s

.LInst.orCarryInst

freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.orOut
freq: Hz; valid at: /s F

588

F.8 Multiplier

Listing F.8(i): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: s

.LInst.bFanout2Inst1
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

.LInst.bFanout2Inst2
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

589

Listing F.8(ii): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: s

.LInst.bFanout2Inst3
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

.LInst.bFanout2Inst4
freq: Hz; time: s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: s

.MemBF.fanoutB
freq: Hz; valid at: s

590

Listing F.8(iii): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.pMultInst1

freq: Hz; time: − /s

.LInst.fanout2Inst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.pMultInst2

freq: Hz; time: − /s

.LInst.fanout2Inst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

591

Listing F.8(iv): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.pMultInst3

freq: Hz; time: − /s

.LInst.fanout2Inst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

.LInst.pMultInst4

freq: Hz; time: − /s

.LInst.fanout2Inst1
freq: Hz; time: − /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: − /s

.MemBF.fanoutB
freq: Hz; valid at: − /s

592

Listing F.8(v): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst1
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s F

.MemBF.xorOut
freq: Hz; valid at: /s T

593

Listing F.8(vi): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst2
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s F

594

Listing F.8(vii): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst3
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

595

Listing F.8(viii): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst4
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

596

Listing F.8(ix): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst5
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s F

597

Listing F.8(x): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst6
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s F

598

Listing F.8(xi): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst7
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s T

599

Listing F.8(xii): The 4-bit multiplier
freq: Hz; time: /s

.LInst.multInst
freq: Hz; time: /s

.LInst.cAdderInst3
freq: Hz; time: /s

.LInst.fAdderInst8
freq: Hz; time: /s

.LInst.hAdderInst2
freq: Hz; time: /s

.LInst.xorGateInst
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.xorOut
freq: Hz; valid at: /s F

600

F.9 Replicated multiplier

Listing F.9(i): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.LInst.bFanout3Inst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

.LInst.bFanout3Inst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

601

Listing F.9(ii): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.fanoutInst1
freq: Hz; time: /s

.LInst.bFanout3Inst3
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

.LInst.bFanout3Inst4
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.MemBF.fanoutC
freq: Hz; valid at: /s F

602

Listing F.9(iii): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.fanoutInst2
freq: Hz; time: /s

.LInst.bFanout3Inst1
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

.LInst.bFanout3Inst2
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

603

Listing F.9(iv): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.fanoutInst2
freq: Hz; time: /s

.LInst.bFanout3Inst3
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s F

.MemBF.fanoutA
freq: Hz; valid at: /s F

.MemBF.fanoutB
freq: Hz; valid at: /s F

.MemBF.fanoutC
freq: Hz; valid at: /s F

.LInst.bFanout3Inst4
freq: Hz; time: /s

.MemFB.memIn
freq: Hz; valid at: /s T

.MemBF.fanoutA
freq: Hz; valid at: /s T

.MemBF.fanoutB
freq: Hz; valid at: /s T

.MemBF.fanoutC
freq: Hz; valid at: /s T

604

Listing F.9(v): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.voterInst
freq: Hz; time: /s

.LInst.bVoter3Inst1
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s T

.LInst.bVoter3Inst2
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s F

605

Listing F.9(vi): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.voterInst
freq: Hz; time: /s

.LInst.bVoter3Inst3
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s T

.LInst.bVoter3Inst4
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s T

606

Listing F.9(vii): The replicated 4-bit multiplier

freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.voterInst
freq: Hz; time: /s

.LInst.bVoter3Inst5
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s F

.LInst.bVoter3Inst6
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s F

607

Listing F.9(viii): The replicated 4-bit multiplier
freq: Hz; time: /s

.LInst.replMultInst

freq: Hz; time: /s

.LInst.voterInst
freq: Hz; time: /s

.LInst.bVoter3Inst7
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s T

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s T

.LInst.bVoter3Inst8
freq: Hz; time: /s

.MemFB.memInA
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInB
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemFB.memInC
freq: Hz; valid at: /s F

freq: Hz; valid at: s

.MemBF.voter3Out
freq: Hz; valid at: /s F

608

	Introduction and motivation
	Motivating a language
	Hypothesis
	Contributions
	Thesis structure

	Specification: computation, coordination and certainty
	Languages, automata and semantic models
	Expression languages as computable functions
	Entropy
	Finite and infinite computations in the presence of non-determinism

	The controversy of executable specifications
	Specification language toolkits and verifying compilers

	The coordination language dichotomy
	Time and space
	Axiomatizing entropy

	Concrete coordination languages and structures
	Synchronous coordination languages
	Asynchronous languages, models and calculi

	Evaluating agents and entropy in concrete coordination models
	Intuitionistic type theory
	Logical systems
	Logical propositions, formulae and embeddings
	Establishment of logical formulae

	Verified compilers and the preservation of semantics under transformation
	POPLMARK
	Isabelle-based
	Coq-based
	Verifiability of proof assistants

	A remark on fault tolerance
	Assembling the parts
	Conclusion

	The Harmonic Box Coordination Language I: Motivation, examples and semantic preliminaries
	The case for a harmonic and ontologically aware language
	Informal exposition of a coordination language by conformationally representative examples
	Introduction to the structure of HBCL
	Instance and library closure semantics
	Examples
	One box
	Two parallel boxes
	One box with feedback
	Two boxes in a pipeline
	Two boxes in a pipeline with feedback from second to first

	More involved examples
	HBCL timing principles and properties
	Summary

	The Harmonic Box Coordination Language II: Formal syntax and semantics
	Structure of the formalization of HBCL
	Abstract syntax
	Sets and primitive categories from the meta-logic
	Abstract syntax construction rules

	Approach to the semantics
	Semantic domain
	Typography
	Semantic domain common to coordination and expression languages
	Coordination language
	Expression language

	Further detail
	Reference interpreter
	Soundness, completeness and bisimilarity properties
	Soundness
	Completeness
	Bisimilarity

	Summary

	Semantics and interpreter in Coq
	Choice of embedding for HBCL
	Choice of logic and proof assistant
	Choice of ontology and temporal logic
	Choice of semantic representation

	Specification in Coq: methods and constraints
	Termination, well-foundedness and consistency
	Key Coq programming paradigms

	Link between operational semantics and Coq functions
	Static formalization parameters
	Pre-HBCL, full HBCL, and the type of box languages
	HBCL module design in Coq

	Formalization of the coordination language
	Section variables
	FIFO step and entry point
	FIFO-box memory step
	Box step
	Nested box step
	Box-FIFO memory step
	Super-step assembly

	Formalization of the example expression language
	Sized types
	Cost functions
	Structure of the formalization

	Provable properties
	Summary

	Results of the canonical examples and an illustrative case study
	Code export and compilation
	Trace table production
	Single box examples
	Parallel composition example
	Two pipelined boxes example
	Simple feedback example
	Feedback with pipeline example
	More involved examples
	Half adder
	Full adder
	Cascade adder
	Multiplier
	Triple modular redundancy (TMR) replicated multiplier
	Scale metrics

	Possible technical improvements
	Use of tactic language
	Compiler
	Refinement of semantics
	Recasting modules into records
	Higher-order functions with proofs
	Removal of convenience arguments
	Unification of fixpoint and cofixpoint versions of semantics

	Summary of points demonstrated

	Conclusions and further work
	Principal contributions
	Absolute time
	Deep embedding
	Ease of proof

	Ancillary contributions
	Separation of coordination and expression constructions: box languages as parameters
	Formalization of FIFOs
	Agents and entropy
	Instance and library closure semantics

	Critical evaluation
	Evaluation of hypotheses
	Use of Coq

	Further work
	Hardware formalization
	Mutual recursion of coordination languages
	Reliability engineering tools
	Persistent state HBCL
	Multiple axiomatizations

	Summary

	References
	Appendices
	Design of HBCL
	Design space of HBCL
	OID semantics
	Why OID semantics and an ontological approach?
	Monotonicity principle of OID semantics
	Sandboxing and the semantics of composition
	Static and dynamic OID semantics
	Qualitative heterogeneity in the OID string
	Rootless references

	Pre-HBCL: defining timed observables
	Instance signatures

	Full HBCL: a coordination meta-language
	Entropic sandwich

	Full HBCL language structure
	Identifiers (a)
	OIDs (b)
	The plain untimed type system (c)
	The OID type system functor (d)
	The harmonic type system functor (e)
	Untimed box language interface functor (f)
	The harmonic box language interface functor (g)
	Concrete coordination language functor (h)
	Coordination language interpreter (i)
	Coordination language instantiation (j)

	Semantic notation: a simple example
	Notation: an illustrative example
	Abstract syntax of the propositional calculus
	Semantic domain of propositional calculus example
	Structural operational semantics: notation
	The embedding of semantics in Coq
	Propositional calculus abstract syntax in Coq
	Propositional calculus semantic domain in Coq
	Structural operational semantics of the propositional calculus example in Coq

	Further Harmonic Box Coordination Language Syntax and Semantics
	Concrete syntax
	Primitive tokens
	Concrete syntax common to coordination and expression languages
	Concrete syntax for coordination language
	Concrete syntax for expression language

	Static semantics as a static semantic object
	Fragment common to expression and coordination languages
	Untimed expression fragment

	Coordination dynamic semantics
	Program super-step
	FIFO step
	MemFB step
	Boxes step
	Nested boxes step
	MemBF step

	Expression language dynamic semantics
	Expression static semantic object and argument match
	Function invocation
	Function and data resolution
	Data look-up
	Expression evaluation
	Pattern evaluation
	Construction evaluation

	Further Harmonic Box Coordination Language formalization in Coq
	Module types
	Absract type of identifiers
	Absract type of OIDs
	The untimed (but sized) type system
	The untimed OID type system
	The timed type system
	The untimed box abstraction
	The harmonic box abstraction
	The coordination language

	Correspondence of coordination language operational semantics with Coq code
	Correspondence of expression language operational semantics with Coq code
	Module instantiations
	The ID implementation
	The OID implementation
	The bit field type system
	The untimed OID type system functor
	The harmonic type system functor
	The expression language type classes
	The harmonic box functor
	The coordination language functor

	Coordination language interpreter implementation (main functions)
	Super-step

	Expression language
	Expression reduction

	Listings of further Harmonic Box Coordination Language examples
	Gate and fan-out instance library
	Boolean source and sink instance library
	Boolean voter library
	Coq code for negator example

	Further Harmonic Box Coordination Language execution traces
	Parallel composition
	Simple pipeline
	Simple checksum
	Pipelined checksum
	Half adder
	Full adder
	Cascade adder
	Multiplier
	Replicated multiplier

