
Harnessing Parallelism in FPGAs Using the Hume Language

J. Sérot
Institut Pascal, UMR 6602 CNRS / U. Blaise Pascal,

Clermont-Ferrand, France
Jocelyn.Serot@univ-bpclermont.fr

G. Michaelson
Heriot-Watt University, Edinburgh, Scotland

G.Michaelson@hw.ac.uk

Abstract
We propose to use Hume, a general purpose, functionally inspired,
programming language, initially oriented to resource-aware em-
bedded applications, to implement fine-grain parallel applications
on FPGAs. We show that the Hume description of programs as a set
of asynchronous boxes connected by wires has a very natural inter-
pretation in terms of register-transfer level hardware description,
hence leading to efficient implementations on FPGAs. The paper
describes the basic compilation process from a subset of Hume to
synthetisable RTL VHDL and show preliminary experimental re-
sults obtained with a very simple perceptron application.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications–Functional Language; D.3.4
[Programming Languages]: Processors–compilers; B.7 [Integrated
Circuits]: Types and Design Styles–gate arrays

General Terms Languages

Keywords Functional programming, reconfigurable hardware,
FPGA, Hume, VHDL

1. Introduction
Digital circuits based upon reconfigurable logic (FPGAs) offer
large opportunities for exploiting massive, fine grain parallelism.
In many application domains, FPGAs are now promoted as a way
out of the restrictions of specific CPU designs on system scala-
bility. While fabrication technology is rapidly increasing the num-
ber of processing elements in multi-core CPUs, nonetheless such
cores are necessarily in some fixed configuration which may not
be optimal for an arbitrary problem. In contrast, in principle, an
FPGA of sufficient size may implement an arbitrary number of
processing elements with arbitrary interconnections. Nonetheless,
there are immense practical problems in realising the full potential
of FPGAs. In particular, FPGAs are very low level devices requir-
ing expert understanding of hardware concerns to gain best perfor-
mance. Thus, there has been considerable research into developing
both languages for describing FPGA configurations at considerably
higher levels of abstraction, and tool chains for seamlessly realising
such abstracted configurations in hardware.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FHPC’12, September 15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1577-7/12/09. . . $10.00

In this paper, we propose to use Hume, a domain-specific lan-
guage (DSL), initially developed for programming resource aware,
software embedded systems, to program FPGAs.

Our motivations are two-fold. First is our perception that while
the strong capabilities for performance prediction and resource us-
age certification have already been clearly demonstrated [10, 11],
Hume’s ability to naturally describe fine-grain parallel computa-
tions – such as those supported by FPGA targets – has been left
largely unexplored. Second is the very pragmatic concern suggest-
ing that re-inventing yet another programming language for this
kind of task was not a good idea and that in the domain of em-
bedded programming – in which Hume has already been promoted
– a real need for high-level programming languages for exploiting
FPGAs existed.

The paper is organised as follows : Sec. 2 is a brief presentation
of the Hume programming language. In Sec. 3 we describe how a
subset of Hume (called mHume) can be compiled down to syntheti-
zable VHDL. Some preliminary experimental results are given in
Sec. 4. Sec. 5 makes a brief review of related work.

2. Hume
Hume [9] is a contemporary language for developing multi-process
systems requiring strong static guarantees that resource bounds are
met. With roots in polymorphic functional languages, Hume is dis-
tinguished by an explicit separation ofcoordination and expression
layer. The coordination layer, for configuring independent commu-
nicating processes, is based on concurrent finite state boxes con-
nected by single-bufferedwires. The expression layer defines con-
trol within boxes and is based on pattern matching on input values
to enable general recursive actions to generate output values.

The simple example in Figures 1 and 2, from [2], generates the
squares of a sequence of integers. The boxinc generates successive
integers starting from0. These are fed to the boxsquare which
finds their squares by repeated addition.

• Line 1 introducesinteger as an alias forint 32, that is a
32-bit integer.

• Lines 2 to 5 define a boxinc (2) with integer input wiren (3)
and integer output wiresr and n’ (4). In line 5, an input is
matched with variablen to output the value ofn on wirer and
n+1 on wiren’. As we shall see,n is wired ton’. Essentially,
r is the current andn is the next value for squaring

• Lines 6 to 14 define a boxsquare (6) with integer inputsi, s,
c andv (7 and 8), and integer outputso, s’, c’ andv’ (9 and
10).

• In line 12, regardless of the input oni (*), if c is 0 then the
(final) value froms is output ono.

• In line 13, regardless of the value oni, v is added tos andc is
decremented.

square

r n’

i s c v

n

s’ c’o

inc

output

v’

Figure 1. Square program.

1 type integer = int 32;

2 box inc
3 in (n::integer)
4 out (r::integer, n’::integer)
5 match (n) -> (n,n+1);

6 box square
7 in (i::integer, s::integer,

8 c::integer, v::integer)
9 out (o’::integer, s’::integer,

10 c’::integer, v’::integer)
11 match
12 (*, s, 0, v) -> (s, *, *, *) |
13 (*, s, c, v) -> (*, s+v, c-1, v) |
14 (i, *, *, *) -> (*, 0, i, i);

15 stream output to "std_out";

16 wire inc (inc.n’ initially 0)
17 (square.i,inc.n);

18 wire square
19 (inc.r,square.s’,square.c’,square.v’)
20 (output,square.s,square.c,square.v);

Figure 2. Square program Code

• In line 14, with a new initial value fori, s is initialised to0, and
c andv are initialised toi. As we shall see,s is wired tos’,
c to c’ andv to v’. Essentially,i is the value to be squared,s
is the partial square,c counts how ofteni has been added tos,
andv retains the initial value fromi for repeated addition tos.

• Line 15 associates streamoutput with standard output.

• Lines 16 and 17 wireinc’s n to it’s n, andr to square’s i.

• Lines 18 to 20 wiresquare’s i to inc’s r, s to s’, c to c’, v
to v’ ando to output.

2.1 Hume for hardware

Hume was initially designed to program software systems running
on sequential hardware, that is CPUs running embedded applica-
tions, with a stress on predictable resource consumption. We think
that the language offers interesting opportunities for programming
FPGAs and in particular to exploit the massive fine grain paral-

lelism that these devices offer without requiring deep knowledge
of underlying hardware.

First, Hume’s explicit separation of coordination and control
layers offers an appropriate degree of abstraction for going from
software-based specification to hardware realisation. We think that
this explicit separation of coordination and computation makes
Hume particularly well suited for reasoning about, as well as con-
structing, parallel systems. Formalisms for parallelism, like theπ
calculus, tend to focus on coordination, while those for functional
languages, like BMF, focus on recursive and compositional reason-
ing. However, reasoning about coordination invariably has impli-
cations for computation, and vice versa, and neither considerations
take account of pragmatic aspects of parallelism like time and space
behaviour. In contrast, Hume is supported by the integrated box
calculus [7]. This provides a small set of base transformations for
introducing and eliminating boxes and wires, and for moving ac-
tivities between coordination and computation. From this base set,
richer transformations have been elaborated and proved correct, for
example to realise function composition as vertical pipeline par-
allelism [8], and map [8] and fold [13] over lists as divide and
conquer parallelism. Thus, an initial pure functional expression
of a program may be systematically refined into interconnected
boxes for potential parallel realisation. Furthermore, the box calcu-
lus may, in principle, be used for resource directed program trans-
formation, as transformations have predictable effects on construct
costs.

Second, the expression layer is state free, with all local variable
instantiations lost between execution cycles, and the coordination
layer state is only retained on wires. In particular, explicit feedback
wires from a box’s outputs to its inputs enable individual boxes to
retain state between execution cycles, and are the basis of box itera-
tion. This addresses many problems encountered in other high level
approaches to FPGA programming, in which complex synchroni-
sation protocols must be made explicit at the expression level.

Third, Hume was explicitly intended for use as a multi-level
language sharing a common coordination form. Each level reflects
different restrictions on expressivity, in particular in the allowed use
of types and functional forms, from Hardware Hume (HW-Hume),
restricted to pattern matching on bit patterns, to full Hume which
is Turing complete. Each level has different formal properties, so
HW-Hume has decidable time and space behaviour and full Hume
shares all the undecidability restrictions of Turing completeness.
Thus, given a base FPGA realisation of box coordination alone,
then the expressivity at the control level might also be varied to
reflect the sophistication of hardware compilation. In particular, Fi-
nite State Hume (FSM-Hume)[12] – which augments HW-Hume
with fixed size types and arithmetic/logic operations – is likely to
be an excellent starting point for expressing massively parallel ap-
plications to be implemented on FPGAs. Subsequently, Template
Hume, which provides a fixed repertoire of higher order functions,
offers a framework for exploring functional abstraction in compos-
ing hardware components, drawing on the experiences of the pure
functional approaches discussed above.

2.2 mHume

In this paper, we used a restricted version of the full Hume lan-
guage, named mHume [2]. mHume is based around the full coor-
dination layer but provides a minimal expression layer with integer
types and operations. This restriction provides more flexibility for
exploring the direct compilation of the language on the target hard-
ware, without interfering with the essential issues of parallelism
and coordination.

A simplified version of the mHume syntax is summarised in
Figure 3.

program → [component;]+

component → box | wire | stream |
typedef | constdef

box → box id
in (links)
out (links)
match matches

links → link [, links]∗

link → var::type
matches → match [| matches]∗

match → pattern -> exps
pattern → patt [, pattern]∗

patt → int | var | ∗
exps → exp [, exps]∗

exp → int | var | (exp) | exp op exp | ∗ |
« exps » | exp @ exp

op → + | - | * | /
wire → wire id (inwires) (outwires)
inwires → inwire[, inwire]∗

inwire → id[.var[initially int]]
outwires → outwire[, outwire]∗

outwire → id[.var]
stream → stream id { from | to } " path "
constdef → uid = int
typedef → type var = type
type → var | int int |

vector int of type

Figure 3. mHume syntax.

Figure 4 and listings 1 and 2 give the description in mHume
of a very basic single-layerperceptron[14] which can learn how to
compute any linearly separable two-inputs binary function.

Basically, the goal of this application is to compute a setW =
{wj}j=0...M of factors (calledweights) such that a given binary
function f(e1, . . . , eM) (whereei ∈ {0, 1}) can be computed as
H(

PM
j=0 wj ej), whereH is the Heaviside function ande0 = 1.

This setW is obtained bylearning, using atraining set D =
{xi, ti}i=1...N , where

• xi = {ei,j}j=1...M is aninput vector,

• ti is the desired (expected) output of the perceptron for that
input vector.

Learning operates by successive steps. At stepi :

1. theith element of the training set is read,

2. the output of the perceptron is computed, assi = H(W.xi) =
H(

PM
j=0 wj ei,j) (feed-forwardphase),

3. the computed outputsi is compared to the expected outputti,
giving acorrecting factor∆ = si − ti,

4. the weights inW are updated accordingly :wj ← wj +∆.ei,j .

This proceeds until stabilisation, which is detected when the
weights are not modified (∆ = 0) for at leastM successive steps.
It has been shown that this algorithm converges in a finite number
of steps if the data set is linearly separable. In our case, the initial
set of weight is set (arbitrarily) to{0, . . . , 0}. If the learning set is
exhausted before stabilisation, it is repeated as needed.

In the corresponding program (listings 1 and 2) :

• box i reads the training set on the input stream as a sequence
of vectors and outputs the input vector and the expected output.
For instance, the training set for a perceptron learning a two-
input OR function will be given as

v

e1 e2 e3 t
i

s

p1 p2 p3

s

e

n2

st d ep w

enstn p wn wc

FFWD 0

e

n1

st d ep w

enstn p wn wc

FFWD 0

e

n3

st d ep w

enstn p wn wc

FFWD 0

d

s t

bx

x1

dup
x2
x3
x4

inp

1 0o
wnf cn nn

w3w1 w2 c nd

outp1 outp2

Figure 4. Perceptron program.

<< 0 0 0 >>
<< 0 1 1 >>
<< 1 0 1 >>
<< 1 1 1 >>
<< 0 0 0 >>
<< 0 1 1 >>
...

• The n1, n2 andn3 boxes implement the three neurons com-
posing the single layer of this very simple perceptron1. Each
of these boxes alternate between two modes of behavior, gov-
erned by the valuest. If st=FFWD (feed-forward), the product
pj = wj ∗ ej is computed and output. Ifst=UPDW, the current
weightwj is updated using theDelta value fed back by theb
box and the saved value of the inputei.

• Thes box just sums and thresholds the productspi computed
by the neurons in the feed-forward phase.

• Theb box computes the∆ correcting factor by comparing the
computed output to the expected output.

• The o box controls the iterations of the algorithm. It counts
(c) the number of steps for which∆ (d) is 0. As soon as this
count reaches a predefined valueL – which is normally set to
the effective length of the learning set, 4 in our case –, it outputs
the numbern of steps performed so far along with the final value
of the weights.

1 In listing. 1, the code ofn2 andn3 is identical to that ofn1 and has been
omitted.

Listing 1. Perceptron program Code
stream i np from " o r 2 _ t r a i n i n g . d a t " ;
stream outp1 to " ou t1 . d a t " ;
stream outp2 to " ou t2 . d a t " ;

type d i n t = i n t 6 ;
type s t a t e = i n t 1 ;
cons tan t FFWD = 0 ; −− Feed−fo rward
cons tan t UPDW = 1 ; −− Update w e i g h t s
cons tan t L=4; −− l e a r n i n g _ s e t _ l e n g t h

box i
i n (v : : v e c t o r 3 of d i n t)

out (e1 : : d i n t , e2 : : d i n t , e3 : : d i n t , t : : d i n t)
match

(v) −> (1 , v@0, v@1, v@2) ;

box n1
i n (s t : : s t a t e , −− s t a t e

d : : d i n t , −− DeltaW
e : : d i n t , −− i n p u t
ep : : d i n t , −− saved i n p u t
w : : d i n t) −− c u r r e n t we igh t

out (s t n : : s t a t e ,−− n e x t s t a t e
p : : d i n t , −− o u t p u t
en : : d i n t , −− saved i n p u t
wn : : d i n t , −− r e c i r c u l a t e d we igh t
wc : : d i n t) −− copy f o r o u t p u t

match
(FFWD, ∗ , e , ∗ , w) −> (UPDW, e∗w, e , w, w)

| (UPDW, d , ∗ , e , w) −> (FFWD, ∗ , ∗ , w+d∗e , ∗) ;

box n2 , n3 . . . −− idem n1

box s
i n (p1 : : d i n t , p2 : : d i n t , p3 : : d i n t)

out (s : : d i n t)
match

(p1 , p2 , p3) −> i f p1+p2+p3 > 0 then 1 e l s e 0 ;

box b
i n (s : : d i n t , −− computed re spo ns e

t : : d i n t) −− e x p e c t e d re spo nse
out (d : : d i n t) −− DeltaW
match

(s , t) −> t−s ;

box dup
i n (x : : d i n t)

out (x1 : : d i n t , x2 : : d i n t , x3 : : d i n t , x4 : : d i n t)
match

(x) −> (x , x , x , x) ;

• Thedup box simply broadcasts the value∆ computed byb to
n1, n2, n3 ando for updating the weights and potential output
respectively2.

3. Compiling Hume for FPGAs
The “classical” Hume’s tool chain for implementing Hume on
CPUs is based on the Hume Abstract Machine (HAM) which
provides a unitary locus for consistent implementation and resource
analysis. Thus, a standard compiler generates HAM code from
Hume which may be:

• interpreted directly on the HAM;

2 The dynamic semantics of Hume does not allow a wire to connect one
output to several inputs.

Listing 2. Perceptron program Code (continued)

box o
i n (w1 : : d i n t , w2 : : d i n t , w3 : : d i n t ,

d : : d i n t , c : : i n t 8 , n : : i n t 8)
out (n f : : i n t 8 , w : : v e c t o r 3 of d i n t ,

cn : : i n t 8 , nn : : i n t 8)
match

(w1 , w2 , w3 , d , c , 0)−> (∗ , ∗ , ∗ , ∗) −− done
| (w1 , w2 , w3 , 0 , 0 , n)−> (∗ , ∗ , 1 , n +1)
| (w1 , w2 , w3 , 0 , L , n) −> (n , <<w1 , w2 , w3> > , L , 0)
| (w1 , w2 , w3 , 0 , c , n)−> (∗ , ∗ , c +1 , n +1)
| (w1 , w2 , w3 , d , c , n)−> (∗ , ∗ , 0 , n + 1) ;

wire i (i np) (n1 . e , n2 . e , n3 . e , b . t) ;
wire n1 (n1 . s t n i n i t i a l l y 0 , dup . x1 , i . e1 ,

n1 . en , n1 . wn i n i t i a l l y 0)
(n1 . s t , s . p1 , n1 . ep , n1 .w, o . w1) ;

wire n2 (n2 . s t n i n i t i a l l y 0 , dup . x2 , i . e2 ,
n2 . en , n2 . wn i n i t i a l l y 0)

(n2 . s t , s . p2 , n2 . ep , n2 .w, o . w2) ;
wire n3 (n3 . s t n i n i t i a l l y 0 , dup . x3 , i . e3 ,

n3 . en , n3 . wn i n i t i a l l y 0)
(n3 . s t , s . p3 , n3 . ep , n3 .w, o . w3) ;

wire s (n1 . p , n2 . p , n3 . p) (b . s) ;
wire b (s . s , i . t) (dup . x) ;
wire dup (b . d) (n1 . d , n2 . d , n3 . d , o . d) ;
wire o (n1 . wc , n2 . wc , n3 . wc , dup . x4 ,

o . cn i n i t i a l l y 0 , o . nn i n i t i a l l y 1)
(outp1 , outp2 , o . c , o . n) ;

• further compiled to native code, for example via C;

• analysed to identify resource bounds, for example via an amor-
tised type system implemented within the Isabelle theorem-
prover.

The first and easier way for executing Hume program on a
FPGA is to use asoft-core-based approach [1, 2] and have the CPU
core(s) implemented on the FPGA and executing either

• the HAM interpreter, itself executing HAM code;

• HAM code compiled to native code;

• Hume programs compiled directly via C to native code.

All these routes can offer consistent, scalable speedup but the scal-
ability is ultimately limited by the number of cores that can imple-
mented on a FPGA (typically a few dozens on a high-end FPGA
with the current technology). This coarse-grained approach there-
fore cannot exploit the full potential of massive fine grain paral-
lelism offered by FPGAs. It also generally leads to a considerable
waste of hardware resources since it frequently happens that not all
the computational units of the instantiated CPU cores are required
to run a specific application. Finally, because of the relatively lim-
ited clock frequencies, the solutions are, in most cases, markedly
slow compared with the equivalent routes on proprietary CPUs.

Fully exploiting the huge amount of fine grain parallelism of-
fered by FPGAs requires a more radical approach. In the current
state-of-the-art, what is needed is aregister transfer leveldescrip-
tion of the application. Register transfer level (RTL) is a level of
abstraction in which the circuit’s behavior is defined in terms of
data transfers between synchronous registers, all synchronized by
the same clock, and the logical operations performed on those
data. RTL descriptions are typically written using hardware de-
scription languages such as VHDL or Verilog and are accepted by
hardware synthetizers provided by FPGA vendors to produce opti-
mized, target-specific, gate-level netlists.

b1 b2
w

b1 b b2
din dout

full

wr

empty

rd

(a) (b)

Figure 5. Network generation. (a) Initial box structure (b) After
buffer insertion

In the sequel, we therefore describe a compilation process,
transforming mHume programs into synthetizable, RT-level VHDL.
This process basically involves three phases : network generation,
box translation and VHDL transcription.

3.1 Network generation

In this phase, we derive astructuraldescription of the program as a
network of components, where a component represent either a box
or a wire of the original program. The process is sketched on Fig. 5.
The key issue here is that Humewiresare not mapped to physical
wires (VHDL signals) but to a dedicated component that we call a
buffer. A buffer has one input and one output corresponding to the
initial wire and four extra control signals :full, empty, rd and
wr. Thefull (resp.empty) signal tells whether the buffer is ready
for reading (resp. writing); it will be used by the box connected to
its output (resp. input). Therd (resp.wr) signal, when asserted to
1, actually pops (resp. pushes) the value from (resp. to) the buffer,
passing it from the full (resp. empty) to the empty (resp. full) state.

3.2 Box translation

In this phase, each box of the original Hume program is translated
into a finite state machine (FSM). This translation process closely
follows the dynamic semantics of the language, in which a box can
be in two different states :Ready(awaiting input) orBlockedOut
(output pending).

Since we are targeting a RT-level description, all transitions will
be triggered by a globalclock signal. This means that all boxes
will actually change state simultaneously. Often, and as pointed out
by G. Berry in [4] for instance, complex software solutions become
trivial when described in hardware, because parallelism comes for
free at this level. Here, this dramatically simplifies the scheduling
algorithm, which can be rewritten as follows :

At each clock cycle
For each box b , in parallel, do

if b.state = Ready then
if a fireable rule r can be found in b.rules

read inputs for rule r ;
b.state <- BlockedOut

end if
else if b.state = BlockedOut then

if outputs for the selected rule r are writable
write outputs for rule r ;
b.state <- Ready

end if
end if

end for

Each box can be therefore be described as a finite state machine
(FSM) having nrules + 1 states : one state corresponding to
the Readystate in the previous algorithm and one state per rule,
corresponding to theBlockedOutstate for the corresponding rule.
This transformation is illustrated on Fig. 6. Each transition in the
resulting FSM is labelled with a set ofconditionsand a set of
actions(denotedConditions/Actionson the diagram).

At each ruleri we associate two sets of conditions and two sets
of actions :

box b
 in (...)
 out (...)
match
 pats_1 -> exps_1
| ...
| pats_i -> exps_i
| ...
| pats_n -> exps_n
;

Rdy

BO1

BOn

BOi

Cr[ri] / Ar[ri]

Cw[ri] / Aw[ri]

.
.

.
.

Figure 6. Translation of a box into a FSM

• the setCr(ri) denotes the firing conditions for ruleri, i.e. the
conditions on the inputs that must be verified for the corre-
sponding rule to be selected;

• the setAr(ri) denotes the firing actions for ruleri, i.e. the
read operations that must be performed on the inputs when the
corresponding rule is selected;

• the setCw(ri) denotes the writing conditions for ruleri, i.e.
the conditions on the outputs that must be verified when the
corresponding rule has been selected;

• the setAw(ri) denotes the writing actions for ruleri, i.e. the
write operations that must be performed on the outputs when
the corresponding rule has been selected.

There are

• two possible firing conditions :Avail(j), meaning that thejth

input is ready for reading, andMatch(j, pat), meaning that the
jth input matches patternpat;

• one firing action,Bind(j, pat), meaning "readjth input and
match the corresponding pattern against patternpat";

• one writing condition,Avail(j) meaning that thejth output is
ready for writing;

• one writing action,Write(j, exp), meaning "evaluate expres-
sionexp and write the corresponding value on thejth output"3.

Table 1 summarizes the rules for computing the setsCr, Ar

(resp.Cw andAw) from the patterns (resp. expressions) composing
a box rule. The FSM obtained for thesquare box introduced in
Sec. 2.2 is given in Fig. 7.

CrJpat1, ..., patnK =
Sn

i=1 C′
rJi, patiK

C′
rJi, varK = {Avail(i)}

C′
rJi, patK = {Avail(i), Match(i, pat)}
C′

rJi, ∗K = ∅
ArJpat1, ..., patnK =

Sn
i=1 A′

rJi, patiK
A′

rJi, constK = ∅
A′

rJi, patK = {Bind(i, pat)}
A′

rJi, ∗K = ∅
CwJexp1, ..., expnK =

Sn
i=1 C′

wJi, expiK
C′

wJi, expK = {Avail(i)}
C′

wJi, ∗K = ∅
AwJexp1, ..., expnK =

Sn
i=1 A′

wJi, expiK
A′

wJi, expK = {Write(i, exp)}
A′

wJi, ∗K = ∅

Table 1. Rules for computing the setsCr, Ar, Cw andAw

3 This evaluation takes place in an environment augmented with the bind-
ings resulting from the corresponding firing action; for the sake of readabil-
ity environments have been left implicit here.

Rdy

BO1

BO3

BO2

Avail(2),Avail(3),Avail(4) /
Bind(2,s),Bind(3,c),Bind(4,v)

Avail(2),Avail(3),Avail(4) /
Write(2,s+v),Write(3,c-1),Write(4,v)

Avail(2),Avail(3),Avail(4),Match(3,0) /
Bind(2,s),Bind(4,v)

Avail(1) / Write(1,s)

Avail(1) / Bind(1,i)

Avail(2),Avail(3),Avail(4) /
Write(2,0), Write(3,i), Write(4,i)

.
.
.

.
.
.

Figure 7. FSM for thesquare box

Rdy BOi

Avail(j)/
Bind(j)

Avail(k)/
Write(k,e)

Rdy Ri

I[j].full /
v := I[j].data

O[k].empty /
O[k].data := e

I[j].rd=0
O[j'].wr=0;

Ri'

I[j].rd=1
O[k].wr=0;

I[j].rd=0
O[k].wr=1;

Figure 8. Transformation of the FSM to generate therd andwr
signals (I[j] and O[k] respectively refer to thejth input andkth

output of the box)

3.3 Transcription to VHDL

The transcription in VHDL of the network derived in Sec. 3.1 boils
down to instantiating the components forming this network and
declaring the interconnection wires. The complete Hume program
is turned into a VHDL component. The inputs and outputs of this
component correspond to the I/O streams declared in this program.
This makes it possible to automatically generate atestbenchfor the
resulting VHDL design, in which the original input (resp. output)
data streams are provided (resp. displayed) by specific VHDL pro-
cesses reading samples from (resp. writing results to) to files for
example.

Converting the FSM representation of boxes into VHDL is a
little bit more involved. TheAvail condition on an input (resp.
output) is reflected directly into the value of thefull (resp.empty)
signal connected to this input (resp. output). But, because reading
/ writing is actually triggered by asserting the correspondingrd
(resp wr) signals, an extra state must be added for each rule.
This transformation is illustrated in Fig. 8 on a simple, mono-rule,
example.

Since the syntax of the box-level expressions is very simple in
mHume, the conversion of these expressions can be handled using
a very simple syntax-directed function.

Listing. 3 gives the VHDL code generated for theinc box of
the example introduced in figures 1 and 2:

• Lines 1-13 give the interface of the component. Hume integers
are translated to VHDLstd_logic_vectors. As explained in
Fig. 5, then, n_empty andn_rd signals correspond to then
original input. Similarly, ther, r_full and r_wr (resp.nn,
nn_full and nn_wr) signals correspond to ther (resp.n’)
original output. The two other input signals are the global clock
and a reset for hardware initialization.

• The behavior of the box is made explicit in its architecture, lines
15-51. This architecture describes a synchronous FSM.

• The state variable is declared in line 17, its type being declared
in line 16. Here the box has only one rule, so there are three
states. The behavior itself is made explicit as aprocesssensitive

to theclock andreset signals (line 19). This process uses a
internal variabler1_n.

• This variable memorizes the value obtained when the pattern of
rule r1 is bound (line 31)4.

• The core of the process – which, according to VHDL execu-
tion model, is executed whenever the signalclock or reset
changes value – is between line 21 and 50.

• Lines 22-26 handles asynchronous reset : the process state is
reset toReadyand read/write signals are set to 0.

• Lines 28-48 describe what happens when a rising edge occurs
on theclock input signal. This part is written in a classical
style, as a bigcase construct inspecting the value of the process
state and, for each possible state, deciding on the actions to
perform and the next state.

• For example, lines 30-33 require that if process (box) is in the
Readystate and a value is available on inputn (line 30), then
this value is copied (line 31), the read signal is asserted (line
32) and the next state will beR1a (line 33).

• In stateR1a (lines 36-42), the read signal is reset to 0 and the
availability of the output link is tested (line 37). If yes, the
outputs are written (line 38-41) and the next state will beR1b.

4. Experimental results
Evaluation of the generated VHDL code has been carried out us-
ing the Altera Quartus II v9.0 tool chain, first by simulating the
generated RTL code and then by synthetizing it on a target FPGA.

For simulation, two specific, hand-written, VHDL processes
allow stream inputs and outputs to be read from and written to files.

Simulation results, for theperceptron example introduced in
Sec. 2.2, are displayed in Fig. 9 for the training set of a two-input
OR function mentioned in Sec. 2.2. Trace names match those given
in Fig. 4 and listing 1; for examplen1.w shows the evolution of the
w output of boxn1. The clock period has been arbitrarily fixed to
10 ns and input vectors are input every 16 clock cycles. The pro-
gram correctly terminates with the following outputs :outp1=14,
outp2=«0 1 1».

We performed the synthesis of this example on aStratixEP1S80
FPGA. This is a medium-sized device, embedding 79040 logic
cells and 7 Mbits of RAM. The default parameters for the syn-
thetizer were used. The synthetized solution occupies 687 cells
(less than 1%) and runs at a maximum clock frequency of 142
MHz. Fig. 10 is a top level view of the synthetized network. The
four bigger boxes implement then1, n2, n3 ando boxes. The mid
size boxes correspond to thes andb boxes and the smaller boxes
represent buffers. Fig. 11 shows the gate-level implementation of
a buffer for a 1-bit wide wire. Fig. 12 shows the hardware archi-
tecture inferred by the synthetizer for thes box. The most easily
recognizable elements are the collection of registers (memorizing
the inputsp1, p2 andp3 and the outputs) and the two adders and
comparator (drawn as small circles) which perform the basic func-
tion of the box. The rectangular box at center left implements the
FSM control.

5. Related work
There have been a number of functional approaches to parallel
and/or FPGA programming, drawing on the classic FP strength
of higher order abstraction to compose components for hardware
realisation.

4 Currently, a variable is introduced for each pattern appearing in each rule
LHS. This can lead to redundancy and will be optimized in future versions
of the compiler.

Listing 3. VHDL code generated for theinc box
1 e n t i t y i nc_box i s
2 por t (n_empty : i n s t d _ l o g i c ;
3 n : i n s t d _ l o g i c _ v e c t o r (31downto 0) ;
4 n_rd : out s t d _ l o g i c ;
5 r _ f u l l : i n s t d _ l o g i c ;
6 r : out s t d _ l o g i c _ v e c t o r (31downto 0) ;
7 r_wr : out s t d _ l o g i c ;
8 n n _ f u l l : i n s t d _ l o g i c ;
9 nn : out s t d _ l o g i c _ v e c t o r (31downto 0) ;

10 nn_wr : out s t d _ l o g i c ;
11 c l o c k : i n s t d _ l o g i c ;
12 r e s e t : i n s t d _ l o g i c) ;
13 end i nc_box ;
14
15 a r c h i t e c t u r e FSM of i nc_box i s
16 type t _ s t a t e i s (R1a , R1b , Ready) ;
17 s i g n a l s t a t e : t _ s t a t e ;
18 begin
19 process(c lock , r e s e t)
20 v a r i a b l e r1_n : s t d _ l o g i c _ v e c t o r (31downto 0) ;
21 begin
22 i f (r e s e t = ’0 ’) then
23 s t a t e <= Ready ;
24 n_rd <= ’0 ’ ;
25 r_wr <= ’0 ’ ;
26 nn_wr <= ’0 ’ ;
27 e l s i f r i s i n g _ e d g e (c l o c k) then
28 case s t a t e i s
29 when Ready =>
30 i f n_empty = ’0 ’ then
31 r1_n := n ;
32 n_rd <= ’1 ’ ;
33 s t a t e <= R1a ;
34 end i f ;
35 when R1a =>
36 n_rd <= ’0 ’ ;
37 i f n n _ f u l l = ’0 ’ and r _ f u l l = ’0 ’ then
38 nn <= r1_n +1;
39 nn_wr <= ’1 ’ ;
40 r <= r1_n ;
41 r_wr <= ’1 ’ ;
42 s t a t e <= R1b ;
43 end i f ;
44 when R1b =>
45 nn_wr <= ’0 ’ ;
46 r_wr <= ’0 ’ ;
47 s t a t e <= Ready ;
48 end case;
49 end i f ;
50 end process;
51 end FSM;

Figure 11. Gate-level architecture of a 1-bit buffer

Lava [5] augments Haskell with modules for hardware descrip-
tion. The Lava tool chain generates VHDL. Sheeran [16] provides
a useful reflection on Lava’s origins. Several groups are actively
developing Lava, most noticeably Kansas Lava [6].

CλaSH [3] is another language/toolchain for translating a subset
of Haskell into synthetizable VHDL.

The Kiwi project has recently been complemented with the use
of F# [17], a Standard ML derivation. Here, common middleware
for all .Net compliant languages eases the route to VHDL.

Gannet [18] is a functional approach for configuring Systems on
a Chip components. Gannet is in the Scheme tradition of dynam-
ically typed, syntax-light languages and is realised in a SystemC
tool chain.

In a slightly different context, the CAPH dataflow language [15],
for programming real-time stream-processing applications on FP-
GAs, share many ideas with Hume. Both are based between a clean
distinction between an expression layer for expressing the behavior
of individual boxes and a coordination layer. In both languages, be-
havior is expressed as a set of transition rules using pattern match-
ing. But the execution models are different since CAPH models
box interconnections as buffering, FIFO channels and boxes (ac-
tors) can hold state variables.

6. Conclusion
We have presented an approach to the automatic generation of
FPGA configurations from mHume programs and have shown, for
small examples, that it can achieve good silicon utilisation and
performance.

The work presented should essentially be viewed as a proof-of-
concept. We plan to extend and improve it in several ways.

First, by expanding the expressiveness of the computation layer
to encompass a larger subset of the full Hume language (while
keeping a tractable path down to RTL code).

Second, by integrating a macro-language for specifying com-
plex networks in a modular fashion. Such a language could be de-
rived, for instance, from the box template / instanciation mecha-
nism introduced in the latest version of the Hume language.

Third, by trying to apply the Hume box calculus [7, 8, 13] to the
(semi)-automatic derivation of the relatively low-level formulations
of mHume programs from higher levels specifications (as a set of
function calls for instance).

Fourth, by exploring the development of static analyses at the
mHume level that will enable prediction of time and space be-
haviour, and of silicon occupancy, of FPGA implementations.

Fifth, and correlatively, by systematically evaluating larger and
more complex examples, to assess how well the approach scales.

Most of these extensions will take advantage of Hume’s explicit
separation of coordination and computation. The coordination con-
structs described here are common to all Hume programming lev-
els, providing a good foundation for further implementation. We
also plan to exploit the strong similarities between the Hume and
CAPH languages at the computation level.

References
[1] A. Al Zain, W. Vanderbauwhede, and G. Michaelson. Hume on FPGA.

In Draft Proceedings of 10th International Symposium on Trends in
Functional Programming (TFP10), University of Oklahoma, Oklahoma,
USA, 2010.

[2] A. Al Zain, G. Michaelson, and W. Vanderbauwhede. mHume for Par-
allel FPGA. InDraft proceedings of 22nd International Symposium on
Implementation and Application of Functional Languages, Amsterdam,
September 2010.

[3] C. Baaij, M. Kooijman, J. Kuper, W.A. Boeijink and M. Gerards.
CλaSH: Structural Descriptions of Synchronous Hardware using
Haskell. In Proceedings of the 13th EUROMICRO Conference on

Digital System Design: Architectures, Methods and Tools (DSD 2010),
Sep 2010, Lille, France.

[4] G. Berry.Penser, modéliser et maîtriser le calcul informatique. Fayard,
2009.

[5] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell.SIGPLAN Not., 34:174–184, September 1998.

[6] A.Gill, T. Bull, G. Kimmell, E.Perrins, E. Komp, and B. Werling.
Introducing Kansas Lava. In21st International Symposium on
Implementation and Application of Functional Languages. LNCS 6041,
LNCS 6041, 11/2009 2009.

[7] G. Grov. Reasoning about correctness properties of a coordination
language. PhD, Heriot-Watt University, 2009.

[8] G. Grov and G. Michaelson. Hume box calculus: robust system
development through software transformation.Higher Order Symbolic
Computing, Vol 23, No 2, pp 191-226, July, 2012.

[9] K. Hammond and G. Michaelson. Hume: a Domain-Specific Language
for Real-Time Embedded Systems. InProc. GPCE 2003: Intl. Conf.
on Generative Prog. and Comp. Eng., Erfurt, Germany, pages 37–56.
Springer-Verlag LNCS 2830, Sep. 2003.

[10] K. Hammond, C. Ferdinand, R. Heckmann, R. Dyckhoff, M.
Hoffmann, S. Jost, H-W. Loidl, G. Michaelson, R. Pointon, N. Scaife, J.
Sérot and A. Wallace. Towards Formally Verifiable Resource Bounds for
Real-Time Embedded Systems. InACM SIGBED Review- Special issues
on Workshop on Innovative Techniques for Certification of Embedded
Systems 2006 (ITCES06), 3(4), October 2006, pp 27-36.

[11] C. A. Herrmann, A. Bonenfant, K. Hammond, S. Jost, H-W. Loidl and
R. Pointon. Automatic Amortised Worst-Case Execution Time Analysis.
In 7th Int’l Workshop on Worst-Case Execution Time (WCET) Analysis,
Pisa, Italy, July, 2007,pp 13-18.

[12] , G. Michaelson, K. Hammond and J. Serot. FSM-Hume is Finite
State. In S. Gilmore (Ed),Trends in Functional Programming 4, Intellect,
2004, pp 19-28.

[13] G. Michaelson and G. Grov. Reasoning about multi-process systems
with the box calculus. InProceedings of 4th Central European Summer
Functional Programming School (CEFP 2011), Springer,2012.

[14] , F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Republished in J.A. Anderson and
E. Rosenfeld (Eds),Neurocomputing. Foundations of Research, MIT
Press, 1988.

[15] J. Sérot, F. Berry and S. Ahmed. Implementing stream-processing
applications on FPGAs : a DSL-based approach. In21st International
Conference on Field Programmable Logic and Applications, Chania,
Crete, Sep 2011

[16] M. Sheeran. Hardware design and functional programming: a perfect
match.Journal of Universal Computer Science, 11(7):1135–1158, 2005.

[17] S. Singh. Kiwi Synthesis of C# and F# Combinational Circuit Models
into FPGA Circuits.Satnam Singh’s MSDN Blog, April 2010.

[18] W. Vanderbauwhede. Gannet: a Scheme for Task-level Reconfigu-
ration of Service-based Systems-on-Chip. InProceedings of 8th ACM
Workshop on Scheme and Functional Programming. Universite Laval,
CA. ACM, 2007.

Figure 9. Simulation results for theperceptron example

Figure 10. Top-level synthetized network for theperceptron example

Figure 12. Synthetized RTL architecture for thes box

