
Compiling Hume down to gates

J. Sérot1 and G. Michaelson2

1 LASMEA, Université Blaise Pascal/CNRS, France,
Jocelyn.Serot@lasmea.univ-bpclermont.fr

2 Heriot-Watt University, Edinburgh, Scotland
G.Michaelson@hw.ac.uk

Abstract. We describe the implementation of a subset of the Hume pro-
gramming language on a FPGA architecture at the gate level. Hume is a
domain specific language for developping multi-process systems requir-
ing strong static guarantees that resource bounds are met. The compiler
produces RT-level, synthetizable VHDL code that can be processed by a
standard tool chain to program FPGAs at the gate level. Preliminary re-
sults suggest that this compilation route offers substantial opportunities
for exploiting fine-grain parallelism in Hume programs. The approach
also offers an significantly higher abstraction level than that offered by
traditional hardware description languages such as VHDL or Verilog.

1 Introduction

1.1 Overview

Field Programmable Gate Areas (FPGAs) have long been promoted as a solution
to the direct realisation of software in hardware. While CPUs offer very fast
execution in hardware of low level instructions, a specific CPU design may not
be optimal for individual programs. In contrast, in principle, an FPGA may be
directly configured to realise a specific program.

And FPGAs have long been promoted as a way out of the restrictions of spe-
cific CPU designs on system scalability. While fabrication technology is rapidly
increasing the number of processing elements in multi-core CPUS, nonetheless
such cores are necessarily in some fixed configuration which may not be opti-
mal for an arbitrary problem. In contrast, in principle, an FPGA of sufficient
size may implement an arbitrary number of processing elements with arbitrary
interconnections.

Nonetheless, there are immense practical problems in realising the full poten-
tial of FPGAs. In particular, FPGAs are very low level devices requiring expert
understanding of hardware concerns to gain best performance. Thus, there has
been considerable research into developing both languages for describing FPGA
configurations at considerably higher levels of abstraction, and tool chains for
seamlessly realising such abstracted configurations in hardware.

1.2 High-level imperative FPGA programming

High level hardware description languages (HDLs) are now very widely used
for programming FPGAs. Such HDLs typically expose very low level hardware
concerns within higher level type and control constructs, and have tool chains to
generate gate-level descriptions from register-transfer level descriptions (RTL),
for realisation ultimately in an Application Specific Integrated Circuit (ASIC)
or configured FPGA.

The widely used Verilog[10] was strongly influenced by C. Similarly, the
widely used and somewhat higher level VHDLwas strongly influenced by Ada.
Both languages offer tool chains to RTL but have very restricted data types and
control constructs.

At a higher level again, SystemCis based on library extensions to C++ and
Handel-C[4] augments a C subset with hardware-oriented constructs. Both Sys-
temC and Handel-C may be compiled to lower level HDLs for hardware realisa-
tion.

Microsoft’s Kiwi project[9] is exploring the use of high level languages for
hardware description within the .Net framework. The main focus is on C# with
translation to VHDL.

HDLs are substantial improvements on traditional low level diagrammatic
hardware design techniques. However, like system programming languages, they
offer uneasy compromises between the higher and lower levels. First of all, HDLs
usually build from bit or wire level components requiring expert understanding
for effective use. Furthermore, they typically offer a subset of a full high level
language, for example restricting types and control constructs, while nonethe-
less retaining high level constructs which may be simulated but not realised in
hardware.

Finally, the marriage of a conventional imperative language with hardware
oriented extensions is not always amicable. As the anonymous “bob” comments
on the Kiwi project[9]:

bob 14 Nov 2010 9:49 PM: the vhdl code was cleaner and easier to un-
derstand than the C# code...

1.3 Functional FPGA programming

There are also a number of functional approaches to FPGA programming, draw-
ing on the classic FP strength of higher order abstraction to compose components
for hardware realisation.

Lava[3] augments Haskell with modules for hardware description. The Lava
tool chain generates VHDL. Sheeran[8] provides a useful reflection on Lava’s
origins. Several groups are actively developing Lava, for example Kansas Lava[5].

The Kiwi project has recently been complemented with the use of F#[9],
a Standard ML derivation. Here, common middleware for all .Net compliant
languages eases the route to VHDL.

Gannet[11] is a functional approach for configuring Systems on a Chip com-
ponents. Gannet is in the Scheme tradition of dynamically typed, syntax-light
languages and is realised in a SystemC tool chain.

All these functional approaches share the same problems of high level im-
perative languages for FPGA programming, that is the requirement for deep
understanding of hardware architectures and restrictions on which high level
constructs can be realised in hardware. Here, the inability to realise arbitrary
recursion is particularly problematic given the statelessness of functional lan-
guages. Furthermore, functional languages bring the long standing difficulty of
lack of familiarity for mainstream programmers and hardware designers.

1.4 Hume and FPGAs

Hume[6] is a contemporary language for developing multi-process systems re-
quiring strong static guarantees that resource bounds are met. With roots in
polymorphic functional languages, Hume is distinguished by an explicit separa-
tion of coordination and expression layer. The coordination layer, for configuring
independent communicating processes, is based on concurrent finite state boxes
connected by single-buffered wires. The expression layer defines control within
boxes and is based on pattern matching on input values to enable general recur-
sive actions to generate output values.

A crucial feature of Hume is that the expression layer is state free, with
all local variable instantiations lost between execution cycles. However, in the
coordination layer state is retained on wires. In particular, feedback wires from
a box’s outputs to its inputs enable individual boxes to retain state between
execution cycles, and are the basis of box iteration.

Hume’s tool chain is strongly based on the Hume Abstract Machine (HAM)
which provides a unitary locus for consistent implementation and resource anal-
ysis. Thus, a standard compiler generates HAM code from Hume which may
be:

– interpreted directly on the HAM;
– further compiled to native code, for example via C;
– analysed to identify resource bounds, for example via an amortised type

system implemented within Isabelle.

A number of routes have been explored for implementing Hume on FPGAs.
These include executing:

– HAM code on the HAM on single Power PC core[1];
– HAM code compiled to native code on single Power PC and microBlaze

cores[1];
– Hume compiled directly via C to native code on multiple microBlaze cores[12].

All routes offer consistent, scalable speedup, but are nonetheless markedly slow
compared with the equivalent routes on proprietary CPUs.

The Reduceron[7] is a soft core for an FPGA, implementing an abstract graph
reduction machine for a minimal non-strict, higher order functional programming

language. It would be interesting to evaluate the Reduceron against the Hume
abstract machine on FPGA: it is likely that the performance limitations of lazy
evaluation are substantially outweighed by direct implementation of the abstract
machine rather than via another soft core.

Nonetheless, we think that Hume’s explicit separation of coordination and
control addresses the problems encountered in other high level approaches to
FPGA programming as discussed above, and offers a basis for direct realisation
via a HDL.

Hume was explicitly intended for use as a multi-level language sharing a com-
mon coordination form. Each level reflects different restrictions on expressivity,
in particular in the allowed use of types and functional forms, from Hardware
Hume (HW-Hume), restricted to pattern matching on bit patterns, to full Hume
which is Turing complete. Each level has different formal properties, so HW-
Hume has decidable time and space behaviour and full Hume shares all the
undecidability restrictions of Turing completeness.

Thus, given a base FPGA realisation of box coordination alone, then the
expressivity at the control level might also be varied to reflect the sophistication
of hardware compilation. We anticipate that Finite State Hume (FSM-Hume),
which augments HW-Hume with fixed size types and arithmetic/logic operations,
will be an excellent starting point for direct HDL implementation. Subsequently,
Template Hume, which provides a fixed repertoire of higher order functions, of-
fers a framework for exploring functional abstraction in composing hardware
components, drawing on the experiences of the pure functional approaches dis-
cussed above.

Furthermore, we think that Hume coordination offers an appropriate degree
of abstraction from hardware realisation, enabling efficient implementation with-
out requiring deep knowledge of underlying hardware.

Finally, Hume encourages a box-based approach to software design. This,
along with the notion of state machines, is very familiar to hardware designers
which may ease acceptability beyond our perfectly formed but nonetheless very
small community.

In subsequent sections we: introduce Hume and a running example in slightly
more detail; give a short presentation of the VHDL programming language;
describe our compilation route from Hume to VHDL; explore compilation of the
example; and evaluate its performance on an FPGA.

2 mHume

mHume[12] is an evolving experimental version of Hume. Based around the full
coordination layer, it provides a platform for exploring the direct compilation of
different expression layer instantiations without going through the HAM. The
mHume syntax is summarised in Figure 1. [12] describes direct compilation to
C. The mHume syntax is summarised in Figure 1.

program → [component;]+

component → box | wire |
stream | typedef

box → box id
in (links)
out (links)
match matches

links → link [, links]∗

link → var::type
matches → match [| matches]∗

match → pattern -> exps
pattern → patt [, pattern]∗

patt → int | var | ∗
exps → exp [, exps]∗

exp → int | var | (exp) | exp op exp | ∗
op → + | - | * | /
wire → wire id (inwires) (outwires)
inwires → inwire[, inwire]∗

inwire → id[.var[initially int]]
outwires → outwire[, outwire]∗

outwire → id[.var]
stream → stream id { from | to } " path "
typedef → type var = type
type → var | int int

Fig. 1. mHume syntax.

The example in Figures 2 and 3, from [12], finds the squares of successive
integers by repeated addition. Here a minimal expression layer for integers and
integer operations is used.

square

r n’

i s c v

n

s’ c’o

inc

output

v’

Fig. 2. Square program.

1 type integer = int 64;

2 box inc
3 in (n::integer)
4 out (r::integer,n’::integer)
5 match (n) -> (n,n+1);

6 box square
7 in (i::integer,s::integer,
8 c::integer,v::integer)
9 out (o’::integer,s’::integer,

10 c’::integer,v’::integer)
11 match
12 (*,s,0,v) -> (s,*,*,*) |
13 (*,s,c,v) -> (*,s+v,c-1,v) |
14 (i,*,*,*) -> (*,0,i,i);

15 stream output to "std_out";

16 wire inc (inc.n’ initially 0)
17 (square.i,inc.n);

18 wire square
19 (inc.r,square.s’,square.c’,square.v’)
20 (output,square.s,square.c,square.v);

Fig. 3. Square program Code

Line 1 introduces integer as an alias for int 64, that is a 64-bit integer.
Lines 2 to 5 define a box inc (2) with integer input wire n (3) and integer output
wires r and n’ (4). In line 5, an input is matched with variable n to output the
value of n on wire r and n+1 on wire n’. As we shall see, n is wired to n’.
Essentially, r is the current and n is the next value for squaring Lines 6 to 14
define a box square (6) with integer inputs i, s, c and v (7 and 8), and integer
outputs o, s’, c’ and v’ (9 and 10). In line 12, regardless of the input on i
(*), if c is 0 then the (final) value from s is output on o. In line 13, regardless
of the value on i, v is added to s and c is decremented. In line 14, with a new
initial value for i, s is initialised to 0, and c and v are initialised to i. As we
shall see, s is wired to s’, c to c’ and v to v’. Essentially, i is the value to be
squared, s is the partial square, c counts how often i has been added to s, and
v retains the initial value from i for repeated addition to s. Line 15 associates
stream output with standard output. Lines 16 and 17 wire inc’s n to it’s n, and
r to square’s i. Finally, lines 18 to 20 wire square’s i to inc’s r, s to s’, c to
c’, v to v’ and o to output.

3 VHDL in a nutshell

In this section we introduce the basic concepts of VHDL, focusing on the features
which are essential for explaining the principles upon which our compiler is built.

In VHDL, designs are described using a number of modules. Each module
consists of a entity and at least one architecture. An entity describes the interface
of the module : names and types of the input and output ports in particular. An
architecture describes the implementation of the module : how it works. There
are basically three ways to write an architecture : structurally (by instantiating
other modules and connect them using signals), concurrently (by using a set of
concurrent assignments that are re-executed every time signals they depend on
change) and sequentially (by encapsulating sequential code within a process).
Consider for example, the design depicted in Fig. 4, composed of two simple and
gates. The corresponding entity and structural descriptions are given in Fig 5.

example

U1

U2
s

d

a

b

c

and_g

and_g

Fig. 4. VHDL example

ENTITY example IS
PORT (a,b,c: IN BIT; d: OUT BIT);

END example

ARCHITECTURE structural OF example IS
SIGNAL s : BIT;

BEGIN
U1 : entity and_g(beh) PORT MAP (a,b,s);
U2 : entity and_g(beh) PORT MAP (s,c,d);

END ARCHITECTURE

Fig. 5. VHDL structural description of the example

Two modules, named U1 and U2 are instantiated and explicitly connected
using signal s. In VHDL, signals correspond to physical wires. Now, the and_g
modules can be described by the following entity and behavioral description :

ENTITY and_g IS
PORT (i1, i2 : IN BIT;

o : OUT BIT);
END example

ARCHITECTURE beh OF and_g IS
BEGIN

PROCESS (i1,i2)
BEGIN

o <= i1 and i2;
END PROCESS

END ARCHITECTURE
The behavior of the module is here specified as a (sequential) process. The

sensitivity list of this process contains the two inputs, i1 and i2. This means
that the process will be executed each time the signal connected to one of those
inputs changes. Upon execution, the value (i1 and i2) will be computed and
the signal connected to the output o will be updated with this value.

VHDL processes can also make use of variables. In contrast to signals, which
are updated concurrently and globally at the end of the execution cycle, a vari-
able is updated as soon as the sequential statement affecting it is executed. They
therefore generally do not correspond to physical wires but to registers. Here’s
a possible description in VHDL of a 4-bit synchronous counter :

ENTITY counter IS
port (

val: OUT UNSIGNED(3 downto 0);
clk: STD_LOGIC)

END counter;

ARCHITECTURE beh OF counter IS
SIGNAL v: UNSIGNED(3 downto 0);

BEGIN
PROCESS (clk)

IF rising_edge (clk) THEN
v := v + 1;

END IF;
END PROCESS;
val <= v;

end beh;
Whenever a rising edge occurs on input clk, the internal variable v in incre-

mented. A concurrent statement val <= v takes care of updating the counter
output accordingly.

Synthesis. Synthesis is the process where a VHDL program is compiled and
mapped into an implementation technology such as an FPGA or an ASIC. Not
all constructs in VHDL are suitable for synthesis. While different synthesis tools
have different capabilities, there exists a common synthetizable subset of VHDL
that defines what language constructs and idioms map into common hardware
for many synthesis tools. In the current state of the art, programs written at
the register transfer level are synthetizable. Register transfer level (RTL) is a
level of abstraction in which the circuit’s behavior is defined in terms of data
transfers between synchronous registers, all synchronized by the same clock, and
the logical operations performed on those data.

b1 b2
w

b1 b b2
din dout

full

wr

empty

rd

(a) (b)

Fig. 6. Network generation. (a) Initial box structure (b) After buffer insertion

4 Compiling Hume to VHDL

Compiling a Hume program to a RT-level VHDL description involves three
phases : network generation box translation and VHDL transcription.

4.1 Network generation

In this phase, we derive a structural description of the program as a network of
components, where a component represent either a box or a wire of the original
program. The process is sketched on Fig. 6. The key issue here is that Hume wires
are not mapped to physical wires (VHDL signals) but to a dedicated component
that we call a buffer. A buffer has one input and one output corresponding to
the initial wire and four extra control signals : full, empty, rd and wr. The full
(resp. empty) signal tells whether the buffer is ready for reading (resp. writing);
it will be used by the box connected to its output (resp. input). The rd (resp.
wr) signal, when asserted to 1, actually pops (resp. pushes) the value from (resp.
to) the buffer, passing it from the full (resp. empty) to the empty (resp. full)
state.

4.2 Box translation

In this phase, each box of the original Hume program is translated into a finite
state machine (FSM). This translation process closely follows the dynamic se-
mantics of the language, in which a box can be in two different states : Ready
(awaiting input) or BlockedOut (output pending).

Since we are targeting a RT-level description, all transitions will be triggered
by a global clock signal. This means that all boxes will actually change state
simultaneously. This dramatically simplifies3 the scheduling algorithm, which
can be rewritten as follows :

At each clock cycle
For each box b , in parallel, do

if b.state = Ready then

3 Often, and as pointed out by G. Berry in [2] for instance, complex software solutions
become trivial when described in hardware, because parallelism comes for free at
this level.

box b
 in (...)
 out (...)
match
 pats_1 -> exps_1
| ...
| pats_i -> exps_i
| ...
| pats_n -> exps_n
;

Rdy

BO1

BOn

BOi

Cr[ri] / Ar[ri]

Cw[ri] / Aw[ri]

.
.

.
.

Fig. 7. Translation of a box into a FSM

if a fireable rule r can be found in b.rules then
read inputs for rule r ;
b.state <- BlockedOut

end if
else if b.state = BlockedOut then

if outputs for the selected rule r are writable then
write outputs for rule r ;
b.state <- Ready

end if
end if

end for

Each box can be therefore be described as a finite state machine (FSM)
having nrules + 1 states : one state corresponding to the Ready state in the
previous algorithm and one state per rule, corresponding to the BlockedOut
state for the corresponding rule. This transformation is illustrated on Fig. 7.
Each transition in the resulting FSM is labeled with a set of conditions and a
set of actions (denoted Conditions/Actions on the diagram).

At each rule ri we associate two sets of conditions and two sets of actions :

– the set Cr(ri) denotes the firing conditions for rule ri, i.e. the conditions on
the inputs that must be verified for the corresponding rule to be selected;

– the set Ar(ri) denotes the firing actions for rule ri, i.e. the read operations
that must be performed on the inputs when the corresponding rule is se-
lected;

– the set Cw(ri) denotes the writing conditions for rule ri, i.e. the conditions
on the outputs that must be verified when the corresponding rule has been
selected;

– the set Aw(ri) denotes the writing actions for rule ri, i.e. the write operations
that must be performed on the outputs when the corresponding rule has been
selected.

There are

– two possible firing conditions : Avail(j), meaning that the jth input is ready
for reading, and Match(j, pat), meaning that the jth input matches pattern
pat;

– one firing action, Bind(j, pat), meaning "read jth input and match the cor-
responding pattern against pattern pat";

– one writing condition, Avail(j) meaning that the jth output is ready for
writing;

– one writing action, Write(j, exp), meaning "evaluate4 expression exp and
write the corresponding value on jth.

Table 1 summarizes the rules for computing the sets Cr, Ar (resp. Cw and Aw)
from the patterns (resp. expressions) composing a box rule. The FSM obtained
for the square box introduced in Sec. 2 is given in Fig. 8.

CrJpat1, ..., patnK =
Sn

i=1 C′
rJi, patiK C′

rJi, ∗K = ∅
C′

rJi, varK = {Avail(i)} C′
rJi, patK = {Avail(i), Match(i, pat)}

ArJpat1, ..., patnK =
Sn

i=1 A′
rJi, patiK A′

rJi, ∗K = ∅
A′

rJi, constK = ∅ A′
rJi, patK = {Bind(i, pat)}

CwJexp1, ..., expnK =
Sn

i=1 C′
wJi, expiK C′

wJi, ∗K = ∅
C′

wJi, expK = {Avail(i)} AwJexp1, ..., expnK =
Sn

i=1 A′
wJi, expiK

A′
wJi, ∗K = ∅ A′

wJi, expK = {Write(i, exp)}
Table 1. Rules for computing the sets Cr, Ar, Cw and Aw

4.3 Transcription to VHDL

The transcription in VHDL of the network derived in Sec. 4.1 boils down to
instantiating the components forming this network and declaring the intercon-
nection wires. The complete Hume program is turned into a VHDL component.
The inputs and and outputs of this component correspond to the I/O streams
declared in this program. This makes it possible to automatically generate a test-
bench for the resulting VHDL design, in which the original input (resp. output)
data streams are provided (resp. displayed) by specific VHDL processes reading
samples from (resp. writing results to) to files for example.

Converting the FSM representation of boxes into VHDL is a little bit more
involved. The Avail condition on an input (resp. output) is reflected directly
into the value of the full (resp. empty) signal connected to this input (resp.
output). But, because reading / writing is actually triggered by asserting the
corresponding rd (resp wr) signals, an extra state must be added for each rule.
This transformation is illustrated in Fig. 9 on a simple, mono-rule, example.
4 This evaluation takes place in an environment augmented with the bindings resulting

from the corresponding firing action; for the sake of readability environments have
been left implicit here. A fully formalized account will be given in the final paper.

Rdy

BO1

BO3

BO2

Avail(2),Avail(3),Avail(4) /
Bind(2,s),Bind(3,c),Bind(4,v)

Avail(2),Avail(3),Avail(4) /
Write(2,s+v),Write(3,c-1),Write(4,v)

Avail(2),Avail(3),Avail(4),Match(3,0) /
Bind(2,s),Bind(4,v)

Avail(1) / Write(1,s)

Avail(1) / Bind(1,i)

Avail(2),Avail(3),Avail(4) /
Write(2,0), Write(3,i), Write(4,i)

.
.
.

.
.
.

Fig. 8. FSM for the square box

Rdy BOi

Avail(j)/
Bind(j)

Avail(k)/
Write(k,e)

Rdy Ri

I[j].full /
v := I[j].data

O[k].empty /
O[k].data := e

I[j].rd=0
O[j'].wr=0;

Ri'

I[j].rd=1
O[k].wr=0;

I[j].rd=0
O[k].wr=1;

Fig. 9. Transformation of the FSM to generate the rd and wr signals (I[j] and O[k]
respectively refer to the jth input and kth output of the box)

Since the syntax of the box-level expressions is very simple in mHume, the
conversion of these expressions can be handled using a very simple syntax-
directed function.

Listing. 1.1 gives the VHDL code generated for the inc box of the above
example. Lines 1-15 give the interface of the component. Hume integers are
translated to VHDL std_logic_vectors. As explained on Fig. 6, the n, n_empty
and n_rd correspond to the n original input. Similarly, the r, r_full and r_wr
(resp. nn, nn_full and nn_wr) correspond to the r (resp. n’) original output.
The two other input signals are the global clock and a reset initial for hardware
initialization. The behavior of the box is explicited in its architecture, lines 17-53.
This architecture describes a synchronous FSM. The state variable is declared
in line 19, its type being declared in line 18. Here the box has only one rule, so
there are three states. The behavior itself is explicited as a process sensitive to
the clock and reset signals (line 21). This process uses a internal variable r1_n.
This variable memorizes the value obtained when the pattern of rule r1 is bound

(line 33)5. The core of the process – which, according to VHDL execution model,
is executed whenever the signal clock or reset changes value – is between line
23 and 52. Lines 24-28 handles asynchronous reset : the process state is reset to
Ready and read/write signals are set to 0. Lines 30-50 describe what happens
when a rising edge occurs on the clock input signal. This part is written in a
very classical style, as a big case construct inspecting the value of the process
state and, for each possible state, deciding on the actions to perform and the
next state. For example, lines 32-35 tell that if process (box) is in the Ready
state and a value is available on input n (line 32), then this value is copied (line
33), the read signal is asserted (line 34) and the next state will be R1a (line 35).
In state R1a (lines 38-44), the read signal is reset to 0 and the availability of the
output link is tested (line 39). If yes, the outputs are written (line 40-43) and
the next state will be R1b.

5 Experimental results

Evaluation of the generated VHDL code has been carried out using the Altera
Quartus II v9.0 tool chain.

For simulation, two specific, hand-written VHDL processes allow stream in-
puts and outputs to be read from and written to files.

Simulation results, for the square example introduced in Sec. 2 are displayed
on Fig. 10. At this level, the clock period has been arbitrarily fixed to 10 ns. A
close inspection of the chronograms shows that it takes four clock cycles to the
square box to make an "iteration" (i.e. to increment the sum s and decrement
the counter c by 1). Hence, computation of n2 by the box will take n× 4 clock
cycles. The optimal version of such an operator, hand-crafted by a trained VHDL
programmer, takes n cycles. The four to one ratio is indeed an very acceptable
price to pay for abstraction here.

Fig. 10. Simulation results for the squares example

We performed the synthesis of this example on a Stratix EP1S80B956C6
FPGA. The default parameters for the synthetizer were used. Some views of
5 Currently, a variable is introduced for each pattern appearing in each rule LHS. This

can lead to redundancy and will be optimized in future versions of the compiler.

gen col

.
.
.

square
1

square
N

Fig. 11. Multi-square application

N Occ (#LCs) Occ (%) Fmax (MHz)
1 693 <1 189
2 885 1 178
4 1263 2 178
8 2027 3 165
16 3550 4 164
32 6802 8 164
64 12702 16 139

Fig. 12. Synthesis results

the result are shown in Fig. 13 and Fig. 14. Fig. 13 is a top-level view of the
synthetized network. Box labeled box_wire correspond to buffers. The two other
boxes implement the square and inc original boxes. Fig. 14 shows the hardware
architecture inferred by the synthetizer for the inc box. We can recognize a
collection of registers6 on the left, memorizing the internal outputs (r and nn) of
the box and the adder performing the n+1 operation (drawn as a small circle).
The rectangular box at center left implements the FSM control.

For performance evaluation, we used a slightly modified application, depicted
in Fig. 11. The first box, gen, generates an integer and passes it to the boxes
square1, . . . , squareN . All these boxes are similar to the square box described
above : they compute the square of the integer received by using iterative sum
and count operations. The col box simply collects all the results.

Table 12 gives the occupation (number of logic cells used in the chip) and
maximum clock frequency for different values of N , the number of square boxes
running in parallel. The reported numbers show it should be possible to pack
approximately 400 applications in a single FPGA of this category. This repre-
sent a vast improvement compared to the previous hardware implementation of
mHUme on a FPGA [12] for which the number of parallel boxes was limited by
the number of soft-core processors that could be instantiated on a chip (typically
less than a dozen). This large amount of parallelism also largely compensate for
the relatively small clock frequency, compared to a classical CPU. It takes 40000
cycles, i.e. approximately 270 µs at 150 MHz, on our FPGA to compute the
square of 400 integers in the range 1. . . 10000. Reaching the same throughput on
a sequential CPU would require that this processor computes the square of an
integer in less than 0.7 µs, that is, that it performs one sum-count iteration in
less than 0.07ns !

6 Conclusion

We have described a simple model and compilation route for implementing a
subset of the Hume programming language on a FPGA directly at the gate level
using state-of-the art synthesis technology. Preliminary results suggest that this
6 For the sake of readability, the integer size has here been reduced to 8.

Fig. 13. Top-level synthetized network for the squares examples

Fig. 14. Synthetized RTL architecture for the inc box

approachc route offers vast opportunities for exploiting fine-grain parallelism in
Hume programs and a significantly higher abstraction level than that offered by
traditionnal hardware description languages such as VHDL or Verilog.

The Hume subset currently supported is still limited, with data types and
computation constructs restricted to integers and simple operations on these
integers but it includes all the key features of Hume’s coordination layer. So
we are confident that significantly larger and more complex programs than that
illustrated in this paper can be implemented on medium-sized FPGAs.

Among the many opportunities for further work, our two priorities are the
extension of the expression language supported (integrating conditionnals, let
expressions, etc.), support for global and external function declarations and op-
timisations of the generated VHDL code. It should be possible, in particular,
to replace looping wires – connecting a box’s output to one of its input – by
internal process variables, and therefore minimize register allocation.

Acknowledgements. This work was partly supported by UK EPSRC project
EP/F030592/1 ‘Adaptive Hardware Systems with Novel Algorithmic Design and
Guaranteed Resource Bounds’.

References

1. A. Al Zain, W. Vanderbauwhede, and G. Michaelson. Hume on fpga. In Draft Pro-
ceedings of 10th International Symposium on Trends in Functional Programming
(TFP10), University of Oklahoma, Oklahoma, USA, 2010.

2. G. Berry. Penser, modéliser et maîtriser le calcul informatique. Fayard, 2009.
3. Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware

design in haskell. SIGPLAN Not., 34:174–184, September 1998.
4. Celoxica. Handel-C Language Reference Manual. Celoxica, 2005.
5. Andy Gill, T. Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and B. Werling.

Introducing Kansas Lava. In 21st International Symposium on Implementation
and Application of Functional Languages. LNCS 6041, LNCS 6041, 11/2009 2009.

6. K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for Real-
Time Embedded Systems. In Proc. GPCE 2003: Intl. Conf. on Generative Prog.
and Component Eng., Erfurt, Germany, pages 37–56. Springer-Verlag LNCS 2830,
Sep. 2003.

7. Matthew Naylor and Colin Runciman. The Reduceron Reconfigured. SIGPLAN
Not., 45:75–86, September 2010.

8. M. Sheeran. Hardware design and functional programming: a perfect match. Jour-
nal of Universal Computer Science, 11(7):1135–1158, 2005.

9. S. Singh. Kiwi Synthesis of C# and F# Combinational Circuit Models into FPGA
Circuits. Satnam Singh’s MSDN Blog, April 2010.

10. D. E. Thomas and P. R. Moorby. The Verilog Hardware Description Language.
Springer, 1996.

11. W. Vanderbauwhede. Gannet: a Scheme for Task-level Reconfiguration of Service-
based Systems-on-Chip. In Proceedings of 8th ACM Workshop on Scheme and
Functional Programming. Universite Laval, CA. ACM, 2007.

12. A. Al Zain, Greg Michaelson, and Wim Vanderbauwhede. mHume for Parallel
FPGA. In Draft proceedings of 22nd International Symposium on Implementation
and Application of Functional Languages, Amsterdam, September 2010.

� �
1 entity inc_box i s
2 port (n_empty : in s td_log i c ;
3 n : in s td_log ic_vector (63 downto 0) ;
4 n_rd : out s td_log i c ;
5 r_ fu l l : in s td_log i c ;
6 r : out s td_log ic_vector (63 downto 0) ;
7 r_wr : out s td_log i c ;
8 nn_ful l : in s td_log i c ;
9 nn : out s td_log ic_vector (63 downto 0) ;

10 nn_wr : out s td_log i c ;
11 c l o ck : in s td_log i c ;
12 r e s e t : in s td_log i c) ;
13 end inc_box ;
14
15 architecture FSM of inc_box i s
16 type t_state i s (R1a ,R1b , Ready) ;
17 signal s t a t e : t_state ;
18 begin
19 process (c lock , r e s e t)
20 variable r1_n : std_log ic_vector (63 downto 0) ;
21 begin
22 i f (r e s e t = ’0 ’) then
23 s t a t e <= Ready ;
24 n_rd <= ’ 0 ’ ;
25 r_wr <= ’ 0 ’ ;
26 nn_wr <= ’ 0 ’ ;
27 e l s i f r i s ing_edge (c l o ck) then
28 case s t a t e i s
29 when Ready =>
30 i f n_empty= ’0 ’ then
31 r1_n := n ;
32 n_rd <= ’ 1 ’ ;
33 s t a t e <= R1a ;
34 end i f ;
35 when R1a =>
36 n_rd <= ’ 0 ’ ;
37 i f nn_ful l = ’0 ’ and r_ fu l l = ’0 ’ then
38 nn <= r1_n+1;
39 nn_wr <= ’ 1 ’ ;
40 r <= r1_n ;
41 r_wr <= ’ 1 ’ ;
42 s t a t e <= R1b ;
43 end i f ;
44 when R1b =>
45 nn_wr <= ’ 0 ’ ;
46 r_wr <= ’ 0 ’ ;
47 s t a t e <= Ready ;
48 end case ;
49 end i f ;
50 end process ;
51 end FSM;� �

Listing 1.1. VHDL code generated for the inc box

