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Abstract. We present a parallel architecture for object recognition and location based on concurrent processing
of depth and intensity image data. Parallel algorithms for curvature computation and segmentation of depth data
into planar or curved surface patches, and edge detection and segmentation of intensity data into extended linear
features, are described. Using this feature data in comparison with a CAD model, objects can be located in either
depth or intensity images by a parallel pose clustering algorithm.

The architecture is based on cooperating stages for low/intermediate level processing and for high level matching.
Here, we discuss the use of individual components for depth and intensity data, and their realisation and integration
within each parallel stage. We then present an analysis of the performance of each component, and of the system
as a whole, demonstrating good parallel execution from raw image data to final pose.
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1. Introduction

Vision is a complex process. In general, lower level processing operations such as edge
detection or the computation of local curvature in either intensity or depth images require
extensive processing due to the large image data structures employed, dealing typically with
image sizes ranging from 256 by 256 to 640 by 480 pixels. Higher level processes such
as feature-to-feature matching between image and model data are complex because of the
number of permutations which must be evaluated, generally exponential in the number of
scene or model features. Parallel algorithm development offers a potential solution to the
problem of execution of these algorithms inreal or reasonabletime.

We have been developing parallel algorithms for all levels of vision, and have recently
combined these to form a complete and concurrent parallel visual architecture which pro-
cesses depth and intensity data at the same time. In particular, we have investigated algorith-
mic parallelism and redistribution of resources between algorithms combined with feature
or model data parallelism at the high level, rather than simple spatial data parallelism at
the low level. We have examined the behaviour of the separate processes and system as a
whole as the operating parameters and data changed. Implementation has been in occam
on a Meiko Computing Surface CS-1, a general purpose MIMD architecture based on T800
transputers [15, 9].

This paper describes the development and implementation of our current parallel archi-
tecture for cooperative depth and intensity based object recognition. The following sections
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provide context for our work, describe the overall parallel architecture and individual com-
ponents, and discuss the performance of the final system.

2. Related work

Although there has been considerable interest in the development of parallel algorithms
for visual processes [15, 4, 19, 16], the bulk of this attention has been devoted to single
algorithms in isolation rather than complete systems. Furthermore, the relative ease of
data parallelism at the lower levels of the processing chain (e.g. edge detection, curvature
computation) has dominated the published literature. Integration of several parallel algo-
rithms into a complete system is a more challenging task, yet there have been some notable
examples.

The Image Understanding Architecture (IUA) [18] integrated parallel processing within
a visual hierarchy operating at three levels. Low level processing included the simple,
SIMD operators such as edge detection for which easy data parallelism could be applied.
Intermediate processing included grouping or segmentation processes, performing data re-
duction to establish scene description in terms of semantic objects. Higher level processing
included interpretive matching, the formation and verification of object and scene hypothe-
ses. This hierarchy is common, and indeed similar to the one employed here. However the
major limitation of the IUA is the requirement for a specialised architecture with a different
type of parallel processor at each level. This makes it difficult to generalize, replicate or
disseminate the results of the project, although the processing times were understandably
impressive, less than a second for individual algorithms. Concurrent integration of these
algorithms is suggested, but not presented in the original publication.

Wang and Brady [17] discussed a heterogeneous machine, PARADOX, which, like our
system, used T800 transputers, but in concert with a pipeline processor. Unlike our Meiko
Computing Surface, but like the IUA, it was configured especially for a particular visual
application, determining structure from motion in image sequences. In stark contrast to
the work presented here, there is no potential for flexibility in the control architecture; the
intention is to pipe an image through a pre-determined sequence of operations so that real
time navigation of a vehicle can be achieved. Thus, it is complementary to our work.

A notable example of an integrated parallel vision system, and certainly the one which
has most relevance, is the MARVIN system developed at the University of Sheffield [10,
11]. Like PARADOX, it uses dedicated pipelined hardware for low level convolutional
processing at frame rates and a specially designed parallel configuration based on T800
transputers. Parallel C was used to program the algorithms within a custom-developed
run-time environment. The processing path has similarities to the intensity route presented
here, except for the use of stereo correspondence to obtain 3D scene features rather than
inverse perspective transformation of 2D features in our case, and interpretation tree search
rather than pose clustering to match scene and model data. The presented data on timing is
actually contradictory, but both of the above articles refer to total processing times of the
order of 10 seconds which is not dissimilar from those we have achieved for single route
processing on the general architecture.

In summary, a key difference between our own and previous work is in our use of a
standard, homogeneous parallel architecture. Specialised architectures may well offer
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performance advantages but are seldom cost-effective or generally available. Our intention
is to show that, in principle, a general purpose MIMD processor can be used for processes
at all levels of the visual hierarchy, that good speed-up can be maintained, and that these
processes can be integrated successfully. While actual processing times may be greater
on homogeneous general purpose architectures, since programmed flexibility is unlikely
to match dedicated hardware in any one application, such systems are much more widely
applicable.

Another major difference lies in our dual source architecture; previous parallel systems
used a single mode, usually intensity data, but we process depth and intensity data concur-
rently. Resource allocation is not fixed, but can be allocated to processors according to the
known processing load of each algorithm.

3. System overview

Our original design supported cooperation between components specialised for particular
visual data sources. We have concentrated on intensity and depth data though in principle
our system would support components for other data sources. We wanted to provide a high
degree of cooperation and control across and between stages. At each level, intensity and
depth data might be processed independently or at the same time. Metrics from each level
would then determine how resources should best be allocated at the next level. Thus, the
system might decide to continue with both sources independently, to drop one source or to
focus on combined processing. Furthermore, previous stages might be revisited to attempt
to improve processing.

However, we had a prior commitment to implementing this architecture in occam on a
Meiko Computing Surface, an MIMD system with 32 T800 transputers, each with only
4 Mbyte of memory. While this does not equate to the development of special purpose
hardware discussed in the previous section, it does constrain our ability to realise the full
flexibility of our design. Our architecture needs to retain intermediate data structures to
enable prior processing to be revisited and, for large images, this places a considerable
premium on memory. Regrettably, occam lacks dynamic memory allocation and all space
has to be fixed at compile time, leading to the allocation of maximal rather than optimal
amounts of memory. These considerations led us to a closely coupled process architecture in
which the first two stages are combined so that intermediate structures may be shared. Thus,
our final implementation has two stages which we will henceforth refer to assegmentation
andclustering. These stages are independent but the realised architecture provides for a
high degree of cooperative control between them. This is illustrated in figures 1 and 2. Both
stages are based on process farms where a coordinating processor (farmer) allocates tasks
to a “pool” or “farm” of worker processors. In general, the processors were configured as a
grid with toroidal wrap-around, though with relatively few processors this was not critical
to overall performance.

Each worker in the pool for segmentation may perform either intensity or depth processing.
In the former case this consists of edge detection by the standard Canny operator [3] followed
by an edge tracking process to form extended contours. In the latter case, the mean and
Gaussian (HK) curvatures are computed locally and used to segment the image [2]. Typed
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Figure 1. Parallel architecture for vision: segmentation

planar and cylindrical surfaces are defined by a subsequent region growing and surface
fitting algorithm.

Each worker in the farm for pose clustering can perform object location in four phases,
defined as leader clustering, cluster centre calculation, refinement and extraction of the best
cluster data. Identification is possible if more than one model is used. Only the first phase of
the clustering differs between intensity and depth data because perspective transformation
is required in the former case. The other phases are identical.

Registered depth and intensity images form the input to our system. These can be
generated synthetically by a modified ray tracing package or acquired by a triangulation
rangefinder with an additional intensity camera described in [5]. Registration of data is
performed using the known transformations between the three cameras, calibrated by a
standard method [14].

To illustrate the processing involved, an example of a pair of depth and intensity images
is shown in figure 3. On the left are shown, from top to bottom, the intensity data (shown
from one camera viewpoint), the edge map derived from the Canny operator, and a subset
of the straight tracked lines which are extracted from this edge map. On the right are
shown the depth data, a visual representation of the HK curvature classified according to
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Figure 2. Parallel architecture for vision: clustering

sign (plus, zero, minus), and the surface patches which are grown from that data. The final
image shows the CAD model superimposed on the intensity data in a position defined by
the clustering of matched model and scene (intensity and depth) features.

4. Segmentation

4.1. Canny edge detector

The Canny operator [3], or its variants, are the most commonly used edge detection meth-
ods, consisting of a series of convolution operations followed by edge thinning through
non-maximal suppression. A hysteresis thresholding process may then be applied. As
implemented here, the first convolution is with a simple 1D Gaussian filter but is carried out
in the x and y dimensions simultaneously. The smoothed images are then further convolved
with a 1D derivative of a Gaussian filter in each direction orthogonal to the smoothing
operation. This gives edge strength components in each direction which are resolved to
give an edge magnitude and direction. The final stage is another local window operation
whereby the pixel at the centre of a nine-pixel neighbourhood is compared with adjacent
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pixels normal to the edge directional component at the centre pixel and is suppressed if it
has an edge magnitude lower than either of its neighbours.

Canny edge detection can be implemented as a simple and regular geometric decom-
position of the image into rectangular sub-images, although some overlap is necessary to
allow neighbourhood comparisons at sub-image boundaries. In this instance, the number
of sub-images is exactly equivalent to the number of processors. This leads to speed-up
characteristics which are just sub-linear, as illustrated by the performance data shown in
figure 4 for up to 25 processors, using the data shown in figure 3.

4.2. Edge tracking

In our context, edge tracking is the linking of edge data together to form extended line
segments. If these segments are of known and simple parametric form, such as the straight
lines shown in figure 3, then Hough transformation can be used. This is relatively easy
to make parallel by regular decomposition of either the image or parameter space; several
references are given by Leavers [8]. If the shape of the line segments is irregular and not
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Figure 4. Canny phase parallel performance

known, in figure 6 for example, then it is more appropriate to use a tracker based on local
edge continuity.

Parallel implementation of local edge tracking is perceived as a difficult problem [19]
because communication patterns are not necessarily regular and are highly data-dependent.
Thus, for example, simple geometric data composition is not possible because a contour
may pursue a path anywhere in the image. In our solution, all points over a given strength
threshold (1) are treated as seed points and a simple angular threshold (2) is used to guide the
growing process. As parallel edge tracking of this form is not well-established we include
a short algorithmic description below.

I = {edges in image}, LL = ∅, V = ∅
for each point p∈ I, p 6∈ V

if edge-strength(p)≥ threshold1
set V = V∪ {p}, L = {p}, G ={p}
while G 6= ∅

g∈ G, G = G -{g}
for each point n in the neighbourhood of g, n6∈ V

if compatibility-constraint(g,n)≤ threshold2
set G = G∪ {n}, L = L ∪ {n}, V = V ∪ {n}

LL = LL ∪ {L}

I is the input image (edge strength and orientation),LL is the growing list of tracked lines,
V is the set of points that have been added to lines,L is the line currently being grown and
G is the set of compatible points in the neighbourhood ofL still to be checked.

We have implemented several parallel options of the edge tracking module. Our best
solution uses a pipeline of two generalised data farms, in which a farmer controls and
allocates tasks to a set of worker processors, then collates the results as returned from the
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workers. The first parallel process performs tracking within sub-images, starting from seed
points to form the initial line list,LL. Farming is preferable to geometric data decomposition
as the edge data is generally sparse and irregular. The second parallel process refinesLL
by merging partial lines by comparing their end coordinates. This process has orderO(l2)
wherel is the number of partial lines arising from the first phase, but can be pruned if
necessary by removal of short spurs.

Figure 5 shows an example of the predicted and measured parallel performance for the
data-farmed edge tracking algorithm for up to 25 processors on a simple block image similar
to figure 3. In the complete parallel system, the tracked lines may be further fitted by either
a straight line or elliptical function and rejected if a poor fit is obtained, since our model
representation is derived from a CAD system [13] which does not allow higher order fits.
These are not implemented in parallel, and impose a small sequential process overhead on
the system as a whole. In our examples, figure 5 shows the fitted straight line and elliptical
segments, but figure 6 shows another example of the algorithm applied to a facial image. In
this case, the central picture shows the thresholded Canny data, and the right image shows
tracked contours which have further strength and angular continuity thresholds applied, as
shown in the algorithmic description. This illustrates the greater flexibility compared to
Hough transformation, our parallel implementation of which is described elsewhere [9].

4.3. Mean and Gaussian curvature calculation

Computation of the mean and Gaussian curvature on the depth image is a common initial
process for depth data processing [2] and can be implemented by a simple geometric
decomposition of the image data in a similar manner to the Canny operator. The first and
second order surface gradients in the x and y directions are calculated by convolving with
sets of normalised polynomials. These gradients are then combined to give the mean and
Gaussian curvatures which are then thresholded to give a sign value (negative, zero or
positive) for each curvature. These two sign values can then be combined into a single sign
code for each pixel. Since all these operations are separable the HK calculation can be
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Figure 6. Edge tracking of a face image

carried out independently at each pixel. Figure 7 (left) shows the speedup achieved on the
data of figure 3. Like the Canny operator it is almost linear.

4.4. Coarse HK curvature based segmentation

The sign map of mean and Gaussian curvature values is processed using a connected
components algorithm. Each point in the list of current points is checked and neighbouring
points which have the same HK sign value are added to the list. This continues until all
points are considered.

For parallel implementation, geometric decomposition with interworker communication
is used. Within each decomposed area, lists of points having common HK parameters are
grown by adding adjacent points to initial seeds, analagous to the edge tracking module.
Like the edge tracking module, boundary processing is more complicated. On reaching a
boundary point, each processor has to check firstly, which processor is on the other side of
the boundary and secondly that a message has not already been received from the processor
on the other side of the boundary indicating that it has already reached that point. Lists of
regions with common parameters must then be compared and merged to form global lists
if they have adjacency and common parameters. When merging occurs, each processor
maintains the local identity of the patch, but the monitor processor maintains a global list
of which patches on which processors correspond; this is updated on termination of the
worker processing. Then the data is distributed among the workers and there follows a tidy
up operation where the master renumbers the patches for output to the next process.

Figure 7 (middle) shows the parallel performance achieved using this method which
is considerably less than linear in this case. This is due to the inefficiency associated
with geometric decomposition in this context. Not all data points represent patches which
leads to an imbalance of data between processing elements in a geometric decomposition.
This could be cured by the provision of a mask plane which defines processor/data point
allocations. Before the main algorithm commences, the actual data in the image could be
divided equally between workers, defined by this mask plane, which would be transmitted
prior to running the main algorithm. However, this has not been implemented due to
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Figure 7. Speedup for HK calculation, segmentation and region growing

limitations imposed by the static memory allocation as even within the single domain the
local memory is fully utilised.

4.5. Region growing from the coarse segmentation

Once a coarse segmentation based on the signs of mean and Gaussian curvature has been
achieved, the next step is to sample the patch and perform region growing by least square
fitting of parametric surfaces. Least square fitting is sensitive to outliers, but repeated
sampling and selection is used to circumvent this [7]. The growing process is similar to
the connected components algorithm above, but in this case neighbouring depth points are
chosen if their residuals from the current fit are less than a global threshold.

Region seeding is implemented in parallel using data farming, where the total number of
samples required for each patch is divided up into chunks to give control over the granularity.
Region growing is implemented in parallel using task farming. Here, the initial seed regions
are treated as tasks and a fine-grain geometric decomposition of the image is used to define
task boundaries. Region growing is performed within these subimages and when growing
crosses a geometric boundary a list of external seed points is maintained. Upon completion
within the subimage, these points are partitioned according to their subimage number and
new tasks are formed from the combination of these points plus their subimage number
which are returned to the monitor for queueing. Again there is an optimal granularity for
this process, too fine and communications dominates, too coarse and there is not enough
parallelism. Figure 7 (right) shows the speedup achieved for a suitable level of granularity
of figure 3. In this case, the image is divided up into 30× 30 rectangular subimages.
Although unlike the simple geometric decomposition of the Canny and HK parameter
computation, the data farming approach has nevertheless resulted in near-linear speedup,
primarily because the pre-segmentation of pixels required for the fitting process is complete
and boundary checking is not required.
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Figure 8. The main processes and messages in the parallel pose clustering algorithm.

4.6. Skeleton based implementation

The segmentation stage was implemented using algorithmic skeletons [6]. A skeleton is
a generalised code template which is formed by abstracting away from functional details
in a control structure. Subsequently, a skeleton may be instantiated with problem specific
functional details. Skeletons are particularly appropriate for parallel programming where
the same communication and control constructs tend to recur.

Four related divide and conquer skeletons were composed to form this stage: geometric
decomposition (GD), data farming (DF), task farming (TF), and geometric decomposition
with interworker communication (GDIW). Each skeleton maps a function over an image
structure through a farmer parcelling out sub-image structures to workers for parallel pro-
cessing. The skeletons differ in how the image structure is partitioned and in the amount
of worker-worker and worker-farmer communication. GD is used when the image is di-
vided into equal sub-images with equal processing requirements. DF is more appropriate
for irregular data. TF generalises DF to enable the result from each worker to be sent out
again by the farmer for further processing. GDIW generalises GD to enable communication
between workers during processing, for example to resolve the boundary conflicts. Table 1
summarises the deployment of skeletons to each component, showing the code re-use and
correspondences between the two routes, e.g. the use of simple GD for edge detection and
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HK calculation. Each skeleton is realised within the combined process farm architecture
for the segmentation stage shown in figure 1.

5. Pose estimation

To locate, and if necessary identify simple objects, we use a parallel pose clustering approach
[1, 12]. A candidate pose is computed from each minimal subset of matched model and
scene features, in this case the planar and curved patches derived from the depth data and
the contours (and contour intersections) derived from the intensity data. Each matched
surface or contour represents an entry in the 6D pose space, for 3 translational and 3
rotational parameters. A leader clustering algorithm is employed which makes no a-priori
assumptions about the number or distribution of these data entries. Large clusters indicate
probable models and poses, and the centroid of the cluster provides an estimate of the
transformation matrix.

There are four basic phases in the clustering algorithm:

1. Generation of pose estimates from matched model and scene features:

(A) using depth data;

(B) using intensity data.

2. Cluster assignment and determination of parameters

3. Cluster refinement and inter-cluster movement of features

4. Identification of unique matches between features within clusters
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Table 1. Summary of skeleton de-
ployment

Module Skeleton

Canny edge detector GD
Edge tracking DF→ DF
HK calculation GD
HK segmentation GDIW
Region growing DF→ TF

Phase 1 depends on the different orthographic or perspective transformations used during
image formation, and on the different segmentation algorithms used to extract surface and
boundary features. However, since a common 3D point-vector type [13] can be used to
represent both 3D surfaces and 3D space curves, phases 2, 3 and 4 are common to depth
and intensity data. Thus, the object pose may be derived from a single data source, or
from both together. In this instance, the toroidal grid offers a good compromise between
communication costs and extensibility. It allows relatively short distances from the farmer
to the furthest worker, but can be extended by the simple addition of a further row or column
of processors.

The parallel algorithm is refined into 9 stages shown in figure 8; data communication
between farmer and workers are shown as Tx/Rx1 to Tx/Rx9. Parallel advantage is gained
from the worker processing, that is stages 2, 4, 6 and 8 which correspond to the four stages
in figure 2. At stage 2 pose estimates are computed in parallel from pairs of scene and
model features; this differs between intensity and depth data because of the perspective
transformation in the former case. As pose estimates are computed they are assigned
to existing leader clusters, or form new leaders according to a compatibility threshold.
Calculation of cluster centres can also be done in parallel. Cluster refinement is the heart
of any clustering process; in general this is iterative but in practice we have found that the
leader clustering process works well, and few iterations are required. When refinement
is complete the workers identify the unique model-scene matches that contributed to the
clusters, and these are combined by the farmer to define the most probable pose or poses.

Figure 9 shows one example of the speedup characteristics that are obtained when clus-
tering is applied to the segmented depth and intensity data shown in figure 3. The data are
plotted for up to 25 processors, but an additional thresholding parameter of “cluster size”
can be seen to have a significant effect on the performance. This is due to the splitting of
clusters between workers in the farm when running the parallel algorithm. If a threshold of
one is applied (i.e. singleton patterns may define a cluster) then the parallel algorithm will
do much more work than the sequential equivalent since cluster merging will take place
both on the farmer and the workers. Consequently, the speedup is very poor, less than 2
in the examples shown. If on the other hand, singleton clusters are rejected (i.e. a cluster
must have at least two members) then the work is greatly reduced and super-linear speedup
is achieved. The efficacy of this technique depends on the observation that for a typical
scene there will be large clusters corresponding to true matches and common geometric
alignments (e.g. the common occurrence of right angled planes in our object models),
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Table 2.Summary of execution times

Process Time in seconds Time in seconds Speedup
1 processor 25 processors

Canny 23.04 1.12 20.57
Edge Track 15.80 1.01 15.67
HK Calc 581.02 25.35 22.92

HK Segment 45.04 4.53 9.94
Region Grow 673.96 30.51 22.08
Pose (depth) 3.00 0.08 37.5

Pose (intensity) 62.10 0.77 80.65

Total 1403.96 63.37 22.15

but many singleton patterns corresponding to incorrect matches between scene and model
features. Provided the cluster size is greater than the number of processors used, it can be
shown that thresholding by the worker has a very low probability of rejecting a correct,
distributed cluster.

6. Implementation and evaluation of the complete system

Each of the parallel modules which comprise the vision system has been characterised in
detail, investigating the effects of variation of parameters and using up to 25 of the total
complement of 32 processors. Table 2 summarises the execution times for one and twenty-
five processors for the data shown in figure 3. Since the exact execution times are data
dependent, these figures can vary for the higher level processes. However, the data given is
typical for images of this type and size, 256 by 256 pixels for both depth and intensity data.

The totals given in the final row of table 2 set an upper bound on the possible speedup,
and a lower bound on the execution time of the complete parallel process, assuming that 25
processors can be successfully allocated to each task in a sequential manner. This shows
a reduction in total processing time from over 23 minutes to just over a minute. The most
obvious difference is in the times between the depth and intensity processing routes, of
the order of about 12:1 in this case. The HK calculation and region growing processes
dominate the work load although the greater simplicity of the 3D-3D matching in the first
phase of the clustering process means that pose definition using intensity data takes more
time. Since there is a limited number of available processors, this imbalance can make it
difficult to balance the two routes to run concurrently. There are also imbalances within the
processes of each route; at present each process runs to completion before commencement
of the succeeding process. Figure 10 shows the speedup achieved for the segmentation
system alone using a quasi-optimal balance between the depth and intensity routes. One
intensity processor was used for three to nine depth processors and two intensity processors
were used for eleven to twenty-five depth processors. At the top end of this plot, three
intensity processors give similar performance to two. Figure 10 includes downloading of
the raw images onto the worker processors at the start of computation (but not reading them
from files). It also includes several data rearrangements and redistributions throughout
the calculation and some post-processing on the resulting data, for instance, calculating
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centroids and normals for planes. As a consequence, the performance is much lower than
the individual components and is dominated by the major workload modules, particularly
the HK calculation routine. Nevertheless, better than an order of magnitude of improvement
is achieved using 25 processors on a general purpose parallel MIMD machine, in spite of
the imbalance caused by processing the two routes.
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Figure 10.Speedup for overall segmentation system

Given the overall performance of the segmentation system, and of the clustering algorithm
presented in Section 5, we were able to carry out a number of tests on image data similar to
figure 3. We were restricted to some extent by the field of view of the depth sensor [5] and
by the capability of the solid modeller so the real data presented here has only single objects
for which registered depth and intensity data could be easily acquired. In addition, we were
again restricted to the use of fewer than 32 transputers by the available MIMD architecture.
This meant that we could not replicate the overall performance gains shown in table 2 for
25 processors for the individual algorithms. For example, due to the necessity to allocate
the majority of the processors to depth segmentation, only three processors were used in
the intensity processing route; this meant that the simple geometric decomposition of the
Canny algorithm could never allow a speed-up greater than three times. Depth processing
was affected greatly by the inclusion of curved (cylindrical) patch processing. Since the
depth segmentation is already more complex than the intensity segmentation we ran system
tests with and without cylindrical patches.

In addition to the real data, we employed synthetic depth and intensity images generated
by a ray tracer, containing up to three objects, e.g. figure 11. This allowed pose estimates to
be compared against known ground truth as well as enabling multiple object testing which
was difficult to arrange with the real depth sensor. Experiments were also performed which
investigated the effects of parameter variation on system performance, but these did not
show any systematic trend and are omitted.

Figure 12 shows a timing diagram for system operation which includes processing of
cylinders. This was carried out to produce the data of figure 3 using 16 processors for depth
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Intensity image Depth image

Canny edge strength

Edge tracked lines Grown patches

Best match

HK sign codes

Figure 11.Synthetic image having three objects

segmentation, 3 for intensity segmentation and 4 for pose clustering. Figure 13 shows the
timings under the same conditions but excluding cylinder processing. In comparison with
table 1, this latter chart shows an increase in processing for the parallel system to just over
80 seconds, an increase in time of approximately 25%. However, time for initialization of
data is also included in these charts but not in table 1. The differences between the two
figures show how cylinder processing affects the overall performance, since segmentation
of the curved surface data requires more computation. Inclusion of cylinders does not
significantly affect the pose clustering times in this instance as model cylinders and planes
employ the same point-vector representation.

We further investigated the behaviour of the system as the processor-to-process allocation
was varied, as shown in Figure 14. The number of intensity processors,iprocs, was varied
from 1 to 3, the number of depth processors,dprocs, from 6 to 18, and for pose clustering
either 2 (1x2) or 4 (2x2) were used. In addition, each combination of processor allocations
was carried out both including and excluding cylinder processing. For each system run, all
the timing and segmentation/clustering data were stored but in Figure 14 the performance
is summarised by plotting overall time for segmentation and for pose clustering.
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Figure 12. Image 1: Timing diagram for system including cylinder processing

As expected, the configuration of the pose clustering processors (1x2 or 2x2) does not
affect the segmentation processing times in the upper part of the diagram. Similarly, the
pose clustering times (lower) are not affected by segmentation processor allocation as this
is dependent only on the number of segmented features which must be considered. The
number of intensity processors affects the overall processing time slightly with about a 20
second reduction from 1 to 2 and about a 10 second reduction from 2 to 3 processors. Use of
further intensity processors is counter-productive since this takes processors away from the
depth route. Cylindrical processing increases the processing time by about 20 seconds, but
in this instance only one cylindrical patch is present. The presence of more cylinders results
in a greater increase. In contrast, increasing the depth processors from 6 to 18 reduces the
overall processing time by about 70 seconds.

7. Conclusions

We have developed parallel algorithms for low, intermediate and high level processing in
a visual system on a general purpose MIMD architecture. The exact speed-up achieved
depends on the complexity of the problem. Simple data parallel implementations offer
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Figure 13. Image 1: Timing diagram for system excluding cylinder processing

near linear speed-up and are comparable to implementations reported elsewhere in the
literature. Processes which require inter-worker communication and are not amenable to
regular data decomposition, such as edge tracking and region growing, do not provide such
easy parallelism but we have devised solutions which still give significant performance
gains. Our approach to model-scene matching is based on pose clustering and achieves
super-linear speed-up, with the proviso that this depends on a rejection of single data-
pattern clusters. This is acceptable provided the number of processors does not exceed the
size of a correct cluster substantially, in which case there is a probability that the desired
cluster may be lost.

Following our evaluation of the separate algorithms, we then integrated them within a
dual-source parallel architecture, so that it was possible to process from input depth and
intensity data to identify and locate objects in comparison with stored models. Absolutely,
times were slow, relying on processors which have far lower processing speeds than available
today. The final system speed-up was between 7:1 and 10:1 in typical cases. This is very
strongly dependent on the depth segmentation, since this dominates the processing in figures
12 and 13. Processing single source data can lead to greater speed-up [9], but here we have
shown how both routes can be integrated within the same structure. This can increase the
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Figure 14.Parallel run time for segmentation and pose clustering

overall robustness of the system since it may not be possible to locate objects on the basis
of either single source, but may be possible from both combined.

Results from the integrated system can be compared with the upper bound on system
speed-up which was summarised in Table 2 and was of the order of 22:1. The difference
arises because of the necessity to split processes amongst available processors according
to the architecture illustrated in figure 1 and 2, and because there are initialization and
communication costs associated with control of the system as a whole which are not present
when considering single algorithms in isolation. In absolute terms, the single processor
times were not dissimilar from comparable implementations in C on Sun4 workstations,
and the principal issue is the speed-up achieved and the generality of the approach.

Therefore, the principal contribution of this work has been to show the parallel imple-
mentation of a complex visual system on a general purpose MIMD architecture. Separate
algorithms have exhibited scalable performance within the limits of the available proces-
sors, and we anticipate that this would scale much further. System evaluation has shown the
difficulties imposed by the limitations of the machine and language, yet significant speed-
up has been achieved. Given the performance of the separate algorithms and experience
gained from the whole system, we contend that it is possible to build fast, parallel vision
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systems on such an architecture, giving concern to the necessity for sufficient memory to
allow dynamic rather than static allocation of processes to processors, and the provision
of dynamic data structures to further optimize memory usage. With recent increases in
processor speed of almost two orders of magnitude when compared to the T800 units, the
prospect ofreal time, as opposed toreasonableperformance becomes apparent.
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