
Action Semantics of Unified Modeling Language

by

Mikai Yang

Submitted for the Degree of

Doctor of Philosophy

on completion of research in the

Department of Computing Sciences

School of Mathematical and Computing Sciences

Heriot-Watt University

July 2009

This copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that the copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without the prior written

consent of the author or the university (as may be appropriate).



Declaration

I hereby declare that the work presented in this thesis was carried out by myself at

Heriot-Watt University, except where due acknowledgement is made, and not been

submitted for any other degree.

Mikai Yang (Candidate)

Prof. Rob Pooley & Prof. Greg Michaelson (Supervisors)

Date



Abstract

The Unified Modeling Language or UML, as a visual and general purpose modeling

language, has been around for more than a decade, gaining increasingly wide application

and becoming the de-facto industrial standard for modeling software systems. However,

the dynamic semantics of UML behaviours are only described in natural languages.

Specification in natural languages inevitably involves vagueness, lacks reasonability and

discourages mechanical language implementation. Such semi-formality of UML causes

wide concern for researchers, including us.

The formal semantics of UML demands more readability and extensibility due to its

fast evolution and a wider range of users. Therefore we adopt Action Semantics (AS),

mainly created by Peter Mosses, to formalize the dynamic semantics of UML, because

AS can satisfy these needs advantageously compared to other frameworks.

Instead of defining UML directly, we design an action language, called ALx, and

use it as the intermediary between a typical executable UML and its action semantics.

ALx is highly heterogeneous, combining the features of Object Oriented Programming

Languages, Object Query Languages, Model Description Languages and more complex

behaviours like state machines. Adopting AS to formalize such a heterogeneous language

is in turn of significance in exploring the adequacy and applicability of AS.

In order to give assurance of the validity of the action semantics of ALx, a prototype

ALx-to-Java translator is implemented, underpinned by our formal semantic description

of the action language and using the Model Driven Approach (MDA). We argue that

MDA is a feasible way of implementing this source-to-source language translator because

the cornerstone of MDA, UML, is adequate to specify the static aspect of programming

languages, and MDA provides executable transformation languages to model mapping

rules between languages.

We also construct a translator using a commonly-used conventional approach, in

i



which a tool is employed to generate the lexical scanner and the parser, and then

other components including the type checker, symbol table constructor, intermediate

representation producer and code generator, are coded manually. Then we compare the

conventional approach with the MDA. The result shows that MDA has advantages over

the conventional method in the aspect of code quality but is inferior to the latter in

terms of system performance.

ii



Acknowledgements

I am indebted to a great number of people for their teaching, help, guidance, encour-

agement and inspiration throughout the works described in this thesis, including this

document itself. Firstly, I feel incredibly fortunate to work with Professor Rob Pooley,

my first supervisor. My sincere thanks go to him for his continuously inspiring me

and granting me the freedom to explore new and varied (sometimes romantic-seeming)

topics. His valuable insight into some problems we come up with and his timely en-

couragement are vital in forming the research topic, and his continuing patient and

efficient mentorship are of great significance in boosting the proceeding of the research.

In addition, this research could not be accomplished smoothly without his great efforts

in securing a stable financial support.

Secondly, I am deeply grateful to Professor Greg Michaelson, my second supervi-

sor, for his rich knowledge and experiences in the subject concerned, his systematic

mentorship in the development of this search, assisting me in time management of the

milestones, and his great consideration and patience exhibited when I was tangled with

difficulties, in both research and personal issues. The seamless and pleasurable col-

laboration of the two supervisors is highly creditable, which established a favourable

atmosphere for the whole process and does huge good to the accomplishment of this

research.

Thirdly, I would like to express gratitude to Staff in the Department of Computer

Science for amazing support, including faculty, staff and students. My special thanks

go to Iain A. McCrone, who helped me a great deal in installing necessary software

tools, especially in installing the Action Environment tool which is critical to test a

part of the action semantics description. This work also benefited immensely from the

ideas, comments, feedback, food for thoughts contributed by fellow PhD students and

attendees of my presentations. Their names are not listed here but borne in my mind.

iii



I hope that this doesn’t compromise the genuineness of my thanks to them.

Finally, I do not know how I can thank my parents for their selfless and boundless

love as well as their great support. They always talked to me with encouraging words

that turned into the inexhaustible power driving me on all this way. What I can do is

to dedicate this work to them to express my limitless gratitude to them.

iv



Table of Contents

Abstract i

Acknowledgements iii

1 Introduction and Motivation 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background of UML and Formalizing UML 6

2.1 Introduction to UML and Executable UML . . . . . . . . . . . . . . . . . 7

2.1.1 UML Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Executable UML . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 UPAS & Action Languages . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3.1 Activity Model . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3.2 Action Languages . . . . . . . . . . . . . . . . . . . . . 20

2.1.3.3 AL vs OCL . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Formalizing UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Abstract Syntax of UML . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Contextual Constraints of UML . . . . . . . . . . . . . . . . . . 24

2.2.3 Semantics of UML (Related Work) . . . . . . . . . . . . . . . . . 24

2.2.4 Limitations of Previous Attempts . . . . . . . . . . . . . . . . . . 28

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Introduction to Action Semantics 30

3.1 Introduction to Operational Semantics . . . . . . . . . . . . . . . . . . . 31

3.2 Introduction to Denotational Semantics . . . . . . . . . . . . . . . . . . . 34

3.3 Introduction to Action Semantics . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Action Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Sorts and Algebraic Specification . . . . . . . . . . . . . . . . . . 41

3.3.3 Facets of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 Yielders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



3.3.5 Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.6 Declarative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.7 Imperative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.8 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.8.1 Functional Combinators . . . . . . . . . . . . . . . . . . 50

3.3.8.2 Delarative Combinators . . . . . . . . . . . . . . . . . . 53

3.3.9 Action Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.10 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.11 UPAS versus AS . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Formalizing UML with Action Semantics 67

4.1 Our Approach to Formalizing UML . . . . . . . . . . . . . . . . . . . . . 67

4.2 xUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 ALx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 xUML-to-ALx Mapping Models . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Related Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Action Semantics of ALx . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7.1 Class and Class Declaration . . . . . . . . . . . . . . . . . . . . . 78

4.7.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.3 Object Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.4 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 xUML-to-Java Translation 88

5.1 Motivation behind Building the xUML-to-Java Translator . . . . . . . . 88

5.2 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Implementing ALx Semantics in Java . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Implementing Object Query . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Implementing Relations and Links . . . . . . . . . . . . . . . . . . 99

5.3.3 Implementing Link Navigation . . . . . . . . . . . . . . . . . . . . 102

5.3.4 Implementing State Machines . . . . . . . . . . . . . . . . . . . . 103

5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Model-Oriented xUML-to-Java Translation 109

6.1 Key Features of MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Adopting MDA as Implementation Approach . . . . . . . . . . . . . . . . 111

6.3 Applicability of MDA to Programming Languages . . . . . . . . . . . . . 113

6.3.1 Representing AST in UML . . . . . . . . . . . . . . . . . . . . . . 113

6.3.2 Representing Static Semantics . . . . . . . . . . . . . . . . . . . . 119

vi



6.4 Implementing the xUML-to-Java Translator . . . . . . . . . . . . . . . . 124

6.4.1 Related Eclipse Projects . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.2 Implementing the Conceptual Design in Eclipse . . . . . . . . . . 127

6.5 Metamodels and ATL files . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Generated Java Code for the Elevating System . . . . . . . . . . . . . . . 130

6.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 MDA Comparison with Conventional Approach 131

7.1 Background of Language Implementation . . . . . . . . . . . . . . . . . . 131

7.1.1 Compilation and Interpretation . . . . . . . . . . . . . . . . . . . 131

7.1.2 Conventional Language Implementation . . . . . . . . . . . . . . 132

7.2 Conventional-Approached Translator . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Background of JavaCC . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.2 Major Development Activities . . . . . . . . . . . . . . . . . . . . 137

7.3 Comparing Two Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.1 Development Effort . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.2 Code Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 147

7.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Conclusion 151

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Limitations, Discussion and Future work . . . . . . . . . . . . . . . . . . 154

8.2.1 Concurrency of UML . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.2.2 MDA for Dynamic Semantics . . . . . . . . . . . . . . . . . . . . 154

8.2.3 Comparing MDA to Other Language-Implementing Approaches . 155

8.2.4 Testing the ASD of ALx in an AS Tool . . . . . . . . . . . . . . . 155

8.2.5 Other Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Abstract Syntax of ALx 158

A.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.3 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.4 Misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B ALx/Semantic Functions 162

B.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.3 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.4 Misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

vii



B.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C ALx/Semantic Entities 176

D xUML Metamodel 185

E ALx Metamodel 189

F MiniJava Metamodel 191

G Main Class of the xUML-to-ALx Translator 194

H ALx-to-Java Mapping Rules 203

H.1 MiniJava Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 203

H.2 ALx-to-MiniJava Mapping Functions . . . . . . . . . . . . . . . . . . . . 206

H.2.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

H.2.2 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

H.2.3 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

I Sample xUML Models 217

I.1 Taxi-Booking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

I.2 Toy Message Relay System . . . . . . . . . . . . . . . . . . . . . . . . . . 222

I.3 Traffic Light System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

I.4 Gas Station System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

I.5 Elevating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

J Excerptions of ATL Transformations 242

viii



List of Figures

2.1 Example UML class diagram modeling static aspects of the system. . . . 9

2.2 Example object diagram showing snapshots of the run-time system. . . 9

2.3 xUML: a rigorous subset of UML plus UMPAS . . . . . . . . . . . . . . . 12

2.4 Overall classification of actions. . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Classification of Object actions . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Classification of StructuralFeatureAction . . . . . . . . . . . . . . . . . . 15

2.7 Classification of LinkAction . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Classification of VariableAction . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Classification of InvokeAction . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Classification of AcceptEventAction . . . . . . . . . . . . . . . . . . . . . 18

2.11 Example business process model for processing orders . . . . . . . . . . . 19

2.12 Illustration of the four-layer metamodeling architecture . . . . . . . . . . 23

3.1 Performance of functional actions. . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Performance of declarative actions. . . . . . . . . . . . . . . . . . . . . . 49

3.3 Performance of imperative actions . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Data and control flow of ‘ then ’ . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Data and control flow of ‘ and then ’. . . . . . . . . . . . . . . . . . . . 52

3.6 Non-deterministic choice of ‘ or ’ . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Data and control flow of ‘ and ’ . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Data and control flow of ‘ hence ’. . . . . . . . . . . . . . . . . . . . . . 55

3.9 Difference between ‘ and ’ and ‘ moreover ’ . . . . . . . . . . . . . . . 56

3.10 Data flow of ‘ furthermore ’ . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Overview of our approach to formalizing xUML . . . . . . . . . . . . . . 68

4.2 Constitution of ALx and its major constructs. . . . . . . . . . . . . . . 71

4.3 Typical set of ALx constructs . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Class diagram of the elevating system. . . . . . . . . . . . . . . . . . . . 74

4.5 State chart of Elevator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Class collaboration diagram of the elevating system. . . . . . . . . . . . . 76

4.7 ALx code representing the visual model. . . . . . . . . . . . . . . . . . . 77

5.1 Architecture of the xUML-to-Java translator. . . . . . . . . . . . . . . . 94

5.2 Translation overview of an arbitrary ALx class. . . . . . . . . . . . . . . 96

ix



5.3 Translation overview of an arbitrary ALx relation. . . . . . . . . . . . . . 99

5.4 Translation overview of ALx state machines. . . . . . . . . . . . . . . . . 103

6.1 Models and metamodels required by the translator . . . . . . . . . . . . 112

6.2 Illustration of transforming context-free grammars into UML classes. . . 118

6.3 Synthesized and inherited attributes . . . . . . . . . . . . . . . . . . . . . 121

6.4 Illustration of transforming attribute grammars into UML enchanced by

OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 Activities in a particular xUML-to-Java translation. . . . . . . . . . . . 128

7.1 Architecture of conventional compilers or translators . . . . . . . . . . . 133

7.2 Illustration of left recursion elimination and local LOOKAHEADs settings138

7.3 Comparison result of source code quality. . . . . . . . . . . . . . . . . . . 142

7.4 Comparison result of performance . . . . . . . . . . . . . . . . . . . . . . 148

D.1 Fundamental package of xUML metamodel . . . . . . . . . . . . . . . . 186

D.2 Class package of xUML metamodel . . . . . . . . . . . . . . . . . . . . . 186

D.3 Relational package of xUML metamodel . . . . . . . . . . . . . . . . . . 187

D.4 State-machine package of xUML metamodel . . . . . . . . . . . . . . . . 187

D.5 Collaboration package of xUML metamodel . . . . . . . . . . . . . . . . 188

D.6 Behavioural package of xUML metamodel . . . . . . . . . . . . . . . . . 188

E.1 Declarations of ALx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

E.2 Expressions of ALx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

E.3 Statements of ALx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

E.4 Type system of ALx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

F.1 Declarations of MiniJava . . . . . . . . . . . . . . . . . . . . . . . . . . 191

F.2 Expressions of MiniJava . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

F.3 Variable access of MiniJava. . . . . . . . . . . . . . . . . . . . . . . . . . 192

F.4 Literals of MiniJava. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

F.5 Type system of MiniJava. . . . . . . . . . . . . . . . . . . . . . . . . . . 193

F.6 Statements of MiniJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

I.1 Class diagram of the taxi-booking system. . . . . . . . . . . . . . . . . . 218

I.2 State chart of ‘Reservation’ of the taxi-booking system. . . . . . . . . . 219

I.3 ALx code of the taxi-booking system (Part 1). . . . . . . . . . . . . . . 220

I.4 ALx code of the taxi-booking system (Part 2). . . . . . . . . . . . . . . 221

I.5 xUML model of the toy message relay system. . . . . . . . . . . . . . . 222

I.6 ALx code of the toy message relay system. . . . . . . . . . . . . . . . . . 223

I.7 Models and code of the traffic light system. . . . . . . . . . . . . . . . . . 224

I.8 Class diagram of the gas station system. . . . . . . . . . . . . . . . . . . 225

I.9 State charts of the gas station system. . . . . . . . . . . . . . . . . . . . 226

x



I.10 ALx code of the gas station system. . . . . . . . . . . . . . . . . . . . . . 227

xi



Chapter 1

Introduction and Motivation

1.1 Problem Statement

Problem 1: UML is semi-formal.

The Unified Modeling Language (UML) is a general-purpose graphical modeling lan-

guage that is widely applied in system design and documentation. Previously, UML

lacked sufficient expressivity in describing dynamic aspects of systems, such as method

bodies and exit/entry actions of state machines, and as such has to resort to a plain

natural language or an existing programming language as a complementary formal-

ism. These two compromise methods have their drawbacks: 1) using natural lan-

guages causes ambiguities in the description and hampers rigorous model checking and

early system simulation; 2) using programming languages usually involves unnecessary

implementation-specific details and requires a related background of the user. To ad-

dress this problem, UML Precise Action Semantics (UPAS) [60] has been incorporated

into UML 2.0 [78, 79] to provide precise behavioural primitives such that large-scale

realistic behaviours can be built systematically based on them. Consequently, UML

has been made more expressive in defining the dynamic parts of the system, and thus

becomes executable.

However, although the syntax and the static semantics of UML have been formally

specified using the MetaObject Facility (MOF) [77] in a four-layer metamodeling frame-

work facilitated by the Object Constraint Language (OCL), UPAS and the behaviours

of UML such as state machines, activities and interactions, are only standardized in

English. It is well-known that natural language inevitably involves vagueness and is

1



hard to reason about. So it is desired to provide a formal semantics for this aspect of

UML.

Problem 2: is Action Semantics applicable to a very hybrid

language?

Action Semantics (AS) is a hybrid semantic description framework incorporating the

advantages of denotational semantics, structural operational semantics and algebraic

specification. It defines as the major semantic entities a set of actions whose execution

semantics are well-defined using structural operational semantics. To describe the se-

mantics of a language, one only needs to be concerned with translating the constructs

in this language to the appropriate actions or other semantic entities like yielders and

data. The translations are expressed in semantic functions defined by semantic equa-

tions. Furthermore, AS provides some ready-to-use predefined data sorts so that users

can easily import some of them in their description for efficiency. Flexibly, users are also

allowed to define their own sorts depending on the languages being described. The no-

tations of actions are carefully related to meaning-suggestive English words and phrases

to achieve superior comprehensibility.

Compared to other semantic formalism such as denotational semantics and opera-

tional semantics, AS enjoys better readability and extensibility, and it has been success-

fully used to describe a wide variety of real programming languages such as standard

ML, Pascal, Java, ADA and ANDF-SF [104, 68, 21, 65, 38]. However, the problem is

that, to the best of our knowledge, it has never been applied to a hybrid language like

an executable UML which basically comprise model descriptive constructs, common

imperative constructs, object query constructs and some complex behaviours such as

state machines and link navigations. Therefore it is of significance to explore Action

Semantics in such a hybrid language to test its adequacy and applicability.

1.2 Research Overview

In this research we employ AS as the formalism for UML in the hope that we can cope

with the two problems in one go: formalizing UML and exploring the expressivity of

AS. The adoption of AS as the vehicle is also attributed to the formal semantics of

2



UML demanding more readability and extensibility because of its fast evolution and

a wide range of users, while AS has required properties superior to other frameworks,

including operational semantics [86] and denotational semantics [92].

Our approach to formalizing UML has a distinctive feature: instead of defining UML

directly, we design an Action Language (AL) [59] and use it as the intermediary between

UML and action semantics of UML. The designed AL, called ALx, is bigger than the

existing ALs because aside from the part for the common functionality available in the

currently-used ALs, it also incorporates a model-describing part that can be viewed as

the textual counterpart of the graphical UML. On the one hand, the two parts are in-

tegrated together seamlessly to form a textual and computationally-complete modeling

language; on the other hand, the former part itself can be embedded in graphical UML

models to specify method bodies and activities in state machines. So we provide the

formal semantics of UML by first composing the action semantics of the intermediary

ALx, and then specifying a formal mapping model between UML and ALx.

To observe the behaviours of the action semantics of xUML, we also construct a

source-to-source translator, called xUML-to-Java translator, which takes UML models

as input and yield executable Java code. We first adopt MDA as the best potential

approach to implement the translator based on the composed action semantics of UML.

MDA has been widely employed in constructing business system but rarely used in lan-

guage implementation, so this experiment is intended to serve two purposes: testing

the action semantics of ALx and investigating the applicability of MDA to language im-

plementation. Furthermore, we also use a conventional method to implement the same

translator. Subsequently, a comparison is conducted between the MDA and the con-

ventional approach to further look into the pros and cons of MDA over the conventional

approach in language implementation.

1.3 Contributions

The contribution of this work can be summarised as follows:

• We harness the framework of Action Semantics to indirectly specify a self-defined

xUML by formalizing its textual counterpart ALx. This attempt shows that AS

is expressively adequate to formalize a heterogeneous language like ALx and the

3



yielded action semantics of the xUML is readable, modular and reusable.

This work has been published as a conference paper in SBLP 2008 [108], and

accepted by the Journal of Universal Computer Science.

• To give assurance of the validity of the action semantics description, we implement

a prototype ALx-to-Java translator, underpinned by our formal semantic descrip-

tion of the action language. In the process, we find that the action semantics of

ALx clearly suggests implementation logic.

• We argue that MDA is in itself applicable to implementing the aimed source-to-

source language translator and also show this in practice by adopting MDA to

building the xUML-to-Java translator.

• In order to know the advantages of MDA in implementing the translator, we also

use a conventional approach to build the translator and conduct a comparison be-

tween the approaches. The comparison results show that MDA has advantages of

reducing developing cost over the conventional approach. Such merit is especially

valuable in prototyping programming languages.

1.4 Road Map

The rest of the dissertation is organized as follows:

• Chapter 2 presents the background and evolution of UML, and the historical

attempts to formalize them.

• Chapter 3 provides an introduction to Action Semantics, preceded by introduc-

ing Denotational Semantics and Operational Semantics which Action Semantics

combines.

• Chapter 4 presents the Action Semantics of some typical constructs of ALx ac-

companied by informal explanation.

• Chapter 5 describes the overall architecture of the translator which is intended

for testing the composed Action Semantics of ALx, and highlights a Java library

which implements a major part of the action semantics of ALx.

4



• Chapter 6 explains why MDA is the best potential approach to implementing

the translator and the feasibility of MDA for this purpose, and then gives the

structure of an MDA-based implementation as well as implementation techniques

involved.

• Chapter 7 describes a conventional approach to implementing the translator and

presents the comparative results of the two approaches.

• Chapter 8 concludes this thesis and outlines directions for future work.

5



Chapter 2

Background of UML and

Formalizing UML

A solid design is of paramount importance in the development of a software system,

especially when the project involved is a large enterprise application. Modeling, which is

a major step of designing software systems prior to coding, has been attracting intensive

attention of both industry and academia.

People usually prefer visual models to textual ones as representations of their de-

sign ideas, and desire that the visual models are adequately abstract, containing only

the relevant details necessary to help them in conceptualization, understanding and

communication.

Visual models have been applied in many fields like mechanical engineering (me-

chanical drawing) and electronic engineering (electrical schematics). Over decades,

researchers continue moving software development from an artistic manner to an en-

gineering one. An important effort was seeking a graphical formalism to facilitate the

design process. The Unified Modeling Language (UML) [78, 79] was such an outcome.

The Unified Modeling Language (UML), “a visual and general-purpose modeling

language for specifying, constructing and documenting the artefacts of systems” [78],

has gained increasingly wide applications and has already become the de-facto indus-

trial standard in modeling of software system. This, however, by no means indicates

that UML is fully matured, being able to satisfy users in every particular. Instead,

researchers have found several deficiencies of UML regarding its expressivity, formality,

long learning curve and applicability. Reasonably, researchers are concerned with its

6



computational-completeness, as gives rise to the Precise Action Semantics [61] and Ex-

ecutable UML(xUML) [59]; researchers are also concerned with the formality of UML,

thus many attempts have been conducted to formalize its semantics, including the one

described in this thesis.

This chapter starts with a quick introduction to UML and its derivative, xUML

followed by the introduction of UML Precise Action Semantics (UPAS) and its imple-

mentation: action languages. Then, the attempts made to formalize UML are surveyed,

categorized and analyzed. Finally present is one of the motivations to this research. To

be clear, in this thesis, UML 2.0 refers to the version of UML specified in the UML 2.0

Specification [78, 79], UML 1.5 refers to a version of UML that is specified in UML 1.5

Specification [82]. The ‘UML’ is also used where we talk about a general concept of

UML, abstracted from the various versions.

2.1 Introduction to UML and Executable UML

2.1.1 UML Overview

UML is a typically collective achievement, and came into being by unifying three ma-

jor object-oriented modeling methods: Booch’s method, Jacobson’s OOSE (Object-

Oriented Software Engineering) and Rumbaugh’s OMT (Object Modeling Technique),

as well as other important methods such as Fusion, Shlaer-Mellor, and Coad-Yourdon

[17]. In November 1997, UML was accepted by the Object Management Group (OMG)

as a standard modeling language. Since then, it has been playing an increasingly impor-

tant role in software intensive systems and nowadays dominates object-oriented mod-

eling. As it is said in [17] that UML is a small hill atop a large mountain of previous

experience, UML is continuously contributed to and enriched by practitioners and re-

searchers worldwide. Over a decade, maintained by an OMG Revision Task Force,

UML has evolved across versions 1.3, 1.4 and 1.5. Today, the latest version is UML 2.0

[78, 79] which is a major revision of UML 1.x.

UML is a rich language, so we do not exhaustively present the features of UML.

The key features of UML can be summarized as follows:

• UML is a general purpose rather than a domain specific modeling language. Fur-

thermore, not only can it be applied to software systems, but also to non-software

7



ones.

• UML adopts the object-oriented paradigm to analyze and specify a system.

• All aspects of a system can be specified in UML using appropriate parts.

• UML is a visual, graphical modeling language aimed to be superior to a textual

one in the sense of intuitive understanding [28].

However, UML is not perfect. Some negative aspects of UML, such as incompleteness

in computation and lack of formality in semantics are addressed respectively in Section

2.1.2 and Section 2.1.3.

As mentioned earlier, UML enables system modeling in all aspects of the system

of interest. UML follows the traditional way to distinguish structural aspects and

behavioural aspects, and offers various diagrams to cover these two aspects. Usually,

a UML model for a system consists of a set of sub-models or views each of which

concentrates on a specific system aspect.

To model the structural aspects of the system, for example, UML provides

the class diagram, which specifies the type level of the system, and the object diagram,

which focuses on the instance level.

1. A typical class diagram is shown in Figure 2.1. Class diagrams model static as-

pects of the system via classifying concrete objects using the construct Class as

well as their structural features: attributes and associations. The associations

describe the possible relationships among objects and are further specialized to

Aggregation and Composition: Aggregation is to specify the whole/part relation-

ship between objects, and Composition is a strong form of aggregation where the

part is only contained by at most one whole and its lifecycle is controlled by the

whole in such a way that when the whole is destroyed all its parts are also de-

stroyed [78]. Class diagrams can be viewed as a part of the type system because,

akin to primitive type enumeration type, and collection type, class definition is

essentially a complex type definition.

2. An object diagram (See Figure 2.2) is employed to give a visual snapshot into

the running system at a point in time, to see the states, the collaboration and

the relationships of a set of selected objects [17]. See Figure 2.2. An object

8



-title
-ISBN

Book

-title
-index

Chapter

-orderID
-date
-totalValue

Order

-shipmentID
-timeDelivered

Shipment

-name
-address

Author
-name
-location

Publisher

-quantity
-unitPrice

PurchaseInfo

-name
-address

Customer

1..*

*

1..*

*

writer

achivement

0..*

1..*

place

publish

deliver

Figure 2.1: Example UML class diagram modeling static aspects of the system.

ISBN = "0-321-24562-8"
title = "UML Reference Manual"

bookA : Book

ISBN = "0-201-42290-5"
title = "Compiler Design"

bookB : Book

date = "18/12/2008"
orderID = 23123
totalValue = £122.10

aOrder : Order

address = "12/18 Kings Street Mars Planet"
name = "Anonymous"

aCustomer : Customer

place

contains

contains

Figure 2.2: Example object diagram showing snapshots of the run-time system.

diagram contains primarily objects with attributes evaluated (slot), and links

which connect objects and are defined as the instances of associations [78]. For

each object, its name and type are also given. Notably, the object diagram reflects

a system being frozen at a moment, which strongly implies that, despite the

presence of links, there exist no messages passing between objects, and that when

modeling system with object diagrams, the user must specify which frame this

object diagram is intended for in the whole interaction storyboard of the system.

In addition to class diagrams and object diagrams, UML also provides other struc-

tural diagrams regarding implementation and deployment, such as component diagrams,

which allow modeling a component-based system architecture, deployment diagrams,

which, even further, incorporate hardware in an architectural level.

To model the behavioural aspects of the system of the system, UML offers

mainly use case diagrams, state machine diagrams, sequence diagrams, collaboration

diagrams, and activity diagrams [79].

1. Use case diagrams provide a global and coarse-grained view of the main function-

9



ality of the system. The functionalities in use case diagrams are restricted to the

externally visible ones, and are only concerned with what functionality can be

consumed in the system to the outwards, but not with how the functionality is

implemented.

2. State machine diagrams or state charts depict the various states that an object

may be in during its lifecycle, the transitions between those states, and behaviours

in the states and in the transitions. A stateful object may receive events (signals,

calls, timing event, etc) from itself or its context; the events may be simply ignored

or trigger transitions of the state, which then possibly cause the execution of

some behaviours such as transition actions, entry actions and exit actions. State

machine diagrams provide insight into individual objects and hence are frequently

referred to as intra-object views [79].

3. Sequence diagrams are the inter-object views of the system. In a sequence dia-

gram, a selected set of objects is rendered and the interactions between them are

also depicted by a sequence of events, which trigger the corresponding behaviours

of the receiving objects. The behaviours are performed either synchronously or

asynchronously depending on the kinds of events; for example, call events (invok-

ing a method) cause the behaviours to be executed synchronously, while signal

events cause asynchronously execution. Sequence diagrams place more emphasis

on the time sequence of the interactions.

4. Collaboration diagrams, akin to sequence diagrams, are also a kind of inter-object

view of the system. However, collaboration diagrams are more focused on the

structural aspects of the participating objects and interactions, despite the fact

that they reflect mainly the same information as sequence diagrams. Likewise,

collaboration diagrams also present a selected set of objects, but the layout of

interactions are structure-oriented, offering a clear view of how objects are inter-

related and what interactions an object takes part in.

5. Activity diagrams are control-flow and data-flow based, primarily for coordinating

behaviours residing in multiple objects, and their major graphical elements are

nodes and directed edges. A node indicates an action, an activity, or a control

such as decision and merge (for decision making and the merge of multiple possible

10



execution paths) , fork and join (for concurrency). An edge shows the activity

has control-dependency or data-dependency on its preceding activities. That is,

the performance of an action can be launched only when its preceding activity

has completed in execution, or only when the required data become available.

To sum up, the behaviour-related diagrams in UML characterize the system in dif-

ferent ways: state machine diagrams are dedicated to inter-object behaviours; sequence

diagrams and collaboration are mainly for realizing scenarios of use cases using different

organizations of their constituents, the former emphasizing more on time sequence and

the latter more on structure. Activity diagrams, however, are control flow and data

flow oriented.

2.1.2 Executable UML

UML is a modeling language rather than an executable programming language. UML

is not made executable in the first place because it is required to be adapted to various

stages of modeling activities. Particularly, it must provide constructs to facilitate the

design activities in the fairly early stages in the development lifecycle such as concep-

tualizing and sketching the system, when designers are primarily focused on what the

system has to do rather than how that will be achieved. This separation of concerns

has benefits in making designers concentrate on the system requirements to avoid being

overwhelmed by too many implementation details, and enabling the reuse of design

models for implementations on varying platforms. For these benefits, the constructs

in UML must be adequately abstract but at the cost of computational completeness,

which gives rise to the fact that UML is not executable.

However, UML is widely expected to be executable. Raising the level of abstraction

is a major objective in software engineering. For example, programmers have moved

from assembly languages to the higher-level languages such as C and Java for high

efficiency. Today, researchers have a great hope that the abstraction level can be further

raised to the model level. Unfortunately, the non-executability of UML conflicts with

this expectation.

An executable UML is the result of attempting to make UML executable. See

Figure 2.3. xUML is a subset of UML complemented by additional rigorously-defined

constructs to specify those incomplete behaviours, such as operations lacking body and

11



XUML UML V1.x
Semantically Weak 
& Implementation-
specific Elements

Precise Action 
Semantics

Figure 2.3: xUML: a rigorous subset of UML plus UMPAS

state machines lacking entry/exit activities. Additionally, ambiguous constructs are

removed from UML. In other words, xUML is a subset of UML and intended to be a

higher-level programming language than Java, C++, etc.

xUML has the following features. 1) xUML can be unambiguously and consistently

interpreted by a human. 2) xUML can be executed by a machine, which also means

xUML models can be simulated and validated in the earlier stages of system develop-

ment. 3) xUML can be translated to a less abstract target language, enabling 100%

code generation. Hopefully, xUML can be mapped to silicon.

Not being standardized, xUMLs vary depending on application domains, but, in-

variably, parallel to other programming languages like Java, SmallTalk and Ada, an

xUML must provide the basic constructs to serve data declaration, data computation,

execution sequence and concurrency. In addition, refinements must be made to UML

so that it lacks ambiguities either in syntax or in semantics, and is independent of

implementation technologies.

For example, the xUML proposed in [59] subsets UML in such a way. Class diagrams

are employed for the declaration of data types. The operations on data, including those

of built-in data types such as arithmetic computation and collection data structure

handling, and also those of user-defined operators such as creating/deleting object,

writing/reading attributes and navigating among objects, are specified in an action

language. Class collaboration diagrams are used for declaring events. The role of control

flow and concurrency is played by the confluence of sequence diagrams, state machines,

the implicit event mechanism, and the operation calls in action language. The identified

subset is then refined to remove ambiguities and implementation-specific details, like

naming every association uniquely, abandoning composition and aggregation, restricting

multiplicities on associations to 1 (exactly one), 0..*(zero-to-many), 0..1 (zero-to-one),

1..* (one-to-many), and adopting only highly abstract data type as pre-defined data

types such as integer, real, boolean, string, date and timestamp. Simply speaking,

xUML can be described by Figure 2.3 [43].

12



xUML tools have been around for a decade, for example iUML from Kennedy Carter

[107], Kabira from Kabira Design Center [47] and BridgePoint Development Suite from

Project Technology [87]. They are distinguished from each other because their un-

derlying xUMLs, despite sharing similar concepts, are not completely the same either

in syntax or in execution semantics, varying according to their targeted application

domains.

2.1.3 UPAS & Action Languages

As mentioned, for turning a UML model into an xUML model, namely for making it ex-

ecutable, its behaviours are required to be defined in sufficient detail. For this purpose,

the earlier versions of UML (the versions before UML 1.5) refer the user to either plain

natural languages like English or existing implementation languages such as Java and

C++. Both of the approaches seem quick but are not elegant. Using English inevitably

gives rise to ambiguities, resulting in the possibility that the behaviours may not be

consistently or precisely interpreted by human. Furthermore, despite its expressivity,

English is not a machine-understandable language, which disables automated reasoning,

early simulation and execution of the models, and code generation. Using an imple-

mentation language one has to assume that the readers of the model have knowledge of

this language, and it also implies over-specification of models because implementation

languages contain details unnecessary in the stage of modeling, compromising the ex-

pected enhancement of level of abstraction. Last but not least, such lack of a common

formalism in describing behaviours hinders the compatibility and cooperation between

tools.

As such, from UML 1.5, UPAS [4, 5] including action models and activity models are

incorporated into UML so that the behaviours can be specified completely, formally,

high abstractly and implementation independently. UPAS has become key to make

UML executable.

The action model of UPAS defines a set of actions which are non-decomposable and

fundamental units of behaviours. One action represent a single and primitive step in

the execution, and all user-defined behaviours, including activities, state machines and

interactions, are built upon these basic actions, and the effects of their execution, like

writing attributes and triggering state transitions, are ultimately caused by the con-

13



Action

ObjectAction LinkAction VariableAction InvokeAction

StructuralFeatureAction AcceptEventAction

Figure 2.4: Overall classification of actions.

stituent actions. The defined actions in UML2.0 [79] includes essentially the following.

See Figure 2.4 for an overall classification of actions.

Object Actions

Object Actions (See Figure 2.5) includes principally CreateObjectAction and Destroy-

ObjectAction. Given a class, CreateObjectAction creates an object of this class and

returns it as output without other effects, such as invoking a behaviour, generating an

event or initializing attributes. DestroyObjectAction is the opposite: it destroys an

object given as its input, similarly without other effects [79]. In addition, StartClassi-

fierBehaviorAction starts the execution of the classifier behaviour of the given object if

the object has one (Note that each object has at most one classifier behaviour which

may be an activity, a state machine or an interaction). ReadIsClassifiedObjectAction

determines whether the dynamically given object is an instance of the given classifier.

ReclassifyObjectAction, as its name implies, is intended to modify the type aspect of

a dynamically given object by adding the given new classifiers and removing the given

previous classifiers. Note in UML, multi-classification of objects is supported.

Structural Feature Actions

Structural Feature Actions (See Figure 2.6) are used to read, write, and clear the

values of the structural features of objects, such as attributes and association ends,

fulfilled primarily by WriteStructuralFeatureAction, ReadStructuralFeatureAction and

ClearStructuralFeature. For multi-valued structural features, AddStructuralValueAc-

tion and RemoveStructuralFeatureValueAction, sub-actions of WriteStructuralFeature-

14



ObjectAction

Action

CreateObjectAction DestroyObjectAction ReclassifyObjectAction StartClassifierBehaviorAction

Figure 2.5: Classification of Object actions

Action

StructuralFeatureAction

ReadStructuralFeatureAction WriteStructuralFeatureAction ClearStructuralFeatureAction

AddStructuralFeatureValueAction RemoveStructuralFeatureAction

Figure 2.6: Classification of StructuralFeatureAction

Action, are provided to add or remove a member to or from the value collection.

Link Actions

Links are the instances of associations, and the communication bridges between objects:

the run-time configuration of a system can be imagined as a community of objects that

are connected by links, and their communications, such as data transfer and event

passing, are conducted over the links, which implies that two objects without link

connections cannot communicate.

CreateLinkAction (See Figure 2.7) creates a link of a given association across the

given objects; DestroyLinkAction deletes a link of a given association across the given

objects. Moreover, ReadLinkAction navigates an association from a specified source

link end (an object) to zero, one or more target objects. The likelihood of returning

multiple objects is due to the fact that one object is potentially linked with multiple

15



Action

LinkAction

ReadLinkAction WriteLinkAction

CreateLinkAction DestroyLinkAction

Figure 2.7: Classification of LinkAction

ReadVariableAction

Action

VariableAction

WriteVariableAction ClearVariableAction

AddVariableValueAction RemoveVariableValueAction

Figure 2.8: Classification of VariableAction

objects with one association. More capably, Link Actions can specify a qualifier so that

solely the qualified target objects are manipulated.

Not only can Link Actions deal with links, but the Structural Feature Actions can

also create, destroy or read links, because associations are a kind of structural feature

as well. For simplicity, the overlap of semantics of different constructs are circumvented

to the best in our research.

Variable Actions

Besides data being able to be passed between actions through data flow, variables

enable passing data indirectly by storing values shared by the actions within a group.

Variable can be read, written and cleared by ReadVariableAction, WriteVariableAction

and ClearVariableAction. See Figure 2.8.

16



Action

InvokeAction

CallAction SendSignalAction

CallBehaviorAction CallOperationAction

Figure 2.9: Classification of InvokeAction

Invocation Action

Three basic invocation actions (See Figure 2.9) are available: CallOperationAction,

CallBehaviorAction and SendSignalAction. CallOperationAction sends a call event to

the target actions, which then may trigger the execution of the specified behavioural

feature (like operation) that, in turn, result in the invocation of the behaviour imple-

menting the feature. CallBehaviorAction, however, invokes the specified behaviour di-

rectly without using a behavioural feature. SendSignalAction sends a signal event to the

target, which then may respond to the event by firing a state transition or invoking an

activity. The behaviours invoked by the call actions are executed either synchronously

or asynchronously, depending on the call type; however, SendSignalAction causes the

behaviours to be executed asynchronously

Accept Event Action

AcceptEventAction (See Figure 2.10) can be regarded as an element to enforce a join

point in the concurrency. If the execution of a behaviour reaches a point that is an accept

event action, then execution is blocked until the needed event occurs. CallEventAction

specializes AcceptEventAction, but it waits for a call event rather than a signal event.

CallEventAction may be followed by ReplyAction which is responsible for sending return

values back to the caller.

17



Action

AcceptEventAction ReplyAction

AcceptCallAction

Figure 2.10: Classification of AcceptEventAction

Computation Action

UPAS in UML 2.0, unlike that in UML 1.5, has not specified two kinds of actions:

• computation actions, which mainly embody mathematics functions or string op-

erations, and do not interact with instances.

• collection actions, which mainly operate on implementation-unspecific collection

data structures (like Bag, Set and Sequence) to retrieve elements, join collections

and iterate elements.

However, these actions are thought to be implicitly included in UML 2.0. OMG does

not explicitly define them because, in our opinion, their semantics are common amongst

programming languages, well-understood and precise.

2.1.3.1 Activity Model

As mentioned, each action represents merely an individual step in execution; they must

be organized in a way to construct meaningful behaviours. In UML, the organization

of actions is fulfilled by an activity model. The UML Specification [79] also states that

actions must be directly contained in an activity. Activities are specified in the activity

diagram, where actions are rendered as a kind of activity node, denoted by rounded

rectangles with a name, and connected by directed edges with other nodes including

actions, control nodes and object nodes. See Figure 2.11 for illustration. Control nodes

controls the path and concurrency of execution and include mainly Decision Nodes,

Merge Nodes, Fork Nodes and Join Nodes. Data nodes mean a temporary storage of

data and are used to hold the data produced by actions until the following actions

become active and consume it. Data can also come from parameter passing (activities,

18



Process Order

Order Modified expired

available

invalid

Check Credit Card

Receive Order

Check Stock

Credit Card Info

Books

Process Credit Card Deliver Books

Send Receipt to Customer

Cancel Order

Order

Request Modifying order

Wait for three days

Accept Modified Order

Order

Receipt

Figure 2.11: Example business process model for processing orders

like other behaviours, are parameterized), stored in data nodes, waiting to be consumed

by the actions connected with these data nodes.

Directed edges represent control flows and data flows, which determines when actions

start to execute. Control and data move one-way along the edges, and the following

action can begin to be executed only when its preceding action release the control and

all its required data become available from either preceding actions or parameters.

To summarize, the action model, activity model, and other behaviours like state

machines, as well as type structures defined primarily in class diagrams, form a Turing-

19



Complete UML profile for computations.

2.1.3.2 Action Languages

It is imperative that a usable language involves two aspects: syntax and semantics,

however, the concrete syntax of actions has not been defined though its abstract syntax

and semantics are standardized in the UML specification [79]. Consequently, action

languages [107, 87, 99] are needed to provide such concrete syntax. On the one hand,

the semantics of action languages is required to conform to UPAS. On the other hand,

action languages are required to be textual in that textual languages usually have higher

coding efficiency than graphical ones, especially in the circumstances that xUML is

expected to be a programming language.

A primitive construct in an action language may be a mapping to one action, or sev-

eral for convenience. For example, creating an object may involve initializing attributes

or creating other objects for compulsory associations, but the CreateObjectAction sim-

ply creates an object as required without any other effects, and further actions are

required to initialize attributes and create objects for compulsory associations. Hence,

an action language could define one object-creating construct as a shorthand for several

actions.

Action languages also incorporate the constructs which correspond to the flow con-

trol mechanism provided in the activity model, such as decision making, path merge,

forking and joining of concurrency. Usually, loop constructs like ‘for’ and ‘while’ are

also provided for ease of coding [107]. More importantly, action languages rely on the

type system of UML or xUML as a part of their type declarations.

A range of action languages have already been in use, such as Action Specification

Language (ASL) [107], the BridgePoint Action Language [87], the Kabira Action Se-

mantics (Kabira AS) [47], and the widely-used SDL [99] in telecommunication industry,

Shlaer-Mellor’s SMALL [59], TALL [59] and JAL [27]. These action languages vary

in the fashion of syntax and semantics, for example, JAL is akin to Java in syntax,

and TALL is a functional language. It is argued in [41] that the syntax of action lan-

guage should be aligned with Object Constraint Language (OCL) because OCL has

been standardized as a part of the UML specification.

20



2.1.3.3 AL vs OCL

Object Constraint Language(OCL) [76] is a formal declarative language standardized

as a significant part of UML and mainly used to specify the constraints of a UML model

(including the metamodel for UML itself). The instances of this model which conform

to all the specified constraints are referred to as well-formed, otherwise as ill-formed.

OCL is mainly used as follows: 1) as a model query language to know about, for

example, what class an object is, or which objects a class has; 2) to specify a condition

for a type that all its instances must observe, namely a invariant of the type; 3) to specify

pre-, post- and guard condition for operations or behaviours; 4) to specify derivation

rules among model elements for making decisions or enforcing some relationships, for

instance, to specify business rules; 5) to access structural features of an object, such as

reading an attribute and association navigation.

There is no doubt that the emergence of OCL brings precision and rigour to UML.

The static semantics of UML itself can be rigorously defined by OCL constraints. In

addition, the preciseness of UML models can be enhanced by OCL because some UML

constructs, such as the bodies of query operations, pre- and post-conditions and initial

values of attributes, can be specified in OCL rather than informal natural languages.

However, OCL cannot replace action languages, even though a large part of OCL

has semantic correspondence in ALs; for example, they both can read values of at-

tributes and link ends, and have decision-making and looping constructs. OCL, as a

pure specification language, has no side effect on system state like writing attributes of

objects, creating/destroying objects and links, but ALs do. ALs usually further incor-

porate a reflection mechanism as OCL does. In addition, the type system of OCL is

essentially equivalent to that of ALs because they both rely mainly on class diagrams

for type declaration. For these reasons, ALs can replace OCL, at least in the sense of

functionality, but not vice versa.

2.2 Formalizing UML

A specification of a computer language is required in order to achieve a common under-

standing of the language among the language designers, implementers and programmer.

Generally, it involves two aspects: the specification of syntax and the specification of

21



semantics.

2.2.1 Abstract Syntax of UML

An abstract syntax is a model of the internal representation of programs in a computer

language, and mainly concerned with the compositional structure of the phrases of a

program. Instances of abstract syntaxes are produced as the major result of micro-

syntax analysis in compile-time, are tree-structured and as such referred to as abstract

syntax trees. A conventional and popular way to describe abstract syntaxes as context-

free grammars is using notations akin to BNF or its variations such as EBNF; instead,

OMG specifies the abstract syntax in the four-layer metamodeling framework [78], in

which information is hierarchically divided into four layers, each representing a different

level of abstraction. See Figure 2.12: from bottom to top, the four layers are the

instance layer, modeling layer, metamodeling layer and meta-metamodeling layer, and

the models in the layers apart from the instance (M0) layer are respectively called models

(M1), meta-models (M2) and meta-metamodels (M3). Meta-metamodels describe the

metamodels, in other words, the latter are instances of the former. This also applies to

metamodels and models, plus model and instances. Interestingly, the meta-metamodel

describes itself.

The descriptions of abstract syntax begin with defining a core reflecting the object-

oriented modeling concepts: for example, objects are classifiable, have attributes and

operations, have relationships with other objects, and can inherit features from an-

cestors. This core forms a fundamental part of UML and is specified in the UML

infrastructure. Then this UML core can be used to describe the complex UML ele-

ments such as the state machine, the activity model and the action model. Therefore,

UML can be thought as being defined by itself (by its own core). Even further, the

UML core is imported and merged with MOF as its essential part to describe other

metamodels such as CWM (Common Ware Model) [75].

Now we give an example to illustrate how the abstract syntax of UML is defined.

See Figure 2.12. In the metamodel (M2) layer, there is a fraction of the UML meta-

model, where the elements including Class, Association and Property are the instance

of MOFClass which belongs to Meta-metamodel (M3) layer. In model (M1) layer, there

is a model defined by the user whose syntax conforms to the UML metamodel, and the

22



MOFClass

Class

PropertyAssociation

+name : string

PhD StudentThesis

aPhDStudentaThesis

M3 Layer(MOF)

M2(UML Metamodel)

M1(User Model)

M0(Instance layer)

*attribute

<<instantiate>>

<<instantiate>>
<<instantiate>><<instantiate>>

aLink

<<instantiate>><<instantiate>>

<<instantiate>><<instantiate>>

<<instantiate>> <<instantiate>>

writing

Figure 2.12: Illustration of the four-layer metamodeling architecture

23



elements in this layer are the instances of elements in the UML metamodel. The ele-

ments in the lowest layer (M0) are the runtime instances or some other real entities of a

system. By this means, the abstract syntax of UML is specified in the UML metamodel

using MOF, and a user model is checked against the UML metamodel for syntactic

validity.

2.2.2 Contextual Constraints of UML

The syntactic validity of programs of a language depends on the compliance not only

with the context-free grammar of the language but also with context-sensitive con-

straints. The latter, such as type rules, capture the context-sensitive aspect of the lan-

guage, and are frequently called static semantics as they can be predicated and checked

at compile time. For instance, in Ada [35], the parser would accept the statement which

assigns an int value to a variable that is boolean-typed, whereas the type checker would

reject it as a result of not meeting the contextual constraint that a variable can be only

assigned with a value of the same type.

As mentioned, the UML metamodel has specified the context-free abstract syntax of

UML in the four-layer metamodeling framework, while its context-sensitive constraints,

which are referred to as well-formedness rules [78] are specified by a set of invariants

[76] largely in OCL expressions accompanied by informal explanations. For instance, to

prevent cyclic generalization, an OCL expression is specified in the context of Classifier

(in M2 layer) like ‘not self.allParents( ) –>includes(self)’, which means the parents of

a class (in M1 layer) cannot include itself.

2.2.3 Semantics of UML (Related Work)

The run-time or dynamic semantics of UML is currently standardized in English in the

UML Specification [78, 79]. Even though it is written with extreme care, it cannot

be guaranteed to be entirely free of loopholes, contradictions, vagueness, and wording

that doesn’t express the writer’s original intent. For example, it is not clear in UML

whether a passive object (whose behaviours are invoked by other objects by CallOp-

erationAction) can react to signal events. Since reaction to signals requires that the

receiving object must reside in an active state of awaiting occurrence of a particular

signal event, the receiving object must be an active one rather than passive. However,

24



the UML metamodel provides all objects, whether active or passive, with a mechanism

(embodied in Reception: a meta-class in UML metamodel) for declaring what signals

objects may react to and which behaviours should be invoked. This contradiction has

been mentioned in [54] and the interpretation of this point by researchers differs from

one to another.

The informality of the semantics of UML has aroused great concerns of researchers

and UML practitioners, and the need for a precise semantics was discussed in [29, 32].

The benefits of formal semantics of UML can be summarized as follows.

• It allows subtle errors in the current and future versions of the UML standard to

be detected, and suggestions for improvements to be made.

• It is critical in achieving common understanding among UML implementers, UML

modelers and UML designers.

• It enables tool vendors to develop tools that offer more powerful and effective

testing, analysis, and model transformation functionality and better support the

exchange of modeling artefacts between different tools.

• It makes possible automatic code generation, model simulation, and validation

and verification of models.

Numerous attempts have been conducted to provide formal semantics for UML.

Their approaches can be categorized into the following six groups.

1. Pure Set theory approach. M. Richters and M. Gogolla [90] utilized set theory

to formalize class diagrams and the operations available in OCL. In this approach,

types are represented by sets, and the operations on types are defined by the

mathematical functions over sets. This approach can be regarded as a denotational

approach because UML elements are mapped to the mathematical notations, but

usually merely concerned with the semantics of the static part of UML such as

the class diagram and the OCL expressions.

2. Meta-modeling approach. This approach was only used to describe the static

semantics of UML in a small subset of UML, which is parallel to OMG in specifying

UML in a four-layer metamodeling framework. The pUML group originated this

25



approach and used it in the semantics of UML, where, essentially, an algebraic

specification is used to describe legal snapshots of the system [29, 25, 11].

3. Translation approach. This approach is characterized by defining the trans-

lation from UML to traditional specification languages, such as Z, B, Object-Z,

CASL, Petri-net. The semantics of UML is then represented by the target spec-

ification languages whose semantics have been formalized. W. McUmber and

H. Cheng [58] proposed a general framework for this approach and argued the

translation should be homomorphic mappings between metamodels so that the

structural relationships between the elements in two different metamodels can be

preserved. The translation of UML to the input languages of tools, such as theo-

rem provers, code generators and model simulators, are also categorized into this

approach. For example, M. Kyas and H. Fecher translated OCL combined with

class diagrams into the input language of PVS [52].

G. Reggio et. al [89] employed an extension of the algebraic language CASL to

describe the semantics of individual diagrams, class diagrams and state machines,

and then the semantics of the individual diagrams are integrated to give the overall

semantics of UML.

ASM (Abstract State Machine) is also popular in defining UML semantics [18,

31, 74]. E. Börger et al. [19] provide a relatively complete dynamic semantics of

UML in terms of ASM which has been enriched by some new constructs specially

for the characteristics of UML state machines. The model covers inter-object

communication (event handling mechanism), the run-to-complete process of intra-

object state transitions as well as flow control and data control, which together

form the major dynamics of UML.

Petri-nets are frequently used to model the semantics of activity diagram due to

the similarities in semantics [97, 34, 96]. In this approach, activity nodes are

mapped to places, and edges to transitions. For example, Harald Störrle and Jan

Hendrik Hausmann [97] explained the formal semantics of activity diagrams by

defining a mapping of the basic elements of activity diagrams to procedural Petri-

nets and then investigating how strong the alignment of UML’s activity diagrams

to Petri-net is.

26



4. Operational semantics approach. This approach usually starts with defining

the abstract syntax of a part of UML (State machines or Activity diagrams) in

terms of mathematical concepts (largely in set theory) in a high level of abstrac-

tion. Then object configuration, state configuration and environments are also

defined as mathematical data structures (such as tuple, set, queue, map etc), and

also some auxiliary operations are defined as functions over this data structures.

Finally, execution steps are defined using transition rules in first-order predicate

logic. For example, W. Damm et al. [26] define a real-time-system-oriented

subset krtUML of UML which is adequate to represent the behaviour-modeling

mechanism of UML. Then, the dynamic semantics of krtUML is provided using

a symbolic transition systems, where the state-space of the transition system is

given by the valuation of a set of typed system variables, and initial states and

the transition relations are defined by some first-order logic predicates.

5. Virtual machine approach. V. Vitolins and A. Kalnins’s [103] semantics of

UML activity diagrams is a representative of the virtual machine approach, where

a virtual machine is designed by means of metamodel and takes a specific activity

diagram as input. The execution steps are defined by a mix of pseudo-code and

OCL expressions as pre- and post-conditions.

6. Combined approach. One may combine the approaches mentioned above to

formalize the semantics of UML. An example of combined approach can be found

in [55], where the author used set theory and first-order predicate logic to model

the abstract syntax and static semantics of the sequence diagrams. As for the

operational semantics of message execution, predicate rules are used for transitions

of system state.

Other approaches to UML semantics also exist. For example, M. Enciso [91] uses

temporal logic to represent dynamic behaviours of UML state machines; S. Kuske [51]

described a UML state machine based on the theory of graph transformation; D. Harel

and S. Maoz [39] proposes a modal semantics, Modal Sequence Diagrams (MSD), to

address the definitions of assert and negate in sequence diagrams.

27



2.2.4 Limitations of Previous Attempts

The approaches mentioned surely do good for the formalization of UML semantics.

However, they share the following drawbacks.

• Most approaches are focused on one or two diagrams. This is partially because one

approach is very suitable for one part of UML but can not specify the semantics

of other parts. Even if it can, it may be awkward. For example, Petri-nets are

confined to modeling the activity diagrams of UML; Pure set theory is limited to

specifying the semantics of static part of UML such as OCL. However, it is hoped

that the dynamic semantics of UML may be specified in a universal approach.

• As mentioned, the formal semantics of UML must cater for diverse audience of

language implementers, language designers and language users. This requires that

the formal semantics of UML, on the one hand, should be sufficiently formal, and

on the other hand should be readable by different kinds of users. Most current

attempts have definitely added more or less formality to UML, however, they are

usually based on abstract mathematical concepts, which decreases the readability

of the semantics. This is further compromised by poor organization and lack of

modularity in the descriptions. As a result, the current semantics of UML has

practical problems.

• The present semantics of UML is rarely based on a mature semantics-describing

framework. Indeed, some approaches themselves, relatively speaking, are not

stable and are evolving dramatically, and some either lack theoretical foundation

or are not well-proven in practical use. That is to say, the current UML semantics

is founded on weak bases. However, a mature semantics-describing framework

has a solid ground both in theory and in practice and usually has been applied

to a range of languages. In addition to that, a mature basis means a significant

community of users and has been taught to students. In conclusion, it is preferable

that the semantics of UML is based on a mature semantics-describing framework.

In addition, D. Harel and B. Rumpe [40] also argued that there are misconceptions

surrounding the the existing formal semantics of UML and pointed out what semantics

actually is. These limitations of the previous attempts motivate us to describe the

semantics of UML in a mature framework, Mosses’ Action Semantics [23].

28



2.3 Summary

UML, a general-purpose visual modeling language, is intended to be used in all stages

of the system development, and captures the static and dynamic aspects of the system

using different views (or diagrams). The xUML, a rigorous subset of UML, is the

outcome of the efforts of moving UML to a programming language with high level of

abstraction. UPAS is incorporated into UML to define a set of actions which are the

basic building blocks of behaviours, and action languages are created to provide syntax

to UPAS.

The run-time semantics of UML is specified in plain natural languages, leading to

inevitable loopholes, ambiguities, inconsistency and poor wording. Despite various ef-

forts having been made to provide formal semantics to UML, none of them bases the

semantics of UML on a mature semantics-describing framework, hence lacking read-

ability, solid ground in theory and practice, and tool supports. This motivates us to

describe the semantics of UML using Mosses’ Action Semantics.

29



Chapter 3

Introduction to Action Semantics

Programming languages are consciously designed by computer scientists and targeted to

a relatively small population of users, mostly programmers. Unlike natural languages,

ambiguities in a programming language are not tolerable because its audience is com-

puters rather than the highly-intelligent human beings. Thus, researchers agree on

the necessity of formalizing the semantics of programming languages because a formal

semantics can act as [92]:

• A formal standard for language implementation. The formal standard of seman-

tics can help ensure that the language is implemented exactly the same on all

machines, by different implementers.

• A precise and complete user documentation. A user of the language can refer

to this formal semantics for exactly understanding some subtle parts of the lan-

guage. The quality of a software product cannot be assured if its developers fail

to understand the implementation language precisely.

• A tool for design and analysis. On the one hand, with the formal semantics defini-

tion, the designer of the language can study the pragmatics of the language in the

early stages of language development even though there are few supporting tools

and no user feedback. On the other hand, the designer can use the formal seman-

tics to make reasoning to find out loopholes, inconsistencies and incompletenesses

within the language specification.

• Input to a compiler generator. A compiler generator takes the formal semantics

as input and produces an assured implementation of the language. Automatic

30



generation reduces the time of prototyping and sets the programmers free from

tedious and error-prone coding.

For decades, people have explored various approaches to formalizing the semantics

of a programming language, such as denotational semantics [98], operational semantics

[73], and axiomatic semantics [73], and Action Semantics (AS) [65]. In this chapter, we

will give a small language at the very beginning as our running example to introduce

these approaches (except axiomatic semantics because it is not related to our research).

Emphasis is placed on AS because it is the semantics-describing framework adopted in

this research. Then, a comparison is made between UPAS (introduced in Chapter 2)

and Mosses’s Action Semantics, to clear up the confusion between them. Finally, we

sum up this chapter by highlighting the major features of the introduced semantics and

the justifications of why we choose action semantics as the vehicle to specify UML.

3.1 Introduction to Operational Semantics

In an operational semantics one describes the semantics of a language by specifying a

transition system [86], defined as a tuple < Γ,−→>. Γ is a set of elements: γ, called

configuration, and −→ is a binary relation of Γ × Γ, called the transition relation. A

particular γ −→ γ′ is an element of −→ and means a transition from the configuration

γ to γ′. Furthermore, the terminal configuration T can be specified in addition to the

transition system< Γ,−→>, and then a terminal transition system < Γ,−→,T > is

obtained, where T is a set of terminal configurations and if a transition results in a

terminal configuration, then the system would halt [86]. A terminal transition system

is useful in specifying a finite automaton with a set of finite final states.

Configuration indicates what parts of the transition system (viewed as an abstract

machine) may change during the execution of programs and can be thought of as the

system state before or after a transition. A configuration normally contains two as-

pects: a control part, and one or more data parts [86]. The control part refers to the

instructions or the part of a program that remain to be executed, and the data parts

vary depending on the language described. For example, when one describes a simple

declarative language consisting of binding but no commands, the data parts of config-

uration are just the binding environment. If the language is imperative, then the store

31



is also a part of the configuration. However, in order to make the operational seman-

tics syntax-directed, the control part of the configuration is often ignored especially in

formalizing high-level languages.

To illustrate operational semantics, we coin a simple imperative language, called

IMP, as the running example. Its abstract syntax is shown in Syntax 3.1. IMP is a typ-

Syntax 3.1 Context-free grammar for IMP

S ::= skip I := E if E then S else S while E do S S; S
D ::= I :: T
E ::= N I E Op E
Op ::= + - * 6= ∨ ∧
N ::= (0|1)+

T ::= binary boolean

ical imperative programming language, including statements (S), a variable declaration

(D) and expressions (E). For simplicity, only two types are considered: binary number

and boolean, and they are intuitively corresponding to the sets N (N = natural num-

bers t 0) and B (truth values). An identifier (I) stands for a variable that corresponds

to a single location in the store. The data that can be held in the storage are called

storables, and those that can be bound to tokens are called bindables. For convenience,

we define the set VALUE as the union of B and N, namely VALUE = B t N. In the

case of IMP, values are storables, and only the locations of the storage are bindables.

The execution of an IMP program involves modification of the binding environ-

ment (caused by variable declarations) and the data store (caused by the execution of

statements). So the configuration for IMP is defined as follows:

Definition 1 Configure γ for IMP is a tuple 〈ENV, STORE〉

• where ENV is a set of functions(env: I −→ LOCATION), with the following two

auxiliary operations on ENV.

– bind: ENV × I × LOCATION −→ ENV, which adds a binding to the current

environment and produce a new environment.

– find: ENV × I −→ LOCATION, which returns a location bound to the given

identifier in the current environment.

• where STORE is a set of functions (store: LOCATION −→ VALUE). The LO-

CATION is a set whose elements are used to identify the cells in the storage; its

32



VALUE can be a unique integer or a unique string, which depends on the situation

and is of no significance in describing semantics. Three auxiliary operations are

available over STORE:

– allocate: STORE −→ STORE × LOCATION, which allocates a cell in the

current store resulting in a new store and return the location of the newly

allocated cell.

– update : STORE × LOCATION × VALUE −→ STORE, which modifies a

location in the store to return a new one.

– fetch : STORE × LOCATION −→ VALUE, which obtains the value of a

given location from a store.

All the above auxiliary functions are only informally explained merely for saving space.

The mentioned sets B and N, and their operations, are intuitive and can be specified

with ease, for example, by algebraic specification, so we do not define them here.

The semantics of declaration of a variable is given by the function

elaborate : I × STORE × ENV → ENV

which is defined as as

elaborate[[i : I :: Type]](o, v) = bind(v, second(allocate(o))).

Note that we use ‘[[ ]]’ to enclose a syntactic argument, a terminal or a non-terminal, and

the second() is assumed to be a predefined operation on binary tuples which retrieves

the second element of a binary tuple. Furthermore, meta-variables are variables that

range over non-terminals and are declared in the form of ‘ n : Nonterminal’ where ‘n’

is a meta-variable. In addition, the variables o stands for an element of STORE, and v

for an element of ENV.

Then we specify the semantics of evaluation of expressions, whose effect is simply

returning values to be consumed immediately by the enclosing statements, without

modifying the configuration elements: the storage and the binding environment. The

semantics of evaluating expressions is represented by the function ev : STORE×ENV×

E → V ALUE, which is then defined in a syntax-directed manner (See Syntax 3.1).

33



OSD 3.1 Rules for defining the evaluation of IMP expressions.

o ∈ STORE, v ∈ ENV, i : I, e1 : E, e2 : E

ev[[()]] = 0, ev[[0]] = 0, ev[[1]] = 1

ev[[N ]] = ev[[(0 1)*(0 1)]] = 2× ev[[(0 1)*]] + ev[[(0 1)]]

ev[[ i : I]](o, v) = fetch(o, find(v, i))

ev[[e1 op e2]](o, v) = ev[[e1]](o, v) + ev[[e2]](o, v) if op = +
ev[[e1 op e2]](o, v) = ev[[e1]](o, v)− ev[[e2]](o, v) if op = −
. . .

From OSD 3.1, it can be known that, despite a query into the storage and envi-

ronment, the evaluation of expressions has effects neither on the storage nor on the

binding environment. Unlike the evaluation of expressions, the execution of statements

may have effects on the storage. The semantics of executing statements are represented

using function ex : S × STORE ×ENV −→ STORE, which is then defined by a set

of transition rules in OSD 3.2.

It can be noticed that the transition rules in OSD 3.2 are only concerned with the

final effect of phrases. The operational semantics of this kind is called natural semantics

or big-step semantics [73]. Another kind of operational semantics, called structural

operational semantics [86], are used to describe the individual steps of computations.

For instance, the structural operational semantics of the statement ‘S ::= S; S’ is like:

ex[[s1]](o, v)→ o′

ex[[s1 : S; s2 : S]](o, v)→ ex[[s2]](o′, v)

To conclude, in an operational semantics, one is concerned both with effects or

results of the computation (embodied in the change of configuration) and with how to

execute programs (embodied in transition rules).

3.2 Introduction to Denotational Semantics

In denotational semantics [95, 98], one provides the meaning of a programming language

in terms of mathematical objects, such as integers, truth values, tuples, and functions,

34



OSD 3.2 Rules for defining the execution of IMP statements.

o, o′, o′′ ∈ STORE, v ∈ ENV, a ∈ V ALUE
i : I, e : E, s1 : S, s2 : S

ex[[skip]](o, v)→ o

ev[[e]](o, v)→ a
ex[[i := e]](o, v)→ update(o, find(v, i), a)

ex[[s1]](o, v)→ o′

ex[[if e then s1 else s2]](o, v)→ o′ if ev[[e]](o, v) = TT

ex[[s2]](o, v)→ o′

ex[[if e then s1 else s2]]→ o′ if ev[[e]](o, v) = FF

ex[[s]](o, v)→ o′, ex[[while e do s]](o′, v)→ o′′

ex[[while e do s]](o, v)→ o′′ if ev[[e]](o, v) = TT

ex[[while e do s]](o, v)→ o if ev[[e]](o, v) = FF

ex[[s1]](o, v)→ o′, ex[[s2]](o
′, v)→ o′′

ex[[s1; s2]](o, v)→ o′′

so denotational semantics was originally called mathematical semantics. These mathe-

matical objects construct the semantic world for the language, meanwhile the syntactic

world of the language is expressed in a variant of BNF or EBNF. Two major tasks

in supplying denotational semantics for a language are, first, defining the semantic

world, and second, specifying semantic functions which connect the two worlds through

mapping the objects in the syntactic world to those in the semantic world.

Dana Scott’s Domain theory [9] answers the question of how to create the semantic

world by arguing that the semantic world is made up from domains. Semantic domains

can be roughly regarded as the set-theoretical sets and are categorized as primitive

domains and compound domains. The primitive domains are such like: N (the domain

of natural numbers), B (the domain of truth values), I (the domain of integers), R (the

domain of rational numbers), etc. It is straightforward that primitive domains are the

semantic shadows of the primitive types in programming languages.

Compound domains are needed to model those composite data structures and com-

plicated computations. Analogous to set construction of set theory, compound domains

35



are constructed from the simpler domains by the constructors: Cartesian product (×),

Union (+) and Function (−→).

In domain theory, all domains may be extended with one additional element (⊥),

called undefinedness or bottom. Such extended domains are referred to as lifted domains

[92]. The introduction of undefinedness is owing to the fact that execution of programs

is subject to non-terminations (infinite loops) and abnormal terminations. Thus the

undefinedness should be present to represent such situations.

So far, we know that the primitive domains and the methods of constructing com-

pound domains. Now we proceed to illustrate how to use the domains to denote the

semantics of the toy imperative language IMP.

Likewise, mathematical objects are needed to denote the storage and the binding

environment of IMP. For them, we reuse their definitions in Section 3.1. We also reuse

the operational semantics of expressions and variable declarations. The reuse is safe

because they are essentially mathematically defined based on set theory albeit in a

different style. As such, we only need to specify the semantics of statements in IMP

using denotational semantics.

The semantic function of executing statements is ex : S −→ STORE × ENV −→

STORE. That is, the execution of a statement will use the given environment and

store and then produce a new store. Its signature is similar to that in the operational

semantics. Differently, in denotational semantics, it is semantic equations, rather than

the first-order predicate logic rules, that are used to express semantic functions. See

DSD 3.1 for the denotational semantics of IMP statements. Note that in the description

we use an auxiliary function ‘cond( , , )’. This function has three parameters and will

select the second parameter if the first parameter is evaluated true, otherwise it will

select the third parameter.

In DSD 3.1, the defined semantic equations map syntactic phrases into mathemati-

cal objects (functions), and the semantics of almost every composite syntactic phrase is

composed from those of its immediate sub-phrases. Such compositionality is required

by denotational semantics, which accounts for denotational semantics being called com-

positional semantics. However, the semantic function for the construct while-statement

is recursively-defined; i.e., it is defined partially on itself rather than purely on the se-

mantics of its immediate sub-phrases, which breaks the principle of compositionality.

So, rigorously speaking, it is by no means fully defined.

36



DSD 3.1 Denotational semantics definition of IMP statements
Statement

o ∈ STORE, v ∈ ENV, i : I, e: E, s1, s2: S.

(1) ex[[ skip ]](o, v) = o.

(2) ex[[i := e ]](o, v) = update(o, find(e, i), ev[[e]](o, v)).

(3) ex[[if e then s1 else s2]](o, v) = cond(ev[[e]](o, v), ex[[s1]](o, v), ex[[s2]](o, v)).

(4) ex[[while e do s ]](o, v) = cond(ev[[e]](o, v), ex[[while e do s ]](ex[[s ]](o, v), v), o).

Domain theory provides a treatment of such recursively defined semantic functions

so as to get the non-recursive definition. It is generally shown as follows. The following

equation can be obtained from Equation (4) of DSD 3.1:

ex[[while e do s ]](v) = cond(ev[[e]](v), ex[[while e do s ]](ex[[s ]](v), v), id),

where id is the identitity function defined as

id : STORE −→ STORE

which satisfies ∀o ∈ STORE.id(o) = o. Then, ‘ex[[while e do s]](v)’ is a fixed point of

the function F defined as

F (g) = cond(ev[[e]](v), g(ex[[s]]), id),

where the function F is not recursively defined.

However, the ultimate goal is not to get the function F but to get one of its fixed

point which genuinely denotes the semantics of the while-statement phrase. The further

problem is that F may have no, or more than one fixed points. Thanks to domain theory,

it has proved that at most one fixed point can be established as the desired semantic

function. This fixed point is the least-defined one among all fixed points of F [73].

Domain theory has provided a solid solution as to how to get this least fixed point.

Readers are referred to [9] for more details.

We simply use FIX, which is defined rigorously in domain theory, to denote the

function that is able to produce the least-defined fixed point of the given function. So

the semantic equation of the while-statement can be safely specified as:

37



ex[[while e do s ]](o, v) = FIX(F )(o), where F (g) = cond(ev[[e]](v), g(ex[[s ]]), id).

Such description of IMP does not consider errors such as infinite loops and abnor-

mal terminations. In denotational semantics, an error occurring at a sub-phrase is

propagated to its immediate containing phrase, until the root of the whole program.

This process is modelled by the confluence of the aforementioned undefinedness and the

mechanism of strict functions which are characterized by

if f is a strict function in the domain A→ B, then f(⊥) = ⊥.

For example, in some languages, if an erroneous assignment like ‘x := 3/0’ is possible,

then we can define the execution of assignment as

ex(i : I := e : E) =

. . . if ev(e) 6= ⊥

⊥ if ev(e) = ⊥.

ev(e1 : E/e2 : E) =

ev(n1)/ev(n2) if ev(n2) 6= 0

⊥ if ev(n2) = 0

According to this, then ev(3/0) = ⊥, thus ex(x := 3/0) = ⊥, and so on. The error is

propagated to the top-most semantic level by this means.

To conclude, denotational semantics are aimed to specify the meanings of program-

ming languages purely on a mathematical basis. A denotational semantics assigns

semantics to every phrase—every expression, every statement, every declaration, etc.

and it is compositional because the semantics of a phrase is composed by those of its

immediate subordinates. So, the structure of a denotational semantics is parallel to

the language’s syntactic structure. Distinguished from operational semantics, denota-

tional semantics is only concerned with the final computational results but little with

computational steps.

3.3 Introduction to Action Semantics

Unlike informal semantics written in natural languages, the formal techniques, partic-

ularly the operational semantics and denotational semantics introduced in the earlier

38



sections, can be employed to provide accurate and unambiguous semantics for program-

ming languages, which then serve as the basis for proving properties of programs as well

as for fast language implementation.

Even though the formal techniques are strongly promoted, most programmers still

prefer informal semantics to formal ones to understand programming languages, in that

they find formal semantics notationally dense, cryptic and unintelligible. Furthermore,

for language designers, a formal specification is difficult to create correctly, to modify,

and to extend. Especially when the concerned language is large-scale, its formal defini-

tion becomes overwhelming both to the language designer and the language user, and

thus remain mostly impractical in reality, particularly in industrial circumstances.

Action Semantics (AS), which addresses these criticisms of formal methods, was

developed in the second half of the 1980’s by Peter Mosses with the collaboration of

David Watt [67]. Its major ambition is to make formal semantics easy to create and

read, and then make formal techniques more applicable [65].

Currently, there are two versions of action notation: the original version (referred

to as AN-1) and the newer version (known as AN-2). AN-1 is described in the Action

Semantics book [65], and formally defined by providing a structural operational seman-

tics for its kernel and some rules that allow the full AN-1 to be reduced to its kernel.

AN-2 is the revised design of AN-1 and has been proposed at the AS 2000 workshop

[53]. AN-1 is stable, so it is adopted in this thesis.

In this section, we introduce AS in a considerable detail. In order to make the

introduction not overwhelming, we do not consider the concurrency mechanism in the

action semantics. This introduction to AS is primarily based on [65], [106] and [95].

3.3.1 Action Machine

The framework of Action Semantics [65] has specified an abstract machine (Action

Machine or AM) which can respond to a set of ‘instructions’, namely actions, the

execution semantics of which are formally defined using structural operational semantics.

So we consider that it is preferable to introduce action semantics from the perspective

of operational semantics.

Generally, the Action Machine (AM) is such that it is in a particular state (or

configuration) at any moment of runtime and its state evolves over time. The state or

39



configuration of AM is defined as a tuple:

state = < acting, store >

where

• the acting component is analogous to the remaining action to be performed in the

AM. It is associated with two kinds of data: transient data, which is essentially a

variably-sized tuple; binding data, which is map-structured and akin conceptually

to the symbol table used in a language’s compile time. So more clearly, the state

can be written as

state = < action, transient, binding, store > .

The transient and binding data may be consumed or dynamically changed by the

action being performed. The acting is nestable. That is, the structure of acting

can be described in a BNF form as

acting ::= action transients bindings | acting transients bindings.

The nestability of the acting provides convenience for defining data flows using

structural operational semantics.

• the store component is a memory abstraction, and it is conceptually capable of

storing data unless the data are explicitly changed or destroyed. In addition,

the store can act as a medium of communications amongst actions which are not

structurally related. Unlike a real memory, the size of this store can vary infinitely.

An action performed in AM usually causes a sequence of state transitions: changing

the store and meanwhile making the acting component simpler and simpler. Step by

step, the initial acting part is diminished to one of the following terminated actings

(omitting data and bindings):

• Completed, which indicates the performance is successfully accomplished.

• Escaped, which indicates that the performance is terminated somewhere, leaving

the remaining action unperformed. This is parallel to exception handling in some

40



programming languages.

• Failed, which indicates the performance has either diverged or terminated abnor-

mally. Being diverged means the performance of the action falls into an infinite

loop; abnormal termination is analogous to the phenomenon that a running pro-

gram encounters a vital dynamic error.

AS provides a rich range of constructive actions so that AM is a Turing-Complete

machine.

3.3.2 Sorts and Algebraic Specification

The performance of actions may use and produce data. AS, as a complete framework,

provides a way to specify this data, namely using unified algebraic specification [65].

The unified algebraic specification is an unorthodox algebraic specification which shares

major concepts with the other algebraic specifications such as Algebraic Specification

Formalism (ASF) described in [14]. Take one point as example, in all algebraic specifica-

tions, sorts are the major concept, and a sort can be simply viewed as a set-theoretical

set equipped with some operations.

However the unified algebra is different from the traditional ones in various ways.

Particularly, in traditional algebras, sorts and the contained elements (individuals) are

treated separately and differently. For instance, merely individuals but not sorts can

be applied to operations. However, the unified algebra handles elements and sorts

uniformly. The following are the distinguishing features of unified algebra [64]:

• An individual is also a sort (singleton sort); there is no distinction made between

a singleton and its only element. Both of them are treated as values and thus they

both can be the arguments of operations. For example, ‘e: S’ is used to define ‘e’

is an individual of the sort S.

• The carrier of an algebra is a distributive lattice, where all the elements are sorts

including singletons. The sorts are partially ordered by sort inclusion (denoted

by ≤ or ≥). Joins and meets are obtained respectively by sort union (denoted

by |) and sort difference (denoted by &). Most significantly, the empty sort or

vacuous sort is incorporated as the bottom element to represent undefined results,

41



represented notationally by nothing in AS. In unified algebra, ‘S1 ≤ S2’ means

that S1 is a subsort of S2.

• Operations on elements are subsort-preserved. that is, for each operation op, It

holds that if s1 ≤ s2, then op(s1) ≤ op(s2).

• The axioms used to specify unified algebras are quite general: Horn clauses, in-

volving equality, sort inclusion, and classification of elements into sorts.

AS has defined some data sorts for common use, which are called by us built-in data

sorts including some primitive ones such as truth-value, integer, cell, natural, and

some composite data sorts such as list, tree, map. The reader is referred to [65] for a

complete unified algebraic specification of these data sorts as well as their operations.

In addition to the built-in data sorts, users can define their own sorts (user-defined data

sorts) on demand. For instance, one can define the data sorts class and object to

denote respectively classes and objects in an OOP language. All built-in data sorts and

user-defined ones are sub-sorts of data.

To illustrate major concepts of the unified algebraic specification, we excerpt from

[65] the specification of a built-in data type—map, shown in ASD 3.1.

In ASD 3.1, ‘introduces’ is a keyword. Its contents are a number of sort names

and operation names that this specification is going to define. Among them, the

operation names are distinguished from sort names: operation names have place

holders denoted by ‘ ’ , whereas sort names have none. Hence, in this example,

map and range are two sorts; the others are operations. (The operations with

place holders are often referred to as term constructors, and the sort names can

be regarded as a special kind of operation, called constants.)

‘needs’ is also a keyword. Its contents are usually a number of module names that

this specification relies on. As is an advantage, unified algebraic specification

enables modularization to make a large specification well-organized. This example

depends on the module ‘Tuple/Basics’ which has been defined somewhere. ‘map

≤ component’ indicate the sort map is a sub-sort of component which is defined

elsewhere.

Clause 1 and Clause 2 are both sort equations. Clause (1) defines the sort map

through the two constructors: disjoint-union , and map of to . Clause

42



ASD 3.1 Excerption of the map specification of AS
Map

introduces: map , range , map of to , empty-map , disjoint-union , mapped-set .

needs: Tuple/Basics. map ≤ component .

(1) map = disjoint-union(map of element to range)* .

(2) range = nonmap-range map (disjoint) .

(3) map of to :: element, range → map (total , injective) .

(4) empty-map : map .

(5) disjoint-union :: map* → map (partial , associative, commutative,
unit is empty-map)

(6) mapped-set :: map-set (total) .

(7) disjoint-union ( ) = empty-map ;
disjoint-union (map of e:element to r : range) = map of e to r ;
intersection (mapped-set m1, mapped-set m2) is empty-set = true ⇒
disjoint-union (m1:map, m2:map): map;
intersection (mapped-set m1, mapped-set m2) is empty-set = false ⇒
disjoint-union (m1:map, m2:map) = nothing .

(8) mapped-set empty-map = empty-set ;
mapped-set map of e: element to r : range = set of e ;
mapped-set disjoint-union(m1: map, m2: map) = disjoint-union(mapped-set m1, mapped-set
m2) .

2 defines the sort range through the sort union (denoted by ‘|’). The key word

disjoint indicates that the sort nonmap-range and the sort map are disjoint,

that is, they share no common elements. Aside from sort union, sort intersection

(denoted by ‘&’) is also supported in unified algebraic specification.

Clause 3 defines the signature of the operation map of to , which is a constructor

for maps with a single entry. The properties of this operation are denoted by the

keywords: total , injective. The meanings of some important keywords of this kind

are highlighted as follows:

• total , indicates that the operation is a total function. That is, if the argu-

ments of this operation are individuals of the specified sorts, then the result

is also an individual. To understand this, recall that, in unified algebra, not

only individuals but sorts are legal arguments; individuals exclude vacuous

sorts (nothing). Moreover, a total operation is also a strict operation.

• injective, indicates that the operation is a one-to-one mapping function.

• partial , indicates that the operation is a partial function. I.e., when the

arguments are individuals (excluding nothing), the result may be nothing.

43



• strict , indicates that the operation is strict. That is, when any required

argument is nothing, the result is definitely nothing.

Clause 4 asserts that empty-map is an individual of the sort map.

Clause 5 specifies the signature of a constructor of map, which means a multi-entried

map is a sequence of single-entry maps, prefixed by ‘disjoint-union’. Sequences are

treated in action semantics as variable-sized tuple. The symbol ‘*’ is an operation

of the sort tuple which constructs a sequence of the given element.

Clause 6 specifies the signature of an operation which returns the set of keys of the

given map.

Clauses 7 is several Horn clauses to define the operation disjoint-union , which

unions two maps. However if there exists any common key in the two sorts, the

result is nothing indicating that the operation fails.

Clauses 8 defines the operation mapped-set , which returns the keys of a map.

Note that in AS, as well as the abstract data types which are specified in terms of

sorts using unified algebraic specification, the notations of the other semantic entities,

including actions and yielders, are also specified in this way,. AS defines the sort action

and the sort yielder, as well as a number of constructors to create a fully-fledged range

of actions and yielders.

3.3.3 Facets of Actions

To know AS and AM, first of all, it is necessary to understand the behaviours of

actions—the ‘instructions’ of the AM, namely to know how actions change the state of

a running AM.

So far, we have mentioned three kinds of information available in AM: transients,

bindings and the stable information stored in the global store. From the perspective of

users, these three kinds of information have different life spans and purposes:

1. Transients: a variably-sized tuple of data (including empty tuples), short-lived,

corresponding to the intermediate results of execution steps.

44



2. Bindings: bindings of tokens to data, parallel to symbol tables, spanning across

a mid-term. They are essentially entries of a map from tokens to data.

3. Stable: the data stored in cells of the global store. The global store can also be

thought of as infinitely-sized map from cell to data.

An action may process one or more kinds of this information simultaneously, while

some actions have no effects on information at all but only play roles as control flow or

data flow. It is also possible that some actions act as a control flow or data flow and

meanwhile process some information. Because of this, an action is claimed to have one

or more of the following facets:

1. the basic facet, which carries out the function of control flow or data flow.

2. the functional facet, which processes transient data.

3. the declarative facet, processing scoped binding information.

4. the imperative facet, manipulating the store, such as allocating a cell, storing a

value in a cell.

Note that there is a communicative facet as well, however we don’t cover it in this

introduction to AS. The facets of an action are independent of each other as every facet

solely do its duty without interfering with other facets. Bear in mind that an action

performance may complete (terminate normally), escape (exceptional termination), fail

(terminate abnormally), or diverge (not terminate at all).

3.3.4 Yielders

Before introducing actions, we consider first yielders, which are a special kind of action.

They are analogous to expressions in programming languages. Yielders are evaluated to

produce data based on the current information present at the current state, including

the current transients, the current bindings and the current store. Evaluation of yielders

causes no change to the current information even though using it. Now we proceed to

illustrate some important yielders as follows.

1. Transients yielders

45



• the given : data → yielder

This is a constructor to form specific yielders given a subsort of data. Con-

sider the yielder the given truth-value, whose evaluation yields the tran-

sient data of the current information if the transient data is an individual

in the sort of truth-value(true or false). Otherwise, the evaluation of this

yielder produces nothing.

• the given # : Datum, PositiveInteger → Yielder

This kind of yielder when evaluated will yield the nth (specified in the sec-

ond argument) item in the transients, provided that it agrees with the sort

specified in the first argument. Suppose the current transients is (true, 1),

then the yielder the given truth-value#1 will yield true, while the yielder

the given integer#1 will yield nothing.

2. Bindings yielders

• the bound to : data, token → yielder

These yielders yield the object bound to a token in the current bindings. For

instance, suppose the current bindings are {x → 3, y → true, . . .}, then

yielder the integer bound to x yields 3; if the token is not present in the

current bindings or the bound object is not an integer, it will yield nothing.

3. Storable yielder

• the stored in : data, yielder → yielder

When a yielder of this kind is evaluated, the sub-yielder specified as the

second argument is evaluated first to get a cell, then this yielder is evalu-

ated to yield an object which is stored in the cell. Likewise, if the object

doesn’t agree with the sort specified as the first argument, this yielder yields

nothing.

4. Data-operation yielders

• data : yielder

It should be borne in mind that data (either built-in defined or user-defined)

which statically occur in actions are also yielders. When evaluated, they

46



yield themselves. For one example, ‘true’ and ‘false’ are individuals of the

sort truth-value; if they occur in actions, they become yielders and can be

evaluated to yield themselves.

• data-operation :: yielder, . . .→ yielder

The operators on data, if applied to suitable arguments and appearing in

an action, are also yielders. For example, ‘not ’ is an operation over the

sort true-value and becomes a yielder when applied to ‘true’ or ‘false’ in an

action.

3.3.5 Functional

Now we illustrate some important functional actions which only have the functional

facets hence their performance merely has effects on the transient date. (Note, having

no effects on transient data or bindings data means not copying them to the next state.

However, having no effects on the store means no change made to the store, as the store

which holds data permanently does not demand explicit copy. )

1. give :: yielder → action

The action give Y1, when performed, will cause current transient data to be set

to the data yielded by Y1. Suppose, currently, AM is in a state <‘give not true’,

(3, false), {x → 3, y → true}, {cell0 → 1, . . .}>. After the action is performed,

the new state is resulted as <‘completed’, false, empty-map, {cell0 → 1, . . .} >.

It can be noticed that transient data is replaced from true to 3; the store remains

unchanged. Notably, the bindings are not copied to the next state, resulting in

an empty-map. This is illustrated in Figure 3.1 (a).

2. regive : action

This action simply copies the transient data to the next state. See Figure 3.1 (b).

3. check :: yielder → action

This action is not primitive but composite. We present it here because it is

frequently used. The performance of the action check Y begins with evaluating

the yielder Y. If the result of the evaluation is true, then the performance of this

action completes, otherwise, it fails. In either case, the transient data is set to

47



give not true

(a) (b) (c)

regive check the given truth-
value#2

(3, false) X 3, 
Y true 1 ?

(false) { } 1 ?

(3, false) X 3, 
Y true 1 ? (3, false) X 3, 

Y true 1 ?

( ) { } 1 ?(3,false ) { } 1 ?

Figure 3.1: Performance of functional actions.

empty-tuple, and the binding information is set to empty-map. See Figure 3.1

(c).

3.3.6 Declarative

Declarative actions are concerned with bindings. The following actions are purely

declarative, having no effects on transients or the store.

1. bind to :: yielder, yielder → action

Actions of this kind are used to bind a token to an object. When an action of

this kind is performed, the transient data is set to empty-tuple and the previous

binding information is totally replaced by the new binding. See Figure 3.2 (a) for

illustration.

2. rebind : action

The action rebind, in contrast with the action regive, solely reproduces the cur-

rent bindings without other effects, and thereby extends the scope of the bindings.

See Figure 3.2 (b).

3. produce :: yielder → action

In the action produce Y, Y yields a map which consists of bindings entries.

When this action is performed, the yielded map will replace the current bindings.

See Figure 3.2 (c).

48



bind Z to 5

(a) (b) (c)

rebind produce {Z 5, R true}

(3, false) X 3, 
Y true 1 2 ?

( ) Z 5 1 2 ?

(3, false) X 3, 
Y true 1 2 ? (3, false) X 3, 

Y true 1 2 ?

( ) Z 5,
R true 1 2 ?( ) X 3, 

Y true 1 2 ?

Figure 3.2: Performance of declarative actions.

3.3.7 Imperative

The imperative facet is concerned with the store, which contains an arbitrary number

of cells. Each cell is in one of the three states [106]:

1. defined : a cell in this state implies that it contains a value.

2. undefined : the cells in this state are those that have been allocated but not yet

employed to hold values.

3. unused : this means a cell has not been allocated.

So, it can be seen that a cell must be allocated before it can contain a value.

The following actions are commonly used to deal with the store.

1. store in :: yielder, yielder → action

The action store Y1 in Y2 puts the data yielded by Y1 into the cell yielded by

Y2. Note that a cell can be regarded as a location, and is also a datum like an

integer. Thus cells can be yielded, can be the transient data and can be bound

to tokens. See Figure 3.3 (a) for illustration.

2. deallocate :: yielder → action

The action deallocate Y changes the state of the cell yielded by Y to unused.

See Figure 3.3 (b).

49



store 2 in cell2

(a) (b) (c)

deallocate cell2 allocate a cell 

(3, false) X 3, 
Y true 1 ?

( ) { } 1 2

(3, false) X 3, 
Y true 1 ?

(3, false) { } 1

(3, false) X 3, 
Y true 1 ?

(cell3) { } 1 ? ?

Figure 3.3: Performance of imperative actions

3. allocate a cell : action.

This action is composite and imperative, and is very useful in specifying impera-

tive languages. This action finds a unused cell in the store and changes its state

to undefined. Note, in addition to changing the store, this action also produces

the cell as the transient data. See Figure 3.3 (c).

3.3.8 Combinators

Composite actions are formed from simpler actions using infix actions or prefix actions

which are also called combinators. In addition to the role of combining actions, they

also play an important part in data flow (including transients flow and bindings flow)

and control flow (including error propagation). Note that actions are not performed

until both the control flow and data flow become available.

3.3.8.1 Functional Combinators

Functional combinators address several schemes of transient flow as well as control flow.

They have the same policy on binding data flow: a functional combinator A1 O A2

copies its received binding data both to A1 and A2, and the output binding information

is the result of merging those produced by A1 and by A2 (except for the action A1 or

A2). If the merge fails, the whole action fails. (Note, merge means the disjoint-union

of two maps. If the two maps have overlapping tokens, as specified in ASD 3.1, the

50



check the given truth-
value#2

give true

(3, true)

complete

true

(3, true) X 4, 
Y true 1 ? ?

true { } 1 ? ?

(a) transients data flow

 ( )

_then_

rebind

bind Z 
to 3

X 4, Y 0

X 4, Y 0completeX 4, Y 0

Z 3

X 4, Y 0, Z 3

(3, true) X 4, 
Y 0 1 ? ?

( ) X 4, 
Y 0, Z 3 1 ? ?

(b) bindings data flow

_then_

Figure 3.4: Data and control flow of ‘ then ’

merge would return nothing which denotes the failure of the operation). Regarding

transient flows of functional combinators, see the following.

1. then :: action, action → action

Control flow: the action A1 then A2 enforces a control dependency of A2 on

A1. That is, only when A1 completes can A2 be performed. If A1 fails, the whole

action fails. See Figure 3.4 for an example of control flow; the control flow is

denoted by dotted arrowed lines in the diagram.

Transient data flow: the received transient data of the whole action is available

for A1 only. If A1 completes and produces transients, then the produced tran-

sients become accessible to A2. The transients produced by the whole action are

determined by A2. See Figure 3.4 (a) for the transient data flow of the action

(check the given truth-value#2) then (give true).

2. and then :: action, action → action

Control flow: the action A1 and then A2, similar to A1 then A2, enforces

a control dependency of A2 on A1. See Figure 3.5 for the control flow of the

combinator and then .

51



(a) transients data flow (b) bindings data flow

rebind

bind Z to 5

X 4, Y 0

(X 4, Y 0)

com
pleteX 4, Y 0

Z 5

X 4, Y 0, Z 5

(3, true) X 4, 
Y 0 1 ? ?

( ) X 4, Y 0, 
Z 5 1 ? ?

regive

give 5

(3, true)

(3, true)complete

(3, true)

(5)

(3, true, 5)

(3, true) X 4, 
Y 0 1 ? ?

(3, true, 5) { } 1 ? ?

_and then_ _and then_

Figure 3.5: Data and control flow of ‘ and then ’.

Transient data flow: Parallel to A1 then A2, the action A1 and then A2

copies the received transients both to A1 and to A2. In addition, the transients

produced by the whole action are the result of merging those produced by A1 and

A2. See Figure 3.5 (a) for the transients data flow of the action regive and then

give 5.

3. or :: action, action → action

Control flow: the action A1 or A2 represent some kind of non-determinism as

this action either chooses A1 or A2 to perform. If the chosen sub-action completes,

then it completes without performing the other action; otherwise, the action will

try the other sub-action that is not chosen in the first attempt. The diagram (a) of

Figure 3.6 shows that the first constituent action of the action (check the given

truth-value#2) or (give 5) is chosen, and it completes without trying the other

constituent action, whereas, in diagram (b) of Figure 3.6, the performance of the

chosen constituent action fails, so it must try the other constituent action.

Transient data flow: this action copies the received transients both to A1 and A2.

The output transients are determined by the finally selected action.

52



check the 
given truth-

value#2
give 5

(3, true) (3, true)

( )

(3, true) X 4, 
Y true 1 ? ?

( ) { } 1 ? ?

(a) The chosen path completes.

complete

_or_

(b) The chosen path fails. 

check the 
given truth-

value#2

give 5

(3, false)

(3, false)

(5)

(3, false) X 4, 
Y true 1 ? ?

(5) { } 1 ? ?

fail

complete

_or_

Figure 3.6: Non-deterministic choice of ‘ or ’

Binding data flow: this action also copies the received bindings to both A1 and

A2. Differently, the output bindings are determined by the finally chosen action.

4. and :: action, action → action

Control flow: the action A1 and A2 makes the steps of performances of A1 and

A2 interleave in an arbitrary way. The completion of the whole action requires

that both A1 and A2 complete. if either one fails, the whole action fails. See

Figure 3.7 for the control flow of the action regive and give 5 (diagram (a)) and

the action rebind and bind Z to 3(diagram (b)).

Transient data flow: this action copies the received transients to both A1 and A2.

The output transient information is the merge of those produced by A1 and those

produced by A2.

3.3.8.2 Delarative Combinators

In contrast to functional combinators, declarative combinators may differ in the policies

on control and binding data flow. However they have the same policy on transient data

flow. As far as transients flow is concerned, a declarative combinator A1 O A2 copies

53



(b) bindings data flow

rebind bind Z to 3

X 4, Y 0 X 4, Y 0

X 4, Y 0

Z 3

X 4, Y 0, Z 3

(3, true) X 4, 
Y 0 1 ? ?

( ) X 4, 
Y 0, Z 3 1 ? ?

(a) transients data flow

regive give 5

(3, true) (3, true)

(3, true)

(5)

(3, true, 5)

(3, true) X 4, 
Y true 1 ? ?

(3, true,5) { } 1 ? ?

_and_ _and_

Figure 3.7: Data and control flow of ‘ and ’

its received transients both to A1 and A2, and transients produced by the whole action

result from the merge of those produced by A1 and by A2. Here, we highlight the

following declarative combinators.

1. hence :: action, action → action

Control flow: the action A1 hence A2, similar to the action A1 then A2,

enforces a control dependency of A2 on A1. See Figure 3.8 for the control flow of

the action regive hence give 5 and the action (bind Z to 5) hence (give the

integer bound to Z), respectively shown in the diagrams (a) and (b).

Binding data flow: A1 receives the bindings of the whole action. When A1 com-

pletes and produces bindings, the bindings then becomes available to A2. The

output bindings of the whole action are solely determined by A2.

2. moreover :: action, action → action

Control flow: similar to the action A1 and A2, the action A1 moreover A2

allows A1 and A2 to be executed concurrently. When both of them complete, the

whole action completes, otherwise, it fails.

Binding data flow: this action copies the received bindings to both A and B. In

54



(a) transients data flow (b) bindings data flow

regive

give 5

(3, true)

(3, true)complete

(3, true)

(5)

(3, true, 5)

(3, true) X 4, 
Y 0 1 ? ?

(3, true, 5) { } 1 ? ?

bind Z to 5

give the integer bound 
to Z

X 4, Y true

complete

5

(3, true) X 4, 
Y true 1 ? ?

5 { } 1 ? ?

Z 5

_hence_ _hence_

Figure 3.8: Data and control flow of ‘ hence ’.

contrast to the action A1 and A2, the output bindings of the whole action is

the result of overlay those produced by A with those produced by B. Note, the

operation overlay and disjoint-union are both for combining maps. As far as

two binding maps (M1, M2) are concerned, if there are no overlapping tokens,

the two operations returns the same results. If overlapping tokens exist, disjoint

(M1, M2) yields nothing representing failure; while overlay (M1, M2) yields

M1, together with those bindings that M1 doesn’t override. Figure 3.9 shows a

comparison between two actions: rebind moreover bind Y to 1 and rebind

and bind Y to 1.

3. furthermore :: action → action

The ‘futhermore ’ is a prefix combinator, the shorthand for rebind moreover

and very useful in describing semantics for procedures. Because it is prefix, it

simply transfers the control to its only sub-action. The data flow is shown in

Figure 3.10.

In this subsection, we illustrate some important actions that are extensively used

in specifying action semantics for programming languages. However, this illustration is

55



(a) _moreover_

overlay

rebind bind Y to 1

X 4, Y 0 X 4, Y 0

X 4, Y 0
Y 1

(3, true) X 4, 
Y 0 1 ? ?

( ) X 4, Y 1 1 ? ?

_moreover_

(b) _and_

merge

rebind bind Y to 1

X 4, Y 0 X 4, Y 0

X 4, Y 0 Y 1

(3, true) X 4, 
Y 0 1 ? ?

( ) { } 1 ? ?

fail

_and_

Figure 3.9: Difference between ‘ and ’ and ‘ moreover ’

overlay

bind X to 3

X 4, Y 0 X 4, Y 0

X 3

X 3, Y 0

(3, true) X 4, 
Y 0 1 ? ?

( ) X 3, 
Y 0 1 ? ?

(b) bindings data flow

give the product of ( 
the given integer#1, 
the given integer#2) 

(3, 5)

15

(3, 5) X 4, 
Y 0 1 ? ?

(15) X 4, 
Y 0 1 ? ?

(b) transient data flow

_further more_ _further more_

Figure 3.10: Data flow of ‘ furthermore ’

56



not exhaustive and only intended to provide a general concept of action behaviours. As

the text goes on, more and more actions are introduced where needed.

3.3.9 Action Semantics of IMP

As mentioned, AS is a framework for describing the semantics of programming lan-

guages. In this framework, one specifies the semantics of a programming language by

mapping the semantics of the programming language into semantics of actions; hence,

the resulting actions are called the denotation of this language from the viewpoint of

denotational semantics. The translation is specified by a set of semantic functions.

Generally speaking, every syntactic sort (non-terminal) has a corresponding semantic

function to specify its semantics; each semantic function is defined by one or more equa-

tions, each of which is aimed at a possible form of the non-terminal. The equations are

required to cover all the possible sub-sorts to assure completeness.

Syntax 3.2 Adjusted context-free grammar of IMP.
grammar:

(1) Statement = [[ “;” ]] [[ Identifier “=” Expression ]]
[[ “if” Expression “then” Statement “else” Statement ]]
[[ “while” Expression “do” Statement ]]
[[ “{” statements “}” ]]

(2) Statements = 〈 Statement 〈 “;” Statement 〉* 〉

(3) Declaration = [[ Type Identifier “;” ]]

(4) Expression = Numeral Identifier [[Expression Infix-Op Expression]]

(5) Infix-Op = “+” “-” “*” “!=” “or” “and”

(6) Numeral = [[ digit+ ]]

(7) Type = “num” “boolean”

We still use the toy language IMP to illustrate how AS is employed to accomplish

a semantic description. The abstract syntax of IMP needs to be re-formulated in AS

style. So, we adjust the abstract syntax described in Syntax 3.1, particularly in the

aspect of micro-syntax, to that shown in Syntax 3.2.

The new abstract syntax of IMP is described in a unified algebraic way. The left-

hand side of a derivation rule introduces a new sort implicitly, and each production on

57



the right-hand side is represented also by a sort. Then the whole right-hand side repre-

sents a composite sort formed by the union of the sub-sorts representing productions.

For this reason, each derivation rule is essentially a sort equation of unified algebra.

Note that AS defines a constructor (denoted by ‘[[ ]]’) to construct tree sorts from

the sub-tree sorts. For example, in Equation (4) in Syntax 3.2, Expression, Numeral,

Identifier are all tree sorts. [[ Expression Infix-Op Expression]] constructs a new tree

sort from the sub-tree sorts: Expression, Infix-Op and Expression. Equation (2) states

that Statements are variable-sized tuples (tuples are also sorts in action semantics). To

understand why Equation (5) is also an instance of a sort equation of unified algebra,

recall that the individuals are treated as sorts (singletons) in unified algebra. The

adequacy of unified algebra representing grammars were stated in [66].

Both the grammars and the semantic functions are represented in an algebraic way.

Each semantic function is represented as an operation, usually from a syntactic sort to

a semantic sort including actions, yielders and data (including the built-in and user-

defined data sorts). Semantic equations are used to define the corresponding semantic

functions and are essentially sort equations of unified algebraic specifications. Thus, all

artefacts in action semantics are specified in unified algebra.

ASD 3.2 Module Data define sorts value, storable and bindable
Data

needs: [Mosses 1992] /(Data Notation, Action Notation).

• value = truth-value number cell

• storable = value .

• bindable = cell .

Before specifying the semantic functions for IMP, for convenience, we define a sort

value, which is formed by the union of three subsorts: truth-value, number and

cell. A value is usually the result of evaluating an expression. Moreover, AS requires

to define the sort storable if the store is referenced. The definition of storable makes

clear which data can be stored. Likewise, the sort bindable is defined to show which

data can be bound. In the case of IMP, the definition of these sorts is shown in ASD

3.2

The semantic function for declaration is shown in ASD 3.3. It uses the current

58



ASD 3.3 Module Declaration defines the semantic function for Declaration
Declaration

needs: Data

introduces: elaborate .

• elaborate :: Declaration → action [binding storing ] [ using current storage]

(1) elaborate [[ Type i : Identifier “;” ]] = allocate a cell then bind i to it.

storage because it allocates a cell and binds the identifier to the allocated cell. The ‘it’

that occurs in the ‘bind i to it’ is actually a pre-defined shorthand for the given cell.

Note that the action [ completing | binding | storing ] constructs a sub-sort of

the sort action by attaching effect descriptors, which means such kinds of actions will

have effects on bindings and the store, and complete when performed. By the means of

providing effect descriptors for actions as well as a set of inference rules of the effects,

the consistency of an action semantics description (ASD) can be checked statically.

The action semantics of expressions are specified by the semantic function evaluate

:: Expression → action [giving a value] shown in Figure 3.4, where the sort

action [ giving a value] is a sub-sort of the sort action which, when performed, will

have effects on transient data: giving a value. Under some circumstances, it is useful

for action [ giving integer2 ] to represent a kind of action which when performed will

give a tuple of two integers.

The semantic function the operation-result of is intuitive, where the sum of

, difference , etc, are pre-defined data operations.

The major task is to specify statements. See ASD 3.5 for their description. The

action[completing | diverging | storing] means that the action denoting a state-

ment may complete, diverge or change the store when performed. Note that ac-

tion[completing] ≤action[completing | diverging | storing]. ASD 3.5 is explained

as follows:

• Equation 1 means the execution of an empty statement (‘skip’) is equivalent to

the meaning of the action complete, which is a well-defined basic action and has

no effect on transients, bindings and store when performed.

• Equation 2 defines the semantics of assignment. The execution of an assignment

will evaluate the identifier and the expression concurrently, resulting in a binary

59



ASD 3.4 Module Expression specifies semantic functions for Expression

Expression

needs: Data .

introduces: evaluate , the operation-result of , the value of .

• evaluate :: Expression → action [giving a value].

(1) evaluate n: Numeral = give the value of n.

(2) evaluate i : Identifier = give the cell bound to i .

(3) evaluate [[ e1:Expression o: Infix-Op e2:Expression ]] =
(evaluate e1 and evaluate e2) then give the operation-result of o.

• the operation-result of :: Infix-Op → yielder [of a value] [using the

given value2]

(4) the operation-result of “+” =
sum of (the given number#1, the given number#2).

(5) the operation-result of “and” =
both of (the given truth-value#1, the given truth-value#2).

(6) . . .

• the value of :: Numeral → Number.

(7) the value of n: Numeral = number & decimal n.

tuple consisting of the resulting cell and the resulting value (Note, their order

is significant). The tuple is available as transient information to the next action

which stores the value in the cell.

• Equation 3 defines the semantics of conditional choice. It is worth highlighting

that if evaluation of ‘e’ gives false, the ‘check the given truth-value’ would fail,

then incur the failure of the ‘check the given truth-value and then execute

s1’. As a result, this chosen path fails and then the other path is tried. Note, the

choice of alternative path to perform is non-deterministic and dependent on the

implementation of AM.

• Equation 4 defines the semantics of conditional iteration, where an important

action is used: unfolding A. Normally, there is an occurrence of the dummy

action unfold in A, which can be considered to represent the action A. When

‘unfolding A’ executes A and whenever it reaches unfold, it performs A instead.

60



ASD 3.5 Moduel Statements defines the semantic function for Statements
Statements

needs: Expression

introduces: execute .

• execute :: Statements → action [completing diverging storing].

(1) execute [[“;”]] = complete .

(2) execute [[ i : Identifier “=” e: Expression ]] = (evaluate i and evaluate e)
then store the given value#2 to the given cell.

(3) execute [[ “if” e: Expression “then” s1: Statement “else” s2:Statement ]] =
evaluate e then

check the given-truth-value and then execute s1

or
check not the given truth-value and then execute s2.

(4) execute [[ “while” e: Expression “do” s : Statement ]] =
unfolding

evaluate e then
check the given truth-value and then execute s
and then unfold

or
check not the given truth-value and then complete

(5) execute [[ “{” s : Statements “}” ]] = execute s .

(6) execute 〈 s1:Statement “;” s2:Statements 〉 = execute s1 and then execute s2.

• Equation 5 specifies block statements.

• Equation 6 specifies the semantics of a sequence of statements. It performs the

statements one by one: only when the preceding statement is performed com-

pletely, can the next statements be performed.

It seems strange that we solely provide a semantic function for the syntactic sort

Statements, not for Statement. This is because the sort Statement is a sub-sort of

Statements, in that, in unified algebra, no distinction is made between a 1-nary tuple

and the single element in this tuple. Hence, the semantics for Statement has been

already defined via the semantic function for Statements.

61



3.3.10 Abstraction

So far, we have illustrated a variety of actions which can be utilized to describe some

important constructs of programming languages, such as expressions, variable declara-

tions and commands. However, we did not mention how to specify abstractions in AS

such as functions and procedures which are popular in many programming languages.

In programming languages, the body of function is an expression that will be eval-

uated whenever the function is called, while the body of a procedure is a command

(mostly, a sequence of commands) that will be executed when the procedure is invoked.

In AS, whether for expressions or commands, their meanings are denoted by actions.

However, the action representing a function body or procedure body is not executed

where it occurs, instead, it is encapsulated, bound to an identifier (the function or pro-

cedure name) and then executed by an explicit call to it elsewhere. AS provides the

following facilities to fulfil this process.

1. abstraction of :: action → abstraction

This is a constructor for constructing an abstraction from an action. The term

abstraction of A incorporates A, which usually is the denotation of a function

body or a procedure body.

2. bind to :: yielder, yielder → action

This action has been mentioned previously and can be used to bind an abstraction

to an identifier.

3. enact :: yielder → action

The action enact Y causes the performance of the action incorporated in the

abstraction yielded by Y.

The action enact abstraction of A causes A to be performed in an environment

where both the transient and binding information are empty. However, in a practical

programming language, a function or a procedure is performed in the environment either

at declaration time or at invocation time, rather than a simple empty one. The former

case is called static binding, and the later called dynamic binding. To achieve static

and dynamic binding, action semantics provides:

closure of :: yielder → yielder

62



For example, the yielder closure of abstraction of A when evaluated attaches the

current bindings to the abstraction abstraction of A. In fact, this evaluation often

takes place in two kinds of time. If it takes place at declaration time, the static binding

is achieved; if it takes place at the invocation time, the dynamic binding is achieved. To

better understand this, closure of abstraction A can be viewed as the abstraction

of produce M hence A where M is a binding map determined by the current bindings

when this abstraction is evaluated.

The term application of to is akin to closure of , but it is used for attaching

some transient data to an abstraction in the declaration time. For instance, the term

application of 3 to abstraction of A attaches 3 to the abstraction. If one needs

to attach the current transient (in the invocation time) to the abstraction, just use

application of the given value to the abstraction of A.

To show this concept and a parameter passing mechanism, we extend IMP as in ASD

3.6 to incorporate procedural abstraction. (For simplicity, only one formal parameter

is considered in a procedure. This can be easily extended to allow multiple formal

parameters.)

ASD 3.6 Exentension is made to IMP grammars to incorporate abstractions

(1) Statement = . . . [[“call” Identifier “(” Expression “)” ]]

(2) Declaration = . . . [[“procedure” Identifier “(” Formal-Parameter“)”
“{” Statements “}” ]]

(3) Formal-Parameter = [[Type Identifier ]].

So the action semantics for IMP is accordingly extended as shown in ASD 3.7, and

it is explained as follows:

• Equation (2) defines the declaration of procedures where ‘the closure of ...’ occurs

in the declaration time to achieve the static binding. As such, the statements

in the procedure body are executed in the binding environment as a result of

overlaying the environment in the declaration time with the bindings produced

by the formal parameter.

• Equation (3) reflects the copying mechanism of parameter passing. The passed

value is stored in a newly-allocated cell, which then bound to an identifier for

later use.

63



ASD 3.7 Extensions are made to the action semantics of IMP.
• elaborate :: Declaration → action [binding storing] [using current storage]

(1) elaborate [[ Type i :Identifier “;” ]] = allocate a cell then bind i to it .

(2) elaborate [[“procedure” i :Identifier “(” fp: Formal-Parameters “)”
“{” s :Statements “}” ]] =
bind i to the closure of the abstraction of

furthermore
respectively formally bind fp
hence
execute s

• formally bind :: Formal-Parameter → action [binding storing] [using the given value
current storage].

(3) formally bind [[ t :Type i :Identifier ]] =
allocate a cell and give the given value
then (store the given value#2 in the given cell#1 and bind i to the given cell#1)

• execute :: Statements → action [completing diverging storing].
. . .

(4) execute [[“call” i :Identifier “(” e:Expression “)” ]] =
evaluate e then enact the application of the given value to the abstraction bound

to i .

• Equation (4) defines the semantics of calling a procedure. First, the actual pa-

rameter (actually an expression) is evaluated giving a value. Then this value is

attached to the abstraction representing the procedure. Note the act of attaching

the value happens at invocation time (rigorously, just before the abstraction is

invoked).

3.3.11 UPAS versus AS

In Chapter 2, we introduced UPAS, which is a part of the UML specification and

intended to provide precise semantics for the minimum behavioural units of UML. It is

very easy to confuse UPAS with Mosses’s AS. To clarify them, a comparison is made

as follows.

AS shares some features with UPAS. 1) They both take actions as fined-grained and

fundamental semantic entities, and complex semantics is established based on them. 2)

Both of them provide some ready-to-use notations to denote control flow and data flow.

However, UPAS adopts an activity model for this, but AS uses combinator actions. 3)

64



Both semantics are compositional, although UPAS is not explicitly so.

Despite these similarities, UPAS and AS differ in the following aspects.

AS is a general-purpose framework being able to describe the semantics of a large

range of languages; however UPAS is not a general framework and it is only aimed to

provide a more precise semantic basis for an action language for UML. This is because 1)

UPAS only defines the semantic entities (actions), but provides no mapping mechanism

from syntactic objects to semantic objects, which is imperative for a framework. 2)

UPAS is intended for modeling languages, so its actions are larger-grained than those

of AS for high-level abstractions. Hence, these actions are not fundamental enough to

describe some low-level languages. For example, UPAS lacks the actions dealing with

bindings, cell allocations, and so on.

In AS, the semantic entities, namely actions, yielders and data, are formally defined

in other semantic description frameworks, such as algebraic specification and structural

operational semantics. The semantic entities in UPAS are solely defined in precise

English but not formally in a well-established semantic framework as AS.

We quote from Mosses [67] to conclude the comparison:

The UML Action Semantics is to some extent similar in spirit to the original

Action Semantics framework, although there are major technical differences

(p69).

3.4 Conclusion and Discussion

This chapter introduces two traditional frameworks, operational semantics and denota-

tional semantics, which are closely relevant to action semantics. Operational semantics

specify semantics of a programming language by defining a transition machine, and

denotation semantics translate syntactic entities into mathematical objects.

AS combines features of operational semantics, denotational semantics and algebraic

specification. AS uses actions rather than cryptic mathematical objects as the deno-

tations to gain better modularity and intelligibility. AS employs structural operational

semantics to provide formality to action denotations. AS adopts algebraic specification

as formalism to provide itself with a very flexible type system that allows new types of

data (sorts) to be user-definable. Due to these facts, action semantics is said to be a

65



hybrid framework.

We are determined to select AS to describe the formal semantics of UML for reasons

from two sides: the AS side and the UML side.

• the AS side: 1) AS was developed for comprehensibility, modularity and practi-

cability to overcome the mentioned drawbacks of traditional formal techniques.

2) AS is a fully-fledged formal framework which has been applied to various di-

versified languages and supported by several tools. 3) AS takes the advantages of

denotational semantics, operational semantics and algebraic semantics, but hides

user-unfriendly details of these frameworks. 4) AS itself is extensible in that users

can define their own actions and their own abstract data types.

• the UML side: 1) compared to other computer languages, UML is intended for

more general users, including users who have no strong background in Computer

Science. Thus its formal semantics demands more understandability. 2) UML is

made up of various diagrams, some of which can exist independently for special

purposes. UML is still evolving, possibly unifying more modelling techniques with

its diagrams. As such, the formal semantics of UML entails high modularity and

superior extensibility. 3) As mentioned, UPAS, a major part of UML dynamics,

shares some concepts with AS.

In addition, AS is a mature semantics-describing framework, which has been suc-

cessfully used to describe a diversified variety of real programming languages such as

standard ML [104], Pascal [68], Java [21], ADA [65] and ANDF-SF[38]. In addition,

various prototype compiler generators based on action semantics [20, 84, 70, 83] and

AS-aware tools like ASD [102] have been developed.

66



Chapter 4

Formalizing UML with Action

Semantics

We propose a new approach to formalizing UML, which is distinguished by selecting

Action Semantics (AS) as the vehicle. We first work out a toy executable subset of

UML, which is referred to as xUML in this thesis, to represent typically the full version

of UML, and then specify xUML indirectly by formalizing its textual correspondent,

an extended Action Language (ALx), using AS. This is a translation approach that

comprises two sub-translations: from xUML to ALx and from ALx to AS semantic

entities.

In the current chapter, we first describe the general idea of this approach, followed

by the introduction of xUML and ALx. Then, we provide the action semantics for

some important and unique constructs of ALx, accompanied by informal explanations.

Finally, we discuss some limitations of such an attempt at formalizing UML.

4.1 Our Approach to Formalizing UML

The overview of our approach to formalizing UML is illustrated in Figure 4.1. Firstly,

xUML, an executable subset of UML, is mapped to its textual counterpart, ALx; this

translation is guided by formal translation rules in terms of mapping models. Secondly,

the syntactic sets of ALx are translated into AS semantic entities; both the syntactic

sets of ALx and the translation rules are defined using the AS framework.

Our approach has a distinctive feature: instead of defining UML directly, we design

67



xUML ALx AS Semantic 
EntitiesMapped to Mapped to

xUML M2 ALx M2 & AS 
Syntactic Sorts AS Framework

[UML  ALx]
Mapping M1

AS Semantic 
Functions

Its syntax defined by Its syntax defined by  Specified in

Specified by Specified by

Figure 4.1: Overview of our approach to formalizing xUML

a textual programming language, ALx, and use it as the intermediary between UML

and its action semantics. We do not formalize UML directly for the following reasons.

• Since action semantics are syntax-directed and compositional, we must specify the

abstract syntax tree of UML before composing its action semantics. However, the

abstract syntax of UML is not tree-structured, at least not intuitively, in that it

is formalized in an object-oriented four-layer metamodeling architecture, namely

using graph-like class diagrams.

• UML, as a modeling language intended for early stages in system development

and a broad spectrum of different application domains, unavoidably includes

some ambiguous and execution-unrelated constructs. So we need to remove these

semantics-weak constructs and confine our attention to an executable subset of

UML.

Consequently, we need a textual programming language corresponding to a rigorous and

executable subset of UML as an interface between xUML and its action semantics. This

textual correspondence is required to genuinely embody the major dynamic semantics

of UML. We consider that an AL is the best candidate because it definitely incorporates

most major dynamic semantics of UML; after all, ALs are created to provide concrete

syntax for the basic behavioural units of UML—actions.

Hence, the complete formal description of xUML is constituted by the following

artefacts:

• The syntax of xUML, which is defined by UML itself, called xUML metamodels.

• The syntax of of ALx. The abstract syntax of ALx is defined both in UML and

in AS.

68



• The mapping rules between xUML and ALx, which occurs as mapping models

from xUML to ALx.

• The action semantics of ALx, which is specified using AS framework.

4.2 xUML

For simplicity, our customized UML, xUML, is an unambiguous small subset of UML,

which is enhanced by ALx to specify method bodies and activities in state machines.

From the perspective of users, xUML offers three types of graphical diagrams: class dia-

grams, class collaboration diagrams and state charts. Those diagrams that are common

in a fully-fledged UML, such as use cases, object interaction diagrams and sequential

diagrams, are not investigated in the current research.

Class diagrams. Class diagrams of xUML, akin to those of a full UML, are em-

ployed to model the static aspect of the system using the object-oriented concept. The

current xUML supports two kinds of relation: generalization and association.

The xUML class diagrams are distinguished from those of the full UML versions in

the following aspects. 1) Each association must be named uniquely. This is compulsory

in xUML because the link-navigation construct of ALx needs to reference associations

by name. 2) Method bodies are defined in ALx to achieve computational completeness,

which is reflected in the xUML metamodel by reusing the definition of Block-Statement

in ALx to specify xUML operations.

The type system of xUML categorizes types as built-in types and user-defined types.

The built-in types include primitive types and commonly-used generic types; classes

defined by users in class diagrams are a major kind of user-defined type. In addition,

user-defined types also allow users to define their own enumeration type, etc. The type

system of xUML is a static type system. It should be noted that the type system

of xUML is aligned to that of ALx so that ALx code can be integrated into xUML

diagrams seamlessly and logically.

Class collaboration diagrams. These diagrams play two roles, declaring events,

which will be referenced later in state charts, and giving a visual view of the collabora-

tion of the classes in the system. In xUML, there are two types of events, call events and

signal events. The former represent occurrences of the calls of methods, and the latter

69



are originated from the construct ‘event-generation’ in ALx. They are distinguished on

the surface in this way: call events are denoted by solid arrowed lines, whereas signal

events are denoted by arrowed broken lines. The necessity of declaring events arises

from the fact that they will be referenced later in state charts.

State charts. A state chart is normally used to depict all possible states that

objects of a class may reside in during its life cycle, thus a state chart is always associated

with a class as the complementary description of dynamic behaviours. State transitions

are trigged by events, either call events or signal events, and subsequently cause the

execution of the exit action of the source state and the entry action of the target states,

In xUML, we do not consider nested, pseudo, history states, and so on.

A complete xUML metamodel is defined using UML and provided in Appendix D.

4.3 ALx

It is necessary to create a new AL for our purpose of formalizing UML. So far, several

ALs have existed for years, such as the Action Specification Language (ASL) [107], the

BridgePoint Action Language [87], and the widely-used SDL [13] in the telecommuni-

cations industry. Although these ALs, generally speaking, have reflected the actions

of UPAS in some ways, they each are not complete programming languages, rather

they are more like scripting languages intended for being embedded in UML models in

that they lack model description constructs to represent UML diagrams such as class

diagrams and state charts. Therefore, we cannot simply reuse one of them as the inter-

mediary between UML and its action semantics, and need to extend a current action

language to be used as the counterpart of xUML.

The newly-created extended action language, called ALx, consists of two parts: a

part for the common functionality available in the present ALs, and a model-describing

part that can be viewed as the textual counterpart of the graphical xUML. See Figure

4.2 for illustration. The two parts, on the one hand, are integrated together seamlessly

to form a textual and computationally-complete modeling language. On the other hand,

the former part itself can be embedded in graphical UML models to specify method

bodies and activities in state machines.

The model-describing part of ALx contains constructs that are textually and in-

tuitively mapped to graphical elements in xUML, including the class diagram, class

70



ALx Traditional AL Model-Describing 
Part

State MachineObject QueryLink ManipulationObject Manipulation

Object Creation/
Deletion

Attribute Read/
Write

Call Operation Object 
Reclassification

Event 
Generation

State 
Transition

Link 
Navigation

Object 
Selection

Link Creation/
Deletion

Figure 4.2: Constitution of ALx and its major constructs.

Object Manipulation 
Category Constructs Syntax

Object Manipulation 

Object-Creation "create-object" <object-reference>  "of" <class> "(" actual-parameters ")"

Object-Deletion "delete-object" <object-reference>

Read-Attribute <object-reference>  "." <attribute>

Write-Attribute <object-reference> "."  <attribute> "=" <expression>

Call-Operation <object-reference>  "."  <method>  "(" actual-parameters ")"

Object-Reclassification "reclassify" <object-reference>  <class> "- >" <class>  ;

Link Manipulation

Link Manipulation

Link-Creation "link" <object-reference > "->" <object-reference > "(" <relation > ")"
"link" <object-reference > "->" <object-reference > "(" <relation > ")"

Link-Deletion "unlink" <object-reference> "->" <object-reference> "("relation")"; 

Object Query 

Object Query 

Link-Navigation <object-reference> "=" <object-reference> "->" <relation>  "(" <condition> ")"
<collection-reference> "=" <object-reference> "->*" <relation> "("<condition ")"

Object-Selection "select-one"  <object-reference > "of" <class> "(" <condition> ")"
"select-many" <collection-reference > "of" <class> "(" <condition> ")"

State Machine

State Machine

State-Transition <object-reference> ">>" <state>

Event-Generation "send-event " <event> "->" <object-reference >

Figure 4.3: Typical set of ALx constructs

71



collaboration diagram and state chart of xUML. The detailed description of this part

is ignored because the mapping between the two is very straightforward (Appendix J

contains example excerpts from ATL files). In regards to the other part, the major

constructs which are imported from conventional ALx, generally fall into the following

four categories (See Figure 4.3 for details):

• Object-manipulating constructs. This includes those for creating/deleting ob-

jects, reading/writing attributes of objects, invoking operations of objects and

reclassifying objects to a new generalization hierarchy.

• Link-manipulating constructs. This contains constructs for creating links and

deleting links.

• Object-query constructs. This is intended to implement the object-query mech-

anism of ALx. It is self-evident that Object Selection shall be classified as this

kind. Link Navigation is classified also as this kind because it also allows users

to retrieve one or multiple existing objects in the run-time environment just as

Object Selection does.

• State-machine-related constructs. Two constructs are involved in this kind. State

Transition is aimed to trigger state transition via no occurrence of event, and it is

generally used only in the internal activities of state machines. Event Generation

is intended to issue events to state machines.

Note that the constructs illustrated here are not exhaustive.

4.4 xUML-to-ALx Mapping Models

In Section 4.1, we mentioned that the xUML-to-ALx mapping model is also an integral

part of the specification of xUML. The fact is that the model-describing part of ALx

is specially designed to be a textual correspondence of xUML, which implies that the

mapping between the two is extremely intuitive. In other words, the metamodels of

xUML and ALx are almost identical except for some treatments of microsyntax for

avoiding naming collision or compliance with naming conventions. As a result, it is not

necessary to explain the xUML-to-ALx mapping models here.

72



4.5 Running Example

In order to let the reader have some sense of xUML and ALx, we envisage a simple ele-

vator serving building sites, and then employ xUML to model it in graphical notations.

The resultant models are subsequently represented textually using ALx and ultimately

translated into Java code. To simulate this model, a use scenario of this elevator (a

sequence of operations on the lift) is singled out and coded in ALx.

The elevator is a fictitious basic machine for lifting passengers, most likely building

staff, upward and downward. It is operated by passengers onboard using a mounted

controller with four buttons. A door-switching button is pressed to either open or shut

the door, depending on the present state of the door, closed or open. Two moving

buttons are available for moving the elevator: one for moving the elevator up, called

the moving-up button; the other one for moving the elevator down, called the moving-

down button. The last button is used to stop the moving lift. A typical scenario of

using this lifting machine can be described by the following steps:

1. A passenger enters this lift and shuts the door by pressing the door-switching

button.

2. Consequently, the passenger chooses one of the moving-up/down buttons to move

the elevator in the direction desired.

3. When the passenger reaches the destination floor, he/she presses the stop button

to make the elevator stop and then steps off the elevator.

The passenger may change the moving direction of the elevator and needs to press the

stop button first and then press the reverse moving button.

Now we model the system using xUML. First, a class diagram, shown in Figure 4.4,

is authored to model the static aspect of the system. This class diagram is not intended

to be the best modeling practice but for the simplicity of illustration.

The most notable characteristics in the class diagram is that every association is

uniquely named; for instance, the association between the class ‘Controller’ and the

class ‘Elevator’ is named ‘R4’. Imposing unique names on associations makes associa-

tions identifiable by name, which is essential to the mechanism of link navigation. In

contrast, naming associations is optional in UML specifications. In addition, the strong

73



upButPressed()
downButPressed()
doorButPressed()
stopButPressed()

Controller

pressed()
illuminate()
deIlluminate()

illuminated : Boolean
MovingButton

pressed()

DoorSwitchButton

pressed()

UpButton

pressed()

DownButton

R1

move(in direction : Boolean)
stop()

movingUp : Boolean
doorClosed : Boolean

Elevator

close()
open()

Door

R4

pressed()

StopButton R3

R5

\------Method Body of stopButPressed()---------
Elevator elevator; 
elevator = self -> R4; 
send-event stop -> elevator; 
set mbs[IMovingButton]; 
mbs = self ->* R2; 
mbs[0].deIluminate();
mbs[1].deIluminate();

R2

Note: the xUML method bodies  are 
specified by ALx Block-Statement.  

Figure 4.4: Class diagram of the elevating system.

associations, such as compositions and aggregations, are not syntactically distinguish-

able from normal associations in xUML, and they are treated equally at the semantic

level as well. As to the class diagram shown in Figure 4.4, the association ‘R5’ is better

modeled as a composition in that the door is an integral part of the lift both logically

and physically. However, xUML is unable to represent this relationship, after all it is

a toy executable UML. One can extend it to obtain more modeling capacity. Further-

more, xUML lacks constructs to specify the multiplicities and the names of association

ends.

The elevator is the central object in the system and has various operational states,

so a state chart, shown in Figure 4.5, is composed to specify the behaviours of the class

‘Elevator’, virtually a singleton class. The states of the lift are described as follows:

• StoppedWithDoorOpened. In this state, the elevator is parked with its door

opened. When the lift enters this state, it calls the method ‘open’ of the class

‘door’ to open the door. This state can only transit to the State ‘StoppedWith-

DoorClosed’, and it has an exit activity to be invoked when moving out of this

state for closing the door. Note that this state is the initial state of the elevator.

• StoppedWithDoorClosed. In this state, the elevator is stopped in a position with

the door closed.

• MovingUp. This state indicates that the elevator is moving up. The entry activity

74



entry{move(true);}
exit{stop();}

MovingUp

StoppedWithDoorClosed

entry{move(false);}
exit{stop();}

MovingDown

switchDoor

moveUp

moveDown

switchDoor

stop

stop
StoppedWithDoorOpened

entry{ Door door;  door = self  R5; 
door.open();}

exit {Door door; door = self  R5; 
door.close();}

Figure 4.5: State chart of Elevator.

of this state is a call to the lift to start its motor to move itself upward, while the

exit activity of this state is a call to stop it moving.

• MovingDown. This state is the opposite of ‘MovingUp’.

In the state chart, state transitions are depicted by arrowed lines adjacent to which the

names of events triggering the state transitions are specified. The following important

implications can be understood from the transitions present in the state chart.

• The door of the elevator must be closed before it can be moved up or down.

• If the elevator is in motion, e.g., in a state of MovingUp or MovingDown, the door

is bound to be closed.

• If the elevator is required to move in an opposite direction, it must be stopped

first.

The last diagram is a class collaboration diagram intended to model interactions

by means of specifying the events that may occur between the objects. See Figure 4.6

for illustration. The interactions between entities residing in the running system are

carried out via the occurrence of events. Two kinds of events are considered in xUML,

signal events and call events. See Figure 4.6: the call events are graphically expressed

75



Operator

ControllerDoorSwitch
Button

Elevator Door

UpButton

DownButton

pressed

pressed
pressed

doorButPressed

upButPressed

downButPressed

switchDoor

moveUp

moveDown

close

open

StopButton

pressed

stopButPressed stop

Figure 4.6: Class collaboration diagram of the elevating system.

by solid arrowed lines, whereas the signal events are expressed by broken arrowed lines

instead.

Semantically, the occurrence of call events would invoke the corresponding opera-

tions. Call events modeled in class collaboration diagrams are solely for the purpose

of illustration and conceptualization. However, the signal events occurring in the col-

laboration diagram are intended to declare signal events so as to be referenced in state

charts. Currently, events are simply modeled as labels of type string, compared to the

those specified in UML, where events are also a kind of classifier and thus may have

attributes, operations and other facilities.

As mentioned, the graphical xUML model can be represented textually using ALx.

See Figure 4.7 for the ALx code of the elevating system.

4.6 Related Action Semantics

AS has been applied to model a diversified range of realistic languages, such as Java

[105, 21], standard ML [104] and Pascal [68]. Most relevant to our research is [105], in

which Watt utilized AS to describe the semantics of JOOS, a subset of Java concerning

the main concepts, such as classes, fields, inheritance, dynamic method selection and

object constructors.

We have the following thoughts about the semantics of JOOS. On the one hand, the

action semantics of JOOS has demonstrated that AS is capable of describing the major

semantics of an OOPL, however it has not been demonstrated that AS is expressive or

elegant sufficient to describe the semantics of a higher-level descriptive language like an

OQL, or the semantics of complex behaviours such as state machines. This becomes

one of our departure points of our work of applying AS to ALx.

76



class Controller {
void upButPressed(){

Elevator elevator; 
elevator = self  R4; 
send-event moveUp to elevator; 

}
void downButPressed(){

Elevator elevator; 
elevator = self  R4; 
send-event moveDown   elevator; 

}
void doorButPressed(){

Elevator elevator;
elevator = self  R4; 
send-event switchDoor   elevator; 

}
void stopButPressed(){

Elevator elevator; 
elevator = self   R4; 
send-event stop   elevator; 
set [MovingButton] mbs; 
mbs = self ->* R2;
mbs[0].deIluminate();
mbs[1].deIluminate();

}
}

class Elevator{
boolean movingUp; 
boolean doorClosed; 
void move (boolean direction){

if ( direction == true ) 
prints(“The elevator is moving up”);
if ( direction == false } 
prints(“The elevator is moving down”);  

}
void stop(){

prints{“Elevator is stopped.”}; 
}

}

class Door{
void open(){

prints{“The door is called to open”}; 
}
void close(){

prints{“The door is called to close”};
}

}

class MovingButton{
boolean illuminated; 
void pressed(){}
void deIlluminate(){

self.illuminated = false; 
}
void illuminate(){

self.illuminated = true; 
prints(“A MovingButton illuminated.”); 

}

class UpButton extends MovingButton{
void pressed(){

Controller controller; 
controller = self  R2; 
controller.upButPressed(); 
illuminate();

}
}

transition_table{
StoppedWithDoorOpened, switchDoor, 
StoppedWithDoorClosed; 
StoppedWithDoorClosed, moveUp, 
MovingUp; 
StoppedWithDoorClosed, 
moveDown, MovingDown; 
StoppedWithDoorClosed, switchDoor, 
StoppedWithDoorOpened; 
MovingUp, Stop,
StoppedWithDoorClosed; 
MovingDown, Stop
StoppedWithDoorClosed;  

}
}
Main(){

DoorSwitchButton doorSwitchButton: 
UpButton upButton
DownButton downButon; 
StopButton stopButton;
Controller controller; 
Elevator elevator; 
Door door; 

create-object doorSwitchButton of 
DoorSwitchButton; 
create-object upButton of UpButton; 
create-object downButton of DownButton; 
create-object stopButton of StopButton; 
create-object controller of Controller; 
create-object elevator of Elevator; 
create-object door of Door; 

link doorSwitchButton   controller (R1); 
link upButon   controller (R2); 
link downButton   controller (R2); 
link stopButton   controller (R3); 
link controller   elevator (R4); 
link elevator   door (R5); 

// A staff enters the elevator
// press the door-swiching button to 
// close the door 
doorSwitchButton.pressed();  
// then press the UpButton to move up.
upButton.pressed(); 
// after a while, he wants to move down back 
// for some reason. 
// So, he stop the elevator in the mid-way. 
stopButton.pressed(); 
// Then, he presses the DownButton to 
move downwards. 
downButton.pressed(); 
// after a while, he gets to the original place, 
// so he stops the elevator. 
stopButton.pressed(); 
// Then, he presses the button to open the 
// door and get out. 
doorSwitchButton.pressed(); 

}

class DownButton extends 
MovingButton{

void pressed(){
Controller controller; 
controller = self  R2; 
controller.downButPressed();
self.illuminated = true; 

}
}
class DoorSwitchButton{

void pressed(){
Controller controller; 
controller = self  R1; 
controller.doorButtonPressed(); 

}
}

class StopButton{
void pressed(){

Controller controller; 
controller = self  R3; 
controller.stopButPressed(); 

}
}

relation R1 DoorSwitchButton 
Controller; 
relation R2 MovingButton 
Controller; 
relation R3 StopButton  Controller; 
relation R4 Controller  Elevator; 
relation R5 Elevator  Door; 

event switchDoor Controller 
Elevator;
event moveUp Controller  Elevator;
event moveDown Controller 
Elevator; 
event stop Controller  Elevator;

state_machine_of Elevator{
state StoppedWithDoorOpened{

entry{ Door door;  
door = self  R5; 
door.open(); 

}
exit { Door door; 

 door = self  R5; 
door.close(); 

}
}
state StoppedWithDoorClosed{

entry {}
exit {}

}
state MovingUp{

entry{ move(true); }
exit{ stop(); }

}
state MovingDown{

entry{ move{false}; }
exit {stop(); }  

}

 initial_state: DoorOpened

Figure 4.7: ALx code representing the visual model.

77



On the other hand, we can re-use, extend or modify many parts of the action seman-

tics of JOOS in our action semantics for ALx because the two languages share much in

the semantics relevant to basic expressions, imperative commands and object-oriented

constructs. In this way, we can take full advantages of AS modularity and extensibility

to save effort in our semantics description. This is also an opportunity to explore and

check these benefits of AS in practice. As a result, we are able to focus on the semantics

of those constructs that are greatly different from those of JOOS, such as class decla-

ration and object creation/destruction, and absent in ALx, such as object query, state

transition and link traversal.

To sum up, our action semantics of ALx is based on Watt’s action semantics for

JOOS. The reader is recommended to refer to the action semantics of JOOS when

reading the semantics of ALx for better understanding.

4.7 Action Semantics of ALx

In this section, we highlight the action semantic description of some typical ALx con-

structs. For a complete description, the reader is referred to Appendix A, B and C.

4.7.1 Class and Class Declaration

To model ALx classes, a user-defined and composite sort class is specified as follows:

class = class of ( class-token, type-bindings, method-bindings,

constructor, state-machine?, class?).

which indicates that a class is constructed from various components as follows:

• a class-token, which corresponds to the simple name of the class.

• a type-bindings, a map from token to type, where the token corresponds to the

name of a field and the type to the declared type of this field.

• a method-bindings, a map from token to method, where a method is an ab-

straction encapsulating an action denoting the semantics of the method body.

• a constructor, a special method to be invoked during object creation.

• an optional state-machine, representing the state-machine behaviour of the

class.

78



• an optional class is the direct super class of this class.

The sort class is equipped with operations to access the components of classes, including

method-bindings , class-token , type-bindings , constructor , state-

machine , superclass and superclasses . Their uses are straightforward:

for example, the operation method-bindings is for obtaining the method-bindings

component of the given class. Among them, the operation type-bindings is worth

highlighting, because it returns the programmer-defined type-bindings of the given class,

plus a special type-binding in which the token is “ LinkRecord” and the type is set.

This implies that every object of every class has an implicitly-defined field, the name

of which is specially designed to be unique in the scope of an object. This treatment is

used to record the links associated with the object.

The semantics of a class declaration of JOOS is that a class is constructed and then

bound to a class-token which corresponds to the class name. This forms an entry of the

bindings map—the scoped information. Thus, the class can be obtained based on its

name. However, a class declaration of ALx will additionally allocate a cell specialized

to store a list intended to memorize all objects of this class. Such lists are referred to

as object lists. Initially, at runtime, when a class is created, the object list of this class

is empty. Each time an object of this class is created, the newly created object is added

to the list. Furthermore, the object list of a class is accessible because the cell holding

its object list is bound to a token obtained by the operation object-list-token and

specific to the class name. This semantics is described in ASD 4.1.

ASD 4.1 Class Declaration
• elaborate :: Class-Declaration → action [binding storing][using current bindings current storage].

(1) elaborate [[“class” I1: Identifier “extends” I2: Identifier “{”
F : Field-Declaration* C : Constructor-Declaration? M : Method-Declaration*

S : State-Machine-Declaration “}”]] =
recursively bind the class-token of I1 to
the class of (the type-bindings of F , the method-bindings of M ,
the constructor of C , the state-machine of S , the class bound to the class-token of I2).

and
allocate a cell then

store an empty-list in it and
bind the object-list-token of the class-token of I1 to it.

79



4.7.2 Objects

The sort object is defined as follows to model objects.

object = object of (class, variable-bindings, identity)

This means, an object consists of three components: 1) a class, which classifies this

object. 2) a variable-bindings, essentially a map from field names to cells which

hold values of the corresponding fields. 3) an identity, uniquely identifying the object,

which is actually a cell allocated when the object is initialized.

Likewise, the sort object also provides operations to access the components of the

specified object, such as class , field-variable-bindings and identity .

ASD 4.2 Field Initialization
• allocate an object of :: yielder [of a class] → action [storing giving an object] [using current

storage current bindings]

(1) allocate an object of c: yielder [of a class] =
instantiate the field-type-bindings of c and allocate an identity and initialize state of c
then

give the object of (the class yielded by c, disjoint-union (the given variable-bindings#1,
the given variable-bindings#3 ), the given identity #2)

• instantiate :: yielder [of type-bindings] → action [storing giving variable-bindings] [using current
storage].

(2) instantiate t : yielder [of type-bindings] =
check (t is the empty-map) and then give the empty-map

or
give t and choose a token [in the mapped-set of t ] then

instantiate (the given type-bindings #1 omitting the set of the given token #2) and
give the given token #2 and allocate a variable initialized to the default-value of
the type yielded by (the given type-bindings #1 at the given token #2 )

then give the disjoint-union of ( the given variable-bindings #1,
the map of the given token#2 to the given variable #3 ).

An object initialization, the major process in creating an object, takes the following

procedure. Its action semantics is illustrated in ASD 4.2.

1. Instantiate the object’s fields.

(a) Obtain the field-type bindings of its class (the class is known).

(b) Allocate a cell for each field.

(c) Store the default value into the allocated cell based on the type of the field.

2. Allocate a cell to be the identity of the object being initialized.

80



3. Set the current state of the object to the initial state if its class has a state-machine

behaviour using the auxiliary function initialize state of .

4. Construct the object using the components produced by the previous steps.

In the procedure, steps 1 to 3 can be carried out concurrently. This semantics is similar

to the corresponding semantics of JOOS. Note that the special field “ LinkRecord”,

mentioned in Subsection 4.7.1, is also initialized, along with other programmer-defined

fields, to an empty set, being prepared to store the associated links. Furthermore, in

ASD 4.2, the auxiliary function initialize state of is used to allocate a cell to store

the current state of the object if this object has a state-machine behaviour. Likewise,

this cell is bound to a unique token for later access.

4.7.3 Object Query

The object query mechanism enables retrieving objects of a given class from the runtime

environment, usually based on a condition. The resulting object or objects are assigned

to an object reference or are put into a variable of set type. The object query is

implemented by two kinds of constructs, Object-Selection and Link-Navigation, the

semantics of which are given as follows.

Object-Selection

To accomplish this object query mechanism, we have deliberately used, as mentioned in

Section 4.7.1, a special cell for a class to hold its object list so as to keep a record of all

its objects, including the objects of all its direct and indirect sub classes. Apart from

that, the following two post-conditions of object creation and object deletion should be

enforced.

• Whenever an object is created, it is put into the object list of its class and its super

classes. See ASD 4.3. We use an auxiliary function with the following signature

recursively add to :: object, class → action

to recursively add the newly created object to object lists of its corresponding

class and all superclasses.

81



ASD 4.3 Object Creation
• execute :: Object-Creation → action [storing diverging escaping binding] [using current

bindings current storage]

(1) execute [[“create-object” I1: Identifier “of” I2: Identifier “(” A: Arguments“)”]] =
allocate an object of the class bound to the class-token of I2 and respectively evaluate A

then
enact the application of the constructor of the class bound to I2 to

the given (object, value*) and bind I1 to the given object#1 and
recursively add the given object#1 to class (the given object#1).

• recursively add to :: object, class → action [storing diverging] [using current bindings current
storage]

(2) recursively add O : object to C : class =
give the object-list stored in the cell bound to
the object-list-token of (class-token C ) then

store concatenation (the given object-list, the list of O)
to the cell bound to the object-list token of (class-token C )

and give (superclass C )
then

check (the given tuple is()) and then complete
or

check (not(the given tuple is()) and then recursively add O to the given class

• Whenever an object is deleted, it is removed from the object list of its class and

its super classes. The formal description of object deletion is omitted here to save

space.

Now that all objects of a class have been recorded, object selection is a matter

of iterating over the objects collection, and picking out the objects which satisfy the

specified condition. ASD 4.4 shows the semantics of a form of Object-Query (select-

many) which is intended to return multiple objects. Note that, in ASD 4.4, the object

being visited in each iteration is bound to the token ‘selected’ for immediate use in

evaluating conditions.

Link Navigation

The sort link is defined to model links, which are instances of relations, as follows:

link = link of(relation, (object, object), identity)

This implies that a link contains its classifying relation, the connected two objects and

its identity. To be simple, the sort relation is defined as follows:

relation = relation of (relation-token, class, class)

82



ASD 4.4 Object Query

• execute :: Object-Selection → action [ storing diverging ]
[ using current bindings current storage ]

(1) execute [[ “select-many” I1: Identifier “of” I2: Identifier “(”E : Expression“)” ]] =
select instances in (the object-list stored in the cell bound to
the object-list-token of the class-token of I2) satisfying E

then
store the given set to the variable bound to I1.

• select instances in satisfying :: object-list, Expression → action [giving a set diverging ] [using
current bindings current storage]

(2) select instances in I : object-list satisfying E : Expression =
check ( I is empty-list ) and then give empty-set

or
check ( not ( I is empty-list )) and then

give (head I ) then bind “selected” to the given object
thence

evaluate E and select instances in (tail I ) satisfying E and
give the given object

then
check(the given truth-value#1 is true) and then
give disjoint-union(set of(the given object#3), the given set#2)

or
check(not(the given truth-value#1 is true) and give the given set#2.

where the relation-token corresponds to the relation name; the two classes are ones

that participate in the relation. We do not consider multiplicities of associations be-

cause multiplicities are more related to static semantics. Parallel to classes, which are

produced in class declarations, relations are generated in relation declarations. Both

class declarations and relation declarations of ALx, the model description parts of ALx,

can completely represent textually a rigorous UML class diagram, the primary static

aspect of the system.

The link navigating mechanism of ALx enables travelling from one object to another

across a link and can be considered as a special kind of object query. Its fulfilment

necessitates that each object records all the links connected to it. For this purpose, we

have intentionally incorporated a field (“ LinkRecord”) in every object, as mentioned

in Subsection 4.7.1. So, whenever a link is created, it is definitely added to both fields

of the two linked objects. The formal semantics for link creation is shown in ASD 4.5.

When the link is destroyed, it is removed from the fields. The formal semantics for link

deletion is not illustrated here.

See ASD 4.6. The object selection based on link traversal involves the following

major steps:

83



ASD 4.5 Link Creation
• execute :: Link-Creation → action [storing diverging ] [using current bindings current storage]

(1) execute [[ “link” I1: Identifier “→ ” I2: Identifier “(”I3: Identifier“)” ]] =

allocate a cell then
give the link of ( I3, (the object stored in the cell bound to I1,
the object stored in the cell bound to I2), the given cell)

then
add the given link to the object stored in the cell bound to I1 and
add the given link to the object stored in the cell bound to I2.

• add to :: link,object → action [storing diverging ] [using current bindings current storage ]

(2) add L:link to O : Object = give the field-variable-bindings of O
then give (the given variable-bindings at “ LinkRecord”)
then store disjoint-union of (the set stored in the given variable,
the set of L) in the given variable.

ASD 4.6 Link Navigation
• execute :: Link-Navigation → action [storing diverging] [using current bindings current storage]

(1) execute [[ I1: Identifier “=” I2: Identifier “→ *” I3: Identifier ]] =
give ( the object stored in the variable bound to I2) and give the relation bound to I3

then (regive and get the links from the given object#1)
then

exhaust the linked objects of the given object#1
from the given set#3 related by the given relation#2

then store the given set to the variable bound to I1.

• exhaust the linked objects of from related by :: object, set, relation → action [giving a
set diverging]

(2) exhaust the linked objects of o: object from s: set related by r : relation =
check (s is empty-set) and then give empty-set

or
check (not (s is empty-set)) and then

choose a link [in s] then
exhaust the linked object of o from the intersection of (s, the set of the given link)
and give the given link

then
check (the given link#2 is an instance of r) and then
give disjoint-union (the set of the object
linked with o by the given link#2, the given set#1)

or
check (not(the given link is an instance of r) and then give the given set#1.

1. Give all links of the given object. This is carried out by the auxiliary function

get the links from :: object → action

which returns values of the aforementioned field “ LinkRecord” of the given

object. Its formal definition is not shown here.

84



2. For each link, see whether it is an instance of the given relation (using a defined

operation is an instance of ).

• If so, retrieve the object connected with the given object by this link and put

it into a set. This object retrieval is accomplished by the following operation

the object linked with by :: object, link → object

• If not, go to the next link.

Note that this step is implemented in a recursively defined auxiliary function.

3. Bind the resulting set to a variable in the storage.

4.7.4 State Machine

To represent state machines, various sorts are defined, in particular state-machine,

state and transition-table. Their definitions are given in ASD 4.7 and are self-

explanatory. We highlight that the sort transition-table is actually a map that im-

plements transition functions of state transitions, and the entry-action of a state is an

abstraction encapsulating an action that is performed when the object moves into this

state while the exit-action is performed as the object exits this state.

ASD 4.7 Sorts for modeling state machines
• state-machine = state-machine of (initial-state-token, transition-table, state-bindings)

• state = state of (state-token, entry-action?, exit-action?)

• transition-table = map [(state-token, event-token) to state-token]

According to UML 2.0, a state machine has an event pool which holds incoming

events until they are dispatched; and event occurrence processing is the major behaviour

of a state machine and is based on the run-to-completion assumption, interpreted as

run-to-completion processing. Run-to-completion means that an event occurrence can

only be processed if the processing of the previous event occurrence is fully completed.

As for ALx, the semantics of this process is implemented in the construct “Event-

Generation”, which sends an event to an object with a behaviour of the state machine

which then may trigger a state transition. ASD 4.8 shows the formal semantics of

processing events, where various self-explanatory operations are defined to make the

85



ASD 4.8 State Machine
• execute :: Event-Generation → action [storing diverging] [using current bindings current storage]

(1) execute [[ “send-event” I1: Identifier “→ ” I2: Identifier ]] =
give the object stored in the cell bound to I2 then

get the current state of the given object and regive then
enact the application of the exit-action of the given state#1 to the given object#2

and then
get the destination state of the given object when the event-token of I1 and regive
then

set the current state of the given object#2 to the given state#1 and then
enact the application of the entry-action of the given state#1 to the given object#2

semantic description concise. Among them, get the destination state of when

is an operation for searching the transition table and returning a destination state

when an event occurs. Informally speaking, when an event happens, the exit-action,

a method abstraction, of the current state is enacted and executed. Subsequently, the

transition table is consulted for the target state, and the current state of the object

is changed to this state. Finally the entry-action of the target state is executed. In

ASD 4.8, we assume that all incoming events will definitely cause state changes, and

the events that do not have effect on state machines are filtered out via static check of

the program. This static check of filtering events can be also specified using AS but is

ignored here to simplify the ASD.

4.8 Conclusion and Discussion

This chapter proposes a new approach to formalizing UML and presents the ASD of

ALx. We do not explore describing the concurrency of UML, e.g., asynchronous calls

to behaviours, co-existence of multiple active objects [93] each of which has its own

thread, and asynchronous signal response, using communicative actions. This is owing

to the following facts:

1. Each agent of AN-1, the abstraction of real computational processors, has its own

local store, and no common store is provided to be readily shared by agents. It

is feasible, but not trivial, to simulate a common store using an auxiliary agent

that reacts to messages about allocating, changing, and inspecting its local store.

2. If we use AN-1 to cover the concurrency of UML ignoring the difficulties in mod-

eling the common store, we consider that the most feasible solution is that each

86



object, whether active or passive [93], is allocated with one agent, and interac-

tions between objects are modelled by message exchange between agents. This

solution implies that the interactions between agents may be asynchronous, or

synchronous. However, using AN-1 to model synchronous communication is not

straightforward and needs to resort to auxiliary agents, due to AN-1 adopting the

single asynchronous notion of communications.

As such, AN-1 is not suitable, or at least not elegant, for describing some notions

such as light-weight processes and threads, which probably share stores and necessitate

synchronous communications. In fact, this limitation of AN-1 was realized by Mosses

at the beginning [65]. The newly developed AN-2 will make life easier in coping with

concurrency since AN-2 allows agents to share and have global access to the storage.

So, a major future work is to cover the concurrency of UML using AN-2.

At present, AS is not well supported by a suitable CASE Tool. Therefore, the static

checks of the ASD of ALx is primarily by hand and not computerized, inevitably missing

some errors, and it is very difficult to test the specified dynamic semantics without a

proper action code interpreter. So, in order to bolster our belief in the correctness of

the ASD of ALx, in the next chapter, we propose a prototype ALx-to-Java translator,

underpinned by our formal semantic description of ALx, in a hope that we could observe

the behaviours of xUML models through running the generated Java code.

87



Chapter 5

xUML-to-Java Translation

The current chapter discusses the conceptual design of an xUML-to-Java translator

and then presents an implementation-neutral architecture, in which the working pro-

cess of the translator consists of two sequential sub-translations: from xUML to ALx

and from the ALx to Java, and a pre-defined Java library is proposed to simplify the

translation. The Java code produced in each translation instance is only a part of the

final Java system and must be combined with the library to form a complete system

that is semantically equivalent to the original xUML model.

This chapter begins by describing the motivation of developing the xUML-to-Java

translator. Then we present the architecture of the translator and explain its two-

translation process. Subsequently, we put the emphasis of this chapter on the Java

library.

5.1 Motivation behind Building the xUML-to-Java

Translator

In Chapter 4, we formalized xUML indirectly by providing an action semantics for an

intermediary action language, ALx. Our subsequent task is to check the validity of

the action semantics description. It is expected that there exists an AS environment

that is AS-conscious, capable of validating the syntax and static semantics of action

semantics descriptions, and versatile enough to generate a runnable interpreter for a

language given the ASD. In our situation, we can employ such an AS environment, if it

88



exists, to generate an xUML interpreter, and then feed a set of typical xUML programs

to the interpreter, and observe the interpretation results against those expected. By

this means, the task of experimenting on ALx can be carried out in a relatively short

time and at a limited cost. Therefore, the existence of such an ideal AS tool is the key

to this idea. We have conducted a thorough survey on a variety of existing AS tools

in hope that we can seek a suitable one. We sincerely appreciate the tool builders for

their great contribution. We think, however, that none of the tools is able to test the

ASD of ALx in the expected manner.

The description of various AS tools and the reasons for excluding them are described

on a per-tool basis as follows:

ASD Tools. The ASD Tools [102], the Action Semantics Description Tools, was

developed by Mosses in collaboration with Arie Van Deursen, in the mid-1990s.

It supports syntax-directed and textual editing, checking and interpretation of

action semantics descriptions. The functionalities included significantly enhanced

accuracy and productivity when writing and maintaining large specifications and

are theoretically useful for students learning about the AS framework. The ASD

Tools was implemented based on the ASF+SDF Meta-Environment and supported

AN-1 only because when it was built, the action notation had not yet been updated

to AN-2.

Even though we made it run after many attempts, ASD Tools has become ob-

solete owing to the lack of maintenance and updating. It is no longer workable

with the current version of the Meta-Environment and the surrounding software

components.

Action Environment [100]. This prototype tool, built upon Meta-Environment,

provides support for a variant of action semantics characterized by using the Ac-

tion Semantic Description Formalism (ASDF), which was designed specifically for

providing reusable action semantics descriptions of individual language constructs.

The Action Environment can perform type checking on ASDs via checking if the

actions defined in the right hand side of a semantic equation conform to the

signature of the semantic function. Besides, it also provides an action interpreter,

which can interpret an action semantically corresponding to a piece of code. The

89



interpretation result is an indication of how it terminated (normally, abruptly, or

failing), the transient data it produced (if any), and the effects that the performed

action has had on storage.

It appears that the Action Environment is the one that we are hunting for. The

problem is that it has not been released. Another minor reason is that it does

not use the original action semantic formalism but adopts a constructive action

semantics, namely ASDF.

Actress system [20]. Developed by Watt’s group at Glasgow University, the Actress

system is aimed to interpreting action notation and compiling it into C. The

interpreter is able to handle only a part of the standard actions. As such, it is

vetoed.

OASIS [83]. OASIS, developed by Peter Ørbæk around 1994, is an action-semantics-

based compiler generation, able to generating optimized compilers in SPARC

assembler code. While, it can generate compilers for procedural, functional lan-

guages and object oriented languages only, it is unknown whether OASIS can

apply to ALx which additionally incorporates features of OQLs. This problem is

complicated by the fact that it is difficult for us to test the OASIS system because

it is based on outdated software and a hardware platform we do not have access

to. Furthermore, OASIS uses another AN based on a restricted version of the

original AN. Thus, we have to forsake the idea of employing OASIS as the vehicle

to test the ASD of ALx.

Recife Action Tools. Recife Action Tools, the product of the project RAT [7],

contains various tools, amongst which Abaco System and Ani are the most out-

standing.

Abaco [71], short for Algebraic Based Action COmpiler, is a tool set intended

to help the implementation of action semantics descriptions of programming lan-

guages, based on interpreting the programming language description as a special

case of order sorted algebras specifications. The system is composed of 1) a uni-

fied algebraic compiler, which translates programming language descriptions into

executable programs that are able to recognize programs as specified in the source

specification and produce the corresponding program actions. 2) an action pro-

90



cessor, which can execute the produced program actions. Similar to the Action

Environment, the execution results comprise the status of termination, resultant

transients and effects on the global store.

Ani or Action Notation Interpreter [69], also a RAT product, is an interpreter for

actions: given an action, Ani will perform it. The outcome of the performance

can be visualized through a convenient output. Notably, the current version of

Ani is written in Java and has been ported to a web page as an applet, making it

easily accessible. Ani is especially helpful for beginners of AS: they can compose

actions, simple or composite, perform them in Ani, and then observe the output

to grasp some sense of how actions behave.

So far, we have found that Recife Action Tools is the one most suiting our needs.

1) It is easily accessible: it can be easily downloaded from a well-maintained

web page, and it is written in Java and thus has excellent portability, requiring

not much leading time to make itself run. 2) It has the merit of relatively high

running speed compared to the Action Environment and ASD Tools. This is

because the former is built directly on the Java language platform, while the latter

two rely on Meta-Environment, an application-level platform. 3) It is sufficient in

terms of functionality: it can not only perform static checking on action semantics

description but also perform actions producing a satisfying visual output.

Despite these advantages of the Recife Action Tools, in the end we still had to

forsake it because we found that it is overwhelmingly time-consuming even to

manipulate a small fraction of a description to pass the syntactic check. The

major reason is poor error reporting.

In addition to these AS tools, there exists some other work on AS-based compiler

generation. For example, in 1993, Bondorf and Palsberg [15] used the Similix system to

obtain an action compiler by partial evaluation of an action interpreter. In a paper [16],

Doh also proposed using partial evaluation for action transformation. Partial evaluation

is employed in both works; however, to the best of our knowledge, it is quite difficult

to apply to large-scale programming languages.

Now that none of the existing tools satisfies our need of testing the ALx action

semantics, we discuss a new solution. The general idea of this approach is: we build a

translator, which can transform xUML models into Java code, run the produced Java

91



code in an active JVM [57] and then observe the behaviours of the system. If the

system behaves as required and as expected according to the formal specification of the

xUML, it is implied that the ASD is correctly composed. It is should noted that this

conclusion can be only reached if it is the case that the translation is action-semantics-

based, which means that the produced Java code must be semantically equivalent to

the original xUML model.

It should be emphasized that building the translation can further confirm that the

AS framework has the merit of suggesting language implementation.

Some criteria are used for building the translator. Firstly, the development is re-

quired to be cost-effective, taking a reasonable amount of time and effort. Therefore,

this translator is aimed to be a prototype instead of a fully-fledged system; the usability

and computational efficiency of the final system are not the major concern. Secondly,

code generation should be made full use of; the proportion of code generation to human

coding in the development should be considerably greater. The advantages of exploring

code generation are three-fold: it can lessen the development time; it can reduce hu-

man coding to avoid human errors; as desired, the code generation is a formal method

because its core, the translation rules, is specified rigorously. Thirdly but crucially, the

accuracy of the translator should be assured. That is, we must conform to the ASD

of xUML to implement the translator so that the semantics of the produced code is

semantically equivalent to the input xUML model. Fourthly, to confirm the implemen-

tation suggestivity of AS, if the ASD of ALx indicates a way of implementing a piece

of semantics, we should follow this way to implement it.

5.2 Conceptual Design

The major functionality of this translator is to translate the given input xUML models

into Java code in a semantics-preserving manner. Initially, the translator was intended

to be incorporated into a prototype xUML tool which we were keen to build. So, for

the following reasons, we decompose the overall translation process into two sequential

stages (dual-translation architecture)—the translation from xUML models to ALx code

and the one from ALx code to Java programs, rather than translating xUML models di-

rectly into Java code (single-translation architecture). Notably, the two sub-translations

are designed to be capable of working independently.

92



• The dual-translation architecture can accommodate the following two groups of

users of the xUML tool simultaneously: a majority of users have a preference for

using visual diagrams to model the system, while some users are still keen to use

textual modeling languages, like ALx, to construct xUML models. The former

group of users usually draw diagrams in the xUML tool and invoke the translator

to produce the Java code from the composed xUML diagrams. In contrast, the

latter group of users model the system in the textual ALx and only need the

translation from ALx to Java to produce Java code. Hence, the single-translation

architecture cannot satisfy the latter case.

• The dual-translation architecture makes it possible that the first translation (from

xUML to ALx) can be used as a model serialization mechanism for the graphical

xUML models. This means, the in-memory xUML models can be persisted in the

form of ALx code by being translated into ALx textual models.

• The dual-translation architecture is structurally loyal to our approach of formal-

izing xUML. As stated earlier, we do not specify the semantics of xUML directly

but specify the intermediary ALx instead when formalizing xUML. Since devel-

oping the translator should follow the formal language specification with high

fidelity, aligning the architecture of the translator to the semantic specification

makes the point more convincing that AS is of strong suggestivity in language

implementation.

The overall working process of this translator is illustrated in Figure 5.1. We use a

typical scenario of using this translator to explain this architecture, shown as follows:

• Composing an input xUML model. Usually, the user authors a graphical

xUML model using an xUML CASE tool and then serializes it into a textual

format, like an XMI file [80]. In the phase of conceptual design, we are not

concerned too much with the specific formats of the persistent xUML models.

• Performing the xUML-to-ALx translation. A particular xUML model is fed

to the translator and the first sub-translation is started. The translator is fully

aware of the structure of the persisted input model and can convert it into an

in-memory ALx model. Additionally, a built-in code generator can be called to

93



Java V
M

G
enerator

Translator  Ⅱ
Translator Ⅰ

Translating ALx to Java

Generating Java code

Execution

Translating xUML to ALx

ALx model

Java model

Java code

OutputLibrary part

xUML models

Figure 5.1: Architecture of the xUML-to-Java translator.

generate a textual copy of this in-memory ALx model if required, which is not

shown in the architecture diagram. However, this code generation is normally

avoided due to slowing down the whole process noticeably.

• Performing the ALx-to-Java translation. Through this translation, the in-

memory ALx model is converted into the Java model that is also in memory. As

mentioned, a group of system modelers may prefer to compose models directly in

ALx instead of using graphical xUML notations. In such cases, the first translation

is ignored. This requires that the translator can parse ALx code in addition to

being able to parse the persistent form of xUML.

• Generating Java code. Since the in-memory Java model has been obtained

from the previous stages, the remaining activity is to generate the code from the

Java model. This is accomplished by a code-generator.

• Executing the Java code. In fact, executing the resulting Java is not a job of the

94



translator. We show it here for a complete scenario of model simulation. In this

final stage, a JVM is instantiated, and commanded to load and run the resultant

Java programmes. Note that in addition to loading the Java code produced by the

preceding translations, a pre-compiled Java library designed by us is also loaded.

We explain what the library is and why we need it next.

It is worth highlighting that if unnecessary, in theory, generating the Java code

can be omitted as long as the in-memory Java model can be made consumable by

the JVM directly, namely if the format of the model is made recognizable by the

JVM. This treatment has the advantage of saving much time of writing texts to

a persistent disk and reading them back to memory, and thus can speed up the

whole process.

From the above, the final Java program of the modelled system is made up of two

parts: one is the Java code yielded by the translation; the other is a pre-compiled

library, which is intended to implement a major part of the xUML semantics. By so

doing, the implementation of the xUML semantics is partially allocated to the library,

which has two merits of: 1) greatly reducing the computation in the translation, and

2) making the definitions of the translation simpler. For convenience, we will use the

generated part to refer to the Java code produced by the translation, and the library

part to the library we compose.

Therefore, we focus on two tasks. For the generated part, we define the translation

rules involved in the ALx-to-Java translation, namely the ALx-to-Java mapping rules,

which are provided in AS-styled formalism in Appendix H. However we do not consider

the implementation details in the stage of conceptual design. For the library part, we

describe how the Java code implements a part of the ALx semantics.

5.3 Implementing ALx Semantics in Java

According to the architecture of the translator, the dynamic semantics of ALx are

either implemented in the generated part or in the library part, or distributed in both.

Assigning a part of the dynamic semantics to the library part can result in a simpler

translator and a more concise generated part, and reduce the computational cost in

translation.

95



Corresponding 
Java Elements

+op1()
+op2()

-attr1
-attr2

C

+new_instance()
+record_object()
+setAttr1()
+getAttr1()
+setAttr2()
+getAttr2()
+op1()
+op2()

+object_list
-attr1
-attr2

C

+setAttr1()
+getAttr1()
+setAttr2()
+getAttr2()
+op1()
+op2()

<<interface>>
IC

ALObject

<<implements>>

mapped to

<<extends>>

ALx Elements
Java Elements In 

Library Part 

<<interface>>
IALObject

<<implements>>
"C" is an arbitray Alx class. 

Figure 5.2: Translation overview of an arbitrary ALx class.

In this section, we proceed to detail how the generated part, coupled with the

library part, implements the semantics of the ALx. In the meantime, we show that the

implementation is based on the action semantics of ALx.

5.3.1 Implementing Object Query

Recording Objects of a Class

As an important part of ALx, the object query mechanism enables a query into the run-

time environment to retrieve one or more object references of the given type. Usually,

the returned objects are limited to those that meet the given condition. As specified in

the ASD of ALx, the object query mechanism requires that in each class declaration,

a special cell must be allocated in the common store to hold the object identity list of

the class being declared.

Prior to explaining how to implement object identity lists, we list informally the

relevant ALx-to-Java mapping rules:

• Each ALx class is mapped to a Java interface and a Java class; the Java class

implements the Java interface and extends a library class called ‘ALObject’ (A

96



library class is a class defined in the library part).

• Each ALx attribute is mapped to a Java attribute.

• Each ALx method is mapped to a Java method.

These mapping rules are illustrated using Figure 5.2.

To implement the object identity list of an ALx class, a class field (or a static field

[36]), called ‘objectList’ with type Java list, is incorporated in the corresponding Java

class to record the references of all objects of this class. This class field is produced

mechanically along with its containing Java class, and is initialized to an empty list

(the default value) when the class is loaded into JVM.

The ALx semantics requires keeping the object identity list up-to-date, so the fol-

lowing two aspects must be assured:

• Whenever an object is created, its reference should be put into the object lists of

all its ancestors.

• Whenever an object is deleted, its reference should be removed from the object

lists of all its ancestors.

In Java code, the first aspect is accomplished using a method called newinstance,

which is included in all generated Java classes that correspond to ALx classes. In the

body of the method newinstance, there is a call to a static helper method, called

‘recordObject’, which is implemented as Code 5.1 shows. By this means, the task of

recording object references is delegated to this helper method when creating objects. It

is required that every object is created using newinstance. That means there exists

no other way of creating objects. This requirement can be satisfied on the ground that

all Object-Creation constructs are translated to Java code by the mapping rule:

translate [[ “create-object” I : Identifier “of” C : Identifer ]] = C “.”
“newinstance()”.

Another ground is that the Java code is produced in a computerised manner, immune

from human coding errors.

Note that the implementation of the helper method ‘recordObject’ is different if the

class has a super class, shown in Code 5.2, where a line (Line 3) is added for the purpose

of putting the reference of the newly-created object into the super class’s object identity

97



Code 5.1 Implementation of recordObject of a class without super classes

1. . .
2public stat ic void recordObject (ALObject a lo ){
3ob j e c tL i s t . addObject ( a l o ) ;
4}
5. . .

Code 5.2 Implementation of recordObject of a class with super classes

1. . .
2public stat ic void recordObject (ALObject a lo ){
3ob j e c tL i s t . addObject ( a l o ) ;
4C0 . recordObject ( a l o ) ; // C0 i s the super c l a s s .
5}
6. . .

list. Evidently, this process will be recursive to a super class that has no super class any

more. The translator is capable of coping with such implementational variation owing

to its awareness of whether an ALx class has a super class or not at parse-time.

The second aspect regarding destroying objects is a direct opposite of the first one.

Its fufillment resembles the first one conceptually, and thus is not detailed here.

Retrieving Object References of a Class

Now that the references of all objects have been recorded in object lists, an object query

is merely a matter of obtaining the access to the proper object list and retrieving the

qualified object references. In executing an occurrence of an object-query construct, the

system will iterate each object in the object list, and only the references of those qualified

objects are returned. Here we highlight only the translation rule for the conditional

select-one in Rule 5.1, and select-many in Rule 5.2. (Note: in the rules, the new-line

symbols and the translation of identifiers are omitted for simplicity.)

Rule 5.1 Translation rule for the select-one object query

translate [[“select-one” I : Identifier “of” C : Identifer “(” E : Expression “)”]] =
[[ “Iterator〈ALObject 〉 iterator = ” C “.” “objectList.iterator(); ”
“while(iterator.hasNext()){”

“ALObject selected = iterator.next();”
“if(” translate E “) {” I “= selected; break;}”

“}” ]]

98



Rule 5.2 Translation rule for the select-many object query

translate [[“select-many” I : Identifier “of” C : Identifer “(” E : Expression “)”]] =
[[ “Iterator〈ALObject 〉 iterator = ” C “.” “objectList.iterator(); ”
“while(iterator.hasNext()){”

“ALObject selected = iterator.next();”
“if(” translate E “) {” I “.” “add(selected); }”

“}” ]]

Library Part ElementsCorresponding Java ElementsALx Elements

B

A

R
1

B

A

+getRid() : int
+getOneEnd()
+getAnotherEnd()
+newLink() : ALLink

+rid : int = RIDs.RR1
+oneEnd : int = CIDs.A
+anotherEnd : int = CIDs.B

RR1

ALRelation

mapped to

mapped to

mapped to

Figure 5.3: Translation overview of an arbitrary ALx relation.

5.3.2 Implementing Relations and Links

Relations are graphical artefacts in xUML models, and the relations present in ALx

code are the textual counterparts of those in xUML models. In both cases, relations are

model-level (M1) constructs. Links are defined to be instances of relations and thus are

instance-level (M0) artefacts inhabiting the run-time environment. Being instances, like

objects, links have their classifiers—relations, and can be also created and destroyed.

This subsection presents the simulation of relations and links using Java.

Simulating Relations

According to the ASD of ALx, relations are specified as follows:

relation = relation of (relation-token, class, class).

This implies that a relation is composed of three components: a relation-token (i.e.,

the name of the relation), and two associated classes. Compared to the fully-fledged

relations in the UML Specification, the relations defined in our case are quite simplified:

we do not consider such concepts as association roles, association classes, navigational

direction and multiplicity due to them being related to static semantics rather than

run-time concerns.

99



See Figure 5.3 for an example. Each relation is represented by a Java class, which

encompasses three static fields:

• rid, the unique identifier of the relation represented, which is allocated by the

translator in a systematic manner.

• oneEnd, the value of which is essentially the ‘cid’ (an identifier for a class) of one

of the associated classes.

• otherEnd. Similarly, the value of this field is the ‘cid’ of the other associated class.

The three fields are used to model the three components of a relation. They are made

static for the convenience that there is no need to create an object of the relation-

representing class to access these fields. In addition, because the definition of a relation

cannot be changed on the fly, the values of the three fields are not changeable once

initialized.

Most importantly, in each relation-representing Java class, a static method, called

newLink, is incorporated, which is used to create links. The method body of newLink

is implemented as Code 5.3 shows.

Code 5.3 Method of ALLink of relation-defining Java classes.

1. . .
2public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
3ALLink temp = new ALLink ( r id , o1 , o2 ) ;
4o1 . addLink ( temp ) ;
5o2 . addLink ( temp ) ;
6return temp ;
7}
8. . .

Simulating Links

The run-time environment of ALx can be envisaged as a space with a network of objects,

which are connected by links. Communications and interactions between objects, such

as sending messages, signals and call to operations, are a vital part of system dynamics,

and rely on links as the communication channels. In the case of ALx, a link consists of

four ordered components: the classifying relation, two connected objects and a unique

ID. In Java, we employ objects of the library class ALLink to simulate links, which

100



defines the common characteristics of all links. The code of this class is shown in Code

5.4.

Code 5.4 Library class ALLink is employed to simulate links.

1package l i b r a r y ;
2

3public class ALLink {
4private int r i d ;
5private ALObject oneEnd ;
6private ALObject otherEnd ;
7

8public ALLink ( int r id , ALObject oneEnd ,
9ALObject otherEnd ){
10this . r i d = r i d ;
11this . oneEnd = oneEnd ;
12this . otherEnd = otherEnd ;
13}
14

15public int g e t I t sRe l a t i o n ( ){
16return r i d ;
17}
18

19public ALObject getOtherEnd (ALObject o ){
20i f ( o == oneEnd ) return otherEnd ;
21i f ( o == otherEnd ) return oneEnd ;
22return null ;
23}
24

25public void dest roy ( ){
26oneEnd . removeLink ( this ) ;
27otherEnd . removeLink ( this ) ;
28}
29}

Code 5.4 explains itself. In ALLink, three attributes (rid, oneEnd and otherEnd)

are used to represent the classifying relation and the two linked objects. The identities

of links are not expicitly simulated by attributes because their role can be acted by the

references of the link-simulating Java objects. Furthermore, the method getOtherEnd

(See Line 19-22) is the Java counterpart of the auxiliary operation the object other

than of of the sort link, which is defined in the ASD of ALx and aimed to obtain

the other linked object. Parallel to objects, links are created by the Link-Creation

constructs, which are universally mapped to the invocation of the method newLink

declared in relation-simulating classes.

101



5.3.3 Implementing Link Navigation

Link navigation, a kind of object query, enables travelling from one object along links

to other reachable objects, probably via some intermediary objects. To implement link

navigation, a field (named linkList) is embedded in the library class ALObject. See

Line 2-3 in Code 5.5. The value of this field is a Java list dedicated to retaining all

the references of the links which are connected to the object that owns this field. In

all cases, a link connects two objects simultaneously, so the reference of a link must be

present in both link lists of the connected objects. In addition to the field, some helper

methods are defined to facilitate link navigations; their uses are suggested by name.

We highlight a link-navigation-related part of ALObject in Code 5.5.

Code 5.5 Code fragment of the library class (ALObject) for link traversal.

1public abstract class ALObject {
2protected LinkedList<ALLink> l i n kL i s t = new LinkedList<ALLink >() ;
3. . .
4public ALLink getLink ( int r i d ) { . . . }
5public ALObject getLinkedObject ( int r i d ) { . . . }
6public void addLink (ALLink l i n k ) { . . . }
7public void removeLink (ALLink l i n k ) { . . . }
8public LinkedList<ALLink> getL inks ( int r i d ) { . . . }
9public LinkedList<ALObject> getLinkedObjects ( int r i d ) { . . . }
10}

Parallel to object lists, link lists are also committed to be up-to-date. This requires

that whenever a link is created, its reference should be added to both link lists of

the two connected objects; whenever a link is deleted, its reference should be removed

from the two link lists accordingly. The former is enforced by the member method

newLink of relation-simulating Java classes (See Code 5.3 for details). The latter is

done in the method destroy of the class ALLink (See Line 25-28 of Code 5.4). As far

as the translation rules are concerned, every occurrence of Link-Creation in ALx code

would result in an invocation of the method newLink, and Link-Deletion would result

in invocation of the method destroy. The updating of link lists can be guaranteed

as Java code for creating and destroying links is definitely machine-generated per the

translation rules.

102



C

ALx Elements Corresponding 
Java Elements

Java Elements In 
Library Part 

entry { ... } 
exit{...}

StateA

entry { ... } 
exit{...}

StateC
entry { ... } 

exit{...}

StateB

E3

E2

E1

C

SM

+entry()
+exit()

StateA

+entry()
+exit()

StateB

+entry()
+exit()

StateC

+lookup() : State

+owningClassID : int
+transitionTable

StateMachine

+entry()
+exit()

State

Map to 

Map to 

<<extends>>

Figure 5.4: Translation overview of ALx state machines.

5.3.4 Implementing State Machines

Simulating State Machines

A state machine description belongs exclusively to a single class, so the relationship

between a state machine and its owning class is compositional or part-whole. We

consider that state machines are also a kind of instance. Hence, when a stateful object

is created, an instance of the specified state machine should also be created and linked

to this object.

We use Figure 5.4 to illustrate mappings of ALx state machines to Java classes that

represent them. In this figure, on the ALx code side, ‘C’ is supposed to be a stateful

class which incorporates a state machine as one of its behaviour. The state machine

consists of various states: StateA, StateB and StateC. On the side of Java code, ‘SM’ is

a Java class extending a library class called ‘StateMachine’, and it is composed by the

Java class ‘C’. Three Java classes (StateA, StateB and StateC), children of the library

class ‘State’, are employed to represent the three states respectively, and are integral

parts of ‘SM’.

The mechanism of Java member classes is well adequate to represent the compo-

sitional relationship between a stateful class and its state machine, as well as the one

between the state machine and its states. The reasons are two-fold:

103



• Objects of a Java member class always exist in the contexts of their containing

objects. Precisely, an instance of a member class is always associated with an

instance of the enclosing class. As such, an object of the member class can only

be created after its enclosing object has been created. This concept is closely

parallel to the compositional relation between stateful objects and their state

machines.

• The code of a member class has full access to all the fields and methods, both

static and non-static, of its enclosing class. This enables the entry/exit method

of the member classes to invoke the member methods or access the member fields

of the containing class.

Code 5.6 Code skeleton of the class ‘StateMachine’

1public abstract class StateMachine {
2public int ownedClassID ;
3public HashMap<StateEventPair , State> t r an s i t i onTab l e
4= new HashMap<StateEventPair , State >() ;
5public void addEntry ( State sState , int s s id ,
6State tS ta t e ){
7StateEventPair sep =
8new StateEventPair ( sState , s s i d ) ;
9t r an s i t i onTab l e . put ( sep , tS ta t e ) ;
10}
11public int getOwnedClass ( ){
12return ownedClassID ;
13}
14public void setOwnedClass ( int c id ){
15this . ownedClass = c id ;
16}
17public State lookup ( State s tate , int e id ){
18StateEventPair sep = new StateEventPair ( s ta te , e id ) ;
19return t r an s i t i onTab l e . get ( sep ) ;
20}
21}

The library class StateMachine is an abstract class to be extended by ‘SM’, where

the common features of state machines are specified. See Code 5.6 for the skeleton code

of this class. Every state machine has a transition table, each entry of which is made

up of three elements: source state, event and destination state. Despite being called a

table, the transition table is implemented using the date structure ‘HashMap’, the keys

of which are the pairs of source states and event IDs, implemented as the objects of

StateEventPair, and the value of which are the destination state.

104



In StateMachine, two assistant methods (addEntry and lookup) are provided

for constructing and querying into the transition table. The method addEntry is

defined to add an entry to the transition table, and it is usually called multiple times

to construct a fully-fledged transition table when a state machine is created, namely

when an object of ‘SM’ is instantiated. The code for constructing transition tables is

implemented in the constructor of ‘SM’, automatically generated by the translator and

varied depending on the state machine being represented. See Code 5.6 for details. The

method lookup is provided for searching the transition table against the pair of source

state and occurred event for the corresponding destination state.

A skeleton code of the ‘Elevator’ of the running example mentioned in Chapter 4 is

given in Code 5.7 to further illustrate how Java member classes are used to represent

state machines.

Simulating States

ALx states are one-to-one mapped to Java states, which are essentially Java classes

extending the library class State and have two member methods: entry and exit.

The mapping is intuitive, and thus it is not detailed here. It was mentioned that we

use the mechanism of Java member classes to represent the compositionality between

a stateful class and its state machine ‘SM’. It can be also known from Figure 5.4 that

such composition also exists between the state machine and its states. Thanks to Java

allowing indefinite nesting of member classes, the compositionality between the state

machine and its states is also represented by the mechanism of Java member classes.

As mentioned, member classes are allowed to access the attributes and methods of the

enclosing classes. This convenience allows the entry/exit method to manipulate the

object’s attributes and call methods.

Implementing Run-to-complete Process

The dynamic semantics of state machines is mainly embodied in state transitions, which

are modelled by run-to-completion cycle that is essentially a procedure of handling

events. A run-to-completion process involves the following steps:

1. Dispatching an event in the event queue. (Note that the object puts incoming

events in the event queue first.)

105



Code 5.7 Java code for ’Elevator’ of the running example.

1public class Elevator extends ALObject
2implements IE l eva to r {
3public Elevator ( ){
4sm = new SM( ) ;
5cu r r en tS ta t e =
6( ( Elevator .SM)sm ) . StoppedWithDoorOpened ;
7}
8public void stop ( ) {
9System . out . p r i n t l n ( ‘ ‘ The e l e v a t o r i s stopped . ’’ ) ;
10}
11/∗ Member c l a s s ‘SM’ i s f o r
12r ep r e s en t i ng the s t a t e machine . ∗/
13class SM extends StateMachine {
14public State StoppedWithDoorOpened
15= new StoppedWithDoorOpened ( ) ;
16public State StoppedWithDoorClosed
17= new StoppedWithDoorClosed ( ) ;
18. . .
19public SM(){
20// Construct the t r a n s i t i o n tab l e .
21addEntry ( StoppedWithDoorOpened ,
22IDs . ESwitchDoor , StoppedWithDoorClosed ) ;
23addEntry ( StoppedWithDoorClosed ,
24IDs .EMoveUp, MovingUp ) ;
25. . .
26}
27// Java member c l a s s e s r ep r e s en t i ng s t a t e s .
28class StoppedWithDoorOpened extends State {
29public void entry ( ) { . . . }
30public void e x i t ( ) { . . . }
31}
32class StoppedWithDoorClosed extends State {
33public void entry ( ) { . . . }
34public void e x i t ( ) { . . . }
35}
36. . .
37}
38}

2. Triggering a state transition if the dispatched event is not filtered off by a condi-

tion.

3. The object moves out of the current state. Just before this happens, the exit

activity is called into execution until completed.

4. The object moves into the target state, and the entry activity of this target state

is invoked and executed to finish.

106



This process is emphasized by the words run-to-complete as the next event cannot

be dispatched to be processed if the process of the preceding event is not completed.

In fact, the run-to-complete process specified in the standard UML specification is

far more complicated. To be simple, ALx adopts a state machine simplified both in

static structure and in dynamic semantics, where not considered are parallelism, multi-

threading and asynchrony of all behaviours, including that of operation invocation of

classes and that of state machines. This is to say, the execution of the whole program

takes place in a single main thread; at any moment, only one behaviour is performed,

and it is either a method or a run-to-complete process. Therefore, the event queue of an

object, which enables the concurrency of accepting events and handling events, could

be ignored, so could the event-dispatching mechanism. As such, any event targeting an

object will be tackled as soon as it occurs.

Code 5.8 Code skeleton of the method stateTransimitted

1. . .
2public void s tateTransmitted ( int e id ){
3// check whether t h i s i s a s t a t e f u l ob j e c t .
4i f ( this . cu r r en tS ta t e == null ) return ;
5i f ( this . sm == null ) return ;
6// e l s e , t h i s i s a s t a t e f u l ob j e c t .
7this . cu r r en tS ta t e . e x i t ( ) ;
8// t r a n s i t to another s t a t e
9// f i nd the t a r g e t s t a t e
10State tS ta t e= this . sm . lookup ( this . cur rentState , e id ) ;
11// execute the entry method in the t a r g e t s t a t e .
12tS ta t e . entry ( ) ;
13// Current s t a t e i s s e t to t a r g e t s t a t e .
14this . cu r r en tS ta t e = tSta t e ;
15}
16. . .

Now we proceed to illustrate how to implement a state transition in Java. The

translation rule for Event-Generation is shown as follows:

translate [[“send-event” I1: Identifier “→ ” I2: Identifier]] =
[[ I2 “.” “stateTransmitted” “(”“EIDs”“.”I1 “)” ]]

This rule indicates that an event generation corresponds to an invocation of the method

stateTransmitted() within the context of the target object. The method stateTrans-

mitted() is defined in the class ALObject. See Code 5.8 for the implementation of

this method. First, this method checks whether the target object is a stateful object

107



by checking if it has an associated state machine. If not, it returns. If it is, the method

would invoke the exit activity of this object. Then, it consults the transition table for

the destination state. Subsequently, the entry activity of the destination state is called.

Finally, it updates the current state of this object to the destination state.

5.4 Discussion and Conclusion

Because there is no AS tool capable of validating the ALx ASD, and versatile enough

to generate a runnable interpreter for ALx, we turn to implementing an xUML-to-Java

translator following the ASD of ALx to give some assurance to the ALx ASD. The

implementation-neutral architecture of the translator is proposed in this chapter, which

is characterized by a two-translation process and allocating a significant part of the

dynamic semantics implementation to a Java library. In addition, the implementation

of some featured semantics of xUML or ALx, such as object-query mechanism, relation

and link mechanism, state machines and the run-to-complete process of state machines,

are detailed in this chapter.

We do not investigate multi-inheritance of classes because Java does not inherently

support it. However, this does not mean that implementing multi-inheritance in Java is

impossible. As far as we know, design pattern [33] can be applied to tackle this problem;

for instance, in [88], the author proposes a pattern to avoid multi-inheritance in Java

implementation. However, such implementation would make inheritance hierarchy and

class structure of system extremely complicated and thus undermine our philosophy of

mapping ALx to Java in a straightforward manner.

108



Chapter 6

Model-Oriented xUML-to-Java

Translation

In this chapter, we introduce some key features of MDA, followed by justification of

employing MDA as the approach to implement the xUML-to-Java translator. Subse-

quently, we investigate the applicability of UML, one pillar of MDA, to specify the static

aspects of programming languages. Finally, we introduce the Eclipse MDA environment

and describe how to use it to implement the conceptual design proposed in Chapter 5.

6.1 Key Features of MDA

Object-Oriented Programming (OOP), the most popular programming paradigm now,

has advantages over structured programming both in modeling and coding the target

systems. However it still focuses overly on the coding level. The necessity of raising the

abstraction level has been widely realized by the community of software engineering.

The Model Driven Architecture (MDA) [62, 49] is the product of this concern and is a

framework underlying a new paradigm for software development, specified in the MDA

Guide [62] in late 2001 by Object Management Group (OMG).

The emergence of MDA causes an important paradigm shift in software system

construction — the move from object and component technology to model technology.

The major activities in MDA are concentrated on modeling the system at different

abstraction levels, and achieving the final system through model transformation.

A typical scenario of system development in MDA begins with gathering a set

109



of requirements. Developers then compose a system model which satisfies those re-

quirements. This initial model captures the requirements at a fairly high abstraction

level, without committing to a specific technology platform, and is called a platform-

independent-model (PIM) [62, 49].

Then the PIM is transformed into a platform-specific model (PSM) [62, 49], guided

by some well-defined rules which are usually specific to the selected implementation plat-

form. The transformation lowers the level of abstraction by introducing implementation-

specific elements into PIM; it is usually facilitated by a model-driven development en-

vironment and may be manual, semi-manual or automated. Note that the term ‘plat-

form’ in the scope of MDA refers not only to a certain operating system but also to a

language-based platform such as Java or C++, J2EE or .NET, HTML or XML, IBM

DB or Microsoft SQL database, EJB [63] or Corba [72], etc.

Subsequently, a code model is usually produced. Although the resultant PSM is

closer to the final code, it is still too abstract for compilation in a given language. For

instance, it is preferable that a Java class in a PSM is enriched by providing access

methods to all its attributes in the code level. So, in MDA, there usually exists a code

model as specific or abstract as the textual code, which is transformed from the PSM

based on pre-defined transformation rules. Finally, the textual code for the system is

obtained from the code model.

It can be seen that, in MDA, code is produced from models rather than being written

directly by programmers. As the system changes, developers only need to modify the

model, which is normally more intelligible and manipulatable compared to the code

because of its higher abstraction, and then the MDA environment synchronizes the

code with the changed model. The model is always up-to-date and useful, no longer

discarded at the outset of coding, but becoming the focus of development effort.

OMG are still working on the standardization of model transformation. One benefit

of its work is that transformation and code generation could be fulfilled automatically

by a computer. Even if it is not fully automated, the transformation is the exclusive task

of those virtuosos in computer science. So software developers will solely concentrate

on modeling the highly abstract PIM.

The above scenario of developing a system shows the following features of MDA:

• MDA raises the abstraction level to the model level. Increasing the abstraction

110



level is routine in software development. For example, the shift from assembly

language programming to C programming is an upgrade from a machine-specific

level to a machine-unconscious one. Every time the abstraction level is enhanced,

a revolution is about to take place in the efficiency of software development.

• Modeling is the focus of the development activities, and the produced models

become the most valuable asset of the development efforts. Since the model

is completely consistent with the code, now it can be respected as a trusted

documentation, and more importantly, can be reused to generate code in newly-

emerged technologies, saving lots of efforts and reducing the time to market.

• The complicated transformation rules are pre-defined by a few experts who are

knowledgeable in the platform-specific details, and these rules can be published to

be shared for different projects. This means that the application developers need

not know too much about the implementation techniques and can focus more

on business logics, which lowers the threshold of software development. Model

transformations are usually accomplished automatically in MDA environments.

So, the advantages of MDA are more obvious when the model transformations

involved are bulky.

6.2 Adopting MDA as Implementation Approach

Adopting MDA as an implementation approach is determined by the features of the

xUML-to-Java translator under development. The working process of the translator can

be viewed as a pipeline model, in which there are three highly coarse-grained software

components–the first translator, the second translator and the code generator. For

simplicity, we use TR1 to represent the first translator, and TR2 the second translator.

In parallel, T1 is used to represent the first translation, performed by TR1, and T2 to

the second translation, performed by TR2. Each component takes the output of the

preceding one as the input except for TR1 which has no precursor.

TR1 shall be equipped with the knowledge of xUML and ALx, as well as translation

rules. More specifically, TR1 must be provided with the syntactic definitions both of

xUML and ALx and their translation rules so that it is able to recognize the concerned

languages and then carry out translations following the rules. All xUML models must

111



TR1 TR2UML M1 ALx M1 Java M1

UML M2
[UML  ALx]
Mapping M1 ALx M2

[ALx  Java]
Mapping M1 Java M2use use use use

based on based onconform to conform to conform to

Code 
Generator

Strategy

based on

use

Java 
Code

Code 
model

conform to

use

Figure 6.1: Models and metamodels required by the translator

conform to the syntactic definition of xUML to be valid, so the former are instances of

the latter. In this sense, from the viewpoint of the four-layer metamodeling architecture

mentioned in Chapter 2, we can refer to the syntax definition of xUML as an xUML

metamodel. For the same reason, the syntax definition of ALx can be called an ALx

metamodel. Furthermore, we regard the translation rules as a mapping model because

each specific translation occurrence is an instance of the translation rules. To sum up,

it is the prerequisite that TR1 must rely on the xUML metamodel, ALx metamodel

and their mapping model to carry out translations from xUML models to ALx models.

The same also applies to TR2, which must be equipped with the ALx metamodel,

Java metamodel and their mapping model to perform the translations from ALx models

to Java metamodels.

The code generator needs to recognize the Java metamodel and shall be given a

strategy for how to generate code. The strategy is characterised differently depending

on the specific implementation of the code generator. For example, some code generators

consider the input model as a tree and then produce code through visiting the nodes

residing in the tree, so the strategy of code generator is specified in the tree visitor.

For another example, some code generators adopt the notion of templates to carry out

their duty, which is principally characterized by pattern match and has the advantage

of better usability.

Now we summarize the knowledge, mainly metamodels and mapping models, re-

quired by the constituent components of the translator and their dependencies in Figure

6.1, and we sum up some features of the overall translation system as follows.

• The system is densely populated by models and metamodels; thus preparing the

metamodel is a primary task in system building.

• The data pertaining to the translator can be classified into two hierarchical layers:

the data in the lower layer are instances of those in the upper layer, as is evident

112



because models are instances of the corresponding metamodels.

• The major tasks of this system are model transformations. From the conceptual

design, model translations occur pervasively in the whole working process.

• The system involves code generations.

With the features of the xUML-to-Java translator in mind, it is fairly natural to

consider MDA as a potential approach to prototype the translator. Recall the notion

of MDA, which preaches that systems are achieved through model transformations,

model evolutions, and which also corroborates four-layer hierarchical classification of

information. In this sense, MDA is intended for this kind of system like the translator,

which is full of models, metamodels and model transformations.

MDA seems to be highly appropriate to implementing the translator, but we still

need to answer the following three questions before making the final decision of adopting

MDA as the implementation approach.

• It is very important to find out whether MDA is capable enough to describe the

abstract syntax of programming languages. Namely, it is necessary to investigate

whether or not UML is expressively sufficient to describe the languages involved,

because UML is the adopted modeling language of MDA.

• It is necessary to investigate how mapping models are specified in MDA.

• We need to know how MDA is supported by tools, including model editors, code

generators, model transformation engines, etc. Note that MDA is just a concep-

tual approach and thus it is not practical until some tools realize it.

6.3 Applicability of MDA to Programming Languages

6.3.1 Representing AST in UML

A parallel

We consider that there exists a strong parallel between MDA’s four-layer information-

representing hierarchy and the conventional way of representing the static aspect of

programming languages using BNF-like meta-grammars. As mentioned in Chapter 2,

113



the four-layer information-representing hierarchy is the corner stone of MDA, where

information appears as model elements that are classified into four hierarchical layers

based on the instance-class notion. For instance, the metamodel of UML, the specifica-

tion of UML, resides in Meta-model (M2) layer, while UML models that are the specific

instances of the UML language are located in Model (M1) layer. In addition to UML,

various other modeling languages also exist in the M2 layer, such as Common Ware-

house Metamodel (CWM) [75], XML Metamodel Interchange (XMI) [80] and Business

Process Definition Metamodel (BPDM) [81].

The number of M2-layer metamodels is still increasing; this gives a rise to the need of

a global Abstract Syntax Tree (AST) that can characterize all metamodels. Therefore,

OMG uses the Meta-Object Facility (MOF) to address this issue. It is claimed by

OMG that such integration of metamodels would eliminate the issue of incompatibility

between modeling tools, enhancing tool cooperation [77].

MOF is featured as follows. 1) The MOF is the only entity in the M3 layer. 2)

MOF is self-describing. This is why there are only four layers in the framework because

no upper layer is necessitated to describe MOF. 3) MOF, like UML, also employs the

object-oriented paradigm to view the system (‘system’ here refers to metamodels). 4)

MOF reuses the core of UML as its core.

The characteristics of the four-layer architecture strongly suggest a parallel between

itself and the traditional formalization of programming languages. The M3 layer cor-

responds to the meta-grammar level. For instance, BNF is a grammar of grammar

and also defines itself; the M2 layer corresponds to the grammar level; the M1 layer

corresponds to the code level; the M0 level corresponds to a dynamic execution of the

given program.

Translating grammars to UML representations

It is necessary to investigate whether UML is adequate for specifying the grammars of

programming languages; i.e., is MOF sufficient for describing grammars for program-

ming languages? Since MOF incorporates the core of UML as its core—the part for

describing class diagrams, we only need to look into whether UML class diagrams are

expressive enough for describing grammars of programming languages.

The grammar of programming languages comprises terminals T , non-terminals N ,

114



and production rules of the form

N → s1 s2 . . . sn

where N is a non-terminal and s1, s2, . . ., sn denotes strings of grammar symbols,

each of which is a sequence of terminals, non-terminals or their blend. Terminal symbols

either describe aspects of the concrete syntax like keywords, or have a dedicated seman-

tic meaning like operators. Some of the non-terminals abstract from certain tokens of

the source program like identifiers or numbers.

For the convenience of illustration, we distinguish non-terminals, based on the right-

hand side of their defining rules, as follows:

1. Simple non-terminals. A simple non-terminal has multiple possible forms, how-

ever each of the forms is simply a terminal. The most outstanding simple non-

terminals are operators of a language.

2. Single-formed non-terminals. A single-formed non-terminal has only one form,

which may be purely a terminal, or a sequence of terminals and non-terminals.

3. Multi-formed non-terminals. A multi-formed non-terminal has more than one

form. There is no special requirement for its forms, one of which may be as simple

as a terminal or a non-terminal, or a sequence of terminals and non-terminals.

Now we extract a simplified fraction of ALx grammar (shown in Syntax 6.1) to

illustrate this idea of classification. In the grammar, ‘InfixOp’ is a simple non-terminal;

‘Exp’ and ‘Stmt’ are two multi-formed non-terminals; ‘BlockStmt’ is a single-formed

non-terminal.

Syntax 6.1 A simplified fraction of ALx grammar.
InfixOp → “+” “−” “>” “<” . . .

Exp → IntLiteral “self” Exp InfixOp Exp . . .

Stmt → “;” BlockStmt “return” Exp? “;”
“if” “(” Exp “)” Stmt “else” Stmt . . .

BlockStmt → “{” Stmt* “}”

The right-hand side of the rule of a multi-formed non-terminal can be rewritten so

that all its forms are purely non-terminals. This is achieved through creating a new non-

115



terminal, preferably meaningfully named, to substitute for each terminal or composite

form within the right-hand side of the rule. Meanwhile, a new grammar rule is added to

define each new substituting non-terminal. All newly-created non-terminals are single-

formed because they each have only the form they have replaced in the original rule.

For instance, the multi-formed non-terminal ‘Exp’ can be rewritten to

Exp → IntLiteral SelfExp BinExp . . .

BinExp → Exp InfixOp Exp

SelfExp → “self”,

where all forms of the multi-formed non-terminal ‘Exp’ are single-elemented, either a

terminal or a single-formed non-terminal. This kind of substitution can be also applied

to ‘Stmt’. Ultimately we obtain a new equivalent grammar as shown in Syntax 6.2.

Syntax 6.2 The grammar resulted from rewriting the multi-formed non-terminals of
Syntax 6.1.
(1) InfixOp → “+” “−” “>” “<” . . .

(2) Exp → IntLiteral SelfExp BinExp . . .

(3) SelfExp → “self”.

(4) BinExp → Exp InfixOp Exp.

(5) Stmt → EmptyStmt BlockStmt ReturnStmt IfStmt . . .

(6) EmptyStmt → “;”

(7) ReturnStmt → “return” Exp? “;”

(8) IfStmt → “if” “(” Exp “)” Stmt “else” Stmt

(9) BlockStmt → “{” Stmt* “}”

After a series of substitutions, no multi-formed non-terminals have composite forms.

These kinds of multi-formed non-terminal free of composite forms are referred to as

abstraction non-terminals thereafter. Since every single multi-formed non-terminal can

be rewritten to an abstraction one, in an arbitrary grammar there are only three kinds

of non-terminals: simple, single-formed and abstraction.

We propose a general idea of using UML to represent a grammar rule that has been

pre-processed by substitution. The idea is specified in terms of three transformation

rules, each for a type of non-terminal. The transformation of a rule always begins with

observing the type of right-hand-side non-terminal of the rule:

116



Rule 1 If it is a simple non-terminal, then an enumeration type is created to represent

it: the type name is usually the same as the name of the non-terminal if there is

name collision; the enumeration literals are the terminals that occur in the forms

on the right-hand side.

Rule 2 If it is a single-formed non-terminal, then a class is created to represent it: the

class name is usually the same as the name of the non-terminal, say C0. Next,

each component occurring in the only form of this non-terminal must fall into one

of the following cases:

Case 1 If it is a terminal, do nothing.

Case 2 If it is a simple non-terminal, we use an attribute of C0 to represent it:

the attribute name is usually the same as the name of this non-terminal and

its type is the enumeration type that denotes the non-terminal.

Case 3 If it is not a simple non-terminal, and, we assume, has been denoted by

a class C1, then create a relation between C0 and C1. It is not excluded that

this non-terminal may be modified by a cardinal symbol like the optional

(‘?’), the obligatory (‘+’) or the multiple (‘∗’). Under this circumstance, the

relation connecting C0 and C1 should be complemented by an appropriate

multiplicity at the end of C1.

Rule 3 If it is an abstraction non-terminal, firstly an abstract class is created to rep-

resent it. Secondly, all classes representing non-terminals on the right-hand side

inherit this class.

Now we follow the raised rules to systematically transform into UML classes the

grammar rules shown in Syntax 6.2. The reader is recommended to refer to Figure 6.2

when reading the following explanation.

• For Production (1), where ‘InfixOp’ is a simple non-terminal, Rule 1 is applied,

leading to a UML enumeration type illustrated in (a) of Figure 6.2.

• For Production (2), where ‘Exp’ is an abstraction non-terminal, Rule 3 is applied,

leading to a homonymous abstract class, which is made the super class of the

classes that represent terminals or non-terminals in the forms, as shown in (b) of

Figure 6.2.

117



+plus = "+"
+minus = "-"
+less = "<"
+more = ">"

<<enumeration>>
InfixOp

Exp

IntLiteral SelExp BinExp
+infixOp : InfixOp

BinExp

Exp

left right

Stmt

EmptyStmt BlockStmt ReturnStmt IfStmt

ReturnStmt

Exp

0..1

IfStmt

Exp

Stmt BlockStmt

Stmt

{ordered}

(a) (b) (c) (d)

(e) (g)(f)

else

*

Figure 6.2: Illustration of transforming context-free grammars into UML classes.

• For Production (3), where ‘SelfExp’ is a single-formed non-terminal, Rule 2 is

applied, resulting in a homonymous class, shown in (b) of Figure 6.2. Besides, the

only component in its sole form is a terminal, so Case 1 is selected, doing nothing.

• For Production (4), where ‘BinExp’ is a single-formed non-terminal, Rule 2 is

applied, resulting in a homonymous class ‘BinExp’. Furthermore, for the first

component in the form, which is not a simple non-terminal, Case 2 is selected,

leading to a relation between the class ‘Exp’ and ‘BinExp’. For the second com-

ponent, a simple non-terminal, Case 1 is selected then an attribute is used to

represent it. For the third component, a similar relation is also produced. Note

that even though the first component and second component are the same non-

terminals, their positions in the form are also significant. Take this case as an

example: the different evaluation order makes their position unchangeable. So,

this signification of position must be reflected in the class diagram. This depends

on implementation of the class diagram. Here, we use two relations. See (c) of

Figure 6.2 for illustration.

• For Production (5), where ‘Stmt’ is an another abstraction non-terminal, this

corresponds to classes in (e) of Figure 6.2.

118



• For Production (6), where ‘EmptyStmt’ is a single-formed non-terminal with a

simple terminal form, this corresponds to the class ‘EmptyStmt’, as shown in (e)

of Figure 6.2.

• In Production (7), ‘ReturnStmt’ is a single-formed non-terminal; its form is a

component modified by the cardinal symbol (‘?’), so this is reflected in the class

diagram by a corresponding multiplicity of the association end of the class ‘Exp’,

as shown in (d) in Figure 6.2.

• For Production (8), the corresponding class diagram is shown in (f) of Figure 6.2,

being conscious of the significance of positions of the same non-terminals.

• For Production (9), the corresponding class diagram is shown in (g) of Figure 6.2,

where a string ‘ordered’, a predefined constraint keyword in UML, is employed to

indicate the position significance.

We have used these rules to manually translate ALx and MiniJava abstract syntax

descriptions (Appendix A, H) into their metamodels in UML (Appendix E, F). How-

ever, the transformation could be made by computer through a three-pass scan. In the

first pass, a BNF-aware parser identifies the type of occurred non-terminals and marks

them. In the second pass, substitution is performed to convert some multi-formed non-

terminals to abstraction non-terminals. Finally, the transformation based on the rules

is conducted to generate UML class diagrams, most likely in a textual format.

Another point is needed to be considered: it is well known that programming lan-

guages, in most cases, are context-sensitive, involving context-sensitive constraints or

static semantics. So in the next section, we discuss how UML, the pillar of MDA, can

be used to represent it.

6.3.2 Representing Static Semantics

The context-sensitive languages are referred to as Type-1 languages in the Chomsky

hierarchy [24], and the static aspects of such languages are usually defined in the man-

ner of context-free grammars augmented by context-sensitive constraints. Therefore,

in addition to the previous investigation about using UML representing context-free

grammars, it is essential to study how MDA specifies context-sensitive constraints.

119



The notion of context-free grammars only loosely confines programming languages.

In a context-free grammar one defines syntactical categories such as expressions, com-

mands and assignments for expressing how the sentences of the programming language

are formed. Nevertheless, it is likely that some sentences may conform to the context-

free grammar but cannot be regarded as well-formed as a result of a failure to meet

some contextual requirements. For one instance, in a strongly-typed programming lan-

guage, variables can only be used after they are declared explicitly previously in their

scopes. For another, in an assignment statement of an imperative language, the type

of the value to be yielded by evaluation of the right-hand-side expression is normally

required to be consistent with the type of the variable on the left-hand side in terms of

type equivalence. Constraints of this kind are referred to as the static semantics of a

programming language and cannot be captured in an EBNF-like grammar.

To specify the static semantics of programming languages, various well-tested ap-

proaches have been around for ages, among which the notion of attribute grammars [95]

is the most outstanding and widely used. When specifying an attribute grammar, one

always begins with constructing a BNF grammar, which generates the base syntactic

sets. Then, attributes with type and value are incorporated into those base syntactic

sets. The incorporated attributes can fall into two categories, synthesized and inherited.

Viewing a program or sentence as a parse tree, the values of the synthesized attributes

of a node are used in evaluating attributes of its parent. In contrast, the values of the

inherited attributes of a node are used in evaluating attributes of its children. Sub-

sequently, the evaluation rules of these attributes are provided to figure out values of

attributes of nodes in the parse tree of a particular sentence or program. Finally, some

conditions upon these attributes are given. The type check would fail if one or more

conditions attached to the nodes in the parse tree obtained as a result of parsing a

program/sentence are tested false.

Attribute grammars are widely employed in generating parsers capable of type-

checking [48, 30, 50]. To show an example of attribute grammars, we use the extended

Syntax 6.2 as the context-free part, on the base of which the context-sensitive informa-

tion is specified.

Firstly, we incorporate a variety of attributes, either synthesized or inherited, into

some non-terminals. For details, see Figure 6.3. In this example, all attributes are

named ‘type’ (under real circumstances, this is not limited to ‘type’), which is evaluated

120



Syntactic sets Synthesized Inherited

Int type
Bool type

VarDecl type
Var type
Exp type

BinExp type
Type type

Figure 6.3: Synthesized and inherited attributes

to an element in the set {‘bool’, ‘int’, ‘undefined’}, in which ‘undefined’ denotes the

circumstances that a variable is undeclared, or other unknown situations. That is, the

attribute ‘type’ is an enumeration type which has three literals, valued ‘bool’, ‘int’ and

‘undefined’.

Syntax 6.3 An example attribute grammar.

(1) i : Int → [0-9] [1-9][0-9]+. {i .type = ‘int’}

(2) b: Bool → “true” “false”. {b.type = ‘bool’}

(3) InfixOp → “+” “−” “>” “<”.

(4) d : VarDec → t :Type v :Var “;”. {v .type = t .type, d .type = t .type}

(5) e: Exp → i : Int { e.type = i .type }
b: Bool { e.type = b.type}
v : Var { e.type = v .type}
x : BinExp { e.type = x .type}.

(6) x : BinExp → e1: Exp o: InfixOp e2: Exp {x .type = e1.type}.
[[ if o = ‘+’ or ‘-’ then e1.type == e2.type == ‘int’

else e1.type == e2.type == ‘bool’ ]]cond1.

(7) Stmt → EmptyStmt BlockStmt Assignment If-Stmt VarDec.

(8) BlockStmt → “{” Stmt* “}”.

(9) EmptyStmt → “;”.

(10) Assignment → v : Var “=” e: Exp “;”. [[ v .type == e.type ]]cond2

(11) If-Stmt → “if” “(” e: Exp “)” Stmt “else” Stmt. [[e.type == ‘bool’]]cond3

(12) t : Type → “boolean” {t .type = ‘bool’} “int” {t .type = ‘int’}.

Secondly we provide various evaluation rules and conditions, embedded in the pro-

duction rules, shown in Syntax 6.3. All evaluation rules, enclosed in the grammar by

curly braces (‘{}’), are self-evident. Three conditions are involved in this attribute

121



grammar, enclosed by double square brackets (‘[[ ]]’), and they are explained as follows:

• The cond1 in Rule (6) indicates that the types of two sub-expressions must be

equivalent and be consistent with the operator.

• The cond2 in Rule (10) indicates that the type of the variable on the left must

be same as that of the expression on the right.

• The cond3 in Rule (11) indicates that condition expressions must be bool-typed.

As mentioned, pure UML class diagrams, though context-free-grammar complete,

are not fine enough to specify context-sensitive grammars. We consider that the UML

class diagram would become expressive enough to specify context-sensitive grammars

if it is augmented by OCL expressions. This consideration stems from the parallel:

analogous to attribute grammars complementing EBNF to specify static semantics, the

OCL that is created to provide well-formity to UML models can also represent context-

sensitive information of programming languages.

Now we proceed to discuss how attribute grammars can be translated into UML

class diagrams augmented by OCL expressions.

First, transform the context-free aspect of the attribute grammar into a UML class dia-

gram based on the transformation rules specified in Subsection 6.3.1. In this step,

the context-sensitive information in the attribute grammar, including attributes,

evaluation rules and conditions, is transparent to the transformer.

Second, represent attributes of non-terminals as UML attributes of the correspond-

ing UML classes/types. More specifically, if the concerned attribute grammar

assigns an attribute to a non-terminal, whether synthesized or inherited, then a

corresponding attribute is incorporated into the corresponding UML class/type.

Third, the evaluation rules in the attribute grammar are translated to OCL expres-

sions. OCL is adequate to represent the evaluation rules due to two facts: it can

specify the initial values of attribute, and it can specify the value of the derived

attributes.

Fourth, conditions are expressed by OCL invariants. By definition, OCL invariants

are the conditions expressed in OCL that must be hold for all instances of the

targeted UML model.

122



+plus = "+"
+minus = "-"
+less = "<"
+more = ">"

<<enumeration>>
InfixOp

type : Type
Exp

value : int
Int

infixOp : Type
InfixExp

value : bool
Bool

Literal Var

+int = "int"
+bool = "bool"
+undefined = "undefined"

<<enumeration>>
Type

{context InfixExp::type:Type
init: undefined
derive: left.type 
}

left

right

{context InfixExp inv: 
if infixOp = InfixOp::plus and infixOp = InfixOp::minus 
then left.type = Type::int and right.type = Type::int
else left.type = Type::bool and right.type = Type::bool 
endif
}

Stmt

EmptyStmt BlockStmt IfStmt IfStmt Stmt

BlockStmt

Stmt

{ordered}
*

(a)

(d)

(b)

elseAssignment

Assignment

var

type : Type
Exp

type : Type
Exp

type : Type
VarDecl

name : string
Var

{context Var::type : Type 
derive: self.decl.type} {context Assignment inv:

var.type = exp.type}

{context IfStmt inv: 
exp.type = Type::bool}

decl

exp

(c)

VarDecl

(e)

Figure 6.4: Illustration of transforming attribute grammars into UML enchanced by
OCL

123



Following this procedure, the attributes stated in Syntax 6.3 can be translated into

a class diagram, augmented by OCL expressions and constraints, shown in Figure 6.4.

6.4 Implementing the xUML-to-Java Translator

6.4.1 Related Eclipse Projects

The overall process of MDA is described by OMG in the MDA Guide [62], which is more

about rough specification rather than a ready-to-use tool. We need to identify an MDA

implementation, usually referred to as MDA tools or MDA development environments,

to serve the purpose of prototyping the translator. At present, albeit in their infancy,

various MDA tools have emerged recently: some of them partially support MDA like

pure code generation tools; others are more fully-fledged model-driven tools.

A fully-fledged MDA tool is preferred in our case as implementing the translator

spans model creation, model transformation and code generation. A fully-fledged MDA

tool can support MDA practises in most aspects, including model composition, model

loading/persistency, model transformation, code generation and occasionally model

weaving, but is not limited to these. To be exempted from mandatory licensing is-

sues, we use an open source MDA tool instead of a commercial one. To our knowledge,

MDA-related Eclipse tools [5], resulting from several open-source projects, are the best

candidate. The Eclipse projects most relevant to our need are the EMF (Eclipse Mod-

eling Framework) [22] project and the M2M (Model to Model) project [46].

The EMF project provides a modeling framework and code generation facility for

building tools as well as other applications based on a structured data model. From a

model specification described in XMI, EMF provides tools and runtime support to pro-

duce a set of Java classes for the model, along with a set of adapter classes that enable

viewing and command-based editing of the model, and a basic editor. The core EMF

framework includes a meta model (Ecore) [22] for describing models and runtime sup-

port including change notification, persistence support with default XMI serialization,

and a very efficient reflective API for manipulating EMF objects generically. It should

be noticed that although Ecore is referred to as a metamodel in the documentation of

the EMF project, however in effect it defines itself, so in this sense, Ecore can be also

regarded as an approximation of MOF and as a meta-metamodel from the perspective

124



of the four-layer metamodeling framework in MDA. Therefore, parallel to MOF, Ecore

can specify not only the models but also metamodels.

The M2M project of Eclipse is an implementation of model transformation, which

is a key aspect of model-driven development. It delivers various model-to-model trans-

formation languages in which the transformation models are specified, a transformation

engine which is essentially the virtual machine of the transformation languages, and

some accompanying facilities such as syntax-aware editors, model/metamodel loading,

and transformation launching.

In our case, the Atlas Transformation Language or ATL [46, 12] is employed to im-

plement mapping models. ATL is developed by the Atlas group (INRIA & LINA), and

is a hybrid transformation language, consisting of a blend of declarative and imperative

constructs in which the declarative is encouraged. ATL provides ways to produce a set

of target models from a set of source models. ATL transformations are unidirectional,

operating on source models and producing target models. Source and target models

for ATL may be expressed in the XMI OMG serialization format. Source and target

metamodels may also be expressed in XMI or in the more convenient KM3 notation

[45].

An ATL transformation can be decomposed into three parts: headers, helpers and

rules. The headers are used to declare general information such as the module trans-

formation name, the source and target metamodels and imported libraries. Helpers

are subroutines (based on OCL) that are used to avoid code redundancy. Rules are

the heart of ATL transformations as they describe how target elements (conforming to

the target metamodel) are produced from source elements (conforming to the source

metamodel). They are made up of bindings, each one expressing a mapping between a

source element and a target element.

The ATL Integrated Development Environment (IDE) provides a number of stan-

dard development tools, such as a syntax highlighting editor, debugger, outline view,

etc., to facilitate the development of ATL transformations.

The ATL Engine includes two key components, an ATL compiler and an ATL Virtual

Machine(ATL VM). The former is responsible for compiling the given ATL transfor-

mations to programs in a specific byte-code. Then the ATL VM executes the resultant

byte-code. In addition to the byte-code, the execution of an ATL transformation entails

that the ATL VM has the knowledge of the metamodels of the source model and the

125



target. This means, the ATL VM needs to load at least three models or metamodels

for a transformation, so the task of loading models is not trivial and is usually compli-

cated by the diversity of models and metamodels. Therefore, the ATL VM is designed

to run on top of various model management systems. To isolate the ATL VM from

their specifics an intermediate level is introduced called the Model Handler Abstraction

Layer. This layer translates the instructions of the VM for model manipulation to the

instructions of a specific model handler. Model handlers are software components that

provide programming interfaces for model manipulation.

Building and launching ATL Transformations vary depending on whether the ATL

translation takes place in the Eclipse environment or works as a stand-alone application.

In the Eclipse environment, the ATL compiler is automatically called on each ATL

file in all ATL projects during the Eclipse build process. By default, this process is

triggered when a file is modified (e.g. saved). Executing an ATL transformation requires

the declared source and target models and metamodels to be bound to actual models.

This is done through the launch configuration wizard. The ATL engine delegates reading

and writing models to the underlying model handler. When the launch configuration

is ready, the user can trigger the transformation by clicking the ‘launch’ button in the

Eclipse IDE.

Under some circumstances, the ATL transformation may be implemented as a stand-

alone Java application. To satisfy such a need, the ATL project provides Apache Ant

tasks [1] for loading metamodels, serializing resultant models and executing an ATL

transformation. The sequence of Ant tasks can be either scripted in an Ant file, which

is subsequently executed by an active Ant engine, or directly invoked by a chunk of

Java code.

The ATL transformation also supports chained transformation. For example, two

sequential transformations A2B and B2C are required to chain, where, preferably, only

the final model is serialized, but the intermediary model is not.

The other Eclipse project concerning us is the Model to Text (M2T) project which

focuses on the generation of textual artefacts from models and is useful for us to generate

Java code from the yielded Java models. This project provides a powerful tool for

generating source code: JET (Java Emitter Templates) [3]. With JET one can use a

JSP (JavaServer Pages) -like syntax (actually a subset of JSP syntax) that makes it

easy to write templates that express the code you want to generate. JET is a generic

126



template engine that can be used to generate SQL, XML, Java source code and other

output from templates. A JET Development Environment based on Eclipse GUI is

also provided to ease editing JET template by means of syntax-highlighting. When

a JET template is ready, it will be automatically transformed to one or more Java

classes, which, together with the provided JET runtime library, can be integrated into

an application to play a role of code generation.

6.4.2 Implementing the Conceptual Design in Eclipse

So far, the needed metamodels have been ready for use, including the xUML meta-

model (See D), the ALx metamodel (see Appendix E) and the MiniJava metamodel

(a simplified Java metamodel provided in Appendix F ), which are all specified using

Ecore, the metamodel provided by Eclispe EMF project. Moreover, the ATL files im-

plementing the xUML2ALx and ALx2Java mapping models have also been composed

and compiled to ATL byte code, which is to be executed in the ATL VM. In addition,

the code generator is also generated from the composed JET templates.

With the required metamodels and ATL files ready, thanks to the Eclipse ATL

project, the implementation of the translator becomes straightforward. The whole

system is constituted by two major components: the ATL engine, which is already an

off-the-shelf component provided as a part of the ATL runtime libraries, and the code

generator, which is automatically produced from the JET templates composed by us.

Their behaviours are coordinated in a Java main method, shown in Figure 6.5. The

process of a particular transformation could be decomposed into the following steps:

1. Instantiate an ATL VM and Instantiate an EMF model handler.

2. Load the required metamodels and an input xUML model. The loading order is

not significant.

3. Launch the first translation by the following configuration.

(a) Bind the loaded xUML metamodel and ALx metamodel to the corresponding

variables declared in xUML2ALx ATL file for metamodel references.

(b) Bind the loaded input xUML model to the corresponding variable declared

in the xUML2ALx ATL file for model reference.

127



Main Method ATL AV Code Generator

Configure ALx2Java translation Perform the translation

Produce Java code

Load metamodels

Instantiate an ATL AV

Perform the translation

Instantiate an EMF model handler

Load input xUML model

Configure xUML2ALx translation

ALx model

xUML model

Java model

Instantiate a Java code generator

Figure 6.5: Activities in a particular xUML-to-Java translation.

128



(c) Specify the compiled xUML2ALx ATL file as the required transformation

files.

4. If required, serialize the intermediary in-memory ALx model resulted from the

first translation.

5. Launch the second translation by the following settings.

(a) Bind the loaded ALx metamodel and Java metamodel to the corresponding

variables declared in ALx2Java ATL file for metamodel references.

(b) Bind the loaded input UML model to the corresponding variable declared in

the ALx2Java ATL file for model reference.

(c) Specify the compiled ALx2Java ATL file as the required transformation files.

6. Invoke the code generator to generate Java code from the resultant in-memory

Java model.

The whole execution scenario is completed when the Java code is generated. Often, the

generated code is then fed to an instantiated Java VM to be executed for the purpose

of model simulation, which is not difficult to implement with the help of Ant tasks and

thus will not be detailed in the thesis.

It can be observed that both of the sub-transformations are in fact performed by a

single instantiated ATL VM, but launched by different settings. For details of the Java

main method, see Appendix G.

6.5 Metamodels and ATL files

We use UML to represent the metamodels of xUML, ALx and MiniJava. The three

metamodels in UML are neutral to MDA environments. These metamodels should

be rewritten in Ecore so that they can be recognized by the ATL engine because,

in our case, we employ the Eclipse MDA environment where Ecore is the primary

metamodeling tool. Nevertheless, the rewriting is straightforward and mostly a one-to-

one mapping as Ecore is an approximation of MOF or the UML core. The reader is

referred to Appendix D, E and F for the complete UML representation.

Two major ATL files are involved to implement the xUML-to-ALx mapping rules

and the ALx-to-Java mapping rules. As mentioned, ALx is designed to be the textual

129



correspondent of xUML, so their mapping rules are straightforward and implementing

them in ATL is also trivial. The ALx-to-MiniJava mapping rules have already been

provided in Chapter 4, their implementation in ATL is also straightforward. So we do

not explain the ATL files in detail in this thesis. The reader can navigate to Appendix

J for excerptions of ATL files,

6.6 Generated Java Code for the Elevating System

We use a set of example xUML models (in XMI) to test the developed translator, we

find that the translator functions well and produces the Java code as expected. In

Section I.5 of Appendix I, we show the generated Java code for the elevating system

that is provided in Chapter 4 as the running example of this thesis.

6.7 Conclusion and Discussion

The system of the ALx-to-Java translator can be considered as a model transformer,

which is central to modeling and composing mapping models. We consider that MDA

is the best approach to implementing the translator, because MDA is created for model

transformation. In this chapter, the feasibility of applying UML to programming lan-

guages is investigated, and an approach to translating the static aspects of program-

ming languages into UML models is proposed. The Eclipse implementation of MDA

is employed to develop the translator because Eclipse provides a complete spectrum of

ready-to-use facilities to support MDA, such as model transformation languages and

engines, and model serialization.

The practice of using MDA to develop the translator shows that MDA is formal,

can raise abstraction level and save time and effort. In the following chapter, we further

corroborate this point by comparing MDA to a conventional way of implementing the

translator.

130



Chapter 7

MDA Comparison with

Conventional Approach

The practice of adopting MDA to implement the xUML-to-Java translator presented

in Chapter 6 shows that MDA is a viable approach to programming language transla-

tors, especially in the situation where rapid development is expected. However, we still

seek to further corroborate the fact that MDA is advantageous over the conventional

approach in implementing language translators. Therefore, we construct another trans-

lator using the conventional approach so that we can make a comparison between the

two approaches.

This chapter begins with the introduction to the background and a conventional

approach of language implementation. We subsequently describe the key activities

involved in implementing the ALx-to-Java translator using the conventional approach.

Finally, a comparison is made between MDA and the conventional approach based on

these practices, and the pros and cons of the two approaches are analyzed.

7.1 Background of Language Implementation

7.1.1 Compilation and Interpretation

Generally, two approaches exist to develop language implementation: interpretation

and compilation [10]. An interpreter takes as input a program in some language, and

performs the actions written in that language on some machine, while, using the ap-

proach of compilation, a compiler takes as input a program in some language, and

131



translates that program into some other language, which may serve as input to another

interpreter or another compiler.

The key difference between an interpreter and a compiler lies in the fact that a

compiler does not directly execute the program: ultimately, in order to execute a pro-

gram via compilation, it must be translated into a form that can serve as input to an

interpreter, which could be real machines or virtual machines.

The ALx-to-Java translator under development is a kind of compiler. However it

has the feature of transforming a high-level language to another high-level language

(from ALx to Java), unlike other compilers that translate source code from high-level

programming languages to lower level languages, e.g., assembly language or machine

language. So, usually the term ‘translator’ is used to refer to the former, whereas the

term ‘compiler’ is used in the latter.

7.1.2 Conventional Language Implementation

There are many language-implementation approaches, which differ in terms of paradigms

and application areas. MDA is one example. For another example, some researchers

are inclined to generate the implementation of a language in a computerized manner

based on its formal specification. This paradigm of implementing language enables fast

development, assures logical correctness and reduces inevitable hand-coding errors. It is

mostly applied in academic research, critical applications and domain specific languages.

It is not the scope of this research to address all the available language-implementation

paradigms or approaches, as well as their strengths and weaknesses compared to MDA.

Instead, of interest to us is only the traditional and typical language-implementation

approach, which is predominantly adopted in commerce. In the current thesis, we refer

to this approach as the conventional approach. Note that the word ‘conventional’ does

not mean that this approach was once used in the past and now it has become obsolete,

but means that this approach has a longer history than MDA.

The conventional approach segments the process of compilation or translation into

two sequenced phrases: the front end and the back end [10]. The front end would

analyze the source code to build up an in-memory representation of the program, called

the intermediate representation or IR [85]. The back end maps the produced IR into

target code, which, in a fully-fledged language processor, usually requires some actions

132



Scanner 
(Lexical Analyzer)

Parser
(Syntax Analyzer)

Static Semantic 
Analyzer

Optimizer

Code Generator 

Source code

Token

Parse tree

Intermediate 
representation

Improved IR

Target code

Front end
B

ack end

input

output

Symbol 
table

Figure 7.1: Architecture of conventional compilers or translators

like code analysis and code optimization over the IR. See Figure 7.1 for details.

Bear in mind that the departure point of building the xUML-to-Java translator in

the conventional approach is that we need to compare the MDA with the conventional

approach in the respect of language implementation. In building the translator in

MDA, code optimization, a significant and sophisticated part in the back end, is not

considered, thus we do not consider it either when using the conventional approach.

For this reason, in describing the conventional approach, we mostly concentrate on the

front end.

More specifically, the front end can be further decomposed into the following phases:

lexical scanning, syntactic parsing and static semantic analysis.

Lexical scanning

A lexical scanner reads source files and break down the text stream into tokens, each

of which is a single atomic unit of the language, e.g., a keyword, an identifier, a nu-

meral or a symbol name. The syntax of tokens, often referred to as the micro-syntax

of the language, is typically specified by a regular language, thus a finite state au-

133



tomaton constructed from the regular expressions is employed to recognize it. In the

conventional approach, the scanners or lexical analyzers are mechanically generated by

parser-generating tools such as YACC [44], JavaCC [6], etc., and the underlying theory

has been well studied and practised.

Syntactic parsing

The tokens identified in lexical scanning are passed to the parser, which checks that

the correct language syntax is being used in the program. In this step, the program is

converted to its parse tree representation.

Parsers may vary in their parsing strategy, which can be categorized into two kinds:

• Top-down parsing [37]: a means of analyzing the token sequence by hypothesizing

general parse tree structures and then determining whether the known fundamen-

tal structures conforms to the hypothesis. The action of hypothesizing is a process

of deciding which production of a non-terminal should be followed to continue the

parsing. The decision making requires the preliminary computation of First and

Follow set of all non-terminals as well as their nullability.

Top-down parsers are often referred to as recursive-descent parsers, because they

are typically built from a set of mutually-recursive procedures (or a non-recursive

equivalent) where each such procedure usually implements one of the production

rules of the grammar. Thus the structure of the resulting program closely mirrors

that of the grammar it recognizes.

• Bottom-up parsing [37]: is known as shift-reduce parsing and is a strategy for ana-

lyzing unknown data relationships that attempts to identify the most fundamental

units first, and then to infer higher-order structures from them. It attempts to

build trees upward toward the start symbol. This type of parser is not described

in this thesis because they are not related to our research.

The parsers most relevant to our implementation are predictive parsers, which are

a kind of recursive descent parser. The distinguishing feature of predictive parsing

are that it does not require backtracking and it is possible only for the class of LL(k)

grammars [37]. In addition, predictive parsers run in linear time.

Parsers are usually generated by parser generators, such as JavaCC and YACC,

based on analytic grammars written in a specified notation akin to EBNF. YACC

134



generates parsers in the C programming language, while JavaCC produces parsers in

Java. The latter is adopted in this research and is detailed in Section 7.2.1.

Static semantic analysis

The static semantic analyzer mainly performs the construction of the symbol table,

type checking and building IRs. They are fulfilled by the following three software

components.

• Symbol table constructor, which adds semantic information to the parse tree

and maintains the symbol table (also called environments) that maps identifiers

to their meanings. When the declaration of types, variables and methods are

processed, their identifiers are bound to meanings in the symbol tables. Take

a class declaration of an OOP as an example: the class name is bound to the

definition of this class, composed of the definitions of the contained variables and

methods.

• Type checker. This may be available in the front end if the language is designed to

have static type checking, which means that the process of verifying and enforcing

the context-sensitive constraints occurs at compile time. The type checking that

is performed at runtime is called dynamic type checking. The type checker would

consult the previously-built symbol table to know the meanings of identifiers,

such as the type of variables, the definition of classes, etc. The type checking is

conducted according to the formal context-constraints rules, and it raises errors

when encountering ill-formed programs.

• IR producer, which performs the final tasks of the front end—translating the parse

tree into abstract machine code. The IR producer is necessary in the sense that

although it is possible to translate directly to real machine code, such doing hin-

ders portability and modularity. An IR is expressed in a kind of abstract machine

language that can express the target-machine operations without committing too

much machine-specific detail, and it is also independent of the details of the source

language.

135



7.2 Conventional-Approached Translator

For simplicity, the translator implemented with the conventional approach is not xUML-

to-Java but an ALx-to-Java translator. To guarantee the comparability of the two

approaches, functionalities of the two translators should be identical, so the xUML-

to-Java translator implemented in MDA should be programmed as an ALx-to-Java

translator. This is done by turning off the first sub-translation (from xUML-to-ALx)

and incorporating an ALx model loader for loading source ALx files (The ALx model

loader is generated from the ALx metamodel using Eclipse M2T tools). Furthermore,

the MDA translator deals with no code optimization, thus the conventional ALx-to-

Java translator is also thin: the phrases involved in the translation include only lexical

analysis, parsing, symbol table building, type checking and code generation, omitting

the back end.

7.2.1 Background of JavaCC

JavaCC [6] is adopted as the platform to build the translator. Its main features are:

1. The target language of JavaCC is Java.

2. JavaCC generates top-down or recursive-descent parsers and is confined to the

LL(k) class of grammars excluding left recursions.

3. JavaCC parsers do not support a back-tracking mechanism, however JavaCC al-

lows customizing look-ahead symbol numbers to compensate for the compromised

recognizing power incurred by the lack of back-tracking.

4. The scanning and the parsing of JavaCC parsers take place in a single pass. In this

pass, scanning and parsing alternate: scanning is triggered when the parser starts

to consume the next token; when the token is identified by the lexical analysis

and passed up to the parser, parsing is started.

5. JavaCC parsers construct parse trees from the bottom up albeit being top-down

parsers.

6. JavaCC provides a user library, called JJTree, to facilitate the construction of

parse trees. Additionally, JJTree provides full support for the tree-visitor design

136



pattern, which greatly eases constructing the symbol table builder and the type

checker.

7. JavaCC is a mature open-source project and accessible from its website; the doc-

umentation and manuals are well written.

7.2.2 Major Development Activities

The following major activities are involved in building the translator in the conventional

approach.

Specifying the micro-syntax

The micro-syntax of ALx is specified in a form that is recognizable by JavaCC. The ana-

lytic micro-syntax specifies three lexical states of the lexical scanner: IN SINGLE LINE

COMMENT, IN FORMAL COMMENT and IN MULTI LINE COMMENT. Addition-

ally there is a pre-defined state, called the DEFAULT state. The generated lexical

scanner is at any moment in one of these lexical states, and starts off in the DEFAULT

state when initiated. The name of each state explicitly indicates what kind of situation

it denotes. For instance, the state IN SINGLE LINE COMMENT refers to a situation

when lexical scanner is in processing a single line of comment. The transition to this

state is triggered by the symbol ‘//’, while the transition out of this state is trigged by

a new line symbol (‘\n’, ‘\r’ or ‘\r\n’).

All tokens are generated in the state DEFAULT. Unlike the strings in comments,

which are not passed to upper-layer parsers although identified, the matched tokens

are conveyed to the parsers. Tokens primarily include identifiers, keywords, literals and

operator symbols. In JavaCC, all aspects of a token, including the image, type and

location of the token, are encapsulated in an object of the pre-defined class ‘Token’. It

is necessary to highlight the distinction between tokens and special tokens: in JavaCC,

the special tokens do not participate in parsing; whereas the tokens do.

Specifying the generative grammars

We follow the abstract syntax of ALx (provided in Appendix A) to compose the corre-

sponding generative grammars. In structure, the latter is parallel to the former because

JavaCC, as mentioned, is a kind of recursive-descent-parser generator. In the process,

137



Expression =

Literal | Identifier | “self” | “selected” | 

Read-Attribute | Call-Operation | 

[[ Prefix-Operator Expression ]] |

[[ “(“ Expression“)”]] | 

[[ Expression Infix-Operator Expression]] |

[[ Expression (“||” | “&&”) Expression ]] 

 void expression( ) # Exp :{ } {
term3()

 }

 void term3( ) #Term3: { } {
term2() ( infix_logic () term2() )*

 }

 void term2( ) #Term2: { } {
term1( ) (infix_plus_minus( ) term1( ))*

 }

 void term1( ) #Term1: { } {
unary( ) (infix_divide_multiply( ) unary( ))*

 }

 void unary( ) #Unary : { } {
[ prefix_operator( ) ] element ( )

 }

 void element( ) #void: { } {
 literal ()
| identifier() | <SELF> | <SELECTED>
| "(" expression( ) ")"
| LOOKAHEAD(2) readAtt_or_callOp( )

}

(a) The abstract syntax of Expression (b) The corresponding generative grammars

Figure 7.2: Illustration of left recursion elimination and local LOOKAHEADs settings

special care is paid to circumvent left-recursion and backtracking. The following two

cases are highlighted to illustrate how to rewrite left-recursion grammars and avoid

backtracking.

The first case is in relation to the grammar of ‘Expression’. See (a) of Figure 7.2:

one production of the non-terminal ‘Expression’ is defined left-recursively as ‘Expression

= Expression Infix-Operator Expression’. Without removing this left-recursion, the

generated parser would suffer the problem of non-termination. Hence, it is necessary

to rewrite the left-recursive definition to an alternative form which is absent of left

recursion but is equivalent to the original one in semantics.

We apply a standard rewriting method [37] to transform all left-recursions in the

grammar. Simply speaking, this method is characterized by creating new non-terminals,

which are right-recursively defined and are usually called ‘tails’ or ‘rests’, to replace the

problematic left-recursive parts. By so doing, left recursions are transformed into right

ones, which are then free of the problem of non-termination. For a complete and formal

description of this method, the reader is referred to [37]. We apply this method to the

non-terminal ‘Expression’ to remove the left recursion. See (b) in Figure 7.2 for the

result, where the precedence of operators are also considered.

The second case is to illustrate how to customize local LOOKAHEAD to circumvent

138



backtracking. Backtracking cannot be ignored if the parser could make wrong decisions

in choosing production rules. As mentioned, JavaCC parsers do not support backtrack-

ing but allow for the local lookahead settings to direct the parser to make right decisions

at the ambiguous places. See (b) in Figure 7.2 for an example. In the right-hand side

of the non-terminal ‘Expression’, the ‘Identifier’, ‘Read-Attribute’ and ‘Call-Operation’

are three forms of the ‘Expression’. According to their definitions, they all begin with

identifiers. Without proper lookahead, the parser would always choose the first case

(Identifier), never switching to the other two possible cases (Read-Attribute and Call-

Operation). This is not correct. As a result, a local lookahead setting is necessitated

here to make the parser to look more symbols ahead to achieve the right decision.

Generating the scanner and parser

Now that the micro-syntax and the generative grammars of ALx have been composed in

the form that is friendly to JavaCC, the generation of the scanner and parser is simple.

There is no need to detail this activity.

Coding the symbol-table builder

The functionality of building the symbol table is implemented following the tree-visitor

design pattern. In the run-time of the translator, immediately after the parse tree is

produced, the symbol-table builder is called to operate on nodes of the parse tree. The

symbol-table builder specifies an action for each type of node. That is, when a node of a

type is visited, an appropriate action is performed. Note the action for a type of nodes

may be null: for instance, the tree visitor does nothing on expressions and statements.

The nodes of ALx parser trees that have effects on the symbol table are the declaring

nodes, which include the declarations of local variables, formal parameters, classes,

fields, operations, relations, events, state machines and states.

The procedure of updating the symbol table could be abstracted as follows: binding

names (variable names, class names, state names, etc.) to the definitions and then

adding this binding as an entry to the symbol table. The definitions within the table

can be retrieved later by name. The definitions vary in data structure: for instance, the

definition of a local variable comprises only its name and its type, whereas the definition

of a class is far more complicated, containing the class name, a collection of references

139



to the definitions of its member fields, and another collection to its member methods.

In our case, the records of the symbol table are not linearly arranged, but are

distributed to the corresponding scopes. In the grammar of ALx, the pair of curly

braces (‘{ }’), occurring in the constructs like block statements, class declaration, state

machine declaration, etc., marks the beginning and closure of a scope. Scopes are

nestable, so they are essentially structured as rooted trees. The records resulting from

declarations directly contained in a scope is entered by being associated with this scope.

Therefore, the symbol table for ALx is a complicated data structure: its backbone is

a rooted tree; the nodes within the tree are used to represent scopes; each node may

associate with one or more records produced by the declarations in the scope that the

node represents. The close integration of scopes with the symbol table determines that

the scope building and the entry of symbol-table records are performed together.

Some operations are provided on the symbol table. The method lookup (Symbol

key) serves for retrieving the meaning that is associated with the symbol given as

the parameter. ALx adopts the static scoping or lexical scoping mechanism [8], where

a variable always refers to its top-level environment, and matching a variable to its

binding only requires static analysis of the program text, irrelevant to the runtime call

stack. So, the lookup of a variable always searches the current scope first and then go

up to the parent scopes, which is a recursive process, terminated either if the desired

definition is found or if the root scope is reached.

Implementing the type checker

ALx is a static and strongly-typed language, thus its type checking is undertaken at

compile time. As with the implementation of the symbol-table builder, the type check-

ing of ALx is also implemented using the tree-visitor pattern. The type-checking actions

defined in the type checker are distinguished into three categories:

• If the node being visited is an identifier, retrieve definitions of identifiers from the

global symbol table.

To retrieve the proper definition of an identifier, it is crucial for the type checker

to know which scope the current identifier is in. This is assured by the means that

in the process of traversing the parse tree, the type checker traverses the scope

tree accordingly.

140



The retrieved information, like the declared type of a local variable, is then used

in the subsequent type-checking actions. This shows that the type checker has

data dependency on symbol building, and this is why type checking occurs after

the symbol-table building is completed.

• Inferring the attribute of nodes. The ‘attribute’ here refers to the one in the

concept of attribute grammars. For instance, the type of an ‘expression’ node is

inferred based on its child node ‘operator’.

• Checking type-validity rules. These actions verify that the type of any expression

is consistent with that expected in the context where the expression appears.

For an example rule, the logical operators can be only applied to bool-typed

expressions. For another, a local variable has to been declared before it is used.

If the checking of a rule fails, the type checker would issue an error to the console.

The type checker adopts the following criteria to judge type consistency. 1) For

primitive types, two types are considered consistent if their names are identical. 2)

Because ALx is a language with sub-typing, for two classes (suppose class A and class

B), if A is a subtype of B, then a value of type A can be used in a context where one

of type B is expected, but the reverse is not true.

Implementing the code generator

The code generation is the final stage in the translation where the Java code is pro-

duced. It comprises two sequential steps. The first step is converting the parse tree

into an intermediary internal representation, a parse tree augmented by code-generative

information, which is the abstract syntax tree of MiniJava. The conversion is guided by

the mapping rules between ALx and MiniJava, which is formally specified in Appendix

H. The second step is turning the MiniJava abstract syntax tree into textual Java code,

which is the reverse operation of parsing Java programs. The two steps are implemented

both by forms of tree visitors. The detailed description of the two steps is ignored.

Note that the generated Java code is not a complete system. Like the Java code

produced by the MDA translator, it must be combined with the Java library mentioned

in Chapter 6.

141



Category Indices MDA Conventional 
Method

Developing Efforts
LOC 1789 3230

Developing Threshold  easy difficult

Code Quality

Re-usability good bad

Portability good bad

Adaptability good bad

Separation of Concern good bad

Figure 7.3: Comparison result of source code quality.

7.3 Comparing Two Approaches

To further investigate the features and advantages of the two approaches, a comparison

is conducted. We consider that a combined comparison method that is a hybrid of

qualitative comparison and quantitative comparison is appropriate in our case. A range

of variables have been singled out to be compared, such as development effort, code

quantity and system performance. Some of them can be measured in quantity, such

as the number of code lines that reflects development effort, and the time elapsed for

translating example xUML models. While, for some of them, it is more practical to

analyze in a qualitative manner, such as code portability, code reusability and code

maintenance.

The comparison is made on three overall aspects: development effort, code quality

and performance of the resultant translators. Each aspect may be sub-categorized into

multiple variables. The comparison results in the aspects of development effort and

code quality are summarized in Figure 7.3.

7.3.1 Development Effort

The development effort is measured in two dimensions, the number of code lines and

the ease of development.

Lines of Code (LOC)

The constituent artefacts of the two translators differ in their origin: they may be

newly composed code, imported libraries or generated by tools. Hence, it is necessary

142



to clarify which artefacts should be regarded as code that would be taken into account

in the comparison. Two principles are used for this issue.

Firstly, reused code or a library is not counted. Both approaches have reused third-

party libraries or software components, but in varying degrees. For instance, in MDA,

the reused software components include the model de-serializers and the ATL VM; in

the conventional approach, various JavaCC run-time libraries are reused, among which

the JJTree is most notable. These third-party codes are not considered in the LOC

comparison.

Secondly, code generated automatically is not taken into account. For instance, in

MDA, we use the metamodel of xUML (augmented with OCL expressions) to generate a

part of the code of the model validator, which thus is not counted in the comparison. As

to the conventional approach, the scanner and parser are generated and not considered

when counting code.

In addition, not all artefacts composed by us are taken into account. In the MDA

translator, the following efforts are not considered.

1. Modeling the static aspect of the three languages. We do not attribute this effort

to MDA in that it is a part of designing languages rather than implementation.

2. Composing the library part. Even though significant work, this is not considered

for comparison because it is shared in both approaches.

Therefore, for MDA, we count only the LOC of three artefacts: ATL transformation

rules, code-generative JET templates and the Java main method for model transforma-

tion configuration.

Regarding the conventional approach, specifying the micro-syntax and the genera-

tive grammars of ALx is not considered as significant efforts. This is because despite

involving some treatments such as lookahead settings and left-recursion elimination,

generally it is just a straightforward process of rewriting the regular expressions and

EBNF-like grammars into JavaCC-friendly forms, which is relatively trivial. Therefore,

as to the conventional approach, we count the code of the tree visitors for symbol table

construction, type checking, IR evolution (transforming the parse tree to Java abstract

syntax tree) and code generation, as well as the code for symbol table.

We count code lines based on the mentioned principles, finding that the number of

code lines in MDA is only 1789, in contrast to 3230 in the conventional approach. The

143



latter is almost twice the former. We attribute such a big difference mostly to the two

merits of MDA: excellent modularization and the reusability of models. The excellent

modularization of MDA is embodied by the fact it draws a sharp line between model

composition (including domain model and mapping model), model transformation and

code generation. This means, the tool or software components, which are relatively

invariant parts of a large number of heterogeneous systems, can be developed sepa-

rately and reused in different contexts. The reusability of models is embodied by the

fact that some design models become valuable in development rather than a simple

documentation.

Ease of Development

Although the LOC is a widely-used and quantity-based index to measure programming

effort, its authenticity depends on the truth of the assumption that the real average cost

of a line of code is equivalent or at least is not so different. To address the weakness of

LOC comparison, we analyze qualitively the threshold of applying the two approaches

for developers, indicating how easy the development is.

The practice of using MDA shows that it is able to lower the threshold in software

development through raising the level of abstraction from the code level to the model

level. In our case, the prerequisite of using MDA includes three aspects: understanding

the basic concept of MDA paradigm, being able to use UML to compose models and

knowing how to establish mapping models. Undoubtedly, some basic formal language

theory knowledge is preferable.

In contrast, to use the conventional approach, we need to know more sophisticated

formal language techniques, such as those of removing left recursion, lookahead setting,

implementing abstract syntax in Java, tree-visitor pattern and type checking.

Therefore, we conclude that the MDA implementation is considerably easier than

using the conventional approach if one starting with no prior knowledge.

7.3.2 Code Quality

We measure the source code quality of two approaches in terms of the following four

aspects.

144



Resuablity of Code

The practice shows that MDA brings about better code (or model) reusability compared

to the conventional approach. The reusability in this context refers to whether an

artefact produced can be reused for other purposes. It is creditable that in MDA, the

major reusable artefacts, including language metamodels and mapping models, can be

reused in other similar applications and for other purposes. For instance, the models

and metamodels can not only be reused independently of implementation, but also be

regarded as system documentation.

However, in the conventional approach, no artefacts can be reused with such ease

because they are language-specific and strongly mutually dependent. For instance, the

scanner and parser generated by JavaCC are specific to Java, and the type checker has

data dependency on the symbol table constructor, which prevents the reusability of the

artefacts harvested in the conventional approach.

Portability of Code

The practice also shows that MDA produces code (or models) with better portability

in comparison to the conventional approach.

The better portability of MDA artefacts comes from the fact that the primary depar-

ture point of MDA is raising the level of abstraction and not introducing implementation-

specific details in the early stage of the system development. In our case, although the

MDA platform we adopted is Java-specific, we are not confined to it. Instead, we can

choose other MDA platforms in other programming languages if required, but mod-

els and metamodels can be still reused because they are language-independent. This

case is not true for the conventional approach. If the translator is expected to be pro-

grammed in another language, the work would be tedious, involving choosing another

parser generator, re-composing the grammar files, re-coding the symbol constructor and

type checker.

Adaptability of Code

It is observed that the code resulting from MDA has superior adaptability of code over

that from the conventional approach. This adaptability of code is highly demanded

because the aimed translator is a prototype system, where the language models are

145



changed frequently and the time-to-run is critical for timely observation of the effect of

changes. This merit of MDA arises from the fact that models are code. Compared to

the textual code in traditional programming paradigms, models are more abstract and

high-level, thus enjoying better readability. More important, in MDA, modifying the

system can be achieved by modifying the models. This advantage of MDA was very

useful in designing xUML and ALx.

However, in the conventional approach, changes have to be made at the code level.

This means more time and efforts would be consumed, and the test of a new design is

not as quick as using MDA.

Apart from that, the characteristic of MDA that models are the system also makes

MDA advantageous over the conventional approach in terms of readability, maintenance,

complexity of the code. Their detailed description is omitted here.

Separation of Concerns

We also find that MDA has the feature of separation of concerns, embodied primarily

by the following aspects:

• the separation of the model description and in-memory or in-persistence model

representation .

• the separation of the description and the executions of translation rules.

• the separation of model de-serialization and static semantic checking.

Owing to these separations of concerns, some services, such as the OCL engine (for

checking OCL expressions) and ATL execution engine (for executing translation rules),

can be provided by third parties.

However, in the conventional approach, the separation of concerns is not obvi-

ous. The components within the conventional translator have strong dependency in

terms of both data and functionalities. For instance, the structure of the symbol-table-

constructing tree-visitor depends on the structure of the abstract syntax of ALx; the

type checking depends on the structure of the symbol tables produced in the preceding

construction of the symbol tables. Such tight coupling of components in the conven-

tional approach makes even a minor modification to code problematic.

146



7.3.3 Performance Comparison

We gauge the performance of the two translators in the perspective of time and memory

space consumed in their execution. In the experiments, we ran the two translators with

a set of well-designed sample xUML models as input, and made record of the memory

footprint and execution speed of each execution instance. All the experiments were

made on a Windows XP work station with the following features:

Intel Pentium(R)4 3.0G CPU.

1.5G DDR 333MHZ RAM,

SAMSUNG SP0411C 40G HDD.

Windows Xp Professional SP3 Version 2002.

Java<TM> SE Runtime Environment (build 1.6.0_07)

Java HotSpot<TM> Client <build 10.0-b23>

We created four size-varied sample xUML models (see Appendix I for details) for the

experiments, the scale of which depends on the number of the classes, associations, state

machines and ALx code lines of the model.

• The xUML model of the elevating system, which is the running example described

in Chapter 4.

• The xUML model for a gas station system.

• The xUML model for a taxi-booking system.

• A hypothetical xUML model for simulating the relay of a message, which is large-

scale and has 1000 homogeneous classes and state machines. The model is auto-

matically generated.

We integrate into the source code of the translators a separate thread to keep track of the

memory consumption at an interval of 0.1 seconds, and several lines of time-counting

code to work out the elapsed time and print it out. The overhead of performance

analysis code is minor compared to the overall system time and thus ignored.

For each execution instance, the memory consumption is measured by the com-

bination of the peak memory consumption (PMC) and average memory consumption

147



Sample xUML models MDA Conventional

Name Scale
Elapsed 

time
( second) 

Memory Usage(KB) Elapsed 
time

( second) 

Memory Usage(KB)

Peak Average Peak Average

Traffic Light

2 Classes

1.134s 623 421 0.970s 321 2131 Associations
1 State machine
35-line Alx code 

Elevator

8 Classes

1.139s 634 423 0.976s 323 223
5 Associations
1 State machine
78-line Alx code 

Gas Station

8 Classes

1.139s 655 424 0.976s 325 232
9 Associations
2 State machines
147-line Alx code 

Taxi-
Booking

13 Classes

1.141s 678 431 0.978s 334 256
14 Associations
1 State machine
328-line Alx code 

Message 
Relay

1000 Classes

2.23s 892 721 1.87s 429 388999 Associations
1,000 State machines
up to10k Alx code 

Figure 7.4: Comparison result of performance

148



(AMC). Each sample xUML model is executed five times, and then the average perfor-

mance of the five executions, including average PMC and average AMC, is worked out.

See Table 7.4 for details of the comparison.

From Table 7.4, the conventional translator is more efficient than the MDA in terms

of both execution speed and the memory resource consumed. This is reasonable because

the MDA translator makes use of various general-purpose components, such as the

model reader/writer and ATL VM, which are intended to accommodate general use,

thereby inevitably compromising efficiency. Whereas the components yielded by the

conventional approach are more specific, serving solely for our purpose, hence being

more efficient. However, it can be noticed that the margin between them is so minor

that it is negligible when the application is not time-critical. In prototyping a language,

usually the time to run and code adaptability are the major concerns. So we assert that

MDA is more suitable in rapid development of a source-to-source translator.

7.4 Discussion and Conclusion

We use a typical conventional method to implement an ALx-to-Java translator and

compare it with the MDA one, finding that MDA has advantages over the conven-

tional method in terms of code quality, such as better usability, better portability, loose

component coupling, and less developing efforts.

However, it is still unsafe to assert that MDA is absolutely advantageous over the

conventional approach. The ALx-to-Java translator is a language implementation using

a source-to-source translation approach. In our case, the translation is focused mainly

on the syntactic level and static semantics of the languages, dealing little with dynamic

semantics. As a result, the comparison is unclear about the performance of MDA in

coping with dynamic aspects of the system, thus it cannot be concluded that MDA

has advantages over the conventional approach in processing the dynamic aspects of

languages.

Another point should be considered. We define the conventional approach as one

where a parser generator like JavaCC and YACC is used to generate a lexical scan-

ner and parser from a language specification, from which the following components

are developed, such as symbol table builder, IR producer, code optimizer, and ob-

ject code generator. However, the approaches to developing language implementations

149



are not limited to MDA and the conventional approach. Some researchers use Meta-

environment [101] which is based on an algebraic semantics and term re-writing tech-

niques to prototype language implementation. In addition, functional languages and

logical programming languages are also creditable in prototyping languages. So it is

future work to compare MDA to these approaches.

150



Chapter 8

Conclusion

8.1 Summary

This work was motivated mainly by the semi-formal nature of UML. Although the

static aspects of UML, a general-purpose visual modeling language, are well-defined

in the four-layer metamodeling approach, however its dynamic semantics is specified

in a plain natural language, English. This inevitably leads to loopholes, ambiguities

and inconsistency of its semantics and thus precludes reasoning about and simulation

of system models which are specified by it. Many attempts have been made to supply

UML with formal semantics using set theory, first-order logic and graph transition, or

translating UML to existing specification languages, such as Z, B and CASL. However,

none of them were based on a mature semantics-describing framework, hence lacking

solid ground in theory and practice as well as tool supports, or they just address a

particular diagram of UML. Therefore, we were determined to specify the semantics of

UML in a mature and user-friendly framework.

We reviewed some main-stream semantics-describing approaches such as denota-

tional semantics, operational semantics and Action Semantics (AS), and the emphasis

was put on AS. AS is a hybrid semantic description framework taking advantages of

denotational semantics, structural operational semantics and algebraic specification. It

defines as the major semantic entities a set of actions whose execution semantics are

well-defined using structural operational semantics. To describe semantics of a lan-

guage, one only needs to be concerned with translating the constructs in this language

to the appropriate actions or other semantic entities like yielders and data. The transla-

151



tions are expressed in semantic functions defined by semantic equations. Furthermore,

action semantics provides some ready-to-use predefined data types so that users can

easily import some of them in their description for efficiency. Flexibly, users are also

allowed to define their own types depending on what languages they are describing.

The notations of actions are carefully selected to those intuitive English words and

phrases to achieve best comprehensibility. Unified algebraic formalism is extensively

used in describing the action notations, sorts, data types, semantic functions, semantic

equations, and transition rules of the action machine.

We compared AS with the traditional semantics-describing frameworks, finding that

AS has advantages of readability, extensibility, modularity and practicability. These

properties of AS are required by UML’s formal semantics in that UML is a hybrid and

composite modelling language, evolving fast, sharing some concepts with AS and being

intended for more general users. Therefore, we decided to adopt AS as the vehicle to

formalize UML. Furthermore, instead of defining UML directly, we designed an Ac-

tion Language, called ALx, and used it as the intermediary between UML and action

semantics of UML. ALx is characterized by heterogeneity, combining simultaneously

the features of Object Oriented Programming Languages (OOPL), Object Query Lan-

guages (OQL), Model Description Languages (MDL) and complicated behaviours like

state machines. Thus using AS to formalize such a hybrid language had considerable

significance in exploring the adequacy and applicability of AS.

The major product of this work is the action semantics description of ALx, which

is composed of three parts: the abstract syntax specification, the semantic function

specification and the semantic entity specification. These three parts are respectively

given in Appendix A, B and C. We used Chapter 4 to explain the action semantics of

some unique constructs of ALx, such as object selection, link navigation and the run-

to-completion process of state transition. Through the practice of formalizing ALx with

AS, we found that AS is expressively adequate to formalize a heterogeneous language

like ALx, and observed that the resulting action semantics of ALx is readable.

We expected that we could check the validity of the action semantics description on

a versatile AS environment. Thus, a survey of existing AS tools was conducted to seek

a suitable AS tool for this purpose. However, we found that none of the tools was able

to test the ASD of ALx as expected. Therefore, we decided to build a translator which

transforms xUML models into Java code based on the formal semantics of xUML so

152



that we could observe the behaviours of xUML models through running the generated

Java code. In Chapter 5, we presented the conceptual design of the translator, which

decomposes an xUML-to-Java translation into two sub-translations, and explained the

main activities involved in the translation. In the conceptual design of the xUML-to-

Java translator, we allocated the implementation of a significant part of the semantics

to a Java library, which was intended to be precompiled and shared across various

systems, to make the translator simpler and enhance the translation efficiency. The

Java library explored some features of the Java language, such as static fields, inner

classes and delegate pattern, to simulate links, relations, object-identity lists, object-

link lists, state machines and inheritances in a manner suggested by the action semantics

description of ALx.

We analyzed the features of the ALx-to-Java translator, finding that it was modeling-

intensive and could be considered as a model transformer. We considered that MDA

was the best potential approach to implement the translator. This is because MDA

is born for model transformation and code generation, and it also provides modeling

framework to specify models and metamodels, as well as the translation models. In

Chapter 6, we analyzed the feasibility of applying UML, the core of MDA, to program-

ming languages and gave rules of how to translate the abstract syntax and the static

semantics of a programming language into metamodels in UML. The Eclipse implemen-

tation of MDA was adopted in developing the translator. Eclipse community provides a

complete range of ready-to-use and open-source facilities to support MDA, such as the

model transformation language (ATL), the model transformation engine (ATL Virtual

Machine) and the modeling language (ECore). All of these makes the implementation

of the translator very fast.

The practice of using MDA to implement the xUML-to-Java translator showed that

MDA is a viable and excellent approach towards implementing language translators,

especially in the situation where rapid development is expected. However, to further

corroborate this advantage of MDA, in Chapter 7 we constructed another translator

using a typical conventional approach and then made a comparison between two ap-

proaches. The analysis of the pros and cons of the two approaches showed that MDA

has advantages over the conventional method in terms of code quality, such as better

usability, better portability, looser component coupling, and less developing efforts, but

it was still unclear whether MDA could apply to other language implementations which

153



have more capable back-ends.

8.2 Limitations, Discussion and Future work

8.2.1 Concurrency of UML

We currently do not explore describing the concurrency of UML, e.g., asynchronous

calls to behaviors, co-existence of multiple active objects [93] each of which has its own

thread, and asynchronous signal response, using communicative actions. This is because

the AN-1 is not suitable, or at least not elegant, to describe some notions such as light-

weight processes and threads, which probably share stores and necessitate synchronous

communications.

Therefore, one future work is to cover the concurrency of UML using the newly

developed AN-2, and update the xUML-to-Java translators correspondingly. We are

confident that the newly developed AN-2 would make life easier in coping with concur-

rency since AN-2 allows agents to share and have global access to the storage.

8.2.2 MDA for Dynamic Semantics

The question still exists about whether MDA is power enough to deal with dynamic

parts of programming languages and to implement more sophisticated language pro-

cessors with more powerful back-ends, albeit the fact that we find that UML, the key

element of MDA, can be easily harnessed to represent the static aspects of program-

ming languages, and that MDA is a ready approach to implement the source-to-source

language translator.

In our research, we have formally translated xUML into Java with MDA, but the

essence of this effort is using MDA to represent the translational semantics of xUML

in a translation language, and the dynamic semantics of xUML is actually denoted by

the target language—Java. Hence, it can be said that in this process MDA deals little

with the dynamic semantics of xUML, at least not directly.

Therefore, we would attempt to create a UML profile as a graphical formalism to

specify the dynamic semantics of programming languages. If this work is accomplished,

UML would be made complete in formalizing programming languages. That is, it can

represent both static semantics and dynamic semantics; thus the language processors,

154



not limited to source-to-source translator, can be generated in MDA from the platform-

independent UML description of programming languages. Another significance is that

the readability and usability of formal semantics can be improved because the semantic

descriptions are specified in terms of more intelligible graphical models rather than

mysterious and sophisticated mathematical symbols. This will attract more people to

use formal semantic technique. However, we must cope with such a risk that even a

simple dynamic semantics requires overwhelming graphical representations.

8.2.3 Comparing MDA to Other Language-Implementing Ap-

proaches

We have only compared MDA to the conventional approach. The problem is, as

mentioned, in addition to the conventional approach, there are a variety of language-

prototyping approaches, such as the algebraic specification approach centered around

the ASF formalism and Meta-Environment [101], the meta-language approach that

adopts Kodiyak [42] to develop comprehensive translators, modular monadic semantics

that allows the modular development of interpreters from semantic specifications by

means of monad transformers [56], and a Prolog framework [94] enabling rapid proto-

typing activities on language processors with attribute grammars. Hence, it is necessary

in the future to compare the MDA to such approaches.

8.2.4 Testing the ASD of ALx in an AS Tool

We have not experimented with the action semantics description of xUML (or ALx)

using an AS environment or tool. The major reason for this is that all existing AS

environments or tools are prototype systems, according to our experience, which can

function well for small-scale AS descriptions, but for large-scale ones, it is very easy for

the user to be entangled in usability problems. So one future work includes making an

AS tool more usable and workable for large-scale action semantics to test our ASD of

xUML.

8.2.5 Other Future Work

Some other interesting future work is listed here:

155



• Expanding xUML to a full executable UML. Now xUML is only a part of a full

UML: it only consists of three diagrams, class diagrams, collaboration diagrams

and state charts. Even these three kinds of diagrams themselves are not fully

supported. Future work is necessitated to use the AS framework to specify a fully-

fledged UML to further test the expressivity of the AS framework. Meanwhile,

this work would contribute further to the resolution of the problem of formalizing

UML.

• Using larger sample xUML models to test the xUML-to-Java translators. Even

though we have tested the translators with some examples (see Chapter 7), the

size and complexity of these samples are still considerably limited. In the future,

we expect to build some realistic systems to test the translators.

• Translating xUML into more target languages. Currently, we only formalize the

mapping rules from xUML to Java. It is desired that more target languages are

supported.

• Integrating the xUML-to-Java translator into an xUML tool. We have made

an attempt to implement a prototype xUML graphical authoring tool to better

illustrate xUML. We expect to complete this and integrate the xUML-to-Java

translator as the interpreter into this tool.

8.3 Concluding Remarks

In this thesis, we presented the action semantics of xUML, which is a toy executable

UML, and two ways of implementing the xUML-to-Java translator, both of which are

action-semantics-directed and are for the purpose of giving some assurance of the com-

posed formal semantics. Additionally, we examined the applicability of MDA in speci-

fying the static semantics, including the abstract syntax and contextual constraints, of

programming languages, finding the cornerstone of the MDA, UML, is appropriate to

specify the static semantics of programming languages. We also compared MDA with

the conventional approach in building the xUML-to-Java translator, finding that the

MDA has advantages of time and effort efficiency in prototyping the high-level source-

to-source language translator. Although much has been investigated, even more remains

156



to be discovered and explored. It is our hope that this investigation could continue and

the mentioned future work can attract the interest of the reader.

Thank you for reading.

157



Appendix A

Abstract Syntax of ALx

ALx/Abstract Syntax

A.1 Expressions

(1) Read-Attribute = [[ Identifier “.” Identifier ]]

(2) Call-Operation = [[ Expression “.” Identifier “(”Arguments “)” ]]

(3) Arguments = 〈Expression 〈 “,” Expression 〉* 〉?

(4) Expression = Literal Identifier “self” “selected”
[[ Prefix-Operator Expression ]]
[[ Expression Infix-Operator Expression ]]
[[ Expression (“||” “&&”) Expression ]]
[[ “(” Expression “)” ]]
Read-Attribute Call-Operation.

(5) Prefix-Operator = “-” “!” “empty”

(6) Infix-Operator = “==” “!=” “<” “>” “<=”
“>=” “+” “−” “∗” “/” “%”

(7) Literal = Boolean-Literal Integer-Literal “null”

(8) Boolean-Literal = “true” “false”

(9) Integer-Literal = [[ digit+ ]]

(10) Identifier = [[ letter(letter digit)* ]]

A.2 Statements

needs: Declarations, Expressions.

158



Block

(1) Block-Statements = [[ Statement* ]]

(2) Statement = [[ “;” ]] [[ “{” Block-Statements “}” ]]
[[ Variable-Declaration “;” ]]
[[ Call-Operation “;” ]]
[[ (Assignment Write-Attribute ) “;” ]]
[[ (Object-Creation Object-Deletion) “;” ]]
[[ (Link-Creation Link-Deletion)“;” ]]
[[ (Object-Selection Link-Navigation) “;” ]]
[[ (Event-Generation State-Transition) “;” ]]
[[ Object-Reclassification “;” ]]
[[ “return” Expression? “;” ]]
[[ “if” “(” Expression “)” Statement “else” Statement ]]
[[ “while” “(” Expression “)” Statement ]].

Assignments

(1) Assignment = [[ Identifier “=” Expression ]]

Object Manipulation

(1) Write-Attribute = [[ Expression “.” Identifier “=” Expression ]]

(2) Object-Creation = [[ “create-object” Identifier “of” Identifier “(”Arguments“)” ]]

(3) Object-Deletion = [[ “delete-object” Identifier ]]

(4) Object-Reclassification = [[ “reclassify” Identifier Identifier “→ ” Identifier ]]

Link Manipulation

(1) Link-Creation = [[ “link” Identifier “→ ” Identifier “(” Identifier “)” ]].

(2) Link-Deletion = [[ “unlink” Identifier “→ ” Identifier “(” Identifier “)” ]].

Event Generation

(1) Event-Generation = [[ “send-event” Identifier “→ ” Identifier ]]

(2) State-Transition = [[ Expression “>>” Identifier]]

159



Object Query

(1) Object-Selection = [[ “select-one” Identifier “of ” Identifier 〈 “(” Expression “)” 〉? ]]
[[ “select-many” Identifier “of ” Identifier 〈 “(” Expression “)” 〉? ]]

(2) Link-Navigation = [[ Identifier “=” Identifier “→ ” Identifier 〈 “(” Expression “)” 〉? ]]
[[ Identifier “=” Identifier “→ *” Identifier 〈 “(” Expression “)” 〉? ]]

In the actual concrete syntax of ALx, we provide the following variants of object queries for coding
conveniences. Note that they are in essence forms of expressions, and their formal semantics and
tranlation rules are similar to above and thus ignored in this thesis.

(3) Object-Selection-Exp = [[ “select-one” Identifier 〈 “(” Expression “)” 〉? ]]
[[ “select-many” Identifier 〈 “(” Expression “)” 〉? ]]

(4) Link-Navigation-Exp = [[ Expression “→ ” Identifier 〈 “(” Expression “)” 〉? ]]
[[ Expression “→ *” Identifier 〈 “(” Expression “)” 〉? ]]

(5) Expression = . . . Object-Selection-Exp Link-Navigation-Exp.

A.3 Declarations

needs: Statements, Expressions.

Relation Declaration

(1) Relation-Declaration = [[ “relate” Identifier Identifier “→ ” Identifier “;”]]

Class Declaration

(1) Class-Declaration = [[ “class” Identifier 〈 “extends” Identifier 〉? “{”
Field-Declaration*

Constructor-Declaration?

Method-Declaration*

State-Machine-Declaration? “}” ]]

(2) Field-Declaration = [[ Type Identifier “;” ]]

(3) Constructor-Declaration = [[ I : Identifier “(” F : Formal-Parameters “)”
“{” “super” “A: Arguments” “;” B : Block-Statements “}” ]]

(4) Method-Declaration = [[ (“void” Type) Identifier “(” Formal-Parameters “)” “{”
Block-Statements “}” ]].

160



State Machine Declaration

(1) State-Declaration = [[ “state” Identifier “{”
〈 “entry” “{”Block-Statements “}” 〉?

〈 “exit” “{”Block-Statements “}” 〉?
“}” ]]

(2) State-Machine-Declaration = [[ “state-machine” “{”
State-Declaration+

“initial-state:” Identifier
“transition-table” “{” Transition-Entries “}”
“}” ]]

(3) Transition-Entries = Transition-Entry 〈 “;” Transition-Entry 〉*

(4) Transition-Entry = Identifier “,” Identifier “,” Identifier

Event Declaration

(1) Event-Declaration = [[ “event” Identifier Identifier “→ ” Identifier “}” “;” ]].

A.4 Misc

(1) Formal-Parameters = 〈Formal-Parameter 〈 “,” Formal-Parameter 〉* 〉?

(2) Formal-Parameter = [[ Type Identifier ]].

(3) Variable-Declaration = [[ Type Identifier ]] [[ Type Identifier “=” Expression ]]

(4) Type = “int” “boolean” “set” Identifier “set” “[” Type “]”.

A.5 Model

needs: Expressions, Statements, Declarations.

(1) Executable-Model = [[ Class-Declaration*

Relation-Declaration*

Event-Declaration*

“main” “{” Block-Statements “}” ]]

161



Appendix B

ALx/Semantic Functions

needs: ALx/Abstract Syntax, ALx/Semantic Entities, [Mosses 1992]/Action Notation.

We re-used, extended or adapted Watt’s action semantics of JOOS [105] to com-

pose our action semantics for ALx. The action semantics of JOOS demonstrates the

main concepts of Java, including classes, inheritance, dynamic method selection and

constructors. The reuse with some minor adaptations was made on the semantics of

expressions, the common imperative statements, including assignment, loop constructs

and call-operation, and some declarations such as class, method and field. The reusabil-

ity of AS allowed us to be more focused on the unique constructs of ALx like link

navigation, object query and state transition.

B.1 Expressions

introduces: evaluate , respectively evaluate , apply-prefix , apply-infix , the value of .

• evaluate :: Read-Attribute → action [giving a value diverging escaping]
[using current bindings current storage]

(1) evaluate [[ I1: Identifier “.” I2: Identifier ]] =
evaluate I1 then

give the value stored in ((field-variable-bindings the given object) at I2)
or

check(the given reference is null)
then

escape with the null-reference-exception

• evaluate :: Call-Operation → action [giving a value storing diverging
escaping][using current bindings current storage]

(2) evaluate [[ E : Expression “.” I : Identifier “(” A: Arguments “)” ]] =
evaluate E and respectively evaluate A

then

162



enact the application of the method I of the class of the given object#1 to

the given(object, value*)
or

check the given reference#1 is null
then

escape with the null-reference-exception.

• respectively evaluate :: Arguments → action [giving value* storing diverging escaping][using
current bindings current storage].

(3) respectively evaluate 〈 〉 = give () .

(4) respectively evaluate E : Expression = evaluate E .

(5) respectively evaluate 〈E : Expression “,” A: Arguments 〉
= evaluate E and then respectively evaluate A.

• evaluate :: Expression → action [giving a value storing diverging
escaping][using current bindings current storage] .

(6) evaluate L: Literal = give the value of L.

(7) evaluate I : Identifier = give the value stored in the variable bound to I .

(8) evaluate “self” = give the object bound to “self”

(9) evaluate “selected” = give the object bound to “selected”

(10) evaluate [[O : Prefix-Operator E : Expression ]] =
evaluate E then apply-prefix O .

(11) evaluate [[ E1: Expression O : Infix-Operator E2: Expression ]] =
evaluate E1 and then evaluate E2

then apply-infix O .

(12) evaluate [[ E1: Expression “||” E2: Expression ]] =
evaluate E1 then

check (the given value is true) then give true
or

check (the given value is false) then evaluate E2

(13) evaluate [[ E1: Expression “&&” E2: Expression ]] =
evaluate E1 then

check (the given value is true) then evaluate E2

or
check (the given value is false) then give false

(14) evaluate [[ “(” E : Expression “)” ]] = evaluate E .

• apply-prefix :: Prefix-Operator → action [giving a value][using the given value].

(15) apply-prefix “!” = give not (the given truth-value) .

(16) apply-prefix “-” = give the negation (the given true-value) .

• apply-infix :: Infix-Operator → action [giving a value][using the given value2].

(17) apply-infix “==” = give (the given value#1 is the given value#2).

(18) apply-infix “!=” = give not (the given value#1 is the given value#2).

(19) apply-infix “<” = give ( the given value#1 is less than the given value#2).

163



(20) apply-infix “>” = give not (the given value#1 is less than the given value#2)

(21) apply-infix “<=” = not (apply-infix “>”)

(22) apply-infix “>=” = not (apply-infix “<”)

(23) apply-infix “+” = give the sum of (the given integer#1, the given integer#2)

(24) apply-infix “−” = give the difference of (the given integer#1, the given integer#2)

(25) apply-infix “∗” =give the product of (the given integer#1, the given integer#2)

(26) apply-infix “/” =give the integer-quotient of (the given integer#1, the given integer#2).

(27) apply-infix “%” =give the integer-remainder(the given integer#1, the given integer#2).

• the value of :: Literal → value.

(28) The semantics of Literal is intuitive and is omitted here.

B.2 Statements

Block

• execute :: Block-Statements → action [storing diverging escaping]
[using current bindings current storage].

(1) execute [[ S : Statement* ]] =
furthermore execute S
hence complete;

• execute :: Statement* → action [binding storing diverging escaping ]
[using current bindings current storage ]

(2) execute 〈 〉 = complete.

(3) execute [[ “;” ]] = complete.

(4) execute [[ “{” B : Block-Statements “}” ]] = execute B .

(5) execute [[ V : Variable-Declaration “;” ]] = elaborate V .

(6) execute [[ S : (Assignment Write-Attribute) “,”]] = execute S .

(7) execute [[ O : (Object-Creation Object-Deletion) “;” ]] = execute O .

(8) execute [[ L: (Link-Creation Link-Deletion Call-Operation)“;” ]] = execute L.

(9) execute [[ O : (Object-Selection Link-Navigation) “;” ]] = execute O .

(10) execute [[ E : (Event-Generation State-Transition) “;” ]] = execute E .

(11) execute [[ O : Object-Reclassification “;” ]] = execute O .

(12) execute [[ “return” “;” ]] = escape with the return of ().

(13) execute [[“return” E : Expression “;” ]] =
evaluate E then
escape with the return of the given value .

164



(14) execute [[ “if” “(” E : Expression “)” S1: Statement “else” S2: Statement ]]=
evaluate E then

check the given value is true) then execute S1

or
check (the given value is false) then execute S2

(15) execute [[“while” “(” E : Expression “)” S : Statement ]] =
unfolding

evaluate E then
check (the given value is true) then execute S then unfold

or
check (the given value is false) then complete .

(16) execute 〈S1: Statement S2: Statement+ 〉 =
execute S1 before execute S2.

Assignments

• execute :: Assignment → action [giving a value storing diverging
escaping ][using current bindings current storage].

(1) execute [[ I : Identifier “=” E : Expression ]] =
evaluate E

then
store the given value in the variable bound to I .

Object Manipulation

• execute :: Write-Attribute → action [diverging escaping]
[using current bindings current storage ]

(1) execute [[ I1: Identifier “.” I2: Identifier “=” E : Expression ]]=
evaluate I1 and evaluate E

then
store the given value#2 in the variable bound to
((field-variable-bindings the given object#1) at I2)

or
check(the given reference#1 is null)

then
escape with the null-reference-exception.

• execute :: Object-Creation → action [storing diverging escaping binding]
[using current bindings current storage]

(2) execute [[“create-object” I1: Identifier “of” I2: Identifier “(” A: Arguments“)”]] =
allocate an object of the class bound to the class-token of I2 and respectively evaluate A

then
enact the application of the constructor of the class bound to I2 to

the given (object, value*) and bind I1 to the given object#1 and
recursively add the given object#1 to class (the given object#1).

• recursively add to :: object, class → action [storing diverging]
[using current bindings current storage]

165



(3) recursively add O : object to C : class =
give the object-list stored in the cell bound to
the object-list-token of (class-token C ) then

store concatenation (the given object-list, the list of O)
to the cell bound to the object-list token of (class-token C )

and give (superclass C )
then

check (the given tuple is()) and then complete
or

check (not(the given tuple is()) and then recursively add O to the given class

• execute :: Object-Deletion → action [ storing diverging escaping
binding ][ using current bindings current storage ]

(4) execute [[ “delete-object” I : Identifier ]] =
give the object bound to I

then
un-instantiate field-variable-bindings ( it )

and
unbind I

and
recursively remove (the given object) from the class (class it)

• recursively remove from the class :: object, class →
action [storing diverging] [using current bindings current storage]

(5) recursively remove O : object from the class C : class =
remove O from the object-list stored in the cell bound to
the object-list-token of (class-token C )

then
store the given object-list in the cell bound to
the object-list-token of (class -token C )

and
give ( superclass C )

then
check ( the given tuple is () ) and then complete

or
check ( not(the given tuple is ())) and then
recursively remove O from the class the given class and its superclasses.

• execute :: Object-Reclassification → action [storing diverging escaping]
[using current bindings current storage]

(6) execute [[ “reclassify” I1: Identify I2: Identify “→ ” I3: Identity ]]=

166



give the class bound to I2 and
give the class bound to I3 and
give the object bount to I1

then
give the type-variable-bindings of the given class#1 and
give the type-variable-bindings of the given class #2 and
give the field-variable-bindings of the object bound to I1 and
get the super class of ( the given class#1, the given class#2 ) and
give the set stored in the field-variable-bindings of the given object#1
at “ LinkRecord” and
give the variable yielded by
the field-variable-bindings of the given object#1 at “ LinkRecord”

then
selectively remove links in the given set#5
except the given class#4 and
give the given variable #6

then
store the given set#1 in the gvien variable#2

and
give the given variable-bindings#3 and
give the intersection of
(the mapped-set of the given variable-bindings#3,
the mapped-set of the type-variable-bindings of the given class#4)

then
un-instantiate variable-bindings#1 restricted to the given set#2

and
give the given variable-bindings and
give the intersection of
( the mapped-set of the type- variable-bindings of the given class#2,
the mapped-set of the type-variable-bindings of the given class#4 )

then
give the given variable-bindings and
instantiate the field-type-bindings of the class bound to I3 restricted to the given set .

then
give the disjoint-union of ( the given variable-bindings#1,
the given variable-bindings#2)

then
store the object of ( the class bound to I2,
the given variable-bindings, the identity of the object ) stored in the variable bound to I

• get the super class of ( , ) :: class, class → action [ giving a class diverging ]

(7) get the super class of ( C1: class, C2: class) =
give superclass C1 then

check ( the given class is in the superclasses of C2 ) and then
give the given class

or
check ( not (the given class is in the superclasses of C2)) and then
the super class of ( the given class, C2).

• selectively remove links in except :: set, class → action [ giving a set diverging ]

(8) selectively remove links in S : set except C : class =

167



choose a link [in S ] then
give the relation of the given link and regive

then
give the associated classes of the given relation#1
and give the superclasses of C
and give selectively remove links in the
intersection (S , the set of the given link#2) except C and
give the given link#2

then
check( either( the given class#1 is in the given set#3,
the given class#2 is in the given set#3 )) and then
give the given set#4

or
check(not(either(the given class#1 is in the given set#3,
the given class#2 is in the given set #3))) and then
give the disjoint-union ( the set of the given link#5, the given set #4).

Link Manipulation

• execute :: Link-Creation → action [storing diverging ] [using current bindings current storage]

(1) execute [[ “link” I1: Identifier “→ ” I2: Identifier “(”I3: Identifier“)” ]] =
allocate a cell then
give the link of ( I3, (the object stored in the cell bound to I1,
the object stored in the cell bound to I2), the given cell)

then
add the given link to the object stored in the cell bound to I1 and
add the given link to the object stored in the cell bound to I2.

• add to :: link, object → action [storing diverging ]
[using current bindings current storage ]

(2) add L:link to O : Object = give the field-variable-bindings of O
then give (the given variable-bindings at “ LinkRecord”)
then store disjoint-union of (the set stored in the given variable,
the set of L) in the given variable.

• execute :: Link-Deletion → action [ storing diverging ]
[ using current bindings current storage ]

(3) execute [[ “unlink” I1: Identifier “→ ” I2: Identifier “(”R: relation“)” ]] =
give the set stored in (the field-variable-bindings of I1 at “ LinkRecord”)
and
give the set stored in (the field-varaible-bindings of I2 at “ LinkRecord”)

then
remove link (the given set#1, the given set#2, R)

then
store the given set#1 in (the field-variable-bindings of I1 at “ LinkRecord” )
and
store the given set#2 in ( the field-variable-bindings of I2 at “ LinkRecord” )

• remove link ( , , ) :: set, set, relation → action
[ giving a tuple diverging ] [ using current storage ]

168



(4) remove link s1: set, s2: set, r : relation = choose an link [ in s1] then
check (both (the given link is in s2,

the given link is an instance of r)) and then
give the intersection (s1, the set of the given link) and
give the intersection (s2, the set of the given link)

or
check( not (both( the given link is in s2,

the given link is an instance of r)))
and then

remove link ( the intersection (s1, the set of the given link),
intersection(s2, the set of the given link), r ) and
give the given link

then
give the disjoint-union of (the set of the given link#3,

the given set#1) and
give the disjoint-union of (the set of the given link#3, the given set#2)

Event Generation

• execute :: Event-Generation → action [storing diverging] [using current bindings current storage]

(1) execute [[ “send-event” I1: Identifier “→ ” I2: Identifier ]] =
give the object stored in the cell bound to I2 then

get the current state of the given object and regive then
enact the application of the exit-action of the given state#1 to the given object#2

and then
get the destination state of the given object when the event-token of I1 and regive
then

set the current state of the given object#2 to the given state#1 and then
enact the application of the entry-action of the given state#1 to the given object#2.

• execute :: State-Transition → action [storing diverging] [using current bindings current storage]

(2) execute [[ E : Expression “>>” I : Identifier ]] =
evaluate E then

get the current state of the given object and regive then
enact the application of the exit-action of the given state#1 to the given object#2

and then
give (state-bindings of the state-machine of (the class of the given object#2))
at the state-token of I and regive
then

set the current state of the given object#2 to the given state#1 and then
enact the application of the entry-action of the given state#1 to the given object#2.

Object Query

• execute :: Object-Selection → action [ storing diverging ]
[ using current bindings current storage ]

(1) execute [[ “select-many” I1: Identifier “of” I2: Identifier “(”E : Expression“)” ]] =
select instances in (the object-list stored in the cell bound to
the object-list-token of the class-token of I2) satisfying E

then
store the given set to the variable bound to I1.

169



(2) execute [[ “select-many” I1: Identifier “of” I2: Identifier ]] =
exhaust instances in (the object-list stored in the cell bound to
the object-list-token of I2)

then
store the given set to the variable bound to I1.

(3) execute [[ “select-one” I1: Identifier “of” I2: Identifier ]] =
exhaust instances in (the object-list stored in the cell bound to the object-list-token of I2)
then

choose an object [in the given set] then store the given object to the cell bound to I1.

(4) execute [[ “select-one” I1: Identifier “of” I2: Identifier “(”E : Expression“)” ]] =
select instances in (the object-list stored in the cell bound to
the object-list-token of I2) satisfying E

then
choose an object [in the given set] then store the given object to the variable bound to I1.

• select instances in satisfying :: object-list, Expression → action [giving a set diverging ] [using
current bindings current storage]

(5) select instances in I : object-list satisfying E : Expression =
check ( I is empty-list ) and then give empty-set

or
check (not (I is empty-list)) and then

give (head I ) then bind “selected” to the given object
thence

evaluate E and select instances in (tail I ) satisfying E and
give the given object

then
check(the given truth-value#1 is true) and then
give disjoint-union(set of(the given object#3), the given set#2)

or
check(not( the given truth-value#1 is true) and give the given set#2.

• exhaust instances in :: object-list link-list → action [giving a set diverging ]

(6) exhaust instances in I : object-list link-list =
check ( I is empty-list ) and then give empty-set

or
check ( not(I is empty-list) ) and then
give disjoint-union(head I , instances in (tail I )).

• execute :: Link-Navigation → action [storing diverging]
[using current bindings current storage]

(7) execute [[ I1: Identifier “=” I2: Identifier “→ *” I3: Identifier ]] =
give ( the object stored in the variable bound to I2) and give the relation bound to I3

then (regive and get the links from the given object#1)
then

exhaust the linked objects of the given object#1
from the given set#3 related by the given relation#2

then store the given set to the variable bound to I1.

(8) execute [[ I1: Identifier “=” I2: Identifier “→ *” I3: Identifier “(”E : Expression“)”]] =
give (the object stored in the variable bound to I2) and give the relation bound to I3

then (regive and get the links from the given object#1)
then

exhaust the linked objects of the given object#1
from the given set#3 related by the given relation#2

then pick objects in the given set satisfying E
then store the given set to the variable bound to I1.

170



• pick objects in satisfying :: set, Expression → action [giving a set diverging]
[using current binding current storage]

(9) pick objects in s: set satisfying E : Expression =
check ( s is empty-set ) and then give empty-set

or
check (not( I is empty-set)) and then

choose an object [in s] then (regive and bind “selected” to the given object)
thence

evaluate E and and give the given object#1 and
pick objects in (the intersection of (the given object#1, s) ) satisfying E
then

check(the given truth-value#1 is true) and then
give disjoint-union(set of(the given object#3), the given set#2)

or
check(not( the given truth-value#1 is true) and give the given set#2.

(10) execute [[ I1: Identifier “=” I2: Identifier “→ ” I3: Identifier “(”E : Expression“)”]] =
give (the object stored in the variable bound to I2) and give the relation bound to I3

then (regive and get the links from the given object#1)
then

exhaust the linked objects of the given object#1
from the given set#3 related by the given relation#2

then pick objects in the given set satisfying E
then choose an object [in the given set]
then store the given object to the variable bound to I1.

(11) execute [[ I1: Identifier “=” I2: Identifier “→ ” I3: Identifier ]] =
give (the object stored in the variable bound to I2) and give the relation bound to I3

then (regive and get the links from the given object#1)
then

exhaust the linked objects of the given object#1
from the given set#3 related by the given relation#2

then
choose an object[in the given set] then store the given set to the variable bound to I1.

• exhaust the linked objects of from related by :: object, set, relation → action [giving a
set diverging]

(12) exhaust the linked objects of o: object from s: set related by r : relation =
check (s is empty-set) and then give empty-set

or
check (not (s is empty-set)) and then

choose a link [in s] then
exhaust the linked object of o from the intersection of (s, the set of the given link)
and give the given link

then
check (the given link#2 is an instance of r) and then
give disjoint-union (the set of the object
linked with o by the given link#2, the given set#1)

or
check (not(the given link is an instance of r) and then give the given set#1.

B.3 Declarations

needs: Statements, Expressions

introduces: elaborate , the type-bindings of , the method-bindings of , respectively formally bind
, formally bind , the type denoted by .

171



Relation Declaration

• elaborate :: Relation-Declaration* → action [ bindings ] [ using current bindings ].

(1) elaborate 〈 〉 = complete.

(2) elaborate [[ “relate” I1: Identifier I2: Identifier “→ ” I3: Identifier “;”]] =
bind I1 to the relation of (I1, the class bound to I2, the class bound to I3).

(3) elaborate 〈R1: Relation-Declaration, R2: Relation-Declaration+ 〉 =
elaborate R1 before elaborate R2.

Class Declaration

• elaborate :: Class-Declaration →
action [binding storing][using current bindings current storage].

(1) elaborate [[“class” I1: Identifier “extends” I2: Identifier “{”
F : Field-Declaration* C : Constructor-Declaration

M : Method-Declaration* “}”
S : State-Machine-Declaration]] =

recursively bind the class-token of I1 to
the class of (the type-bindings of F , the method-bindings of M ,
the constructor of C , the state-machine of S , the class bound to the class-token of I2).

and
allocate a cell then

store an empty-list in it and bind the object-list-token of the class-token of I1 to it.

(2) the semantics of the declaration of those classes that has no state machine or super class is akin to
the above, so it is ignored here to save space.

• elaborate :: Class-Declaration* → action [ binding ] [using current bindings]

(3) elaborate 〈 〉 = complete .

(4) elaborate〈C1: Class-Declaration C2: Class-Declaration+ 〉 =
elaborate C1 before elaborate C2 .

• the type-bindings of :: Field-Declaration* → type-bindings

(5) the type-bindings of 〈 〉 = the empty-map .

(6) the type-bindings of 〈F1: Field-Declaration F2: Field-Declaration+ 〉 =
the disjoint-union of (the type-bindings of F1, the type-bindings of F2)

• the constructor of :: Constructor-Declaration → yielder [of a constructor][using current bindings].

(7) the constructor of [[I : Identifier “(” F : Formal-Parameters “)”
“{” “super” “A: Arguments” “;” B : Block-Statements “}”]] =
the closure of the abstraction of

172



furthermore
bind “self” to the given object#1 and
produce the field-variable-bindings of the given object#1

hence
furthermore

give the rest of the given (object, value*) then
respectively formally bind F

hence
given the given object#1 and respectively evaluate A.

then enact the application of
the constructor of the superclass of the class bound to I
to the given (object, value*)

and then
execute B
trap a return then complete.

(8) the constructor of 〈 〉 =
the closure of the abstraction of complete.

• the method-bindings of :: Method-Declaration* → yielder
[of method-bindings][using current bindings]

(9) the method-bindings of 〈 〉 = the empty-map.

(10) the method-bindings of [[ T (“void” Type) I : Identifier
“(” F : Formal-Parameters “)” “{” B : Block-Statements “}” ]] =
the map of I to the closure of the abstraction of

furthermore
bind “self” to the given object#1 and
produce the field-variable-bindings of the given object#1

hence
furthermore

give the rest to the given (object, value*) then
respectively formally bind F

hence
execute B
trap a return then give the returned-value of it.

(11) the method-bindings of 〈M1: Method-Declaration M2: Method-Declaration+ 〉
= the disjoint-union of (the method-bindings of M1, the method-bindings of M2).

State Machine Declaration

• the state-machine of :: State-Machine-Declaration → yielder [of a state-machine]

(1) The state-machine of [[ “state machine” “{”
S : State-Declaration+

“initial state: ” I : Identifier “;”
“transition table: ” T : Transition-Entries “;”
“}” ]] =
state-machine of ( state-token of I , the transition-table of T , the state-bindings of S ).

• the transition-table of :: Transition-Entries → yielder [ of a transition-table ]

(2) the transition-table of T : Transition-Entry = the transition-entry of T .

(3) the transition-table of 〈T1: Transition-Entry “;” T2: Transition-Entries 〉 =
disjoint-union ( the transition-entry of T1, the transition-table of T2).

173



• the transition-entry of :: Transition-Entry → yielder [ transition-table]

(4) the transition-entry of :: [[“(”I1: Identifier “,” I2: Identifier “,” I3: Identifier“)”]] =
the map of ( the state-token of I1, the event-token of I2) to the state-token of I3.

• the state-bindings of :: State-Declaration+ → yielder [ of state-bindings ]

(5) the state-bindings of [[ “state” I : Identifier “{”
E1: 〈 “entry action” “{” Block-Statements “}” 〉?

E2: 〈 “exit action” “{”Block-statements“}” 〉? ]] =
the map of the state-token of I to state of ( the state-token of I , the entry-action of E1, the

exit-action of E2).

(6) the state-bindings of [[ S1: State-Declaration S2: State-Declaration+]] =
disjoint-union ( the state-bindings of S1, the state-bindings of S2 )

• the entry-action of :: 〈 “entry action”“{”Block-Statements “}” 〉? →
yielder [ of a entry-action?]

(7) the entry-action of 〈 〉 = ();

(8) the entry-action of 〈 “entry action” “{” B : Block-Statements “}” 〉 =
the closure of the abstraction of

furthermore
bind “self” to the given object#1 and
produce the field-variable-bindings of the given object#1

hence
execute B
trap a return then complete.

• the exit-action of :: 〈 “exit action” “{”Block-statements“}” 〉? → yielder [ of a exit-action? ]

(9) the exit-action of 〈 〉 = ();

(10) the exit-action of 〈 “exit action” “{” B : Block-Statements “}” 〉 =
the closure of the abstraction of

furthermore
bind “self” to the given object#1 and
produce the field-variable-bindings of the given object#1

hence
execute B
trap a return then complete.

Event Declaration

• elaborate :: Event-Declaration → action [ bindings ] [ using current bindings ].

(1) The semantics of Event-Declaration is not defined here because events are simplified to pure strings (
or just labels ). I.e., the Event-Declarations occurring in models are just for better illustration of the
system.

B.4 Misc

• respectively formally bind :: Formal-Parameters→ action [binding storing] [ using the given value*

current storage ].

174



(1) respectively formally bind 〈 〉 = complete.

(2) respectively formally bind F : Formal-Parameter = formally bind F .

(3) respectively formally bind 〈F1: Formal-Parameter “,” F2: Formal-Parameters 〉=
give the first of the given value+ then formally bind F1

and

give the rest of the given value+ then respectively formally bind F2.

• formally bind :: Formal-Parameter → action [ binding storing]
[ using the given value current storage].

(4) formally bind [[ T : Type I : Identifier ]] =
allocate a variable initialised to the given value then
bind I to it.

• elaborate :: Variable-Declaration → action [ binding — storing ]
[using current storage]

(5) elaborate [[ T : Type I : Identifier ]] =
allocate a variable then
bind I to it.

(6) elaborate [[ T : Type I : Identifier “=” E : Expression ]] =
evaluate E then allocate a variable initialised to the given value
then bind I to the given variable.

• the type denoted by :: Type → type.

(7) the type denoted by “boolean” = the boolean-type.

(8) the type denoted by “int” = the integer-type.

(9) the type denoted by I : Identifier = the reference-type.

(10) the type denoted by “set” “[” Type “]” = the set-type.

B.5 Model

• run :: Executable-Model → action [ storing ] [using current storage ].

(1) run [[ Executable-Model = [[ C : Class-Declaration*

R: Relation-Declaration*

E : Event-Declaration*

“main” “{” B : Block-Statements “}” ]] =
elaborate C before elaborate R hence execute B.

175



Appendix C

ALx/Semantic Entities

needs: [Mosses 1992] /(Data Notation, Action Notation).

Data

needs: Values, Variables, Types, Classes, Objects, Escapes, Tokens, Recording Lists, Instances

• datum = value variable type class method constructor type-bindings variable-bindings
method-bindings token reason-for-escape (disjoint).

• token = (letter,(letter digit)*).

• bindable = class instance variable .

• storable = value object-list state-token .

Tokens

needs: Identifiers

introduces: class-token, class-token of , object-list-token, the object-list-token of , event-token, the
event-token of ; state-token, the state-token of , token;

• token = class-token state-token event-token object-list-token Identifier

• class-token = class-token of Identifier

• class-token of :: Identifier → class-token ( total, injective)

• the object-list-token of :: class-token → object-list-token ( total, injective )

• event-token = the event-token of Identifier

• the event-token of :: Identifier → event-token (total, injective)

• state-token = the state-token of Identifier

• the state-token of :: Identifier → state-token ( total, injective)

176



Values

needs: Objects

introduces: value

• value = truth-value integer reference set (disjoint).

Recording Lists

needs: Objects, Links.

introduces: object-list, link-list, remove from .

• object-list = flat-list [object]

• link-list = link-list [link]

• remove from :: yielder [of (object link)] , yielder [of (object-list link-list] → action [give an
object-list link-list] (total)

(1) remove o1: object from o2 : object-list =
check (o1 is empty) and then give empty-list

or
check (not(o1 is empty)) and then

give (head o2)
then

check (o1 is the given object) and then give (tail o2)
or

check ( not (o1 is the given object)) and then
give (concatenation (the list of ( the given object-list), the object-list yielded by
remove o1 from (tail o2))).

(2) remove l1: link from l2 : link-list =
check (l1 is empty) and then give empty-list

or
check (not(l1 is empty)) and then

give (head l2)
then

check (l1 is the given object) and then give (tail l2)
or

check ( not (l1 is the given object)) and then
give (concatenation (the list of ( the given object-list), the object-list yielded by
remove l1 from (tail l2))).

Variables

needs: Values.

introduces: variable, allocate a variable initialised to .

• variable = cell.

• allocate a variable initialised to :: yielder [ of a value] →
action [storing — giving a variable ] [ using current storage ]

177



(1) allocate a variable initialised to v : yielder [ of a value] =
allocate a variable and give v

then
store the given value#2 in the given variable#1 and

give the given variable #1.

Types

needs: Values, Objects.

introduces: type, boolean-type, integer-type, reference-type, default-value .

• type = boolean-type integer-type reference-type set-type (individual).

• default-value :: type → value (total).

(1) default-value ( boolean-type ) = false.

(2) default-value ( integer-type ) = 0.

(3) default-value ( reference-type ) = null.

(4) default-value ( set-type ) = empty-set.

Instances

needs: Objects, Links, Classes, Relations.

introduces: instance, null, reference, is an instance of .

• instance = object link (disjoint).

• null: reference.

• reference= null instance (disjoint).

• is an instance of :: reference, ( class relation) = truth-value.

(1) null is an instance of c: class relation = false.

(2) o: object is an instance of r : relation = false.

(3) l : link is an instance of c: class = false.

(4) l : link = the link of (r : relation, (o1: object, o2: object), identity) ⇒ l is an instance of r = true.

(5) o: object is an instance of c: class = c is in superclasses (class o).

(6) r : reference is an instance of c: (class relation ) = false ( default).

178



Classes

needs: Data, Types,

introduces: class, class-token , type-bindings, method-bindings, method, constructor, class of ,
field-type-bindings , method-bindings , constructor , superclass , superclasses , method of ,
state-machine .

• class = class of ( class-token, type-bindings, method-bindings, constructor, state-machine?, class?).

• type-bindings = map [token to type ].

• method-bindings = map [ token to method ].

• method = abstraction [ giving a value? storing diverging escaping ]

[using the given (object, value*) — current storage ].

• class-token :: class → class-token (total, injective)

• constructor :: = abstraction [ storing diverging escaping ]

[using the given (object,value*) current storage].

• class of :: (type-bindings, method-bindings, constructor, class?) → class (total, injective).

• field-type-bindings :: class → type-bindings (total).

• method-bindings :: class → method-bindings (total).

• constructor :: class → constructor (total).

• state-machine :: class → state-machine? (total)

• superclass :: class → class? (total).

• superclasses :: class → set [class] (total)

(1) c = class of (ct : class-token, t : type-bindings, m: method-bindings, k : constructor, s: state-

machine?) ⇒

(1) class-token c = ct ;

(2) field-type-bindings c = disjoint-union ( the map of “ LinkRecord” to set, t) ;

(3) method-bindings c = m;

(4) constructor c = k ;

(5) state-machine c = s;

(6) superclass c =();

(7) superclasses c = set of c.

(2) c = class( ct : class-token, t : type-bindings, m: method-bindings, k : constructor, s: state-machine?,
c1: class) ⇒

(1) class-token c = ct ;

(2) field-type-bindings c =disjoint-union (t , field-type-bindings c1);

(3) method-bindings c = overlay (m, method-bindings c1);

(4) constructor c = k ;

(5) state-machine c = s;

(6) superclass c = c1;

(7) superclasses c = union (set of c, superclasses c1).

• method of :: token, class → method (partial).

(3) method t : token of c: class = method-bindings c at t .

179



Objects

needs: Data, Variables, Types, Classes, Instances

introduces: object, variable-bindings, object of , class ,field-variable-bindings , is , allocate an
object of , identity, identity , instantiate .

• object = object of (class, variable-bindings, identity).

• variable-bindings = map [token to variable].

• identity = cell.

• object of :: (class, variable-bindings, identity) → object (total, injective).

• class :: object → class (total).

• field-variable-bindings :: object → variable-bindings (total).

• identity :: object → identity (total).

(1) o = object of (c: class, v : variable-bindings, i : identity) ⇒

(1) class o = c;

(2) field-variable-bindings o = v ;

(3) identity o = i .

(4) i = identity o: object.

• is :: reference, reference → truth-value (total, commutative).

(1) null is null = true.

(2) null is o: object = false.

(3) o1: object is o2: object = identity o1 is identity o2.

• allocate an object of :: yielder [of a class] → action [[ storing giving an object ] [ using current
storage current bindings]

(2) allocate an object of c: yielder [of a class] =
instantiate the field-type-bindings of c and

allocate an identity and initiate state of c
then

give the object of (the class yielded by c , disjoint-union
(the given variable-bindings#1, the given
variable-bindings#3 ), the given identity #2)

• instantiate :: yielder [ of type-bindings ]→ action [storing giving variable-bindings ][ using current
storage ].

(3) instantiate t : yielder [ of type-bindings ] =
check ( t is the empty-map ) and then
give the empty-map

or
give t and
choose a token [ in the mapped-set of t ]

then
instantiate ( the given type-bindings #1

omitting the set of the given token #2 ) and
give the given token #2 and
allocate a variable initialised to the default-value of the type yielded by

(the given type-bindings #1 at the given token #2 )
then give the disjoint-union of ( the given variable-bindings #1,

the map of the given toke #2 to the given variable #3 ).

180



• initiate state of :: class →
action [storing giving variable-bindings ] [ using current storage ].

(4) Initiate state of c: class =
give the state-machine c then

check ( not the given state-machine is () ) then
give the initial-state-token of state-machine c then
allocate a variable initialised to the given state-token then
give the map of ( “ CurrentState” to the given state-token )

or
check ( the given state-machine is () ) then give empty-map.

• un-instantiate :: yielder [ of variable-bindings ] → action [ storing ] [ using current storage ].

(5) un-instantiate v : yielder [ of variable-bindings ] =
check ( v is empty-map ) and then
complete

or
give v and
choose a token [ in the mapped-set of v ]

then
un-instantiate ( the given variable-bindings #1 omitting the set of the given token #2) and
unreserve the variable yielded by the v at the given token#2

• get the links of :: yielder [ of object ] → action [ giving a set storing ] [ using current storage ].

(6) get the links of y : object =
give the set stored in ( the type-variable-bindings of the object yielded by y at “ LinkRecord” ).

• get current state of :: yielder [ of object ] →
action [ giving a state storing ][using current storage ] .

(7) get current state of o: yielder =
give state-bindings of the state-machine of (the class of o) and
give the state-token stored in

( the type-variable-bindings of o at “ CurrentState”)
then

give the given state-bindings#1 at the given state-token#2

• get the destination state of when :: object, event-token →
action [ giving a state storing ] [ using current storage ]

(8) get the destination state of o: object when e: event-token =
give the state-machine of ( class o ) and
give the state-token stored in
( the type-variable-bindings of o at “ CurrentState”)

then
give (the transition-table of the given state-machine#1 at
(the given state-token #2, e) and give the given state-machine#1

then
give the state-bindings of ( the given state-machine#2) at the given state-token#1.

• set the current state of to :: object, state → action [ storing] [ using current storage ]

(9) set the current state of o: object to s: state =
give the type-variable-bindings of o at “ CurrentState” and
give state-token s

then store the given state-token#2 in the given variable#1.

181



Relations

needs: Data, Types

introduces: relation, relation of , the related classes of , the name of the relation , the associated
classes of .

• relation = relation of (Identifier, class, class).

• relation of :: ( Identifier, class, class ) → relation ( total, injective ).

• the related classes of :: relation → (class, class) (total).

• the name of the relation :: relation → Identifier (total).

• the associated classes of :: relation → ( class, class) (total).

(1) r = relation of (i : Identifier, c1: class, c2: class) ⇒

(1) the related classes of r = ( c1, c2);

(2) the name of the relation r = i .

(3) the associated classes of r = (c1, c2 )

Links

needs: Relations, Objects

introduces: link, link of , the linked objects of , identity , relation , the other object than of .

• link = link of ( relation, (object, object), identity). ( total, injective)

• the linked objects of :: link → (object, object) (total)

• identity :: link → identity (total).

• the other object than of :: link, object → object ( partial )

(1) the other object than o1: object of l : link = when l is the link of ( r : relation, ( o1, o2: object ), i :
identity ) then o2

(2) the other object than o2: object of l : link = when l is the link of ( r : relation, (o1: object, o2 ), i :
identity ) then o1.

(3) l = link of (r : relation, (o1: object, o2: object), i : identity) ⇒

(1) the linked objects of l = (o1, o2);

(2) identity l = i ;

(3) relation l = r .

182



States

needs: Tokens, Objects

introduces: state, state-token , entry-action, exit-action, entry-action , exit-action .

• state = state of (state-token, entry-action?, exit-action?)

• entry-action = abstraction[ storing diverging escaping]
[ using the given object current storage ]

• exit-action = abstraction [ storing diverging escaping ]
[ using the given object current storage ]

• exit-action :: state → exit-action? (total)

• entry-action :: state → entry-action? (total)

• state-token :: state → state-token (total)

(1) s = state of ( st : state-token, en: entry-action?, ex : exit-action?) ⇒

(1) state-token s = st ;

(2) entry-action s = en;

(3) exit-action s = ex ;

State-Machines

needs: States, Tokens

introduces: state-machine, event-tokens of , initial-state-token, initial-state-token of , state-bindings,
state-bindings of , state-machine of ,

• state-machine = state-machine of (initial-state, transition-table, state-bindings)

• initial-state-token = state-token

• transition-table = map [(state-token, event-token) to state-token]

• state-bindings = map [ state-token to state ]

• state-machine of :: (initial-state-token, transition-table, state-bindings) → state-machine ( total,
injective)

• transition-table of :: state-machine → transition-table (total)

• state-bindings of :: state-machine → state-bindings (total)

• initial-state-token of :: state-machine → initial-state-token (total).

• exit-action of in :: state-token, state-machine → exit-action (partial)

(1) exit-action of st : state-token in sm: state-machine = state-bindings of sm at state-token

• entry-action of in :: state-token, state-machine → entry-action (partial)

(2) exit-action of st: state-token in sm: state-machine = state-bindings of sm at state-token

183



• destination state token from when in :: state-token, event-token, state-machine → state-token
(partial)

(3) destination state token from st : state-token when e: event-token in sm: state-machine = transition-
table of sm at ( st , e).

(4) sm = state-machine of ( c: class, e: event-tokens, i : initial-state, t : transition-table, s: state-
bindings) ⇒

(1) initial-state of sm = i ;

(2) transition-table of sm = t ;

(3) state-bindings of sm = s;

Escapes

needs: Values.

introduces: return, return of , returned-value , exception, null-reference-exception, reson-for-escape,
trap then .

• return = return of value?.

• return of :: value? → return (total, injective).

• Returned-value :: return → value? (total).

• returned-value (return of v : value?) = v .

• exception = null-reference-exception � ( individual).

• reason-for-escape = return exception(disjoint).

• trap then :: action [ escaping], reason-for-escape, action → action.

(1) a1: action trap (r ≤ reason-for-escape)then a2: action = a1 trap
check (there is a given r) and then a2

or
check (there is a given r) and then escape.

184



Appendix D

xUML Metamodel

This appendix presents the xUML metamodel which is designed to be extensible so

that more diagrams can be incorporated. The elements in the xUML metamodel are

grouped into the following packages:

• fundamental package, which defines basic abstract metaclasses, such as Element,

NamedElement, TypedElement, etc., that deal with naming and typing of ele-

ments.

• class package, which defines the structure of xUML classes. Generally, it shows

that an xUML class may have operations and properties, and the operations may

be specified using ALx Block-Statement.

• relational package, where the core class is the Association that is a kind of Rela-

tionship. Association specializes Classifier; this means that associations may have

instances — links.

• state-machine package, which defines the structure of state machines. A state

machine has various states, each of which has entry and exit behaviours.

• collaboration package.This package shows there are two kinds of role, User role

and Class role, that may be involved in a particular collaboration diagram. The

user role is generally the initiator of system execution. Two kinds of event are

supported in xUML: SendSignalEvent and CallEvent.

• behavioural package, which shows two kinds of behaviours are supported, opera-

tions and state machines.

185



Element

-name : string
-visibility : VisibilityKind

NamedElement

TypedElement

-isLeaf : boolean

RedefinableElement

-isStatic : boolean

Feature Parameter
(class)-isReadOnly : boolean

StructuralFeature

-public : int
-private : int
-protected : int
-package : int

<<enumeration>>
VisibilityKind

Classifier
(class)

Property
(class)

Operation
(class)

Type
(type)

0..1
type

redefineElement

0..*

0..1

ownedElement

owner

Figure D.1: Fundamental package of xUML metamodel

-default : string
-aggregation
-isComposite : boolean

Property

-isAbstract : boolean

Classifier

BehavioredClassifier

-isQuery : boolean
-isOrdered : boolean
-upper : int
-isUnique : boolean
-lower : int

Operation

-isActive : boolean

Class

BlockStatement

This means the operation 
body is specified by ALx 
Block-Statement

-direction

Parameter
ConnectableElement

1

0..*parameters

specification0..*

ownedOperation

0..*

0..1

qualifier

associationEnd

0..*

attribute

0..* redefinedOperation

0..* superClass

Figure D.2: Class package of xUML metamodel

186



-isSubstitutable : boolean

Generalization

DirectedRelationship

Relationship

-isDerived : boolean

Association

-kind : ConnectionKind

Connector

ConnectableElementConnectorEnd

-isOrdered : boolean
-isUnique : boolean
-upper : int
-lower : int

MultiplicityElement

-assembly
-delegation

<<Enum>>
ConnectionKind

Element
(fundamental)

Classifier

0..*

roleend

1

end2..*0..1type

Figure D.3: Relational package of xUML metamodel

State

FinalState

StateMachine

Trigger
-kind : TransitionKind

Transition

InitialState

Event
(collaboration)

 internal : int
 local : int
 external : int

<<enumeration>>
TransitionKind

Behavior

1

source

1

target

1 event

0..*

states

1

entry1exit

0..*

triggers

Figure D.4: State-machine package of xUML metamodel

187



Role

User ClassRole

Class
(class)

-label : string

Interaction Event

NamedElement
(fundamental)

SendSignalEvent CallEvent

Signal

Classifier
(class)

Operation
(class)

context Interfaction::label: string
derive: self.event.name

1type
1

operation

1

signal

1

target

1

event

1
source

Figure D.5: Collaboration package of xUML metamodel

Behavior

-isAbstract : boolean
-concurrency

BehavioralFeature

<<enumeration>>
CallCurrencyKind

BehavioredClassifier
(class)

StateMachine
(state_machine)

Operation
(class)

0..*

ownedBehavior

0..1context

0..1

0..*

specification

method

0..1

classifierBehavior

Figure D.6: Behavioural package of xUML metamodel

188



Appendix E

ALx Metamodel

ALx consists of a part for the common functionality available in the present action lan-

guages, and a model-describing part, which is a textual correspondent of the graphical

xUML. In Chapter 6 we discuss the applicability of UML to describe the static aspects

of programming languages and enumerate a set of rules for translating grammars to

UML notations. We follow these rules to convert the ALx AST (provided in Appendix

A) to UML representations, shown in the following figures.

-name : Identifier
-superClass : Identifier

ClassDeclaration

-type : Type
-name : Identifier

FieldDeclaration

-name : Identifier
-type : Type

MethodDeclaration

-initialState : Identifier

StateMachineDeclaration

FormalParameters BlockStatement

-name : Identifier
-source : Identifier
-target : Identifier

RelationDeclaration

-name : Identifier

StateDeclarationEventListTransitionTable

-sourceState : Identifier
-targetState : Identifier
-triggerEvent : Identifier

TransitionEntry

-type : Type
-parameter : Identifier

Parameter
BlockStatementEventDeclaration

0..* event

*

field

0..* parameter 0..1
exit

body

0..* statetransitionTable

0..*entries

* method

acceptableformalPara

1..* stateMachine

0..1

entry

Figure E.1: Declarations of ALx

189



-field : Identifier
-object : Identifier

ReadAttribute

-symbol : string

Identifier

-object : Identifier
-operation : Identifier

CallOperation

Arguments

Expression

Literal Selected

 op : PrefixOperator

PrefixedExp

 op : InfixOperator

InfixedExpEnclosedExp

<<enumeration>>
InfixOperator

<<enumeration>>
PrefixOperator

<<enumeration>>
BooleanLiteral

IntegerLiteral Null

Self

2

exp

exp

Figure E.2: Expressions of ALx

Statement

-variable : Identifier

Assignment

ReadAttribute

-object : Identifier
-field : Identifier

WriteAttribute

-variable : Identifier
-class : Identifier

ObjectCreation

-object : Identifier

ObjectDeletion -variable : Identifier
-class : Identifier

Selection

-event : Identifier
-object : Identifier

EventGeneration

-sourceObject : Identifier
-targetObject : Identifier
-relation : Identifier

LinkDeletion

-object : Expression
-sourceClass : Identifier
-targetClass : Identifier

ObjectReclassification

ReturnStatement

ConditionalStatement

LoopStatement

Expression

-variable : Identifier
-object : Identifier
-relation : Identifier

LinkTraversal

-object : Identifier
-operation : Identifier

CallOperation

BlockStatement

VariableDeclaration

EmptyStatement

yes

no

0..*

statement

Figure E.3: Statements of ALx

 int : int = 0
 bool : int = 1

<<enumeration>>
PrimitiveType

Undefined
 set : int = 0
 bag : int = 1
 sequence : int = 2

<<enumeration>>
GenericType

Type

ReferenceType

For the type-checking 
purpose

0..1

Figure E.4: Type system of ALx.

190



Appendix F

MiniJava Metamodel

MiniJava is an executable subset of the Java language, intended to be the target lan-

guage of the xUML-to-Java translator. While making MiniJava as small as possible to

ease the implementation, we assure that the expressivity of MiniJava is no less than

that of xUML or ALx. Furthermore, MiniJava code is assured to be recognizable to the

language implementations of the standard Java, such as the Sun Java compiler or Java

Virtual Machine.

name : Identifier {unique}
parent : Identifier {unique}
interfaces : Identifier [0..*] {unique}
modifier : JModifier [0..*] {ordered}

JClassDecl

modifier : JModifier [0..*] {ordered}
type : JType [1]
name : Identifier {unique}

JFieldDecl
name : Identifier
type : JType
modifier : JModifier
isConstructor : boolean = false
isVoid : boolean

JMtdDecl

JFormalParameters

JBlockStm

type : JType
parameter : Identifier

JParameter

name : Identifier {unique}
parents : Identifier [0..*] {unique}

JInterfaceDecl

name : Identifier
type : JType
modifier : JModifier

JIMtdDecl

JavaProgram

target : string

JImportStm

public : int = 0 
private : int = 1
protected : int = 2
static : int = 3
abstract : int = 4
final : int = 5

<<enumeration>>
JModifier

JExpression

type : JType
name : Identifier
modifier : JModifier

JIFieldDecl

0..*

field0..*

0..*

0..* method

0..*
0..*

formalPara

0..1

0..1
0..*

parameter

* field

body

* method

0..*

Figure F.1: Declarations of MiniJava

191



JVairableAccess

-symbol : string

Identifier

JCallOp

JArguments
JExpression

JLiteral

JThisJCastingExp

 op : JPrefixOperator

JPrefixedExp

 op : JInfixOperator

JInfixedExp

JEnclosedExp

 eq : int = 0
 neq : int = 1
 less : int = 2
 more : int = 3
-lesseq : int = 4
 moreeq : int = 5
 plus : int = 6
 minus : int = 7
 multiple : int = 8
 divide : int = 9
 mode : int = 10

<<enumeration>>
JInfixOperator

 minus : int = 0
 not : int = 1

<<enumeration>>
JPrefixOperator

JType

-class : Identifier

JInstanceCreation

JInstanceOfExp

JAssignment

JName

2

subexp

0..*

Figure F.2: Expressions of MiniJava

JCallOp

-mtd : Identifier

JCallSuperOp

-mtd : Identifier

JComplexCallOpJSimpleCallOpJName

JExpression

JVairableAccess

JFieldAccess

JNormalFA

-field : Identifier

JSuperFA

Figure F.3: Variable access of MiniJava.

192



JLiteral

-value : string

JStringLiteral

-value : int

JIntLiteralJNull
 true : int = 0
 false : int = 1

<<enumeration>>
JBoolLiteral

JNameJNames

-symbol : string

Identifier

-identifier : Identifier

JComplexName

1..*

Figure F.4: Literals of MiniJava.

 int : int = 0
 bool : int = 1

<<enumeration>>
PrimitiveType Undefined

 Set : int = 0
 List : int = 1

<<enumeration>>
GenericType

JType

ReferenceType

0..1

Figure F.5: Type system of MiniJava.

JStatement

JReturnStm

JConditionalStm

JLoopStm

JExpression

JCallOp

JBlockStm

JVariableDecl

JEmptyStm

JAssignment

-class : Identifier

JInstanceCreation

yes

0..*

stms

no

Figure F.6: Statements of MiniJava

193



Appendix G

Main Class of the xUML-to-ALx

Translator

This appendix provides the core code of a standalone xUML-to-MiniJava translator,

which is intended to illustrate how the required metamodels and models are loaded into

run-time system, and how ATL engine is configured to perform the desired model trans-

formations. Please refer to Eclipse ATL and EMF projects for the necessary background

[2, 4].

With the required metamodels (xUML metamodels, ALx metamodels and MiniJava

metamodels) and ATL files ready, the implementation of the translator is straightfor-

ward. The whole system is constituted by two major components: the ATL engine,

which is already an off-the-shelf component provided as a part of the ATL runtime

libraries, and the code generator, which is automatically produced from the JET tem-

plates composed by us. The whole process of a particular transformation can be de-

composed into the following steps:

1. Instantiate the ATL VM.

2. Load metamodels and the input UML model. The order of the two is not signifi-

cant.

3. Launch the first translation by the following settings.

(a) Bind the loaded UML metamodel and ALx metamodel to the corresponding

variables declard in UML2ALx ATL file for metamodel references.

194



(b) Bind the loaded input UML model to the corresponding variable declared in

the UML2ALx ATL file for model reference.

(c) Specify the compiled UML2ALx ATL file as the required transformation files.

4. If required, serialize the intermediary in-memory ALx model resulted from the

first translation.

5. Launch the second translation by the following settings.

(a) Bind the loaded ALx metamodel and Java metamodel to the corresponding

variables declard in ALx2Java ATL file for metamodel references.

(b) Bind the loaded input UML model to the corresponding variable declared in

the ALx2Java ATL file for model reference.

(c) Specify the compiled ALx2Java ATL file as the required transformation files.

6. If required, serialize the intermediary in-memory Java model resulted from the

second translation.

7. Invoke the code generator to generate Java code from the resultant in-memory

Java model.

The whole execution scenario is completed when the Java code is generated (the code

for generating textual Java code is ommitted here). Often, the generated code is then

fed to an instantiated Java VM to be executed for the purpose of model simulation.

/∗
∗ Created on 3 March 2008 . − l a s t r e v i s i o n : 8 . 5 . 2 0 0 8 .
∗ (C) 2008 . Mikai Yang , Heriot−watt Un ive r s i ty .
∗
∗ This so f tware i s a prototype t r a n s l a t o r
∗ which can t r a n s l a t e xUML model
∗ i n t o miniJava models .
∗/

package a t l ;

import java . i o . ∗ ;
import java . net . ∗ ;
import java . u t i l . ∗ ;
import java . lang . r e f l e c t . ∗ ;
import javax . jmi . r e f l e c t . ∗ ;

195



import org . xml . sax . Locator ;
import org . xml . sax . At t r ibute s ;
import org . xml . sax . SAXException ;
import javax . xml . pa r s e r s . SAXParser ;
import javax . xml . pa r s e r s . SAXParserFactory ;
import org . xml . sax . SAXParseException ;
import org . xml . sax . h e l p e r s . DefaultHandler ;

import org . e c l i p s e . core . runtime . ∗ ;
import org . a t l . eng ine . r e p o s i t o r i e s . mdr4atl . ∗ ;
import org . a t l . eng ine .vm. ∗ ;
import org . a t l . e c l i p s e . eng ine . ∗ ;
import org . a t l . eng ine . e x t r a c t o r s . ∗ ;
import org . a t l . eng ine . e x t r a c t o r s . ebnf . ∗ ;
import org . a t l . eng ine . i n j e c t o r s . ebnf . ∗ ;
import org . a t l . eng ine . e x t r a c t o r s . xml . ∗ ;
import org . a t l . eng ine . i n j e c t o r s . xml . ∗ ;
import org . a t l . eng ine . r e p o s i t o r i e s . emf4at l . ∗ ;
import org . a t l . eng ine .vm. n a t i v e l i b . ∗ ;

public class Xuml2JavaTranslator {

// Re la t i v e l o c a t i o n o f t rans f o rmat i ons
St r ing a t lF i l e sLo c = "..\\..\\transformations\\" ;
// Re la t i v e l o c a t i o n o f metamodels
S t r ing mmsLoc = "..\\..\\metamodels\\" ;

// Obtain URLs o f t rans fo rmat ion f i l e s .
private URL OneMM2OtherMMurl = Xuml2JavaTranslator .

class . getResource ( a t l F i l e sLo c + "AL2G.asm" ) ;
private URL Lib4Thisur l = Xuml2JavaTranslator .

class . getResource ( a t l F i l e sLo c + "AL2G_LIB.asm" ) ;

// EMF model handler
private AtlModelHandler emfamh = null ;

// For keeping metamodel names
Map MDRMetaModels = new HashMap ( ) ;

// Meta−models in EMF.
private ASMModel oneMM = null ;
private ASMModel otherMM = null ;
private ASMModel xmlEMFmm = null ;

// S ing l e ton ATLTransformation .
private stat ic Xuml2JavaTranslator t r a n s l a t o r = null ;

// General meta−models
private ASMModel pbmm = null ;
// Markers f o r Problem metamodel
private MarkerMaker markerMaker ;

196



// Constructor
public Xuml2JavaTranslator ( ) {
// I n i t i a l i z e EMF based metamodels

initEMF ( ) ;
}

/∗∗
∗ I n i t i a l i z e EMF model handler and
∗ Ecore based metamodels
∗/

private void initEMF ( ) {

i f (emfamh == null ) { // i f EMF i s not i n i t i a l i z e d

// I n i t i a l i z e EMF model handler
emfamh = AtlModelHandler .

g e tDe fau l t ( AtlModelHandler .AMHEMF) ;

// URL’ s to Ecore (XMI) metamodels
URL onemmurl = Xuml2JavaTranslator . class .

getResource (mmsLoc +
"OneMM\\AL_Simplified.ecore" ) ;

URL xmlmmurl = Xuml2JavaTranslator . class .
getResource (mmsLoc +
"xml\\xml.ecore" ) ;

URL othermmurl = Xuml2JavaTranslator . class .
getResource (mmsLoc +
"OtherMM\\AL_Simplified_Gen.ecore" ) ;

try {
// Load metamodels from p e r s i s t e n c e .
oneMM = emfamh . loadModel ("AL" ,

emfamh . getMof ( ) , onemmurl . openStream ( ) ) ;
xmlEMFmm = emfamh . loadModel ("XML" ,

emfamh . getMof ( ) , xmlmmurl . openStream ( ) ) ;
otherMM = emfamh . loadModel ("ALG" ,

emfamh . getMof ( ) , othermmurl . openStream ( ) ) ;
} catch ( IOException e ) {

e . pr intStackTrace ( ) ;
}

}
pbmm = emfamh . getBuiltInMetaModel ("Problem" ) ;
markerMaker = new MarkerMaker ( ) ;

} // −− end o f initEMF

/∗∗
∗ Return a s i n g l e t on t r a n s l a t o r .
∗ @return d e f au l t r e p o s i t o r y f o r input (EMF or MDR)
∗/
public stat ic Xuml2JavaTranslator ge tTrans l a to r ( ) {
i f ( t r a n s l a t o r == null )

197



t r a n s l a t o r = new Xuml2JavaTranslator ( ) ;

return t r a n s l a t o r ;
}

/∗∗
∗ A he lpe r method .
∗ Val idate the wel l−formedness o f input XML f i l e
∗/

private boolean checkWellFormedness ( S t r ing f i l e ,
boolean i s F i l e ) {

SAXParser saxParser = null ;
DefaultHandler dh = null ;
InputStream in = null ;

// i n i t pa r s e r
try {

SAXParserFactory sp f a c t o ry =
SAXParserFactory . newInstance ( ) ;

saxParser = sp f a c t o ry . newSAXParser ( ) ;
dh = new DefaultHandler ( ) ;

}
catch ( Exception e ) {

System . out . p r i n t l n ("Initialize SAX parser fails." ) ;
e . pr intStackTrace ( ) ;
return fa l se ;

}

// parse the XML document us ing SAX par se r
try {

i f ( i s F i l e == true ) {
in = new Fi leInputStream ( f i l e ) ;

}
else {

byte currentXMLBytes [ ] = f i l e . getBytes ( ) ;
in = new ByteArrayInputStream ( currentXMLBytes ) ;

}
saxParser . parse ( in , dh ) ;

}
catch ( SAXParseException spe ) {

System . out . p r i n t l n ("File is not well-formed." ) ;
return fa l se ;

}
catch ( SAXException se ) {

System . out . p r i n t l n ("Error in parsing input XML file: "
+ f i l e ) ;

se . pr intStackTrace ( ) ;
return fa l se ;

}
catch ( FileNotFoundException f ) {

System . out . p r i n t l n ("Error: File is not found" ) ;
return fa l se ;

198



}
catch ( IOException i o e ) {

System . out . p r i n t l n ("Cannot read file." ) ;
return fa l se ;

}
return true ;

}

/∗∗
∗ I n j e c t input XML f i l e to XML model
∗ ( i n s t anc e o f XML metamodel − MOF 1 . 4 )
∗/

public ASMModel injectXMLModelFromFile ( S t r ing f i l e ) {
initEMF ( ) ;

ASMModel r e t = emfamh . newModel ("IN" , xmlEMFmm) ;

XMLInjector xmli = new XMLInjector ( ) ;

Map parameters = Co l l e c t i o n s .EMPTYMAP;

InputStream in = null ;

try {
in = new Fi leInputStream ( f i l e ) ;

xmli . i n j e c t ( ret , in , parameters ) ;

} catch ( FileNotFoundException f ) {
System . out . p r i n t l n ("Error: File is not found" ) ;

} catch ( IOException i o ) {
System . out . p r i n t l n ("Error: in injection of XML file" ) ;

}

return r e t ;
} // −− end o f injectXMLModelFromFile

/∗∗
∗ Extract input XML model to XML f i l e
∗/

public void extractXMLModelToFile (ASMModel model ,
S t r ing f i l e ){
initEMF ( ) ;

OutputStream out = null ;

Map parameters = Co l l e c t i o n s .EMPTYMAP;

XMLExtractor xmle = new XMLExtractor ( ) ;

try {

199



out = new FileOutputStream ( f i l e ) ;
xmle . ex t r a c t (model , out , parameters ) ;
out . f l u s h ( ) ; out . c l o s e ( ) ; // c l o s e stream

} catch ( FileNotFoundException f ) {
System . out . p r i n t l n ("Error: File is not found" ) ;

} catch ( IOException i o ) {
System . out . p r i n t l n

("Error: In extracting XML model to XML file" ) ;
}

}

/∗∗
∗ Extract input MM model to F i l e

∗/
public void saveMMModelToFile (ASMModel MMModel,

S t r ing f i l e ) {
initEMF ( ) ;

OutputStream out = null ;

Extractor ext = new EBNFExtractor ( ) ;
Map params = new HashMap ( ) ;
params . put ("format" , MDRMetaModels . get ("MM-TCS" ) ) ;
params . put ("indentString" , "\t" ) ;

try {
out = new FileOutputStream ( f i l e ) ;
ext . e x t r a c t (MMModel, out , params ) ;

} catch ( Exception e ) {
e . pr intStackTrace ( ) ;

}
} // −− end o f saveMMModelToFile

/∗∗
∗ Launch ATL trans fo rmat ion
∗/

public ASMModel run ( AtlModelHandler modelHandler ,
URL trans format ion , ASMModel inputModel ,
ASMModel inputMetamodel , ASMModel outputMetamodel ,
Map inParams , Map inL ibs ) {

initEMF ( ) ; // I n i t i a l i z e MDR model handler

ASMModel r e t = null ; // re turn model

// Set launch con f i gu r a t i on
Map models = new HashMap ( ) ;

models . put ( inputMetamodel . getName ( ) , inputMetamodel ) ;
models . put ( outputMetamodel . getName ( ) , outputMetamodel ) ;

200



models . put ("ac" , inputModel ) ;
r e t = modelHandler . newModel ("acg" , outputMetamodel ) ;
models . put ("acg" , r e t ) ;

Map params = inParams ; // Parameters
Map l i b s = inL ibs ; // L i b r a r i e s

// Launch ATL trans fo rmat ion
AtlLauncher . ge tDe fau l t ( ) .

launch ( trans format ion , l i b s , models , params ) ;

return r e t ;
} /

/∗∗
∗ run a t ra fo rmat ion
∗/

public ASMModel getOtherMMFromOneMM(ASMModel oneModel ) {

//A l i b r a r y i s used .
Map l i b s = new HashMap ( ) ;

l i b s . put ("Lib4This" , L ib4Thisur l ) ;

// Run trans fo rmat ion and return output model
return run (emfamh , OneMM2OtherMMurl ,

oneModel , oneMM, otherMM , Co l l e c t i o n s .EMPTY MAP, l i b s ) ;
}

/∗∗
∗ where the t rans fo rmat ion takes pa lace .
∗/

public St r ing transformOnetoOther ( S t r ing InputOneFile ,
S t r ing OutputOtherFile ) {
// Check i s input St r ing wel l−formed (XML)
i f ( ! checkWellFormedness ( InputOneFile , true ) )

return new St r ing ("Document is not well-formed." ) ;

ASMModel xmlModel = injectXMLModelFromFile ( InputOneFile ) ;
ASMModel otherModel = getOtherMMFromOneMM(xmlModel ) ;
extractXMLModelToFile ( otherModel , OutputOtherFile ) ;

return new St r ing ("Translation completed." ) ;
}

public stat ic void main ( St r ing [ ] arguments ) {

// Create new in s t ance o f t h i s c l a s s
Xuml2JavaTranslator t rans fo rmat ion =

Xuml2JavaTranslator . g e tTrans l a to r ( ) ;

S t r ing inputModel = "models\\one\\AClass.xmi" ;

201



St r ing outputModel = "d:\\Other.xml" ;

// Transform input f i l e to output f i l e
S t r ing message = trans fo rmat ion .

transformOnetoOther ( inputModel , outputModel ) ;
System . out . p r i n t l n ( message ) ;

}

}

202



Appendix H

ALx-to-Java Mapping Rules

This appendix provides the implementation-neutral ALx-to-MiniJava mapping rules

that are defined in AS style, as well as the primary Java classes in the library part.

The abstract syntactic definition of ALx has already been provided in Appendix A and

reused in this description. For simplicity, in the translation rules, we do not explicitly

define the translation of Identifier, considering that ALx identifiers are directly mapped

to Java identifiers. The reader is recommended to refer to the library part to understand

the translation rules because some constructs in ALx are mapped to facilities provided

in the library classes.

H.1 MiniJava Abstract Syntax

Identifiers and Names

(1) Identifier = [[ letter(letter digit)* ]] .

(2) JName = Identifier [[ JName “.” Identifier ]].

(3) JNames = 〈 JName 〈 “,” JName 〉* 〉.

Types

needs: Identifiers and Names

(1) JType = JPrimitive-Type JReference-Type.

(2) JPrimitive-Type = “boolean” “int”.

(3) JReference-Type = JName JName “<” JName “>”.

203



Literals

(1) JLiteral = JInteger-Literal JBoolean-Literal JString-Literal “null”.

(2) JInteger-Literal = � .

(3) JBoolean-Literal = “true” “false”.

(4) JString-Literal = � .

Expressions

needs: Identifier and Names, Types, Literals.

(1) JExpression = JLiteral “this”
JVariable-Access [[ JPrefix-Operator JExpression ]]
[[ JExpression JInfix-Operator JExpression ]]
[[ JExpression “instanceof” JName ]]
[[ “(” JType “)” JExpression ]]
[[ JExpression (“||” “ & & ”) JExpression ]]
[[ “(” JExpression “)” ]]
JAssignment
JCall-Operation
JInstance-Creation.

(2) JCall-Operation = [[ JName “(”JArguments “)” ]]
[[ JExpression “.” Identifier “(” JArguments “)” ]]
[[ “super” “.” Identifier “(” JArguments “)” ]].

(3) JInstance-Creation = [[ “new” JName “(” JArguments “)” ]].

(4) JArguments = 〈 JExpression 〈 “,” JExpression 〉* 〉?

(5) JPrefix-Operator = “-” “!” .

(6) JInfix-Operator = “==” “!=” “<” “>” “<=”
“>=” “+” “−” “∗” “/” “%”

Variable Accesses

(1) JVariable-Access = JName JField-Access.

(2) JField-Access = [[ JExpression “.” Identifier ]] [[ “super” “.” Identifier ]]

Assignment

(1) JAssignment = [[ JVariable-Access “=” JExpression ]].

Statements

needs: Declarations, Expressions.

204



Block

(1) JBlock-Statements = [[ JStatement* ]]

(2) JStatement = [[ “;” ]]
[[ JVariable-Declaration “;” ]]
[[ “{” JBlock-Statements “}” ]]
[[ JAssignment “;” ]]
[[ JCall-Operation “;” ]]
[[ JInstance-Creation “;” ]]
[[ “return” JExpression? “;” ]]
[[ “if” “(” JExpression “)” JStatement “else” JStatement ]]
[[ “while” “(” JExpression “)” JStatement ]].

Declarations

needs: Identifiers and Names, Types, Statements, Expressions.

(1) JModifier = “public” “private” “protected” “static” “abstract” “final”.

Class Declaration

(1) JClass-Declaration = [[ JModifier* “class” Identifier JSuperclass-Clause? JInterface-Clause?

JClass-Body ]].

(2) JSuperclass-Clause = [[ “extends” JName ]].

(3) JInterface-Clause = [[ “implements” JNames ]].

(4) JClass-Body = [[ “{” JClass-Body-Declaration* “}” ]].

(5) JClass-Body-Declaration = JField-Declaration JConstructor-Declaration JMethod-Declaration
JClass-Declaration.

Constructor Declarations

(1) JConstructor-Declaration = [[ JModifier* Identifier “(” JFormal-Parameters “)” JConstructor-Body ]].

(2) JConstructor-Body = [[ “{” JConstructor-Call? JBlock-Statements “}” ]].

(3) JConstructor-Call = [[ (“this” “super”) “(” JArguments? “)” “;” ]].

Method and Field Declarations

(1) JMethod-Declaration = [[ JModifier* (“void” JType) Identifier “(” JFormal-Parameters “)” “{”
JBlock-Statements “}” ]].

(2) JField-Declaration = [[ JModifier* JType Identifier “;” ]]
[[ JModifier* JType Identifier “=” JExpression “;” ]]

205



Interface Declarations

(1) JInterface-Declaration = [[ JModifier* “interface” Identifier
JSuper-Interfaces-Clause
JInterface-Body ]]

(2) JSuper-Interfaces-Clause = [[ “extends” JNames ]].

(3) JInterface-Body = [[ “{” JInterface-Member-Declaration* “}” ]].

(4) JInterface-Member-Declaration = JInterface-Field-Declaration JInterface-Method-Declaration.

(5) JInterface-Field-Declaration = [[ JModifier* JType Identifier “;” ]].

(6) JInterface-Method-Declaration = [[ JModifier* (“void” JType) Identifier “(” JFormal-Parameters
“)” “;” ]].

Misc

(1) JFormal-Parameters = 〈 JFormal-Parameter 〈 “,” JFormal-Parameter 〉* 〉?

(2) JFormal-Parameter = [[ JType Identifier ]].

(3) JVariable-Declaration = [[ JType Identifier ]] [[ JType Identifier “=” JExpression ]]

Compilation Units

(1) JCompilation-Unit = [[ JPackage-Declaration? JImport-Declaration* JType-Declaration* ]].

(2) JPackage-Declaration = [[ “package” JName “;” ]]

(3) JImport-Declaration = [[ “import” JName 〈 “.” “∗” 〉? ]].

(4) JType-Declaration = JClass-Declaration JInterface-Declaration.

Programs

(1) JProgram = JCompilation-Unit+ .

H.2 ALx-to-MiniJava Mapping Functions

needs: ALx Abstract Syntax, MiniJava Abstract Syntax.

206



H.2.1 Expressions

• TE :: Read-Attribute → JCall-Operation.

(1) TE [[I1: Identifier “.” I2: Identifier]] = [[ I1 “.” getMtd(I2) “(” “)”]].

The function ‘getMtd’ is intended to translate the identifier of an attribute to the corresponding ‘get’
method. For instance, an attribute named ‘address’ is accessed using the ‘getAddress’ method. The
defintion of ‘getMtd’ is left open here.

• getMtd :: Identifier → Identifier

(2) getMtd I = � .

• TE :: Call-Operation → JCall-Operation.

(3) TE [[E : Expression “.” I : Identifier “(” A: Arguments “)”]] =
[[TE(Expression) “.” I “(” RTE(A) “)”]]

• RTE :: Arguments → JArguments

(4) RTE 〈 〉 = 〈 〉.

(5) RTE E : Expression = TE(E ).

(6) RTE 〈E : Expression “;” A: Arguments 〉 = 〈TE(E ) “;” RTE(A) 〉.

• TE :: Expression → JExpression.

(7) TE L: Literal = TE(L).

(8) TE I : Identifier = I .

(9) TE “self” = “this”.

(10) TE “selected” = “selected”.

(11) TE [[O : Prefix-Operator E : Expression]] = [[TE(O) TE(E )]].

(12) TE [[E1: Expression O : Infix-Operator E2: Expression]] = [[TE(E1) TE(O) TE(E2)]].

(13) TE [[E1: Expression “ ” E2: Expression]] = [[TE(E1) “ ” TE(E2)]].

(14) TE [[E1: Expression “&&” E2: Expression]] = [[TE(E1) “&&” TE(E2)]].

(15) TE A: Read-Attribute = TE(A).

(16) TE C : Call-Operation = TE(C ).

• TE Prefix-Operator → JPrefix-Operator.

(17) TE “-” = “-”.

(18) TE “!” = “!”.

(19) TE “empty” = � .

• TE Infix-Operator → Infix-Operator.

(20) TE “==” = “==”.

(21) TE “! =” = “! =”.

(22) TE “<” = “<”.

207



(23) TE “>” = “>”.

(24) TE “<=” = “<=”.

(25) TE “>=” = “>=”.

(26) TE “+” = “+”.

(27) TE “-” = “-”.

(28) TE “*” = “*”.

(29) TE “/” = “/”.

(30) TE “%” = “%”.

• TE Literal → JLiteral.

(31) TE B : Boolean-Literal = TE(B).

(32) TE I : Integer-Literal = TE(I ).

(33) TE “null” = “null”.

• TE Boolean-Literal → Boolean-Literal.

(34) TE “true” = “true”.

(35) TE “false” = “false”.

• TE Integer-Literal → Integer-Literal.

(36) TE I : Integer-Literal = I .

• TE Identifier → Identifier.

(37) TE I : Identifier = I .

H.2.2 Statements

needs: Declarations, Expressions.

Statements

• TS Block-Statements → JBlock-Statements.

(1) TS [[ 〈 〉 ]] = 〈 〉.

(2) TS [[ S : Statement ]] = TS(S).

(3) TS [[ S : Statement B: Block-Statements ]] = TS(S) TS(B).

• TS :: Statement → JStatements.

(4) TS [[“;”]] = [[“;”]].

(5) TS [[“{” B : Block-Statements “}”]] = [[ “{” TS(B) “}” ]].

(6) TS [[ V : Variable-Declaration “;” ]] = [[ “{” TV(V ) “;” “}” ]].

208



(7) TS [[ C : Call-Operation “;”]] = [[ TS(C ) “;”]].

(8) TS [[A: Assignment “;”]] = [[ TS(A) “;”]] .

(9) TS [[ W : Write-Attribute “;” ]] = [[ TS(W ) “;”]].

(10) TS [[ R: Read-Attribute “;” ]] = [[ TS(R) “;” ]].

(11) TS [[ E : Event-Generation “;” ]] = [[ TS(E ) “;”]].

(12) TS [[ O : Object-Creation “;” ]] = [[ TS(O) “;”]].

(13) TS [[ O : Object-Deletion “;” ]] = [[ TS(O) “;”]].

(14) TS [[ L: Link-Creation “;” ]] = [[ TS(L) “;”]].

(15) TS [[ L: Link-Deletion “;” ]] = [[ TS(L) “;”]].

(16) TS [[ O : Object-Selection “;” ]] = [[ TS(O) ]].

(17) TS [[ L: Link-Navigation “;” ]] = [[ TS(L) “;”]].

(18) TS [[ O : Object-Reclassification “;” ]] = � .

(19) TS [[ “return” “;”]] = [[ “return” “;”]].

(20) TS [[ “return” E : Expression “;”]] = [[ “return” TS(E ) “;”]].

(21) TS [[“if” “(” E : Expression “)” S1: Statement “else” S2: Statement]] =
[[“if” “(” TS(E ) “)” ““ TS(S1) ”” “else” ““ TS(S2) ””]].

(22) TS [[ “while” “(” E : Expression “)” S : Statement ]] =
[[ “while” “(” TS(E ) “)” ““ TS(S ) ”” ]].

(23) TS [[ S1: Statement S2: Statement+]] = [[ TS(S1) TS(S2)]]

• TS :: [[ Variable-Declaration* → JVariable-Declaration*.

Assignments

• TS :: Assignment → JAssingment.

(1) TS [[ I1: Identifier “=” E : Expression]] = [[ I1 “=” TE(E )]].

Object Manipulation

• TS :: Write-Attribute → JCall-Operation.

(1) TS [[ I1: Identifier “.” I2: Identifier = “.” E : Expression ]] =
[[ I1 “.” setMtd(I2) “(” TE(E ) “)” ]].

The function ‘setMtd’ is intended to translate the identifier of an attribute to the corresponding ‘set’
method, a method for setting value of this attribute. For instance, an attribute named ‘address’ is
written using the ‘setAddress’ method. The defintion of ‘setMtd’ is left open here.

• setMtd :: Identifier → Identifier.

(2) setMtd I = � .

209



• TS :: Object-Creation → JAssignment.

(3) TS [[ “create-object” I1: Identifier “of” I2: Identifier “(”A: Arguments “)” ]] =

[[ I1 “=” newInstance(I2, A)]]

• newInstance :: Identifer, Arguments → JCall-Operation.

(4) newInstance I : Identifier, A: Arguments = [[ I “.” “newInstance” “(” RTE(A) “)”]].

• TS :: Object-Deletion → JCall-Operation.

(5) TS [[“delete-object” I : Identifier]] = [[I “.” “desroy” “(” “)” ]].

• TS :: Object-Reclassification → JAssignment.

(6) We do not implement Object-Reclassification in the current version of the ALx-to-Java translator.

Link Manipulation

• TS :: Link-Creation → JCall-Operation.

(1) TS [[ “link” I1: Identifier “→ ” I2 Identifier “(” I3: Identifier “)” ]] = newLink (I1, I2, I3).

• newLink ( , , ) :: Identifier, Identifier, Identifier → JCall-Operation.

(2) newLink (I1: Identifier, I2: Identifier, I3: Identifier) → [[ I3 “.” “newLink” “(”I1 “,” I2 “)” ]].

• TS :: Link-Deletion → JCall-Operation.

(3) TS [[ “unlink” I1: Identifier “→ ” I2: Identifier “(” I3: Identifier “)” ]] = deleteLink(I1, I2, I3).

• deleteLink ( , , ) :: Identifier, Identifier, Identifier → JCall-Operation.

(4) deleteLink (I1: Identifier, I2: Identifier, I3: Identifier) = I3 “.” “deleteLink” “(” I1 “,” I2“)”.

Event Generation

• TS :: Event-Generation → JMethod-Invocation.

(1) TS [[ “send-event” I1: Identifier “→ ” I2: Identifier ]] =
[[ I2 “.” “stateTransmitted” “(”“EIDs”“.”I1 “)” ]].

• TS :: State-Transition “>>” Identifier.

(2) TS [[E : Expression “>>” I : Identifier ]] = � .

210



Object Query

• TS :: Object-Selection → JStatement*.

(1) TS [[ “select-one” I : Identifier “of ” C : Identifier ]] =
[[ I “=” C “.” “objectList.getFirst(); ” ]].

(2) TS [[“select-one” I : Identifier “of” C : Identifer “(” E : Expression “)”]] =
[[ “Iterator〈ALObject 〉 iterator = ” C “.” “objectList.iterator(); ”
“while(iterator.hasNext()){”

“ALObject selected = iterator.next();”
“if(” TE(E) “) {” I “= selected; break;}”

“}” ]].

(3) TS [[“select-many” I : Identifier “of” C : Identifer]] =
[[ “Iterator 〈ALObject 〉 iterator = ” C “.” “objectList.iterator(); ”
“while(iterator.hasNext()){”

“ALObject selected = iterator.next();”
I “.” “add(selected);”

“}” ]].

(4) TS [[“select-many” I : Identifier “of” C : Identifer “(” E : Expression “)”]] =
[[ “Iterator〈ALObject 〉 iterator = ” C “.” “objectList.iterator(); ”
“while(iterator.hasNext()){”

“ALObject selected = iterator.next();”
“if(” TE(E ) “) {” I “.” “add(selected); }”

“}” ]].

• TS :: Link-Navigation → JAssignment.

(5) TS [[ I1: Identifier “=” I2: Identifier “→ ” I3: Identifier]] = [[ I1 “=” linkedObject (I2, I3) ]].

In the actual Java implementation, there is appropriate type cast prefixed to ‘linkedObject’.

• linkedObject ( , ) :: Identifier, Identifier → JCall-Operation.

(6) linkedObject (I1: Identifier, I2: Identifier) = [[ I1 “.” “getLinkedObject”“(” “RIDs”“.”I2“)” ]].

• TS :: Link-Navigation → JAssignment.

(7) TS [[ I1: Identifier “=” I2: Identifier “→ *” I3: Identifier]] = [[ I1 “=” linkedObjects (I2, I3) ]].

• linkedObjects ( , ) :: Identifier, Identifier → JCall-Operation.

(8) linkedObjects (I1: Identifier, I2: Identifier) = [[I1 “.” “getLinkedObjects”“(” “RIDs”“.”I2“)”]].

The translation of the conditional Link-Navation is similar to the conditional Object-Selection and thus
is ignored here.

H.2.3 Declarations

needs: Statements, Expressions.

211



Class Declaration

Each ALx class is translated into a Java class and a Java interface. The translations of classes with
constructors and the constructors themselves are intuitive and ignored to save space.

• TD :: Class-Declaration → JCompilation-Unit.

(1) TD [[ “class” I : Identifier “{”
F : Field-Declaration*

M : Method-Declaration* “}”
S : State-Machine-Declaration]] ]] =
[[ ImportStms GeneratedClass(I , F , M ) GeneratedInterface(I1, F , M ) GeneratedStateMachine]].

(2) TD [[ “class” I1: Identifier “extends” I2 “{”
F : Field-Declaration*

M : Method-Declaration* “}” ]] =
[[ ImportStms GeneratedClass(I1, I2, F , M ) GeneratedInterface(I1, F , M )]].

The generated Java classes need three imported system classes. This is defined by the translation
function ’ImportStms’.

• ImportStms : 〈 JImport-Declaration, JImport-Declaration, JImport-Declaration 〉.

(3) ImportStms = 〈 “import library.*;”, “import java.util.Iterator;”, “import java.util.LinkedList;” 〉.

The translation function ‘GeneratedClass’ has two versions: one has three parameters, and the other
has four. The former is intended for the classes without super classes, and the latter for the classes
with super classes.

• GeneratedClass ( , , ) :: Identifier, Field-Declaration*, Method-Declaration* → JClass-Declaration.

(4) GeneratedClass(I : Identifier, F : Field-Declaration, M : Method-Declaration*) =
[[“public” “class” I “extends” “ALObject” “{”
〈Field-ObjectList, RTF(F ), RTF2GetMtd(F ), RTF2SetMtd(F ) 〉
〈Method-NewInstance(I ), Method-RecordObject4NoSuperclass TD(M ) 〉

“}”]].

• GeneratedClass( , , , ):: Identifier, Field-Declaration*, Method-Declaration* → JClass-Declaration.

(5) GeneratedClass(I1: Identifier, I2: Identifier F : Field-Declaration, M : Method-Declaration*) =
[[“public” “class” I1 “extends” “ALObject” “{”
〈Field-ObjectList, DelegateField(I2), RTF(F ), RTF2GetMtd(F ), RTF2SetMtd(F ) 〉
〈Method-NewInstance(I1), Method-RecordObject4HasSuperclass TD(M ) 〉

“}”.

For the ALx classes that have superclasses, a delegate object is created to represent the features of the
superclass.

• DelegateField :: Identifier → JField-Declaration.

(6) DelegateField I : Identifier =
[[ “private” I “parent delegator” “=” “new” I “(” “)” “;”]].

• Method-NewInstance :: Identifier → JMethod-Declaration.

(7) Method-NewInstance I : Identifier =
[[ “public” “static” I “newinstance” “(” “)” “{”

I “temp” “=” “new” I “(” “)” “;”
“recordObject” “(” “temp” “)” “;” “return” “temp” “;”

}]].

212



Object-recording methods vary depending on whether the class has super class or not. If it has, the
newly-created object would be added to the superclasses as well.

• Method-RecordObject4NoSuperclass : JMethod-Declaration.

(8) Method-RecordObject4NoSuperclass = [[
“public” “static” “void” “recordObject” “(” “ALObject” “alo” “)” “{”

“objectList” “.” “addObject” “(” “alo” “)” “;”
“}” ]]

• Method-RecordObject4HasSuperclass :: Identifier → JMethod-Declaration.

(9) Method-RecordObject4HasSuperclass I = [[
“public” “static” “void” “recordObject” “(” “ALObject” “alo” “)” “{”

“objectList” “.” “addObject” “(” “alo” “)” “;”
I “.” “recordObject” “(” “alo” “)” “;” “}” ]]

• Field-ObjectList: JField-Declaration.

(10) Field-ObjectLis = [[ “static” “ObjectList” “objectList” “=” “new” “ObjectList” “(”“)”“;” ]] .

• GeneratedInterface ( , , ) :: Identifier, Field-Declaration, Method-Declaration→ JInterface-Declaration.

(11) GeneratedInterface ... = � . Translating an ALx class to a Java interface is straightforwad and is
ignored here.

• RTF :: Field-Declaration* → JField-Declaration*

(12) RTF 〈 〉 = 〈 〉.

(13) RTF [[T : Type I : Identifier “;”]] = [[“public” TT(T ) I “;”]]

(14) RTF 〈F : Field-Declaration F1: Field-Declaration+ 〉 = 〈RTD (F), RTD(F1) 〉.

Each attribute causes the generation of a method for setting its value.

• RTF2SetMtd :: Field-Declaration* → JMethod-Declaration*.

(15) RTF2SetMtd 〈 〉 = 〈 〉.

(16) RTF2SetMtd [[T : Type I : Identifier “;”]] = [[“public void” setMtd(I ) “(” TT(T ) value “)” “”]]

(17) RTF2SetMtd 〈F : Field-Declaration F1: Field-Declaration+ 〉= 〈RTD2SetMtd(F), RTD2SetMtd(F1) 〉.

Each attribute causes the generation of a method for reading its value.

• RTF2GetMtd :: Field-Declaration* → JMethod-Declaration*.

(18) RTF2GetMtd 〈 〉 = 〈 〉.

(19) RTF2GetMtd [[T : Type I : Identifier “;”]] = [[“public void” setMtd(I ) “(” TT(T ) value “)” “”]]

(20) RTF2GetMtd 〈F : Field-Declaration F1: Field-Declaration+ 〉= 〈RTF2GetMtd(F), RTF2GetMtd(F1) 〉.

• TD :: Method-Declaration* → JMethod-Declaration*.

(21) TD 〈 〉 = 〈 〉.

(22) TD [[ “void” I : Identifier “(” F : Formal-Parameters“)” ““ B : Block-Statements””]] =
[[ “void” I “(” RTF(F ) “)” “{” TS(B) “}”]].

(23) TD [[ T : Type I : Identifier “(” F : Formal-Parameters“)” ““ B : Block-Statements””]] =
[[ TT(T ) I “(” RTF(F ) “)” “{” TS(B) “}”]].

(24) TD 〈M1: Method-Declaration, M2: Method-Declaration+ 〉 =
〈 TD(M1), TD(M2) 〉.

213



Relation Declaration

• TD :: Relation-Declaration → JClass-Declaration

(1) TD [[“relation” I1: Identifier I2: Identifier “→ ” I3: Identifier “;”]] =
[[ “public” “class” I1 “extends” “ALRelation” “{”

Field-Rid (I1)
Field-OneEnd (I2)
Field-AnotherEnd (I3)
Method-GetOneEnd
Method-GetAnotherEnd
Method-GetRid
Method-newLink

“}”]].

• Field-Rid :: Identifier → JField-Declaration.

(2) Field-Rid I : Identifier =
[[ “public” “static” “int” “rid” “=” “RIDs” “.” I “;” ]].

• Field-OneEnd :: Identifier → JField-Declaration.

(3) Field-Rid I : Identifier =
[[ “public” “static” “int” “oneEnd” “=” “RIDs” “.” I “;” ]].

• Field-AnotherEnd :: Identifier → JField-Declaration.

(4) Field-Rid I : Identifier=
[[ “public” “static” “int” “anotherEnd” “=” “RIDs” “.” I “;” ]].

• Method-GetOneEnd : JMethod-Declaration.

(5) Method-GetOneEnd =
[[ “public” “static” “int” “getOneEnd” “(” “)” “{”

“return” “oneEnd” “;”
“}”]].

• Method-GetAnotherEnd : JMethod-Declaration.

(6) Method-GetOneEnd = [[ “public” “static” “int” “getAnotehrEnd” “(” “)” “{”
“return” “anotherEnd” “;”

“}”]].

• Method-GetRid : JMethod-Declaration.

(7) Method-GetRid =
[[ “public” “static” “int” “getAnotehrEnd” “(” “)” “{”

“return” “rid” “;”
“}”]].

• Method-newLink : JMethod-Declaration.

(8) Method-newLink =
[[ “public” “static” “ALLink” “newLink” “(” “ALObject” “o1” “,” “ALObject” “o2” “)” “{”

“ALLink” “temp” “=” “new” “ALLink” “(” “rid”“,” “o1” “,” “o2” “)” “;”
“o1” “.” “addLink” “(” “temp” “)” “;”
“o2” “.” “addLink” “(” “temp” “)” “;”
“return” “temp” “;”

“}”]].

214



State Machine Declarations

• GeneratedStateMachine : → JClass-Declaration.

(1) GeneratedStateMachine =
[[ “state-machine” “{”

S : State-Declaration+

“initial-state: ” I : Identifier
“transition-table” “{” T : Transition-Entries “}”

“}”]] =
[[ “class” “SM” “extends” “StateMachine” “{”

SM-Fields (S )
SM-Constructor (T )
SM-States (S )

“}” ]].

• SM-Fields :: State-Declaration + → JField-Declaration+.

(2) SM-Fields [[ “state” I : Identifier “{”
“entry” “{”B1: Block-Statements “}”
“exit” “{”B2: Block-Statements “}”

“}” ]] =
[[ “public” “state” I “=” “new” I “(” “)” “;”]].

(3) SM-Fields 〈F1: SM-Fields F2: SM-Fields+ 〉 = 〈SM-Fields (F1), SM-Fields (F2) 〉.

• SM-States :: State-Declaration+ → JClass-Declaration+.

(4) SM-States [[ “state” I : Identifier “{”
“entry” “{” B1: Block-Statements “}”
“exit” “{” B2: Block-Statements “}”

“}” ]] =
[[“public” “class” I “extends” “State” “{”

“public” “void” “entry” “{” TS(B1) “}”
“public” “void” “exit” “{” TS(B2) “}”

“}”]].

(5) SM-States 〈S1: State-Declaration S2: State-Declaration+ 〉 =
〈SM-States S1, SM-States S1 〉.

• SM-Construtor ( , ) :: Identifier, Transition-Entries → JConstructor-Declaration.

(6) SM-Construtor (I : Identifier, T : Transition-Entries) =
[[ “public” “SM” “(” “)” “{”

“currentState” “=” “this” “.” I “;”
AddEntryFields (T )

“}” ]].

• AddEntryFields :: Transition-Entry 〈 “;” Transition-Entry 〉* → JField-Declaration+.

(7) AddEntryFields I1: Identifier “,” I2: Identifier “,” I3: Identifier =

[[ “this” “.” “addEntry” “(” I1 “,” “EIDs” “.” I2 “,” I3 “)” “;” ]].

(8) AddEntryFields T1: Transition-Entry 〈 “;” T2: Transition-Entry 〉+

〈AddEntryFields(T1), AddEntryFields(T2) 〉.

215



Misc

• RTF :: Formal-Parameters → JFormal-Parameters.

(1) RTF 〈 〉 = 〈 〉.

(2) RTF F : Formal-Parameter = TF(F ).

(3) RTF 〈F1: Formal-Parameter “,” F2: Formal-Parameter+ 〉 = 〈TF(F1) “,” RTF(F2) 〉.

• TF :: Formal-Parameter → JFormal-Parameter.

(4) TF [[ T : Type I : Identifier ]] = [[ TT(T ) I ]].

• TV :: Variable-Declaration → JVariable-Declaration.

(5) TV [[ T : Type I : Identifier ]] = [[ TT(T ) I “;”]].

(6) TV [[ T : Type I : Identifier “=” E : Expression ]] = [[ TT(T ) I “=” TE(E ) ]].

• TT :: Type → JType.

The type of ALx is designed to be a subset of Java types, so the type translation is intuitive and
ignored here.

216



Appendix I

Sample xUML Models

This appendix presents the sample xUML models for various systems, which are used

to test the two xUML-to-Java translators.

I.1 Taxi-Booking System

This is a fictitious simple taxi-booking and planning system intended for a not very con-

temporary company AATaxi. There are operators receiving phones calls from customers

to arrange a taxi booking, or customers can directly surf to the company’s website to

make reservations.

The system holds some basic information of the purchased vehicles, employed drivers

and customers. Furthermore, the company categorizes the customers into two kinds —

contract customers and casual customers. The contract customers are pre-registered

and are analogous to members of clubs enjoying some discount when they consume

the services, while the casual customers normally take rides casually so they are not

interested in the discount exclusive to contract customers, or they are not willing to

spend some time in registration. We model this system in xUML as Figure I.1 shows.

The system allows operators to configure the initial state of the system, such as

entering basic data and setting up policies including the discount for contract customers

and the normal charge per mile. The system also provides an interface for operator to

update and manage basic data: The operators can enter a vehicle, driver or customer

into the system, or delete one of them from the system. However the core business of

the system is to help in booking taxis for customers; The typical booking procedures

217



name : string
Traveller

id
discount
balance

ContractTraveller CasualTraveller

id : int
Taxi

name : string
id : int

Driver

TaxiRecord

ReservationRecord

CTRecord

int()
reserve()
cancelBooking()
addTaxi()
removeTaxi()
addDriver()
deleteDriver()
addCT()
removeCT()
availableTaxi()

rsvRcd : ReservationRecord
taxiRcd : TaxiRecord
ctRcd : CTRecord

TaxiManagementSystem

postcode
street

Address

bankinf : string
PaymentInf

totalFare() : int
clearPayment()
suspend()

id : int
timeSlot : string
mileage : int
price : int
paid : bool
completed : bool

Reservation

RLivingAddress

RPickupAddress

RPayInf

RTRcd

RRsvRcd

RTaxiRcd RTaxi

RRsvTaxi

RRsv

RTaxiRsvd

RTvlRsv

RDrivedBy

DriverRecordRDriverRcd RDriver

Rct

Figure I.1: Class diagram of the taxi-booking system.

are stated as follows:

1. The operator receives a phone call from the customer who would like to make a

reservation.

2. The operator asks when and where the customer needs the service.

3. The operator views available taxis at the time that the customer requires.

4. The operator chooses one taxi and reserves this taxi for the customer.

This typical booking scenario will be mimicked in the main method of the ALx code of

the system.

After a reservation is made, this reservation is in a ‘Created’ state and awaits being

served. After the driver has delivered the customer to the right place at right time as

the reservation requires, the payment is made. In respect to contract customers, they do

not need to make the payment on the spot and the incurred fare would be added to the

balance of their account, which may be cleared in period. For casual customers, they

must make the payment on the spot. Anyway, the driver would inform the operator

218



entry { }
exit { }

Created

entry { self.paid = 
true; }
exit { }

Paid

entry {  }
exit { }

Suspended

entry { self.complete 
=true;  }
exit { }

Completed

cancel 

complete

suspend

pay

entry { delete-object 
self; }
exit { }   

Cancelled

Figure I.2: State chart of ‘Reservation’ of the taxi-booking system.

of the payment situation, either paid or suspended, using radio communication. The

state-chart of reservation is composed in Figure I.2;

219



class TaximanagementSystem {
ReservationRecord rsvRcd; 
TaxiRecord taxiRcd; 
CTRecord ctRcd; 
DriverRecord driverRcd; 
int rsv_id; 
void init(){

rsvRcd = self  RRsvRcd; 
taxiRcd = self   RTaxiRcd; 
ctRsv = self  RTRcd; 
driverRcd = self  RDriver; 
rsv_id = 0; 

}
void reserve(int taxiID, String slot, Traveller traveller){

Taxi taxi = self  RTaxiRcd  Rtaxi (selected. Id == taxiID); 
create-object rsv of Reservation; 
rsv.id = rsv_id + 1; 
rsv.timeSlot = slot; 
link rsv  traveller (RTvlRsv); 
link rsv  taxi (RTaxiRsvd); 
link rsv  rsvRcd(RRsvRcd); 

}
cancelBooking(int rsvId){

Reservation rsv; 
rsv = rsvRcd  RRsv (selected.id = rsvId);
rsv >> cancelled; 

}
addTaxi(Taxi taxi){

link taxi  taxiRcd (RTaxi); 
}
remove(Taxi taxi){

if ( (taxi  RTaxiRsvd) != null ){
prints(“error: cannot removed”);
return;  

}
if ( (taxi  RDriver) != null ){

prints(“error: cannot removed”);
return;  

}
delete-object taxi; 

}

addDriver(Driver driver){
link driver  driverRcd (RDriver) ; 

}
removeDriver(Driver driver){

delete-object driver; 
}
addCT(ContractTraveller ct){

link ct  ctRcd (RTRcd) ; 
}
removeCT(ContractTraveller ct){

delete-object ct; 
}
availableTaxi(String time){

select-many taxis of Taxi; 
for(int i=0; i< taxis.length; i++){

Taxi taxi = taxis.get(i); 
Reservation rsvs = taxi  RTaxiRsvd(! selected.timeSlot. 

equals(time)); 
if (rsvs !=null)

prints(“Taxi” + id +”available”); 
        } 

}
}

class CTRecord { }
class ReservationRecord { }
class TaxiRecord { }
class DriverRecord { }

class Reservation {
boolean paid = false; 
 int id;  
String timeSlot; 
 int mileage;  int price; 

int totalFare() { return price * mileage; }
clearPayment(int mileage){ 

self >> Paid; 
}
suspend () { self >> Suspended; }

}

class Taxi { int id;  }

class Driver{
String name; 
int id; 

}

class Traveller{
 String name;

 }  

class ContractTraveller extends Traveller{
int id; 
int discount;
 int balance;   

}

class CasualTraveller extends Traveller { }
class Address{ String postcode;  String street; }
class PaymentInf{ String bankInf; }

// Relation declarations. 
relation RTRcd TaxiManagementSystem CTRecord; 
relation RTRcd TaxiManagementSystem 
ReservationRecord; 
relation RTaxiRcd TaxiManagementSystem  TaxiRecord; 
relation RDriverRcd TaxiManagementSystem 
DriverRecord;

relation Rct CTRecord  ContractTraveller; 
relation RPayInf ContractTraveller  PaymentInf; 
relation RLivingAddress Traveller  Address; 
relation RPickupAddress Reservation  Address;

relation RTvlRsv Reservation  Traveller; 
relation RTaxiRsvd Taxi  Reservation;
relation RRsvTaxi ReservationRecord  Taxi;   
relation RRsv Reservation  Taxi;  
relation RdrivedBy Taxi  Driver;   
relation RDriver DriverRecord  Taxi;    

// Event declarations
event cancel TaxiManagementSystem   Reservation; 
event complete Driver  Reservation; 
event suspend Driver  Reservation; 
event pay Driver  Reservation; 

Figure I.3: ALx code of the taxi-booking system (Part 1).

220



state_machine_of Reservation{
initial-state: Created
state Created{

entry {  }
exit {  }

}
state Suspended  {

entry { }
exit { }

}
state Completed{

entry { self.completed = true;   }
exit {  }

}
state Paid {

entry {self.paid = true;  }
exit { }  

}
state Cancelled{

entry { delete-object self;  }
exit { }

}

transition-table{
Created,  complete,  Completed; 
Completed,  pay,  Paid; 
Completed, suspend, Suspended; 
Created,  cancel, Cancelled; 

}
}

// The main method of various use scenarios. 
main(){
// configure data store; 

TaxiManagementSystem tsm;  
CTRecord ctRcd; 
ReservationRecord rsvRcd; 
TaxiRecord taxiRcd;
DriverRecord driverRcd; 

create-object tsm of TaxiManagementSystem; 
create-object ctRcd of CTRecord; 
create-object rsvRcd of ReservationRecord; 
create-object taxiRcd of TaxiRecord; 
create-object driverRcd of DriverRecord; 

link tsm  ctRcd (RTRcd);
link tsm  rsvRcd (RRsvRcd);
link tsm  TaxiRcd (RTaxiRcd);
link tsm  DriverRecord (RDriverRcd);    

 // configure 8 example ContracTravelelrs. 
ContractTraveller ct0;  ContractTraveller ct1;  ...
ContractTraveller ct5;

create-object ct0 of ContractTraveller ; 
create-object ct1 of ContractTraveller;

    …
ct0.id = 0; ct0.discount = 0.75; ct0.balacne = 0; 
ct1.id =1; ct1.discount = 0.80; ct1.balance = 100; 
…

PaymentInf p0; PaymentInf p1; …; PaymentInf p7; 
create-object p0 of PaymentInf; 
create-object p1 of PaymentInf; 
…
Address a0; Address a1; …; Address A7; 
create-object a0 of Address; 
create-object a1 of Address; 
…
link ct0  ctRcd (Rct);
link ct0  p0 (RPayInf); 
link ct0  a0 (RLivingAddress);
link ct1  ctRcd (Rct);
link ct1  p1 (RPayInf); 
link ct1  a1 (RLivingAddress);
…

// configure 8 taxis
Taxi t0; Taxi t1; …;  Taxi t7; 
create-object t0 of Taxi; 
create-object t1 of Taxi; 
…
t0.id = 0; t1.id =2; …; t7.id = 7; 
link t0  rsvRcd (RRsvTaxi); 
link t1  rsvRcd (RRsvTaxi); 
…
link t0  taxiRcd (RTaxi);
link t1  taxiRcd (RTaxi);  
…

// configure 8 drivers
Driver d0; Driver D1; …; Driver D7; 
create-object d0 of Driver; 
create-object d1 of Driver; 
...
d0.name = “Smith”; d0.id = 0; d1.name = “Jack”; d1.id = 1; …; 
link d0  t0 (RDrivedBy); 
link d1  t1 (RDrivedBy); 
...  
link d0  driverRcd (RDriver);
link d1  driverRcd(Rdriver); 
... 
// Make reservation. 
   // 1) create a reservation. 
Reservation rsv ; 
create-object rsv of Reservation; 
rsv.id = 0; 
  // 2) view available taxi; 

tsm.availabeTaxi();
//3) operator chooses a taxi for the reservation. 
// For example, t4 is available. 
link rsv  t4 (RTaxiRsvd); 
rsv.timeSlot =”30.15.24.09.2008”; 
rsv.price = 2; 
// If it is a contract traveller, the traveller says his ID no. 
// suppose id = 3; 

Traveller traveller = tms  RTRcd  Tct (selected.id=3); 
link rsv  traveller (RTaxiRsvd);
// passenger is delivered, then he makes payment. 
rsv.clearPayment(); 

   }

Figure I.4: ALx code of the taxi-booking system (Part 2).

221



+send() : void
+receive() : void

-informed : bool
C000

R000001

R001000 R002003

R003002

+send() : void
+receive() : void

-informed : bool
C001 R998999

R999888 +send() : void
+receive() : void

-informed : bool
C999

C002-C998 omited

entry { 
self.informed = true; 
self. send(); }

exit  {  }

Informed

entry {  }
exit   {  }

Uninformed

entry {  }
exit   {  }

Acknowledged
informed ack

Figure I.5: xUML model of the toy message relay system.

I.2 Toy Message Relay System

The toy message relay system is a hypothetical system that models the relaying of a

message between 1000 persons. A person relays a message to the next person, who

subsequently acknowledges this message, updates its state to be ‘informed’ and then

relays the message to the next person. This process will go on until all persons are

informed of this message. The xUML model for this system is large-scale: the system

has 1000 classes and each class has a state machine. The xUML model is illustrated in

Figure I.5. The XMI file for this model is generated automatically. The corresponding

ALx code of this system is illustrated in Figure I.6.

I.3 Traffic Light System

The traffic light system is made up of two objects: a Controller and a LightsPanel.

The former, which can be regarded as a timer, controls the latter by sending a timing

message on a regular basis. For instance, when one minute passes, the controller sends

an event called ‘timePassed’. And the LightsPanel responds to the event by switching

on a light as desired after turning off the current illuminated one. The xUML model,

ALx code and generated Java code of this system are shown in Figure I.7.

222



class C000{
    boolean informed;
    String msg = “msg”; 

void send(){
C001 next = self  R0000001; 
next.receive(msg);

        prints(“C000 completes sending.”); 
}
void receive(String msg){

        self.msg = msg; 
        self >> informed; 
         prints(“C000 competes receiving.”); 

}
}

class C001{
    boolean informed;
    String msg = “msg”; 

void send(){
C002 next = self  R0010002; 
next.receive(msg);

        prints(“C001 complete sending.”); 
}
void receive(String msg){

        self.msg = msg; 
        C000 previous = self  R001000;

 self >> informed; 
        send-event ack0   previous; 
         prints(“C001 competes receiving.”); 

}
}

class C002{
    boolean informed;
    String msg = “msg”; 

void send(){
C003 next = self  R002003; 
next.receive(msg);

        prints(“C002 completes sending.”); 
}
void receive(String msg){

        self.msg = msg; 
        C001 previous = self  R002001;

 self >> informed; 
        send-event ack1   previous; 
         prints(“C002 competes receiving.”); 

}
}

// The  C003 ... C 998 are
//  omitted here. 

class C999{
    boolean informed;
    String msg = “msg”; 

void send(){
}
void receive(String msg){

        self.msg = msg; 
        C998 previous = self  R999998

 self >> informed; 
        send-event ack998  previous; 
         prints(“C999 competes receiving.”); 

}
}

// The state machine of C000. 

state_machine_of C000{
state Uninformed {

entry{
           self.informed = true: 
           send(); 
        }

exit { }
}

state Informed{
entry {}
exit {}

}

state Acknowledged {
entry{
   prints(“acknowledged”); 
}

exit { }
}
initial_state: Ignorant 
transition_table{

Uninformed, informed, Informed;  
Informed, ack0, Acknowledged

}
}
// The state charts  of C001-C999 are 
// ignored here. 

// Relation declarations. 

relation R000001 C000  C001; 
relation R001000 C001  C000; 
relation R001002 C001  C002; 
relation R002001 C002  C001; 
…
relation R998999 C998  C999; 
relation R999998 C999  C998; 

// Event declarations. 

event ack0 C001  C000; 
event ack1 C002  C001; 
…
event ack998 C999  C998; 
….

// The main method of this system. 

main(){
C000 c000;
C000 c001; 
C000 c002;
C000 c003;
…
C999 c999;

create-object c000 of  C000; 
create-object c001 of  C001; 
create-object c002 of  C002; 
…
create-object c999 of  C999; 

link c000   c001 (R000001); 
link c001   c000 (R001000); 
link c001   c002 (R001002); 
link c002   c001 (R002001); 
...
link c998   c999 (R998999); 
link c999   c998 (R999998); 

c000.send();
}

Figure I.6: ALx code of the toy message relay system.

223



send()
interval
Controller

display(in lid : int)

redOn : bool
greenOn : bool
orangeOn : bool

LightsPanel
control

timePassed timePassed 

timePassed 

Controller LightsPanelcontrol

red_showing

entry { display(0); }

green_showing

entry { display(1); }

orange_showing

entry { display(2); }

class Controller{
    int interval = 3; 
    void send(){
        LightsPanel panel; 
        panel = self   control; 
        send-event timePassed   panel;  } 
}
class LightsPanel{
     bool redOn; bool greenOn ; bool orangeOn; 
     void display (int lid){
      //same to the ALx code embedded in xUML model.  }
}
relation control Control   LightPanel
event timePassed Control   LightsPanel
state-machine of LightsPanel {
   state red_showing{ entry{ display(0) ; }  }
    state green_showing { … }
    state orange_showing { … }
    initial_state: red_showing
    transition_table
     { red_showing,  timePassed,  green_showing;
        green_showing, timePassed, orange_showing; 
        orange_showing, timePassed, red_showing;  }
     }}
main(){   // for model simulation. 
    Controller controller; LightsPanel panel;  
    create-object controller of Controller; 
    create-object panel of LightsPanel; 
   controller.interval = 10000; 
    link controller   panel(control) ; 
    int i = 0;  int interval = controller.interval; 
    while (true) {    i ++; 
        if (i == interval) { controller.send(); i = 0 ; } 
    } }

class Controller extends ALObject 
implements IALObject, IController{

int interval;
void send () {

LightsPanel panel;
panel = this.getLinkedObject(RIDs.Rcontrol);
panel.stateTransitted (EIDs.EtimePassed);           

     }
}

Class LightsPanel extends ALObject 
implements IALObject, ILIghtsPanel{

bool redOn; 
bool greenOn; 
bool orangeOn; 
void display(int id){

if ( lid = 0 ) {
 redOn = true; 
greenOn = false; 
orangeOn = false; 

}
if ( lid = 1 ) {

redOn = false; 
 greenOn = true; 
 orangeOn = false; 

}

a) xUML model of traffic light system (input model) b)  ALx code generated 

//ALx code
if ( lid == 0 ) {
   redOn = true; 
   greenOn = false; 
   orangeOn = false; 
}
if ( lid == 1 ) {
   redOn = false; 
   greenOn = true; 
   orangeOn = false; 
}
if ( lid == 2 )  { ... }

1) class collaboration diagram 2) embedded ALx code for 
display(in lid : int) of LightsPanel 

3) state chart for LightsPanel

1) class diagram

c) Java code generated

if ( lid =2 )  { 
redOn = false; 
 greenOn = false; 
 orangeOn = true; 

}
}

}

// The main class for model simulation. 
public class Main {
    public static void main(String[] argus){
        Controller controller; 

LightsPanel panel;  
        controller = Controller.newinstance();  

 panel = LightsPanel.newinstance();  
controller = 10000; 

         Rcontrol.newLink(controller, panel); 
  int i = 0; 
  int interval = controller.interval; 
 while (true) {    i ++; 

if (i == interval) { controller.send(); i = 0 ; } 
}

    }
} 

Figure I.7: Models and code of the traffic light system.

224



getCost() : int

did : int
paid : bool
volume  : int

Delivery

start()
stop()

Motor

reading : int
Meter

pid : int
Pump

lastDid : int
DeliveryRecord

name : String
Attendant

RPumpMotor RPumpMeter

triggerPressed()
triggerDepressed()

Gun

RPumpGun

refill ()

lowFlag : int
tankLevel : int
emptyThreshold : int

Tank

RAttPump

RAttRecord

RAttTank

RRcdDelivery

RDeliveryPumpRTankPump

Figure I.8: Class diagram of the gas station system.

I.4 Gas Station System

The gas station system is intended to simulate a filling station, where there are an

attendant watching the fuelling process of customers, and a pump, equipped with a

filling gun, a motor and a meter, which is controlled by the filling gun. When a customer

enters the gas station, takes off the filling gun and presses the trigger, then a message

is sent to the attendant for the approval of starting the fuelling process. After the

attendant approves it, the pump starts its motor and then gas is pumped into the

customer’s car. When the customer releases the trigger, this means the fuelling is

completed and the motor is commanded to stop. When fuelling is started, the system

checks whether the tank has enough fuel. If not, a message is sent to the attendant to

refill the tank.

225



entry { }
exit { }

Pumping
entry { }
exit { }

ReportMeterReading

Idle
entry {  }
exit { }

entry {  }
exit { }

WaitForApproval
TriggerPressed

Approved

TriggerDepressed

entry {  }
exit { }

Wait
RequestApproval

TankEmptied

DelieveryFinished

entry{ 
 Attendant attendant = self -> Attendant (RAttPump) ; 
 send-event RequestApproval -> attendant; 
}

entry{
 Attendant attendant = self -> Attendant(RAttPump) ; 
 Tank tank = self -> Tank (RTankPump); 
 If (tank.tankLevel < tankEmptyThreshold ) {
   send-event TankEmptied -> attendant;  
   self >> Idle;
 }  else {
   Motor motor = self -> Motor(RPumpMotor); 
   motor.start();  
 }
}
exit {
 Motor motor = self -> Motor(RPumpMotor; 
 motor.stop();  
) 

entry{
 Attendant attendant = self -> Attendant (RAttPump); 
 send-event DeliveryFinished ->  attendant; 
 self >> Idle;
}

entry{
 Tank tank = self -> Tank (RAttTank); 
 tank.refill();
 self>>Wait; 
}

entry{
 DeliveryRecord dr = self -> Deliveryrecord (RAttRecord);  
 Meter meter = self -> Pump (RAttPump) -> Meter (RPumpMeter); 
 int reading = meter.reading; 
 create-one delivery of Delivery; 
 delivery.did = self.lastDid + 1; 
 delivery.volum = reading; 
 devliery.paid = true; 
 link delivery -> dr (RRcdDelivery);  
 self >> Wait; 
}

entry { 
 Pump pump = self -> Pump (RAttPump); 
 send-event Approved -> pump; 
 self >> Wait; 
}

entry {   }
exit { }

FillingTank

entry { }
exit { }

ApproveFilling

entry {   }
exit { }

ProcessingBill

(a) The State chart of Attendant

(b) The State chart of Pump

Figure I.9: State charts of the gas station system.

226



class Attendant {
String name; 

}
class Tank {

boolean emptyFlag; 
int emptyThreshold; 
int tankLevel; 
void init(){

lowFlag = false; 
tankLevel = 1000; 

}
void refill(){

tankLevel = 1000; 
}

 }
class Pump {

int pid = 1; 
 }
class Gun {

void triggerPressed(){
Pump pump = self  Pump (RPumpGun); 
send-event triggerPressed   pump; 

}
void triggerDepressed(){

Pump pump = self  Pump (RPumpGun); 
send-event triggerDepressed   pump; 

}
 }
class Motor { 

boolean running = false; 
void start(){ running = true; }
void stop(){ running = stop; }

}
class Meter { }
class DeliveryRecord{ }
class Delivery {

int Did;  
boolean paid = false; 
int volume; 
int price = 1; 

int getCost() { return price * volume;  }
suspend () { self >> Suspended; }

}

// Relation declarations are omitted. 
// Event declarations are omitted. 

state_machine_of Pump{
initial-state: Idle

state Idle  {
entry {self.paid = true;  }
exit { }  

}
state WaitForApproval{

 entry{ 
Attendant attendant = self -> Attendant (RAttPump) ; 
Send-event RequestApproval -> attendant; 

} 
exit {  }

}

state Pumping  {
entry{

Attendant attendant = self -> Attendant(RAttPump) ; 
Tank tank = self -> Tank (RTankPump); 
 If (tank.tankLevel < tank.emptyThreshould ) {

send-event TankEmptied -> attendant;  
self >> Idle; 

   } else {
Motor motor = self -> Motor(RPumpMotor); 
motor.start();  

}
exit {

Motor motor = self -> Motor(RPumpMotor; 
 motor.stop();  

}
}

}
state ReportMeterReading  {

 entry{
 Attendant attendant = self -> Attendant (RAttPump); 
 send-event DeliveryFinished ->  attendant; 
 self >> Idle;
  } 

exit {  }
}

transition-table{} 
}

}
// The state machine of Attendant is omitted here. 
// The main method. 
main(){
// configure the initial state of the system. 

Attendant attendant;  Tank tank;  DeliveryRecord drcd; 
Pump pump;  Gun gun;   Motor motor;  Meter meter; 

create-object attendant of Attendant; 
create-object tank of Tank; 
tank.init(); 
create-object drcd of DeliveryRecord; 
create-object pump of Pump; 
create-object gun of Gun;
create-object motor of Motor; 
create-object meter of Meter;  

link attendant  pump (RAttPump);
link attendant  tank (RAttTank);
link attendant  drcd (RAttRecord);
link tank  pump (RTankPump);   
link pump  gun (RPumpGun);
link pump  motor (RPumpMotor);
link pump  meter (RPumpMeter);    

 // configure 8 example ContracTravelelrs. 
gun.triggerPressed(); 
// hold the gun trigger for some time, we using the following 
// code to simulate the fuelling. 
int i = 0; 
while ( I < 10000 ) {

meter. reading = meter.reading + 1; 
        tank.tankLevel  = tank.tankLevel -1; 

}
gun.triggerDepressed(); 

} 

Figure I.10: ALx code of the gas station system.

227



I.5 Elevating System

In Chapter 4, we have presented the xUML model and the corresponding ALx code of

the elevating system. Here the generated Java code of this system is provided.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘ Con t r o l l e r ’ .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface ICon t r o l l e r extends IALObject {
public void upButPressed ( ) ;
public void downButPressed ( ) ;
public void doorButPressed ( ) ;
public void stopButPressed ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;
import java . u t i l . L inkedLis t ;
import java . u t i l . I t e r a t o r ;

public class Cont r o l l e r extends ALObject implements ICon t r o l l e r {
public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;
public stat ic Cont ro l l e r newinstance ( ){

Cont ro l l e r temp = new Cont r o l l e r ( ) ;
recordObject ( temp ) ;

return temp ;
}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;

}

public void upButPressed ( ) {
Elevator e l e v a t o r ;
e l e v a t o r = ( Elevator ) this . getLinkedObject (RIDs .RR4) ;
e l e v a t o r . s tateTransmitted (EIDs .EMoveUp ) ;

}

public void downButPressed ( ){
Elevator e l e v a t o r ;
e l e v a t o r = ( Elevator ) this . getLinkedObject (RIDs .RR4) ;

228



e l e v a t o r . s tateTransmitted (EIDs .EMoveDown ) ;
}

public void doorButPressed ( ) {
Elevator e l e v a t o r ;
e l e v a t o r = ( Elevator ) this . getLinkedObject (RIDs .RR4) ;
e l e v a t o r . s tateTransmitted (EIDs . ESwitchDoor ) ;

}

public void stopButPressed ( ) {
Elevator e l e v a t o r ;
e l e v a t o r = ( Elevator ) this . getLinkedObject (RIDs .RR4) ;
e l e v a t o r . s tateTransmitted (EIDs . EStop ) ;
LinkedList<IALObject> mbs = this . getLinkedObjects (RIDs .RR2) ;
( ( IMovingButton ) (mbs . get ( 0 ) ) ) . de I l l uminate ( ) ;
( ( IMovingButton ) (mbs . get ( 1 ) ) ) . de I l l uminate ( ) ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘Door ’ .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface IDoor extends IALObject {
public void open ( ) ;
public void c l o s e ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class Door extends ALObject implements IDoor{

public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;

public stat ic Door newinstance ( ){
Door temp = new Door ( ) ;
recordObject ( temp ) ;

return temp ;
}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;

}
public stat ic void de s t roy In s tance (ALObject a lo ){

ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;
}

public void open ( ){
System . out . p r i n t l n ("The door is called to open" ) ;

229



}

public void c l o s e ( ){
System . out . p r i n t l n ("The door is called to close" ) ;

}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘ DoorSwitchButton ’ .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface IDoorSwitchButton extends IALObject {
public void pres sed ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class DoorSwitchButton extends ALObject
implements IDoorSwitchButton {

public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;
public stat ic DoorSwitchButton newinstance ( ){

DoorSwitchButton temp = new DoorSwitchButton ( ) ;
recordObject ( temp ) ;

return temp ;
}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;

}

public void pres sed ( ){
Cont r o l l e r c o n t r o l l e r ;
c o n t r o l l e r = ( Cont r o l l e r ) this . getLinkedObject (RIDs .RR1) ;
c o n t r o l l e r . doorButPressed ( ) ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘DownButton ’ .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

230



public interface IDownButton extends IMovingButton , IALObject{
public void pres sed ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;
public class DownButton extends ALObject

implements IDownButton , IMovingButton {
public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;

// The r e f e r e n c e to an ob j e c t f o r the super c l a s s mechanism .
// This ob j e c t i s used to de l e ga t e the p r op e r t i e s o f
// the s up e r c l a s s . Note we use ’new ’ to c r e a t e such an ob j e c t
// in s t ead o f us ing newinstance ( ) because the l a t e r w i l l add
// t h i s ob j e c t to the ob j e c t l i s t , the former not .

private MovingButton pa r en t de l e ga t o r = new MovingButton ( ) ;

public stat ic DownButton newinstance ( ){
DownButton temp = new DownButton ( ) ;
recordObject ( temp ) ;

return temp ;
}
public stat ic void recordObject (ALObject a lo ){

ob j e c tL i s t . addObject ( a l o ) ;
// Only the c l a s s o f a super c l a s s has the next l i n e .
MovingButton . recordObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;
MovingButton . de s t r oy In s tance ( a lo ) ;

}
public void pres sed ( ){

Cont r o l l e r c o n t r o l l e r ;
c o n t r o l l e r = ( Cont r o l l e r ) this . getLinkedObject (RIDs .RR2) ;
c o n t r o l l e r . downButPressed ( ) ;
this . s e t I l l um ina t ed ( true ) ;

}

public void de I l l uminate ( ) {
pa r en t de l e ga t o r . de I l l uminate ( ) ;

}

public void i l l um ina t e ( ) {
pa r en t de l e ga t o r . i l l um ina t e ( ) ;

}

public boolean ge t I l l umina t ed ( ) {
return pa r en t de l e ga t o r . g e t I l l umina t ed ( ) ;

231



}

public void s e t I l l um ina t ed (boolean value ) {
pa r en t de l e ga t o r . s e t I l l um ina t ed ( va lue ) ;

}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
//From the ALx c l a s s ‘ E levator ’ .
package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface IE l eva to r extends IALObject {
public void move(boolean d i r e c t i o n ) ;
public void stop ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class Elevator extends ALObject
implements IALObject , IE l eva to r {

public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;
public stat ic Elevator newinstance ( ){

Elevator temp = new Elevator ( ) ;
recordObject ( temp ) ;

return temp ;
}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;

}

public Elevator ( ){
sm = this .new SM( ) ;

}

public void move(boolean d i r e c t i o n ) {
i f ( d i r e c t i o n == true )

System . out . p r i n t l n ("The elevator is moving up" ) ;
i f ( d i r e c t i o n == fa l se )

System . out . p r i n t l n ("The elevator is moving down" ) ;
}

public void stop ( ) {
System . out . p r i n t l n ("The elevator is stopped." ) ;

}

232



/∗ The f o l l ow i ng i s f o r s imu la t ing the s t a t e machine ∗/
class SM extends StateMachine {

public State StoppedWithDoorOpened =
new StoppedWithDoorOpened ( ) ;

public State StoppedWithDoorClosed =
new StoppedWithDoorClosed ( ) ;

public State MovingUp = new MovingUp ( ) ;
public State MovingDown = new MovingDown ( ) ;

public SM(){
this . addEntry ( StoppedWithDoorOpened ,

EIDs . ESwitchDoor , StoppedWithDoorClosed ) ;
this . addEntry ( StoppedWithDoorClosed ,

EIDs .EMoveUp, MovingUp ) ;
this . addEntry ( StoppedWithDoorClosed ,

EIDs .EMoveDown, MovingDown ) ;
this . addEntry ( StoppedWithDoorClosed ,

EIDs . ESwitchDoor , StoppedWithDoorOpened ) ;
this . addEntry (MovingUp ,

EIDs . EStop , StoppedWithDoorClosed ) ;
this . addEntry (MovingDown ,

EIDs . EStop , StoppedWithDoorClosed ) ;
cu r r en tS ta t e = this . StoppedWithDoorOpened ;

}

class StoppedWithDoorOpened extends State {
public void entry ( ) {

System . out . p r i n t l n ("Enter State: StoppedWithDoorOpened" ) ;
Door door ;
door = (Door ) ( Elevator . this . getLinkedObject (RIDs .RR5) ) ;
door . open ( ) ;

}
public void e x i t ( ){

Door door ;
door = (Door ) ( Elevator . this . getLinkedObject (RIDs .RR5) ) ;
door . c l o s e ( ) ;
System . out . p r i n t l n ("Exit State: StoppedWithDoorOpened" ) ;

}
}

class StoppedWithDoorClosed extends State {
public void entry ( ){

System . out . p r i n t l n ("Enter State: StoppedWithDoorClosed" ) ;
}
public void e x i t ( ){

System . out . p r i n t l n ("Exit State: StoppedWithDoorClosed" ) ;
}

}

class MovingUp extends State {

233



public void entry ( ){
System . out . p r i n t l n ("Enter State: MovingUp" ) ;
move( true ) ;

}
public void e x i t ( ){

System . out . p r i n t l n ("Exit State: MovingUp" ) ;
stop ( ) ;

}
}
class MovingDown extends State {

public void entry ( ){
System . out . p r i n t l n ("Enter State: MovingDown" ) ;
move( fa l se ) ;

}
public void e x i t ( ){

System . out . p r i n t l n ("Exit State: MovingDown" ) ;
stop ( ) ;

}
}

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘ StopButton ’ .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface IStopButton extends IALObject {
public void pres sed ( ) ;

}
package e l e v a t o r ;

import l i b r a r y . ∗ ;

public class StopButton extends ALObject
implements IStopButton {

public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;

public stat ic StopButton newinstance ( ){
StopButton temp = new StopButton ( ) ;
recordObject ( temp ) ;

return temp ;
}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;

234



}

public void pres sed ( ){
Cont r o l l e r c o n t r o l l e r ;
c o n t r o l l e r = ( Cont r o l l e r ) this . getLinkedObject (RIDs .RR3) ;
c o n t r o l l e r . stopButPressed ( ) ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// From the ALx c l a s s ‘UpButton ’ .
package e l e v a t o r ;
import l i b r a r y . ∗ ;

public interface IUpButton extends IMovingButton , IALObject {
public void pres sed ( ) ;

}

package e l e v a t o r ;
import l i b r a r y . ∗ ;
import l i b r a r y . Objec tL i s t ;

public class UpButton extends ALObject
implements IALObject , IUpButton , IMovingButton {

public stat ic Objec tL i s t o b j e c tL i s t = new Objec tL i s t ( ) ;
private MovingButton pa r en t de l e ga t o r = new MovingButton ( ) ;
public stat ic UpButton newinstance ( ){

UpButton temp = new UpButton ( ) ;
recordObject ( temp ) ;
return temp ;

}

public stat ic void recordObject (ALObject a lo ){
ob j e c tL i s t . addObject ( a l o ) ;
MovingButton . recordObject ( a l o ) ;

}

public stat ic void de s t roy In s tance (ALObject a lo ){
ob j e c tL i s t . de l e t eOb j ec t ( a l o ) ;
MovingButton . de s t r oy In s tance ( a lo ) ;

}

public void pres sed ( ){
Cont r o l l e r c o n t r o l l e r ;
c o n t r o l l e r = ( Cont r o l l e r ) this . getLinkedObject (RIDs .RR2) ;
c o n t r o l l e r . upButPressed ( ) ;
i l l um ina t e ( ) ;

}

public void de I l l uminate ( ) {
pa r en t de l e ga t o r . de I l l uminate ( ) ;

}

235



public void i l l um ina t e ( ) {
pa r en t de l e ga t o r . i l l um ina t e ( ) ;

}

public boolean ge t I l l umina t ed ( ) {
return pa r en t de l e ga t o r . g e t I l l umina t ed ( ) ;

}

public void s e t I l l um ina t ed (boolean value ) {
pa r en t de l e ga t o r . s e t I l l um ina t ed ( va lue ) ;

}
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// The generated c l a s s e s f o r r e l a t i o n s .

package e l e v a t o r ;
import l i b r a r y . ∗ ;

import l i b r a r y . ALObject ;

public class RR1 extends ALRelation {
public stat ic int r i d = RIDs .RR1;
public stat ic int oneEnd = CIDs . DoorSwitchButton ;
public stat ic int anotherEnd = CIDs . Con t r o l l e r ;

public stat ic int getAnotherEnd ( ){
return anotherEnd ;

}

public stat ic int getOneEnd ( ){
return oneEnd ;

}

public stat ic int getRid ( ){
return r i d ;

}

public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
ALLink temp = new ALLink ( r id , o1 , o2 ) ;
o1 . addLink ( temp ) ;
o2 . addLink ( temp ) ;
return null ;

}
}

package e l e v a t o r ;
import l i b r a r y . ∗ ;

236



public class RR2 extends ALRelation {
public stat ic int r i d = RIDs .RR2;
public stat ic int oneEnd = CIDs . MovingButton ;
public stat ic int anotherEnd = CIDs . Con t r o l l e r ;

public stat ic int getAnotherEnd ( ){
return anotherEnd ;

}

public stat ic int getOneEnd ( ){
return oneEnd ;

}

public stat ic int getRid ( ){
return r i d ;

}

public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
ALLink temp = new ALLink ( r id , o1 , o2 ) ;
o1 . addLink ( temp ) ;
o2 . addLink ( temp ) ;
return null ;

}
}
package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class RR3 extends ALRelation {
public stat ic int r i d = RIDs .RR3;
public stat ic int oneEnd = CIDs . StopButton ;
public stat ic int anotherEnd = CIDs . Con t r o l l e r ;

public stat ic int getAnotherEnd ( ){
return anotherEnd ;

}

public stat ic int getOneEnd ( ){
return oneEnd ;

}

public stat ic int getRid ( ){
return r i d ;

}

public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
ALLink temp = new ALLink ( r id , o1 , o2 ) ;
o1 . addLink ( temp ) ;
o2 . addLink ( temp ) ;
return null ;

}
}

237



package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class RR4 extends ALRelation {
public stat ic int r i d = RIDs .RR4;
public stat ic int oneEnd = CIDs . Con t r o l l e r ;
public stat ic int anotherEnd = CIDs . Elevator ;

public stat ic int getAnotherEnd ( ){
return anotherEnd ;

}

public stat ic int getOneEnd ( ){
return oneEnd ;

}

public stat ic int getRid ( ){
return r i d ;

}

public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
ALLink temp = new ALLink ( r id , o1 , o2 ) ;
o1 . addLink ( temp ) ;
o2 . addLink ( temp ) ;
return null ;

}
}

package e l e v a t o r ;
import l i b r a r y . ∗ ;

public class RR5 extends ALRelation {
public stat ic int r i d = RIDs .RR5;
public stat ic int oneEnd = CIDs . Elevator ;
public stat ic int anotherEnd = CIDs . Door ;

public stat ic int getAnotherEnd ( ){
return anotherEnd ;

}

public stat ic int getOneEnd ( ){
return oneEnd ;

}

public stat ic int getRid ( ){
return r i d ;

}

public stat ic ALLink newLink (ALObject o1 , ALObject o2 ){
ALLink temp = new ALLink ( r id , o1 , o2 ) ;
o1 . addLink ( temp ) ;
o2 . addLink ( temp ) ;

238



return null ;
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
// The f o l l i n g ‘ ID ’ c l a s s e s are generated
// based on the in fo rmat ion obta ined in the
// f i r s t −pass scan o f the ALx code o f the system .
package e l e v a t o r ;

public class CIDs {
// Class ID
public f ina l stat ic int Cont r o l l e r = 11001;
public f ina l stat ic int Elevator = 11002 ;
public f ina l stat ic int Door = 11003 ;
public f ina l stat ic int MovingButton = 11004;
public f ina l stat ic int UpButton = 11005;
public f ina l stat ic int DownButton = 11006;
public f ina l stat ic int DoorSwitchButton = 11007;
public f ina l stat ic int StopButton = 11008 ;

}

package e l e v a t o r ;

public class RIDs {
// Re lat ion Id .
public f ina l stat ic int RR1 = 22001 ;
public f ina l stat ic int RR2 = 22002 ;
public f ina l stat ic int RR3 = 22003 ;
public f ina l stat ic int RR4 = 22004 ;
public f ina l stat ic int RR5 = 22005 ;

}

package e l e v a t o r ;

public class EIDs {

//Event ID .
public f ina l stat ic int ESwitchDoor = 33001;
public f ina l stat ic int EMoveUp = 33002 ;
public f ina l stat ic int EMoveDown = 33003;
public f ina l stat ic int EStop= 33004;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
/∗ Main Class ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

239



package e l e v a t o r ;

public class Main {

/∗∗
∗ @param args
∗/

public stat ic void main ( St r ing [ ] a rgs ) {

DoorSwitchButton doorSwitchButton ;
UpButton upButton ;
DownButton downButton ;
StopButton stopButton ;
Con t r o l l e r c o n t r o l l e r ;
E levator e l e v a t o r ;
Door door ;

doorSwitchButton= DoorSwitchButton . newinstance ( ) ;
upButton = UpButton . newinstance ( ) ;
downButton = DownButton . newinstance ( ) ;
stopButton = StopButton . newinstance ( ) ;
c o n t r o l l e r = Cont r o l l e r . newinstance ( ) ;
e l e v a t o r = Elevator . newinstance ( ) ;
door = Door . newinstance ( ) ;

RR1. newLink ( doorSwitchButton , c o n t r o l l e r ) ;
RR2. newLink ( upButton , c o n t r o l l e r ) ;
RR2. newLink ( downButton , c o n t r o l l e r ) ;
RR3. newLink ( stopButton , c o n t r o l l e r ) ;
RR4. newLink ( c on t r o l l e r , e l e v a t o r ) ;
RR5. newLink ( e l eva to r , door ) ;

System . out . p r i n t l n ("1. One building staff" +
"enters the elevator..." ) ;

System . out . p r i n t l n ("2. He clsoed the door..." ) ;
doorSwitchButton . pre s sed ( ) ;

System . out . p r i n t l n ("3. He pressed the upButton" +
"to go up... " ) ;

upButton . pre s s ed ( ) ;

System . out . p r i n t l n ("4. For some reason, he stops" +
" the elevator in the middle way..." ) ;

stopButton . pre s sed ( ) ;

System . out . p r i n t l n ("5. He presses the down" +
" button to move down..." ) ;

downButton . pre s sed ( ) ;

System . out . p r i n t l n ("6. He stops somewhere..." ) ;

240



stopButton . pre s sed ( ) ;

System . out . p r i n t l n ("7. He opens the door" +
"of the elevator..." ) ;

doorSwitchButton . pre s sed ( ) ;

System . out . p r i n t l n ("8. He steps out of the elevator." ) ;
}

}

241



Appendix J

Excerptions of ATL

Transformations

This appendix presents an excerpt of the xUML-to-ALx transformation rules for two

purposes: to give the reader some idea of ATL and to show that xUML is intuitively

mapped to ALx. For a complete manual of ATL, the reader is referred to [12].

------------------------------------------------------------------------

-- State Machine Translation

------------------------------------------------------------------------

rule State{

from

input:xumlmm!UState

to

output:alxmm!AStateDeclaration(

entry <- input.entry.specification,

exit <- input.exit.specification,

name <- input.name

)

}

rule StateMachine{

from

input:xumlmm!UStateMachine

242



to

output:alxmm!AStateMachineDeclaration(

state <- input.states,

ofclass <- input.ofclass,

initialState <- input.getInitialState()

)

do{

output.transitionTable <- thisModule.

NewTransitionTable(input.transitions);

}

}

-- called rule.

rule NewTransitionTable(transitions:Set(xumlmm!UTransition)){

to

output: alxmm!ATransitionTable(

)

do{

output.entries <- transitions->

collect(t|thisModule.NewTransitionEntry(t));

output; -- this line is necessary.

}

}

-- called rule

rule NewTransitionEntry(transition:xumlmm!UTransition){

to

output: alxmm!ATransitionEntry(

sourceState <- transition.source.name,

targetState <- transition.target.name,

-- the name of a transition is the triggering event name.

triggerEvent <- transition.name

)

do{

243



output; -- this line is necessary.

}

}

-- This helper looks for the name of the initial state.

-- CONTEXT: xumlmm!UStateMachine

-- RETURN: String

helper context xumlmm!UStateMachine def: getInitialState() : String =

let states:Set(xumlmm!UState) = self.states in

states->any(state|state.initial = true).name

244



Bibliography

[1] Official Apache Ant Project Website. Http://ant.apache.org/. Inspected on

20/05/09.

[2] Official Eclipse M2M Project Website. Http://www.eclipse.org/modeling/m2m/.

Inspected on 20/05/09.

[3] Official Eclipse M2T Project Website. Http://www.eclipse.org/modeling/m2t/.

Inspected on 20/05/09.

[4] Official Eclipse Modeling Framework Project (EMF) Website.

Http://www.eclipse.org/modeling/emf/. Inspected on 20/05/09.

[5] Official Eclipse Website. Http://www.eclipse.org/. Inspected on 20/05/09.

[6] Official JavaCC Website. Http://javacc.dev.java.net/. Inspected on 20/05/09.

[7] Official RAT Project Website. Http://www.cin.ufpe.br/˜rat/. Inspected on

20/05/09.

[8] H. Abelson and J. Sussman. Structure and Interpretation of Computer Programs.

McGraw-Hill, 2 edition, 1996.

[9] S. Abramsky and A. Jung. Domain Theory. Handbook of Logic in Computer

Science, 3:1–168, 1994.

[10] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley

Reading, Mass, 1977.

[11] J. M. Álvarez, T. Clark, A. Evans, and P. Sammut. An Action Semantics for

MML. In M. Gogolla and C. Kobryn, editors, Proceedings of The Unified Model-

ing Language, Modeling Languages, Concepts, and Tools, 4th International Con-

245



ference, UML 2001., volume 2185 of Lecture Notes in Computer Science, pages

2–18, Toronto, Canada, October 2001. Springer.

[12] ATLAS group. ATL: Atlas Transformation Language, ATL User Manual, Version

0.7, 2006. Available at http://www.eclipse.org. Inspected on 20/05/09.

[13] F. Belina and D. Hogrefe. The CCITT-specification and description language

SDL. Computer Networks and ISDN Systems, 16(4):311–341, 1989.

[14] J. A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM Press New

York, NY, USA, 1989.

[15] A. Bondorf and J. Palsberg. Compiling Actions by Partial Evaluation. In Pro-

ceedings of the Conference on Functional Programming Languages and Computer

Architecture, pages 308–317. ACM New York, NY, USA, 1993.

[16] A. Bondorf and J. Palsberg. Generating Action Compilers by Partial Evaluation.

Journal of Functional Programming, 6(02):269–298, 2008.

[17] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User

Guide. Addison-Wesley, 2nd edition, 2005.

[18] E. Börger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML Activity

Diagrams. In R. Teodor, editor, Proceedings of Algebraic Methodology and Soft-

ware Technology. 8th International, Conference, AMAST 2000, volume 1816 of

Lecture Notes in Computer Science, pages 293–308, Iowa City, Iowa, USA,, 2000.

Springer.

[19] E. Börger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State

Machines. In Y. Gurevich, P. W. Kutter, M. Odersky, and L. Thiele, editors,

Proceedings of Abstract State Machines, Theory and Applications, International

Workshop, ASM 2000, volume 1912 of Lecture Notes in Computer Science, pages

223–241, Monte Verita Switzerland, 2000. Springer.

[20] D. F. Brown, H. Moura, and D. A. Watt. Actress: An Action Semantics Di-

rected Compiler Generator. In U. Kastens and P. Pfahler, editors, Proceedings

246



of Compiler Construction, 4th International Conference on Compiler Construc-

tion, CC’92, volume 641 of Lecture Notes in Computer Science, pages 95–109,

Paderborn, Germany, October 1992. Springer.

[21] D. F. Brown and D. A. Watt. JAS: A Java Action Semantics. In Proceedings

of 2nd International Workshop on Action Semantics., pages 43–56. University of

Aarhus, Denmark: BRICS NS, 1999.

[22] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse Modeling Framework. Pearson

Education, 2003.

[23] R. G. Cattell and D. K. Barry. The Object Data Standard: ODMG 3.0. Morgan

Kaufmann, 2000.

[24] N. Chomsky. Three Models for the Description of Language. Information Theory,

IRE Transactions on Information Theory, 2(3):113–124, 1956.

[25] T. Clark, A. Evans, and S. Kent. The Metamodeling Language Calculus: Foun-

dation Semantics for UML. In H. Hußmann, editor, Proceedings of Fundamental

Approaches to Software Engineering, 4th International Conference, FASE 2001

Held as Part of the Joint European Conferences on Theory and Practice of Soft-

ware, ETAPS 2001, volume 2029 of Lecture Notes in Computer Science, pages

17–31, Genova, Italy, 2001. Springer.

[26] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A

Formal Semantics of Concurrency and Communication in Real-time UML. In

F. Boer, M. Bonsangue, S. Graf, and W. Roever, editors, Proceedings of Formal

Methods for Components and Objects, First International Symposium, FMCO

2002, Revised Lectures, volume 2582 of Lecture Notes in Computer Science, pages

72–99, Leiden, The Netherlands, November 2003. Springer.

[27] T. Dinh-Trong, S. Ghosh, and R. France. JAL: Java like Action Language. De-

partment of Computer Science, Colorado State University, 2006.

[28] G. Engels, R. Heckel, and S. Sauer. UML: A Universal Modeling Language.

In M. Nielsen and D. Simpson, editors, Proceedings of Application and Theory

of Petri Nets 2000, 21st International Conference, ICATPN 2000, volume 1825

247



of Lecture Notes in Computer Science, pages 24–38, Aarhus, Denmark, 2000.

Springer.

[29] A. Evans and S. Kent. Core Meta-Modeling Semantics of UML: the pUML Ap-

proach. In R. B. France and B. Rumpe, editors, Proceedings of The Unified Model-

ing Language - Beyond the Standard, Second International Conference, UML’99,

volume 1723 of Lecture Notes in Computer Science, pages 140–155, Fort Collins,

CO, USA, 1999. Springer.

[30] R. Farrow. LINGUIST-86: Yet Another Translator Writing System Based on At-

tribute Grammars. In Proceedings of the 1982 SIGPLAN symposium on Compiler

construction, SIGPLAN ’82, pages 160–171, New York, NY, USA, 1982. ACM.

[31] S. Flake and W. Müller. An ASM Definition of the Dynamic OCL 2.0 Semantics.

In T. Baar, A. Strohmeier, M. D. Moreira, and S. J. Mellor, editors, Proceedings

of The Unified Modelling Language: Modelling Languages and Applications, 7th

International Conference, UML 2004, volume 3273 of Lecture Notes in Computer

Science, pages 226–240, Lisbon, Portugal, 2004. Springer.

[32] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a Formal Modeling

Notation. Computer Standards & Interfaces, 19(7):325–334, 1998.

[33] E. Gammar, R. Helm, R. Johnson, and J. Vlissides. Design Pattern. Addison-

Wesley, 1995.

[34] T. Gehrke, U. Goltz, and H Wehrheim. The Dynamic Models of UML: Towards

a Semantics and its Application in the Development Process, November 1998.

Institut für Informatik Universität Hildesheim.

[35] D. W. Gonzalez. Ada Programmer’s Handbook. Benjamin-Cummings Publishing

Co., Inc., Redwood City, CA, USA, 1991.

[36] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification, the

Java Series . Addison-Wesley Professional, 2nd edition, 2005.

[37] D. Grune, C. Jacobs, K. Langendoen, and H. Bal. Modern Compiler Design. John

Wiley & Sons, Inc. New York, NY, USA, 2000.

248



[38] B. S. Hansen and J. U. Toft. The Formal Specification of ANDF: An Application

of Action Semantics. In Proceedings of the First International Workshop on Action

Semantics, number NS-94-1 in BRICS Notes, pages 34–42, Edinburgh, Scotland,

April 1994.

[39] D. Harel and S. Maoz. Assert and Negate Revisited: Modal Semantics for UML

Sequence Diagrams. Software and System Modeling, 7(2):237–252, 2008.

[40] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “Se-

mantics”? IEEE Computer, 37(10):64–72, 2004.

[41] S. Haustein and J. Pleumann. OCL as Expression Language in an Action Seman-

tics Surface Language. In O. Patrascoiu, editor, Proceedings of OCL and Model

Driven Engineering, pages 99–113. University of Kent, 2004.

[42] R. M. Herndon and V. A. Berzins. The Realizable Benefits of a Language Pro-

totyping Language. IEEE Transactions on Software Engineering, 14(6):803–809,

1988.

[43] M. Ibrahim, A. Fedorec, and K. Rennolls. Executable UML – UML 2 – the Need

for xUML. Available at http://www.kc.com. Inspected on 20/05/09, Feb. 2003.

[44] S. C. Johnson. Yacc: Yet Another Compiler Compiler. UNIX Programmer’s

Manual, AT&T Bell Laboratories, 2:353–387, 1979.

[45] F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification. In

R. Gorrieri and H. Wehrheim, editors, Proceedings of Formal Methods for Open

Object-Based Distributed Systems, 8th IFIP WG 6.1 International Conference,

FMOODS 2006., volume 4037 of Lecture Notes in Computer Science, pages 171–

185, Bologna, Italy, June 2006. Springer.

[46] F. Jouault and I. Kurtev. Transforming Models with ATL. In J. Bruel, edi-

tor, Proceeding of Satellite Events at the MoDELS 2005 Conference, MoDELS

2005 International Workshops, Doctoral Symposium, Educators Symposium, vol-

ume 3844 of Lecture Notes in Computer Science, pages 128–138, Montego Bay,

Jamaica, October 2006. Springer.

249



[47] Kabira Technologies, Inc. Kabira Action Semantics, 2004. Available at

http://www.kabira.com. Inspected on 20/05/09.

[48] U. Kastens, B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Generator,

volume 141 of Lecture Notes in Computer Science. Springer, New York., 1982.

[49] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: the Model Driven

Architecture: Practice and Promise. Addison-Wesley, 2005.

[50] K. Koskimies, O. Nurmi, and J. Pakki. The Design of a Language Processor

Generator. Software Practice and Experience, 18(2):107–135, 1988.

[51] S. Kuske. A Formal Semantics of UML State Machines Based on Structured

Graph Transformation. In M. Gogolla and C. Kobryn, editors, Proceedings of

The Unified Modeling Language, Modeling Languages, Concepts, and Tools, 4th

International Conference, UML 2001, volume 2185 of Lecture Notes in Computer

Science, pages 241–256, Toronto, Canada, 2001. Springer.

[52] M. Kyas, H. Fecher, F. Boer, J. Jacob, J. Hooman, M. Zwaag, and H. Kugler.

Formalizing UML Models and OCL Constraints in PVS. Electr. Notes Theor.

Comput. Sci., 115:39–47, 2005.

[53] S. B. Lassen, P. D. Mosses, and D. A. Watt. An Introduction to AN-2: The

Proposed New Version of Action Notation. In D. P. Mosses and H. Moura, editors,

Proceedings of the Third International Workshop on Action Semantics, AS 2000,

BRICS Notes Series, pages 19–36, Recife, Brazil, May 2000. Dept. of Comput.

Sci. of Aarhus.

[54] L. Lavagno, G. Martin, and B. V. Selic. UML for Real: Design of Embedded

Real-Time Systems. Springer, 1st edition, 2003.

[55] X. Li, Z. Liu, and J. He. A Formal Semantics of UML Sequence Diagrams. In

Proceedings of Australian Software Engineering Conference, ASWEC’2004, pages

168– 177, Melbourne, Australia, 2004. IEEE Computer Sciety.

[56] S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Interpreters.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 333–343. ACM New York, NY, USA, 1995.

250



[57] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[58] W. E. McUmber and H. C. Cheng. A General Framework for Formalizing UML

with Formal Languages. In Proceedings of the 23rd International Conference on

Software Engineering, ICSE ’01, pages 433–442, Washington, DC, USA, 2001.

IEEE Computer Society.

[59] S. J. Mellor and M. J. Balcer. Executable UML: A Foundation for Model-Driven

Architecture. Addison-Wesley, 2003.

[60] S. J. Mellor and S. Tockey. Action Semantics for UML. Response to OMG RFP

ad/98-11-01 OMG ad/1002-08-04. Project Technology, Inc, 2001.

[61] S. J. Mellor, S. Tockey, R. Arthaud, and P. Leblanc. Software-Platform-

Independent, Precise Action Specifications for UML. Project Technology, Inc,

2000.

[62] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group

(OMG), 2003. Available at http://www.omg.org. Inspected on 20/05/09.

[63] R. Monson-Haefel and A. K. Weissinger. Enterprise JavaBeans. O’Reilly &

Associates, Inc. Sebastopol, CA, USA, 2003.

[64] P. D. Mosses. Unified Algebras and Modules. In Proceedings of the 16th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL’ 89, pages 329–343. ACM, 1989.

[65] P. D. Mosses. Action Semantics. Cambridge University Press, 1992.

[66] P. D. Mosses. Unified Algebras and Abstract Syntax. In H. Ehrig, editor, Recent

Trends in Data Type Specification, 9th Workshop on Specification of Abstract Data

Types, Caldes de Malavella, 1992, volume 785 of Lecture Notes in Computer Sci-

ence, pages 280–294, Caldes de Malavella, Spain, October 1994. Springer-Verlag.

[67] P. D. Mosses. Formal Semantics of Programming Languages: An Overview.

Electr. Notes Theor. Comput. Sci., 148(1):41–73, 2006.

251



[68] P. D. Mosses and D. A. Watt. Pascal Action Se-

mantics, 1993. University of Aarhus. Available at

ftp://ftp.brics.dk/Projects/AS/Papers/MossesWatt93DRAFT/pas-0.6.ps.Z.

Inspected on 13/07/09.

[69] H. Moura. An Implementation of Action Semantics (Summary). In Proceedings

of the 4th International Symposium on Programming Language Implementation

and Logic Programming, PLILP ’92, Lecture Notes in Computer Science, pages

477–478, London, UK, 1992. Springer-Verlag.

[70] H. Moura. Action Notation Transformations. PhD thesis, University of Glasgow,

1993.

[71] H. Moura and L. Menezes. The Abaco System: An Algebraic Based Action

Compiler. In P. D. Mosses and D. A. Watt, editors, Proceedings of The Second

International Workshop on Action Semantics, number NS-99-3 in BRICS Notes

Series, pages 143–154, March 1999.

[72] T. J. Mowbray and R. Zahavi. The Essential CORBA: Systems Integration Using

Distributed Objects. John Wiley & Sons, Inc. New York, NY, USA, 1995.

[73] H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduc-

tion. Wiley, J., 1992.

[74] I. Ober. More Meaningful UML Models. In Proceedings of TOOLS Pacific 2000:

37th International Conference on Technology of Object-Oriented Languages and

Systems, pages 146–157, Sydney, Australia, 2000. IEEE Computer Society.

[75] Object Management Group (OMG). Common Ware House (CWM) Specification,

2001. Available at http://www.omg.org. Inspected on 20/05/09.

[76] Object Management Group (OMG). Object Constraint Language Version 2.0,

2005. Available at http://www.omg.org. Inspected on 20/05/09.

[77] Object Management Group (OMG). Meta Object Facility (MOF) Core Specifica-

tion, Version 2.0, 2006. Available at http://www.omg.org. Inspected on 20/05/09.

[78] Object Management Group (OMG). Unified Modeling Language: Infrastructure,

version 2.0, 2006. Available at http://www.omg.org. Inspected on 20/05/09.

252



[79] Object Management Group (OMG). Unified Modeling Language: Superstructure,

version 2.0, 2006. Available at http://www.omg.org. Inspected on 20/05/09.

[80] Object Management Group (OMG). MOF 2.0/XMI Mapping, Version 2.1.1,

2007. Available at http://www.omg.org. Inspected on 20/05/09.

[81] Object Management Group (OMG). Business Process Definition MetaModel

(BPDM), Common Infrastructure: OMG Adopted Specification, 2008. Available

at http://www.omg.org. Inspected on 20/05/09.

[82] Object Management Group (OMG). Unified Modeling Language Specifica-

tion.Version 1.5 formal/03-03-01, March 2003. Available at http://www.omg.org.

Inspected on 20/05/09.

[83] P. Ørbæk. OASIS: An Optimizing Action-Based Compiler Generator. In P. Fritz-

son, editor, Proceedings of Compiler Construction, 5th International Conference,

CC’94., volume 786 of Lecture Notes in Computer Science, pages 1–15, Edinburgh,

April 1994. Springer.

[84] J. Palsberg. An Automatically Generated and Provably Correct Compiler for

A Subset of Ada. In J. R. Cordy and M. Barbacci, editors, Proceedings of the

1992 International Conference on Computer Languages, ICCL’92,, pages 117–

126, Oakland, California, April 1992. IEEE.

[85] T. Pittman and J. Peters. The Art of Compiler Design: Theory and Practice.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1992.

[86] G. D. Plotkin. A Structural Approach to Operational Semantics. J. Log. Algebr.

Program., 60-61:17–139, 2004.

[87] Project Technology, Inc. BridgePoint Action Language (AL) Manual, 2005. Avail-

able at http://www.projtech.com. Inspected on 20/05/09.

[88] R. W. Rasmussen. A Framework for the UML Meta Model. PhD thesis, Insititute

for Informatics, University of Bergen, April 2000. Page: 26–28.

[89] G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics of

UML Supporting Its Multiview Approach. In H. Hußmann, editor, Proceedings

253



of Fundamental Approaches to Software Engineering, 4th International Confer-

ence, FASE 2001 Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2001, volume 2029 of Lecture Notes in Computer

Science, pages 171–186, Genova, Italy, 2001. Springer.

[90] M. Richters and M. Gogolla. On Formalizing the UML Object Constraint Lan-

guage OCL. In T. W. Ling, S. Ram, and M. L. Lee, editors, Proceedings of

Conceptual Modeling , 17th International Conference on Conceptual Modeling

Proceedings, ER ’98, volume 1507 of Lecture Notes in Computer Science, pages

449–464, Singapore, 1998. Springer.

[91] C. Rossi, M. Enciso, and I. P. de Guzmán. Formalization of UML State Machines

Using Temporal Logic. Software and System Modeling, 3:31–54, 2004.

[92] D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-

ment. William C. Brown Publishers, Dubuque, IA, USA, 1986.

[93] B. Selic. On the Semantic Foundations of Standard UML 2.0. In M. Bernardo and

F. Corradini, editors, Proceedings of Formal Methods for the Design of Real-Time

Systems, International School on Formal Methods for the Design of Computer,

Communication and Software Systems, SFM-RT 2004, volume 3185 of Lecture

Notes in Computer Science, pages 181–199, Bertinoro, Italy, September 2004.

Springer.

[94] J. L. Sierra and A. Fernandez-Valmayor. A Prolog Framework for the Rapid

Prototyping of Language Processors with Attribute Grammars. Electronic Notes

in Theoretical Computer Science, 164(2):19–36, 2006.

[95] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming

Languages: A Laboratory Based Approach. Addison-Wesley, 1995.

[96] H. Störrle. Semantics and Verification of Data Flow in UML 2.0 Activities. Electr.

Notes Theor. Comput. Sci., 127(4):35–52, 2005.

[97] H. Storrle and J. H. Hausmann. Towards a Formal Semantics of UML 2.0 Activi-

ties. In P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Proceedings of Software

Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik, volume 64 of

LNI, pages 117–128, Essen, November 2005. GI.

254



[98] J. E. Stoy. Denotational Semantics: the Scott-Strachey Approach to Programming

Language Theory. MIT Press Cambridge, MA, USA, 1977.

[99] International Telecommunication Union. Specification and Description Language

(SDL). Technical Report Z.100, ITU, 1999.

[100] M. van den Brand, J. Iversen, and P. D. Mosses. An Action Environment. Sci.

Comput. Program., 61(3):245–264, 2004.

[101] A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic

Specification Approach. Language, 5:307–322.

[102] A. van Deursen and P. D. Mosses. ASD: The Action Semantic Description Tools.

In M. Wirsing and M. Nivat, editors, Proceedings of Algebraic Methodology and

Software Technology, 5th International Conference, AMAST ’96., volume 1101 of

Lecture Notes in Computer Science, pages 579–582, Munich, Germany, July 1996.

Springer.

[103] V. Vitolins and A. Kalnins. Semantics of UML 2.0 Activity Diagram for Business

Modeling by Means of Virtual Machine. In Proceedings of Ninth IEEE Interna-

tional Enterprise Distributed Object Computing Conference, EDOC 2005, pages

181–194, Enschede, The Netherlands, 2005. IEEE Computer Society.

[104] D. A. Watt. An Action Semantics of Standard ML. In Proceedings of the 3rd

Workshop on Mathematical Foundations of Programming Language Semantics,

pages 572–598, London, UK, 1988. Springer-Verlag.

[105] D. A. Watt. JOOS Action Semantics. Version 1. Available at

http://www.dcs.gla.ac.uk/˜daw/publications/JOOS.ps. Inspected on 20/05/09,

Oct. 1997.

[106] D. A. Watt and M. Thomas. Programming Language Syntax and Semantics.

Prentice Hall, Hertfordshire, UK., 1991.

[107] I. Wilkie, A. King, M. Clarke, C. Weaver, C. Raistrick, and P. Francis. UML

ASL Reference Guide: ASL Language Level 2.5. Kennedy Carter, Ltd., revision

d edition, 2005.

255



[108] M. Yang, G. Michaelson, and R. Pooley. Semantics for a UML Action Langauge.

In Proceedings of XII Brazilian Symposium on Programming Languages, pages

129–142. Brazilian Computer Society, August 2008.

256


