Helping Students Understand Polymorphic Type Errors

Yang Jun

Heriot-Watt University

Dept of Computing & Electrical Engineering, Riccarton, EH14 4AS

ceejy1@cee.hw.ac.uk

Greg Michaelson

Heriot-Watt University

Dept of Computing & Electrical Engineering, Riccarton, EH14 4AS

greg@cee.hw.ac.uk
 http://www.cee.hw.ac.uk/~greg

Phil Trinder

Heriot-Watt University

Dept of Computing & Electrical Engineering, Riccarton, EH14 4AS

trinder@cee.hw.ac.uk
 http://www.cee.hw.ac.uk/~trinder

Abstract

Polymorphic type checking algorithm efficiently locate type errors in programs, but users find error reporting from such algorithms hard to comprehend. We are investigating the development of a new polymorphic type checker that reports type errors in a more understandable form. Here we present the results of an experiment into human checking of incorrectly-typed polymorphic programs. We hope to identify the sequences of techniques people use to explain different categories of error. An outline of a type error explanation system incorporating our heuristics is given.

Keywords

Polymorphic types; Functional programming; Standard ML; type inference.

1. Introduction
We have observed considerable difficulty amongst students in understanding the sources of type errors in polymorphic typed languages[5]. The W algorithm[2] on which such systems are based, is designed to detect the type errors effectively, but is poor in supporting user’s understanding[6]. For example, the following Standard ML function is an incorrect attempt to define the map function that applies its function argument f to each element of its list argument (x::xs):

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

8th Annual Conference on the Teaching of Computing, Edinburgh

© 2000 LTST Centre for Information and Computer Science

fun m f [] = [] |

 m f (x :: xs) = (f xs) :: m f x

Here, f is wrongly applied to the tail of the list xs instead of to the head x. This results in a clash between the types deduced for x and xs on the left of the function. Given this example, NJSML 110.6 reports:

stdIn:1.1-3.5 Error: right-hand-side of clause doesn't agree with function result type [circularity]

 expression: 'Z list -> 'Y list

 result type: 'Z -> 'Y list

 in declaration:

 m = (fn arg => (fn <pat> => <exp>))

Note the:

1. Use of the system type variables ‘Y and ‘Z, which do not appear in the original function;

2. Failure to identify explicitly the clash between the left hand and right hand sides of the recursive function;

3. Error messages refer to the abstract rather than the concrete syntax.

In contrast, a person might find the error by comparing the left hand and the right hand sides of recursive definition of the second clause, and finding that the third argument in the left hand side is (x::xs) which is a list, but on the left hand side, in the application m f x, the third argument is an element of the list.

To support human understanding of type inference, especially for students to understand type errors, an empirical study of expert programmers in polymorphic type inference and type error explanation has been conducted. In the following sections, an overview of the experiment is presented and an outline of an explanation system incorporating human derived heuristics is given.

2. How Do People Explain Polymorphic Types?

We are interested in providing helpful explanations of polymorphic type errors, especially for naïve users. To that end we have conducted a small study of human type error explanation, where experts were video taped type checking a set of SML functions, following a “speak-aloud” protocol, to try to identify “best practice” as the basis for an automated system. [4] provides an overview of the experiment. Here, we focus on techniques used in identifying type errors.

2.1 Error classification

The questions in our experiment are drawn from the type checking problems that are set for 1st year Computer Science students[1]. Each question consists of an untyped function definition and the subject is required to explain why there is a type error. The errors can be classified as in Table 1:

Error label
Error classification

E-OVER
Unresolved overloading

E-GRTC
Ground type conflicts

E-CNST
Constructor type conflicts

E-LHRH
Inconsistencies between left and right hand sides of definitions

E-SWAP
Swapped bound variables

E-CASE
Inconsistencies between cases

E-UNIV
Non-universally quantified type variable

Table 1 - Error classification

2.2 Subject classification

7 subjects took part in the experiment. The subjects all have at least post-graduate Computer Science experience, programmed extensively in polymorphic typed languages, implemented Hindley-Milner type checkers or worked extensively with them when implementing functional languages, and tutored undergraduate students. Thus they may be considered experts rather than beginners. Subjects were given up to 30 minutes to complete 34 questions.

2.3 Human techniques

Initial inspection of the sessions led to identification of 14 major error explanation/inference techniques:

· Locating Concrete type evidence

GRND: locating ground type;

OVER: locating overloaded operators;

CNST: locating other “system’’ operators of known types e.g. constructors;

· Using type skeleton

USKL: constructing type skeleton for whole function corresponding to the number of arguments;

LSKL: constructing and refine type skeleton for local construct;

SKEL: refining function type skeleton.

· 2D inspection of text

PATT: locating commonalties across patterns;

TOPD: analyzing top-down, from nodes to leaves of AST;

BOTU: analyzing bottom up, from leaves to nodes of AST;

F: searching forwards and from a known type;

B: searching backwards from a know type;

· Using type variable

TVAR: using type variable;

· Argument type and body type

BODY: identifying argument type from use in function body;

ARG: identifying body construct type from known argument type.

3. Experiment analysis and result

Table 2 summarizes the numbers of questions attempted and technique instances identified:

Subjects
Question attempts
Attempts/subject
Technique count
Count/ attempt

7
235
33.57
1663
7.08

Table 2 - Total questions attempted and technique counts

3.1 Question types and technique sequences

3.1.1 Error classification and techniques

Table 3 shows the 4 most frequently used techniques, which account for between 54.4% and 70.5% of all techniques for the indicated error class:

Error class
1
2
3
4
Total%

E-OVER
CNST 19.1%
OVER 14.0%
SKEL 11.0%
PATT 10.3%
54.4%

E-GRTC
CNST 27.8%
F 9.7%
USKL 9.4%
SKEL 8.1%
55.0%

E-CASE
GRND 15.6%
CNST 14.9%
PATT 14.9%
USKL 10.5%
55.9%

E-LHRH
CNST 20.8%
USKL 14.6%
GRND 12.3%
PATT 12.2%
59.9%

E-SWAP
CNST 22.6%
USKL 14.7%
PATT 11.7%
GRND 11.3%
60.3%

E-UNIV
GRND 23.7%
PATT 15.8%
F 15.8%
CNST 7.9%
63.2%

E-CNST
CNST 38.1%
F 12.4%
PATT 10.5%
USKL 9.5%
70.5%

Table 3 - Top 4 most frequent used techniques for each error classification and percentage of all technique uses

3.1.2 Relating error classifications and techniques

We find that different techniques, and sequences of techniques are used to explain different classes of type error. In particular, our experiment shows the following patterns, where the figures are the number of times a technique is used as a percentage of the total number of techniques used for questions in this error class.

1. Locating type of constructor(CNST) is most used in the explanation of E-CNST(38.1. This reflects that structures connected by a constructor are treated as a unit.
2. Locating ground type(GRND) is most used in E-CASE(15.6%). This reflects people tend to compare the differences in the use of ground types in the cases of function definitions first.
3. The use of type variables(TVAR) is minimal in all classes(0.3% - 5.3%). It is least in E-GRTC(0.3%). This reflects people seeking concrete evidence before using type variables.
4. Techniques for locating concrete type evidence (GRND+OVER+CNST) are used considerably in all error classes(31.6%-46.7%). Using concrete type first can simplify the process of inference, since concrete types need no further refinement.
5. The total percentage of uses of type skeletons (USKL+ LSKL + SKEL) from (21.7% - 27.3%) is similar in all cases, that is most used in E-OVER(27.3%) and E-LHRH(27.1%), least in E-UNIV(21.7%).
6. Constructing a type skeleton(USKL) is most used in E-LHRH(14.6%), E-SWAP(14.7%). This reflects the fact that type skeletons can help to compare and record the current type and history type in those cases. It is used equally in E-GRTC(9.4%), E-CNST(9.5%), and E-OVER(9.9%), but is least used in E-UNIV(7.9%).
7. The greatest use of refining type skeleton(SKEL) is 40.3% in overloading errors(E-OVER). This reflects that people tend evaluate the type skeleton during resolving the overloading. Its use is similar in E-CASE(34%) and E-GRTC(33.5%), and in E-LHRH(24.7%), E-UNIV(24.4%) and E-SWAP(23%), and is least used in E-CNST(20%). This reflects that people depend less on elaboration of type skeletons in explanation of E-CNST than in explanation of other errors.
8. Locating commonalties across patterns(PATT) is most used in E-UNIV(15%), and E-CASE(14.9)%, used equally in E-LHRH(12.2%), E-SWAP(11.7%) and E-CNST(10.5%); but is least used in E-GRTC(5.9%). This reflects that least effect is required to compare patterns in explanation of ground type errors.
9. Locating overloading operators(OVER) is most used in E-OVER(14.0%), and least used in E-CNST(0.0%), and E-UNIV(0.0%).
10. Analysing top-down and bottom up(BOTU+BOTU) is most used in E-GRTC(13.7%) and least used E-UNIV(5.3%).
11. Searching forwards and backwards(F+B) is most used in E-UNIV(18.4%), and used equally in cases: E-CNST(13.4%), E-GRTC(12.5%), E-LHRH(11.1%), E-SWAP(10%), E-OVER(9.9%). This reflects that people tend to search forwards and backwards to find and compare the uses of non-universally quantified variable.

4. Implementation of an explanation system

We are constructing a type inference system that attempts to provide more intuitive error explanations, using the results of the foregoing experiment. In particular we try to explain type inference with minimum substitution of type variables, and with maximum relationship to the source code responsible for the types.

4.1 Using Spatial relationships to reason about types

People tend to use their knowledge of properties of each sub-term to decide their types. In particular, the following spatial relationships are used to decide the sub-term types:

1. All the argument patterns in the same position have the same type;

2. All the function definition bodies patterns have the same type;

3. All the arguments at the same position of the applications of lambda bound variable have the same type;

4. All the elements in a list have the same type;

5. The expression between then and else and the expression after else have the same type;

6. All the recursive function applications in the definition body have the same type.

In our implementation, to explain why sub-expressions e
[image: image1.wmf]1

 and e
[image: image2.wmf]2

have the same type, we may try to find a 2D relationship of e
[image: image3.wmf]1

 and e
[image: image4.wmf]2

 in the program. In contrast, an explanation based on a standard inference algorithm will introduce type variables for e
[image: image5.wmf]1

 and e
[image: image6.wmf]2

 and explain that they are instantiated to the same type.

4.2 Constructing a type skeleton from the general structure

The experiment shows that people find the elaboration of a skeletal type during checking extremely helpful. In the implementation, the number of arguments is counted, and forms a general type skeleton, i.e. with blank as place holders for argument, with blanks separated by arrows. If an overloading is resolved or a ground type is found, the skeleton is instantiated. If an argument is found to be a function, a sub type skeleton is formed in the position of the placeholder of the argument.

4.3 Locating ground type first

The structure with known types and applications with ground type arguments are beacons[3]people use to simplify the process of type inference. In the implementation, those are searched first. After sub-expressions containing beacons are typed, a type assumption environment is formed, which contains the initial ground type information in the expression. Further typing is under this assumption environment.

4.4 Pattern match and 2D search

4.4.1 Pattern matching

If there is more than one clause in a recursive function definition, the definition has at least three “columns”. The first column is the name of the recursive function, which must be the same in all clauses; the last column is the body of the definition. The number of columns must be same in each clause, and the types of all the elements in each column should be unified.

4.4.2 Searching for uses of recursive function in each clause

In a recursive function definition, the use of the function in its definition body is an important beacon to deduce the type of the function. It is observed that the inconsistencies between right-hand side and left-hand side of definition is one of the most frequent errors the students make, especially the error of number of arguments inconsistencies in right-hand side and left-hand side. To mimic the human search for uses of the function in its body, all the uses of the recursive functions are listed, and their types are unified.

4.4.3 Searching for uses of argument variables in each clause

An argument variable can appear once in the argument part, but can be used many times in function body. Those uses should be consistent, i.e. it should be possible to unify their types.

4.5 Local typing

The system locates the ground type structures or known type “system” operators first, then type checks backwards and forwards to decide other structure’s types by their relation of these structures. Each structure is typed locally and the order of typing is decided by the location of structures of primitive types.

4.6 Refining the type skeleton

The uses of program variables that are not ground type are identified, and their types are decided by the relationships between other structures with known types.

Unlike the instantiation of type variables by the classic inference algorithms, the refining of a type skeleton happens only when a ground or function type is found.

5. Comparison of the type error explanation

We compare the error reporting of Standard ML of New Jersey, Version 110.0.6 and the explanation from our implementation using two examples. The examples are taken from [1]. The implementation is currently in progress. Here, the explanation information has not been translated from the crude prototype form into English, but has been slightly simplified in Figure 1 and Figure 2. Both examples show 2D inspection, minimum evidence and minimum type variable evoking.

5.1 CASE clash

The following example shows the incorrect use of > to compare two bool values:

fun f [] = false |

 f [v] = v |

 f (h1::h2::t) = h1>h2

SML reports the clash but offers no explanation:

stdIn:24.15 Error: overloaded variable not defined at type

 symbol: >

 type: bool

Our implementation reports:

Type conflicts in expressions:

 Fun f [] = false

 | f [v] = v

 | f (h1 ::(h2 :: t)) = h1 > h2

elements in a pattern have different types

one element type:

 bool = TypeOf false

 = TypeOf v

 = TypeOf (Hd (h1 ::(h2::t)))

 = TypeOf h1
other elements type:

 NumStr'a = TypeOf (Operand h1 > h2)

explaining that the type of h1 can be inferred as two conflicting types: bool and NumStr. NumStr is the overloaded type of number (int or real) or string. First of all, looking at the ground type value false in the third column, which is bool type, it matches v and h1>h2 in the third column. v is also used in the second column, where it matches (h1::(h2::t)): from this matching, h1 is bool type. Secondly, from h1>h2, h1 should be NumStr type.

5.2 Different number of arguments in recursive function definition

The following function, introduced above, has inconsistencies of left-hand and right-hand sides in the definition of a recursive function:

fun m f [] = [] |

 m f (x :: xs) = (f xs) :: m f x

SML reports:

stdIn:1.1-3.5 Error: right-hand-side of clause doesn't agree with function result type [circularity]

 expression: 'Z list -> 'Y list

 result type: 'Z -> 'Y list

 in declaration:

 m = (fn arg => (fn <pat> => <exp>))

SML gives abstract information about types and a pretty printed abstract syntax tree, but does not indicates where the type conflict occurred.
Our implementation reports:

Recursive function in the first clause pattern & body

 m(f)([])

Recursive function in the second clause pattern & body

 m(f)(x :: xs) , m(f)(x)

-------------- Error -----------------

Type conflicts in expressions:

 pattern match:

 m(f)(x :: xs)

and m(f)(x)

elements in a pattern have different types

there's one expression type:

'b = TypeOf x

other expressions type:

'b list = TypeOf xs

 = list of TypeOf (Hd x :: xs)

 = list of TypeOf x

 = 'b list

It searches the uses of the recursive function in each clause, and formalizes the left-hand side patterns to applications. It explains that the left-hand side and the right-hand side uses of the recursive m are conflicting at the second clause. The left-hand side use is the application form m(f) (x::xs) whereas the right-hand side is used in the application m (f) x. The conflict is at the third argument of the applications, i.e. between x and (x::xs).

6. Conclusion

We have reported an experiment into expert human type error explanation and given preliminary results from an explanation system based on these results. The novel feature of the system is that it attempts to explain type inference in a human-like way rather than the following mechanical inference. We show that explaining type errors using the spatial relation of sub-expressions can locate precise type conflict sites and minimize the use of abstract evidence such as type variables.

We now intend to complete our new explanation system, in particular investigating the generation of maximally succinct explanations from human-like techniques. We will then evaluate our system with novice users drawn from undergraduate functional programming classes.

7. Acknowledgements

We would like to thank all the participants in the type explanation experiments.

Yang Jun would like to thank ORS and Heriot-Watt University for supporting this research.

8. References
[1] Michaelson G., Elementary Standard ML, UCL Press (1995).
[2] Milner.R, A Theory of Type Polymorphism in Programming, Journal of Computer and Systems Sciences, 17(3),348-375(1978).
[3] Wiedenbeck S., Scholz J., Beacons: a Knowledge Structure in Program Comprehension, In G.Salvendy and M.J.Simth(Eds), Designing and Using Human-Computer Interfaces and Knowledge Based Systems, Elsevier, Amsterdam, 82-87, (1989).

[4] Yang J., Michaelson G. and Trinder P., How Do People Check Polymorphic Types? 12th Annual Meeting of the Psychology of Programming Interest Group, Corigliano Calabro, Edizioni Memoria, 67-77, (2000).
[5] Yang J. and Michaelson G., A Visualisation of Polymorphic Type Checking, Journal of Functional Programming, Vol. 10, No. 1, 57-75 (2000).
[6] Yang J., Michaelson G. and Trinder P., Explaining Polymorphic Types Through Visualisation, In S. Alexander and U. O’Reilly (Eds), Conference Proceeding: 7th Annual Conference on the Teaching of Computing, CTI Computing, University of Ulster, 73-77(1999).

_1018277129.unknown

_1018277255.unknown

