How human-like are “human-like” type error explanations?

Yang Jun

Department of Computing & Electrical Engineering

Heriot-Watt University
ceejy1@cee.hw.ac.uk

Greg Michaelson

Department of Computing & Electrical Engineering

Heriot-Watt University
greg@cee.hw.ac.uk

Phil Trinder

Department of Computing & Electrical Engineering

Heriot-Watt University
trinder@cee.hw.ac.uk

Abstract

We have constructed an explanation system for polymorphic types, motivated by analysis of human type explanations. Qualitative and quantitative comparison of human expert and our computer generated explanations of polymorphic type errors suggests that they are very similar.

Keywords

Polymorphic types; type error explanation; mechanical explanation.

1. Introduction

We have observed that students find the identification of polymorphic type errors very difficult[3]. Error messages from type checking systems based on Milner’s W algorithm[1] are opaque because they do not provide sufficient context for errors. Furthermore they often explain errors using artifacts of mechanical reasoning, like type variables, which do not appear in the original program.

Following an experiment[3,4] in which eight human experts were video taped while identifying types and type errors in Standard ML functions, we have constructed a system which uses human-like strategies to explain types[6].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

2nd Annual LTSN-ICS Conference, London

© 2001 LTSN Centre for Information and Computer Science

Here we discuss whether the mechanical explanations are indeed plausibly human-like, by qualitative and quantitative comparison with human explanations.

2. Human and mechanical error explanations

Consider the following SML function, which is supposed to find the sum of multiplying the values between 0 and n by some constant x:

fun f 1 x = 0.0 |

 f n x = n*x+f (n-1) x

In SML, all cases of a function must return the same type and implicit mixed mode arithmetic is not permitted. Here, the result in the base case is the real 0.0. However, in the recursion case, n must be integer as 1 is subtracted from it, so n*x must be integer, so n*x+f (n-1) x must be integer as well.

The W algorithm based Standard ML of New Jersey 110.0.06[2] reports:

stdIn:17.13-17.40 Error: types of rules don't agree [literal]

 earlier rule(s): int * int -> real

 this rule: int * int -> int

 in rule:

 (n,x) => n * x +

 (f (<exp> - <exp>)) x

stdIn:17.1-17.40 Error: right-hand-side of clause doesn't agree with function result type [literal]

 expression: int -> real

 result type: int -> int

 in declaration:

 f = (fn arg =>

 (fn <pat> => <exp>))

It has detected the error but reports using internal forms rather than the original text. The W algorithm based Edinburgh Standard ML system is considerably more succinct, if far less clear, in reporting:

Type clash in:

 (n,x)=>((n * x) + ((% %) x))

Looking for a: real

I have found a: int

Our system[6] reports:

Type conflicts are found between expressions:

 "0.0" and "n * x2 + (f(n - 1) x2)"

"0.0" and "n * x2 + (f(n - 1) x2)" have the same type - same RHS result

1: "0.0": real

"0.0" and "n * x2 + (f(n - 1) x2)" have the same type - same RHS result

1: "n * x2" and "f(n - 1) x2" have the same type as "n * x2 + (f(n - 1) x2)" - arguments/result of "+" have the same Number types

2: "n * x2" and "n" have the same type - result/arguments of "*" have the same Number types

3: "n" and "1" have the same type in "n - 1" - arguments/result of "-" have the same Number types

4: "1": int

Our system has identified a type mismatch between the two cases’ right hand sides. The first case 0.0 returns a real but the second case returns an integer. In the second case right hand side, in n-1, 1 is an integer, and both operands of - must have the same type so n must be an integer. Both operands and result of * must have the same type so n*x must be an integer. Both operands and the result of + must have the same type so n*x+f (n-1) x must be integer.

Now consider three human explanations of the same function. The first subject reported:

...+ and * are real operators ... anything minus 1 ... x but n has to be multiplied by x where * is a real operator so x should be real therefore you will get a type error there with x where it says n is real and its being applied to int * int -> int ... for the minus...

This is very like our system’s explanation. The subject concludes that + in the second case must be real arithmetic because the result of the first case is real, but notes that n is integer from n-1.

The second subject’s account is very similar:

Ok so ... n and x are the same as far as numeric type ... and they’re the same as the result ... f ... so it looks like f returns a real whereas n and x in the second case are integers because there’s an n-1 there which says that n must be integer...

In contrast, the third subject said:

Well we’ve got int and something, and real as the result and we’ve got ... we’re adding so we’re doing real arithmetic. We’ve got n times x and n is an integer because its the same as 1 so x has got to be an integer so that’s a clash with real addition.

Here the subject has found that n is integer because it is in the same pattern column as 1 on the left hand side of the cases. Otherwise, this explanation is again very like that of the other subjects and our system’s explanation.

We consider another example in section 4, and many more examples can be found in [8].

3. How human-like are mechanical type error explanations?

Our original experiment involved seven expert subjects discussing the location of type errors in 35 examples. We ran the same examples through our system and analysed the error explanations using the same protocol as for the human explanations. Broadly, we locate occurrences of 14 different basic techniques for type analysis. For further details see [4] and [5].

The system used a total of 247 basic techniques or an average of 7.1 techniques per problem. The seven experts used a total of 1663 techniques or an average of 237.6 per expert or 6.8 per expert-question. Thus, the mean number of techniques by our system is very close to the mean number of techniques used by the experts. In short, the system’s average behaviour is close to average expert behaviour for our cohort.

We group the basic techniques into four generic techniques to simplify presentation[3]. These are:

· type skeleton: The human constructs a skeletal type signature indicating the presence of function arguments and results but without fine type detail. They then use the skeleton to guide their traversal of the function to fill in the fine detail. The type skeleton for the example function in the previous section is _ -> _ -> _.
· concrete types: Here the human focuses on constants of known type, such as integer, real, boolean or string, system operators of known type, such as size of string, or system operators of known overloaded type, such as arithmetic and comparison. Concrete types in the example function are 1 and 0.0, and system operators are + and *.
· 2D inspection: unlike W algorithm based type checkers which analyse functions from left to right and from the leaves to the root of the abstract syntax tree, many humans scan a function as a 2D text. Thus, they may look for consistency down columns of patterns for the same formal parameter, and may scan from right to left across function cases. The explanation given by the third subject is a good example of 2D inspection of program text.
· type variable: the W algorithm introduces a new type variables construct in an abstract syntax tree which is not a ground type. In contrast, humans avoid the introduction of type variables.
Comparative generic technique use is summarised in Table 1. The Expert% column is the mean technique usage for all experts on all examples, expressed as a percentage of total expert technique usage. The Expert Std. Dev. column is the percentage standard deviation for all experts on all examples. The System% column is the percentage technique use for all examples.
Technique class
Expert%
Expert Std.Dev.
System%

Type skeleton
18.8
17.3
34.0

Concrete type
44.2
12.7
38.9

2D inspection
34.9
5.9
22.3

Type variable
2.1
2.6
4.9

Table 1: Expert and human generic technique use on 35 problems.

The system is within one standard deviation of the experts for type skeleton use. However, as the mechanical explanations are effectively guided from left to right across a type skeleton, we have simply counted two skeleton techniques (introduction + use) for each question. On average, the experts make less use of skeletons.

For concrete type use, the system is close to the humans. However, the system makes far less use of 2D inspection. This may be because of bias towards textual locality of explanation in the system, as we discuss in a further example below.

Finally, the system is close to one standard deviation of the experts for type variable introduction. In both cases, this represents a very low proportion of technique use. Once again, on average, the experts make less explicit use of type variables.

4. Alternative explanations

Consider the function:

fun fail3 p [] = p+p |

 fail3 p (h::t) =

 if p true then [h] else t

There are three different if related type errors here. First of all, the base case returns a number resulting from addition, where the recursion case returns a list. Secondly, in the base case p should be a number as its an operand for + but in the recursion case p is applied as a function to true. Finally, + is overloaded and the system cannot infer whether it should be an integer or a real operator.

Standard ML of New Jersey detects the second error:

stdIn:2.14-3.22 Error: types of rules don't agree [tycon mismatch]

 earlier rule(s):

 (bool -> bool) * 'Z list ->

 bool -> bool

 this rule:

 (bool -> bool) * 'Z list -> 'Z list

 in rule:

 (p,h :: t) =>

 (case (p true)

 of true => h :: nil

 | false => t)

stdIn:2.15 Error: overloaded variable not defined at type

 symbol: +

 type: bool -> bool

While the identification of + as overloaded is apposite, the report of the type mismatch between the two cases is actually wrong, as an incorrect type bool -> bool has been given for p+p. This arises because of the illegitimate use of partial type information resulting from a failed unification. The report also uses the type variable ‘Z for the list, which is not explained. Edinburgh Standard ML is somewhat terser in reporting the same wrong information:

Type clash in:

 (p,(h :: t))=>(if (p true) then [h]

 else t)

Looking for a: bool -> bool

I have found a: 'a list
Our system’s explanation is:

"p + p" and " if p2 true then [h] else t" have the same type - same RHS result

1: "p + p" has the same type as "p" and "p" - result/arguments of "+" have the same Number types

2: Num'a (int or real, non-resolved.)

"p + p" and " if p2 true then [h] else t" have the same type - same RHS result

1: IF if p2 true then [h] else t has the same type as

2: "[h]", is

 3: "h": 'b - no operations on "h"

4: list of "h": 'b list
The system identifies that the case right hand sides must have the same type. In p+p it assigns a numeric type variable Num’a to p as it cannot resolve the overloading of +. In if p true then [h] else t it notes that the result must be the same as [h] from the then branch. As h cannot be typed it is assigned the type variable ‘b and so [h] is ‘b list. Hence, there is a type inconsistency between the numeric result for the first case and the list result for the second case.

In contrast, the second expert from section 2 says:

Ok so ... so p is ... is some ... p looks like its some sort of ... its some sort of function in the in the second part of the because you have this function this (p true) but in the first part it looks like its a numeric type so it looks like the types of p are different.

Here the expert has focused on the use of p in both case right hand sides rather than their results and has found an inconsistency between p’s use as a number in p+p and as a function in p true.

Our system attempts to find all possible explanations of a type by tracing all derivations of the components that could contribute to establishing that type. The derivations are successively pruned to remove circularities and to minimise the number of steps and type variable use. In this example, the explanation involving p as a number and as a function involves a longer chain of derivation steps and so is discounted by the system.

5. Conclusions

We have built a type explanation system whose explanations of errors in polymorphic typed functions are similar both qualitatively and quantitatively to those of human experts. That is, for three out of four generic techniques the mean system technique usage is close to or within one standard deviation of the mean expert technique usage. These results mirror those reported in [7] where we found that our system is similar to human experts in giving explanations of error free polymorphic typed functions. There, the system made use of skeletons, concrete types and 2D inspection to within one standard deviation of the experts but made considerably more use of type variables.

Our analysis has increased our confidence that a mechanical system for explaining polymorphic types can offer support to users corresponding to that from human experts.

In future work we wish to:

· refine explanations to render them in a form closer to colloquial English;

· evaluate mechanical explanations with naive users of polymorphic typed programming languages, for example in 1st year functional programming classes;

· extend our techniques to a full functional language, including features such as modules and user-defined types;

· investigate the integration of such techniques into an interactive browser which helps a user explore the types inferred for different program constructs.

6. Acknowledgements

Yang Jun thanks ORS and Heriot-Watt University for support. The authors thank the experts who took part in the type error explanation experiment.

7. References

[1] Milner, R., A theory of type polymorphism, Journal of Computer and System Sciences, No. 17, 1978.

[2] Milner, R. Tofte, M., Harper R. and MacQueen, D. The Definition of S}tandard ML (Revised) MIT Press, 1997.

[3] Yang. J, and Michaelson, G., A visualisation of polymorphic type checking, Journal of Functional Programming, Vol. 10, No. 1, pp 57-75, January 2000.

[4] Yang, J., Michaelson, G. and Trinder, P., How do people check polymorphic types?, In A. F. Blackwell and E. Bilotta (editors), Twelth Annual Meeting of Psychology of Programming Interest Group Proceedings, Memoria, pp 67-77, Cosenza, Italy, April 2000.

[5] Yang, J., Michaelson, G. and Trinder, P., Helping students understand polymorphic type errors, First Annual Conference of the LSTN Centre for Information and Computer Sciences, S. Alexander et al (editors), LTSN-ICS, University of Ulster, pp 11-19, August 2000.

[6] Yang, J., Michaelson, G. and Trinder, P., Explaining polymorphic types, accepted subject to revision by Computer Journal, June 2001. ftp.cee.hw.ac.uk/pub/funcprog/ymt.cj01.ps.Z

 [7] Yang, J., Michaelson, G. and Trinder, P., Human and human-like type explanation, In G. Kadoda (Ed), Proceedings of Thirteenth Annual Meeting of Psychology of Programming Interest Group, University of Bournmouth, pp 163-172, April 2001.

[8] Yang, J. Improved Polymorphic Type Explanations, PhD Thesis, Heriot-Watt University, submitted May 2001.

