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Stream Ciphers

Question
Recall Caesar’s cipher: Why is it so easy to crack?

We can improve the strength of the Caesar cipher by:
Performing a more general substitution of characters, rather than
simple rotation. Keyspace grows from 26 to
26! = 403291461126605635584000000 =˜4 · 1027

Question
Does such increased keyspace make Caesar’s cipher more secure?

Using different keys on different characters.
Transforming groups of characters, rather than individual
characters.
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Stream Ciphers

A stream cipher encrypts a message character by character.
The transformation that is applied typically varies over time.
Stream ciphers are usually faster than block ciphers.
They can be used even if the full message is not available, i.e.
good for internet-style streaming.
In some cases, hardware accelerators have been developed for
stream ciphers, to speed up en-/de-cryption further.
Because the handle character-by-character, they have limited
error propagation, and transmission errors are less disruptive.
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One-time pads
A one-time pad, or Vernam cipher, is an unbreakable stream cipher:

Invented by Joseph Mauborgne and Gilbert Vernam in 1917.

It uses rotations, similar to the Caesar cipher, but a different key for
each element in the plain text

This cipher is provable secure if keys are never reused.

Reportedly, it has been used during the Cold War for secure
communication between Washington and Moscow.

However, it is impractical because it needs a sequence of keys as long
as the message length

Reportedly, key re-use happened quite often in communication between
Soviet spies, allowing the US to attack their communication.

To get around the problem of key re-use, sometimes pseudo-random
sequences are used, which generate sequences of numbers that
appear to be random, from a much smaller, secret key.

For efficient implementation, this cipher is often used over binary
numbers, performing an XOR as operation, i.e.M = C = A = {0,1}
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Applications to Wireless Networks
The Wired Equivalent Privacy (WEP) protocol was included in the
802.11 standard for secure networking, to provide confidentiality,
integrity and access control to a wireless network.
WEP has several weaknesses and should be replaced with WPA
(WPA Enterprise is considered secure).
WEP uses a stream cipher with a symmetric cryptosystem,
namely the RC4 asynchronous stream cipher.
The RC4 cipher generates a pseudo random number sequence,
using a 256-bit seed value.
The operation on each stream element is an XOR.
Thus, the RC4 cipher is very fast.
The seed is generated out of a 24-bit initialisation vector (IV) and
a WEP key, that is shared between user and access point.
The IV is sent together with the cipher-text, so that the access
point can reconstruct the pseudo random number sequence,
needed to decrypt the message.
For integrity, a CRC-32 checksum is added to the plain-text.
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Attacks against WEP

Two protocols are used for wireless authentication:
I open system, where the access point trusts the user in having

acquired the WEP key, and encrypts all communication
I shared key, where additionally the access point regularly sends a

challenge text that must be encrypted and sent back

In practice, shared key is less secure than open system, because
plain-text and IV are sent unencrypted.
Open systems can be attacked, if a lot of packets are obtained,
exploiting weakness of the pseudo-random number generator.
As of 2010, a WEP key can be cracked with a probability of 50%,
if 40,000 packets have been obtained.
Through ARP injection, an attacker can gain an arbitrary number
of packets.
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Attacks against WEP

Another attack exploits weaknesses due to performing (CRC-32)
hashing. The attacker can capture and truncate a packet. Then he
guesses the truncated byte and sends it. Iff the access point
responds, the byte was correct. This is repeated until an entire
message has been reconstructed.
Another attack sets up a honeypot, acting as a fake access point,
which is easy since WEP doesn’t check whether the access point
has the WEP key (only the client is checked). The attacker then
tricks the client into sending further messages, until enough
messages have been received to crack the WEP key. Note, that
this doesn’t have to be done in the targeted network itself!
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Block ciphers
A block cipher encrypts groups of characters in a message.
The transformation is the same for each group.
Pure block ciphers are memoryless, i.e. earlier data in a message
does not influence the encryption of a later part of the message.

Basic design concepts for good ciphers:
Confusion: A good cipher should add confusion, obscuring the
relationship between the key and the ciphertext.
Diffusion: A good cipher should add diffusion, spreading out
redundancy in the plaintext across the ciphertext.
Typically, modern block ciphers

I use substitution to add confusion;
I use transpositions to add diffusion;
I apply rounds consisting of substitution and transposition steps to

improve both.

Note: a large keyspace does not guarantee a strong cipher, as we
have seen with the generalised Caesar’s cipher.
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Simple substitution ciphers
A simple substitution cipher is a block cipher for arbitrary block length
t . It swaps each letter for another letter, using a permutation of the
alphabet.

Let A be an alphabet,M be the set of strings over A of length t ,
and K be the set of all permutations on A.
For each e ∈ K define Ee by applying the permutation e to each
letter in the plaintext block:

Ee(m) = e(m1)e(m2) · · · e(mt ) = c

where m ∈M and m = m1m2 · · ·mt .
For each d ∈ K we define Dd in exactly the same way,

Dd (c) = d(c1)d(c2) · · · d(ct )

Key pairs are permutations and their inverses, so d = e−1, and

Dd (c) = e−1(c1)e−1(c2) · · · e−1(ct ) = m1m2 · · ·mt = m
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Simple transposition ciphers

The simple transposition cipher is a block cipher with block-length t . It
simply permutes the symbols in the block.

Let K be the set of all permutations on the set {1,2, ..., t}.
For each e ∈ K, the encryption function is defined by

Ee(m) = (me(1),me(2), . . . ,me(t))

The corresponding decryption key is the inverse permutation.
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Product ciphers
It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.
A product cipher is defined as the composition of N encryption
transformations, E1

e ,E2
e , . . . ,EN

e , for n ≥ 0.
The overall encryption function composes the parts:

Ee = E (1)
e ◦ E (2)

e ◦ · · · ◦ E (N)
e

where ◦ denotes function composition in the diagramatic order.
The overall decryption function composes the decryptions:

Dd = D(N)
d ◦ · · ·D(2)

d ◦ D(1)
d

Involutions (functions that are their own inverse) are particularly
useful in constructing product ciphers. The favourite is XOR:
f (x) = x ⊕ c.
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DES
Data Encryption Standard (DES) is a symmetric block cipher:

DES is a block cipher based on Feistel’s principle in order to provide
effective confusion and diffusion. Block-size is 64 bits, key-size 56 bits
(+8 parity bits). Invented by IBM in 1970s, tweaked by NSA. Still widely
used, esp. in financial sector. Much analysed.

The Feistel principle gives a way of constructing a cipher so that the
same circuit is used for both encryption and decryption.

Main threat isn’t cryptanalytic, but (slightly optimised) exhaustive search
in small key-space. Remedied by 3DES (triple DES), 3 keys:

C = Ek3 (Dk2 (Ek1 (P))) P = Dk1 (Ek2 (Dk3 (C))).

Security of 3DES is not obvious: repeated encryption may not gain
security (one-step DES is not closed, so it in fact does), and new attacks
may be possible (meet-in-the-middle attack). With 3 independently
chosen keys, security is roughly the same as expected with 2 keys.

Several other DES variants, including DESX, using whitenening keys k1,
k2 as C = Ek (P ⊕ k1)⊕ k2. (Used in Win2K encrypting FS).
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The AES (or Rijndael) symmetric cipher

Rijndael is a block cipher with a fixed block length of 128 bits.
Since 2001 it is the AES standard for symmetric encryption set by
the U.S. National Institute for Standards and Technology (NIST)
It replaces the older DES cipher, which has a proven weakness.
Rijndael can be used with key lengths of 128, 192 or 256-bits.
Rijndael satisfied a number of requisite criteria for the AES:

I Security: mathematical, cryptanalytic resistance; randomness;
I Efficiency: time/space, hardware and software;
I Flexibility: block sizes 128 bits, key sizes 128/192/256 bits.
I Intellectual property: unclassified, published, royalty-free.

Rijndael is built as a network of linear transformations and
substitutions, with 10, 12 or 14 rounds, depending on key size.
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Structure of the Rijndael (or AES) algorithm
Initialise the state, by performing an XOR of plain-text and key
Perform 10 rounds of modifying the state
The result is the state after these 10 rounds.

Each round consists of the following steps:
SubByte step: perform an S-box substitution
ShiftRows step: perform a permutation
MixColumns step: a matrix multiplication step
AddRoundKey step: an XOR operation with the round key,
derived from the key

Note: Each step is invertible, so de-crypting amounts to running the
algorithm in the reverse order.
Note: All steps operate on a state, which is a 4× 4 matrix of the (8-bit)
bytes of a block
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SubByte Step

Input: 4× 4 matrix A
Output: 4× 4 matrix B, by performing a component-wise
operation S-Box transformation S one each element of A.
S computes for one byte of the input matrix the multiplicative
inverse over the finite field GF (28) combined with an invertible
affine transformation.
Importantly, this operation assures non-linearity of the
transformation.
This operation S can be performed efficiently, by performing a
lookup in a 16× 16 table.
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SubByte Step

1From Wikipedia: Advanced Encryption Standard
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ShiftRows Step

Input: 4× 4 matrix A
Output: 4× 4 matrix B, by performing a permutation on the
elements of A.
The permutation is done row-wise, shifting the 0-th row by 0, 1-st
row by one etc.
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ShiftRows Step

1From Wikipedia: Advanced Encryption Standard
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MixColumns Step

Input: 4× 4 matrix A
Output: 4× 4 matrix B, by performing a Hill-cipher matrix
multiplication of a fixed matrix E with A.
The matrix multiplication uses an XOR operation to add two bytes,
and uses a polynomial product, modulo a fixed base, for
multiplication.
Although this seems complicated, it can be implemented very
efficiently.
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MixColumns Step

1From Wikipedia: Advanced Encryption Standard
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AddRoundKey Step

Input: 4× 4 matrix A
Output: 4× 4 matrix B, by performing a component-wise XOR
with a key set S.
The key set S is a 4× 4 matrix of keys derived from the main key.
This derivation starts with the main key, and generates a
pseudo-random-number sequence with it as seed value
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AddRoundKey Step

1From Wikipedia: Advanced Encryption Standard
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Properties of AES

To summarise, the main notable properties of AES are:
It is a symmetric block cipher, with possible key lengths of 128,
192 or 256-bits.
It is an iterative cipher, which applies the same sequence of
operations in 10, 12 or 14 rounds.
It performs permutations in order to prevent statistics-based
attacks.
All operations are invertible, so that for decryption the algorithm is
run with the same key in reverse order.
All operations are designed to be efficiently implementable.
It is probably the “best” symmetric cipher today.
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Attacks on AES

As of 2010, the only known practical attacks on AES are side
channel attacks, in particular timing attacks.
A side channel attack observes the behaviour of the machine
that performs en-/de-cryption.
A timing attack observes the time the algorithm takes.
Because the main operations in AES are table lookups, and
because lookups have largely varying time when performed in
memory or in cache, by timing the runtime of the algorithm on
known plaintext, ciphertext pairs gives a possibility to learn the
key.
To defend against this weakness, the implementation of AES
should provide constant time memory lookup.
This can be done by disabling the cache, but this slows down
en-/de-cryption a lot.
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Related ciphers

A symmetric block cipher, similar to AES, is Twofish, by Bruce
Schneier.

It uses a similar overall structure of rounds as AES, but uses a
16-round Feistel network
Distinctive features are

I pre-computed key-dependent S-boxes, and
I a more complex key schedule than AES

It was one of five finalists in the process of defining the AES
standard.
Its reference implementation has been placed in the public domain
It is supported by most encryption libraries such as OpenSSL.
Some libraries support only blowfish, which is a weaker
predecessor of twofish.
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Related ciphers (cont’d)

Another related symmetric block cipher is IDEA.
IDEA uses 64-bit blocks and 128-bit key.
Its implementation is very efficient: uses XOR, addition and
multiplication operations.
Patented for commercial use.
It is used in the PGP infrastructure for secure email.
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ECB: electronic codebook mode

ECB: electronic codebook mode. Each block of plaintext xj is
enciphered independently: cj = Ek (xj)

1From: HAC, Chapter 8, p 229
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CBC: cipherblock chaining mode
CBC: cipherblock chaining mode. Each plaintext block xj is XORed
with the previous ciphertext cj−1 block before encryption. An
initialization vector (IV) (optionally secret, fresh for each message) is
used for c0: cj = Ek (xj ⊕ cj−1)

1From: HAC, Chapter 8, p 229
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CFB cipher-feedback mode

CFB cipher-feedback mode. Encryption function of block cipher used
as self-synchronizing stream cipher for symbols of size up to block
size, i.e. cj = Ek (cj−1)⊕ xj

1From: HAC, Chapter 8, p 229
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OFB: output-feedback mode
OFB: output-feedback mode. Conceptually, this mode works like a
one-time pad, but with the sequence of blocks that are generated with
the block cipher. Note, that the encryption function is only directly
applied to the vectors, not directly to the plain-text:
cj = Oj ⊕ xj where Oj = Ek (Oj−1)

1From: HAC, Chapter 8, p 229
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CTR counter mode

CTR counter mode is similar to CFB mode in structure. Each element
in the one-time-pad is computed directly from a seed value. Therefore,
the entire sequence can be computed in parallel:
cj = Oj ⊕ xj where Oj = Ek (s + j − 1)
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Summary of modes of symmetric key encryption
Different modes apply block-level encryption in different ways.

ECB: electronic codebook mode. Each block of plaintext xj is
enciphered independently.

Question
Can you see a problem with this mode?

CBC: cipherblock chaining mode. Each plaintext block xj is
XORed with the previous ciphertext cj−1 block before encryption.
An initialization vector (IV) (optionally secret, fresh for each
message) is used for c0 .
CFB cipher-feedback mode. Encryption function of block cipher
used as self-synchronizing stream cipher for symbols of size up to
block size.
OFB: output-feedback mode. Block cipher encryption function
used as synchronous stream cipher (internal feedback).
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Exercises (optional)

Exercise
Symmetric encryption

Read Section 7.2.2. of HAC, for details on the different modes of
block ciphers.
Check Section 2.1 of Goodrich for details on symmetric
encryption.
Familiarise yourself with the openssl toolset installed on the
Linux lab machines. These will be used in the next coursework.
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Modular Arithmetic
We define Zp = {0, . . . ,p − 1}, i.e. the set of all positive integer
numbers modulo p.
Basic arithmetic on these numbers is always modulo p, i.e. we
take the remainder of dividing the result by p.
Example: Multiplying 4 with 3 in Z11 gives

4 · 3 mod 11 = 12 mod 11 = 1

The inverse of x in Zp, written x−1, is a number such that

x · x−1 mod p = 1

Note: If p is a prime number, every element in Zp has an inverse.
Example: The above example shows the 3 is the inverse of 4 in
Z11.
Modular exponentiation, xy mod p, is repeated multiplication, as
usual, i.e. x · · · x︸ ︷︷ ︸ mod p.
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Basic Number Theory
Let n ∈ Z, z ∈ Zn. We define Z∗

n = {x ∈ Zn | gcd(x ,n) = 1}.
We define the Euler totient function, Φ(n) =| Z∗

n |.

Fact (Euler’s Theorem)

If n ∈ Z, x ∈ Zn,gcd(x ,n) = 1, then xΦ(n) mod n = 1

Corollary
If n ∈ Z, x ∈ Zn,gcd(x ,n) = 1, then xy mod n = xy mod Φ(n) mod n

Proof.
Let d , r ∈ Z,0 ≤ r < Φ(n), such that y = d · Φ(n) + r .

xy mod n = xd·Φ(n)+r mod n def. of y, d, r
= xd·Φ(n) · x r mod n arithm.
= (xΦ(n))

d · x r mod n arithm.
= 1d · x r mod n Euler’s theorem
= x r mod n
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Basic Number Theory

Another corollary from Euler’s Theorem let’s us compute the inverse of
a given number x ∈ Zn, by computing x−1 = xΦ(n) mod n, because:

Corollary
If n ∈ Z, x ∈ Zn,gcd(x ,n) = 1, then
x · xΦ(n)−1 mod n = xΦ(n) mod n = 1

Since Φ(p) = p − 1, if p is a prime number, we have the following
specialised theorem:

Fact (Fermat’s Little Theorem)

xp−1 mod p = 1
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Computing in Modular Domains
Definition
The greatest common divisor (gcd) of two positive integers, x , y ∈ Z, x , y > 0,
is the largest positive integer z ∈ Z, that divides both x and y , written z | x
and z | y .

Fact
The greatest common divisor (gcd) of two positive integers, x , y ∈ Z, x , y > 0,
is the smallest positive integer z ∈ d, such that there exist i , j ∈ Z with
z = i · x + j · y.

Corollary (Extended Euclidean Algorithm)
gcd(x ,0) = x
gcd(x , y) = gcd(y , x mod y)

Note: We can use this algorithm to compute the inverse of a x in Zp, if x and
p are relative prime: Since gcd(x ,p) = i · x + j · p = 1, we have i · x + j · p
mod p = i · x mod p = 1, and therefore i is the inverse of x in Zp.
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Computing in Modular Domains

For efficient exponentiation, we break down the exponent into its
components, using the following property:

Fact (Exponentiation by repeated squaring)

x2n mod p = (xn)2 mod p

Note: We can perform efficient exponentiation, by repeated squaring,
employing a divide-and-conquer strategy 2.

2See: “De Bello Gallico”, Gaius Julius Caesar.
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Finite Fields

(Zp,+, ·) is a finite field.
A number g is called a generator , if any element in Zp can be
constructed as gn for some n ∈ N mod p.
We know, if p is a prime number, then every (Zp,+, ·) has
Φ(Φ(p)) = Φ(p − 1) generators.

A number g ∈ Zp is a generator, iff g
p−1

pi mod p 6= 1 for all prime
factors of pi of Φ(p) = p − 1.
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Further Reading on Mathematical Background

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,
“Handbook of Applied Cryptography”, CRC Press, 2001. ISBN
0-8493-8523-7.
On-line: http://www.cacr.math.uwaterloo.ca/hac/
Chapter 2.

Nigel Smart, “Cryptography: An Introduction”,
On-line:
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
Chapter 11, 12, 13.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 41 / 68

Limitations of symmetric encryption

Symmetric encryption is fine to assure privacy of your own data,
i.e. only you should be able to read the data
In this case it’s natural to have just one secret key
But what if you want to securely transmit data and you want to
assure that only the intended recipient should be able to read the
message?
You could use a secret key, known only to both of you.
But what if you want to securely communicate with many
recipients?

Question
If n participants want to communicate securely, making sure that only
the 2 participants can read a message, how many secret keys are
needed in total?
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The idea of public-key encryption

Public-key encryption takes a radically different approach:
Every participant in a communication has two keys

I a private key, which is kept secret
I a public key, which can be published e.g. on the web

For safe communication, use the persons public key to encrypt
the data.
The recipient uses his private key to decrypt.
Since the private key is kept secret, only he can read the
message.
This technology relies on the fact, that the private key cannot be
efficiently computed from just knowing the public key (and the
crypto algorithm).
This idea was a major research breakthrough in the area of
cryptography.
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Features of public-key cryptosystems

Features of public key (PK) encryption:
PK encryption provides privacy, ie. prevents unauthorised persons
from reading the cipher-data
PK encryption does not provide data origin authentication or data
integrity
A public key infrastructure (PKI) is used to distribute keys
PKIs need separate techniques to ensure data origin
authentication
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Features of public-key cryptosystems (cont’d)
Advantages of public key encryption:

No secret shared key is needed
Needs only n keys (the public keys) for secure communication
between n recipients.

Disadvantages of public key encryption:
Encryption is significantly slower than symmetric key encryption
The key length for public key cryptosystems is typically one order
of magnitude larger than for symmetric cryptosystems (typically
2048-bit as opposed up to 256-bit for AES)

Therefore, PK encryption is mainly used to encrypt session keys:
Alice randomly generates a strong, symmetric key (a session key).
Alice uses Bob’s public key to encrypt and send the session key.
Alice encrypts all plaintext for one session using the session key,
and sends it.
Bob uses his secret key to decrypt the session key.
Bob now can decrypt all messages from Alice that use the same
session key.
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RSA encryption: a public-key cryptosystem

RSA encryption, a milestone in cryptography:
RSA is the most commonly used public-key encryption systems
It is named after the inventors: R. Rivest, A. Shamir, L. Adleman
(Turing Award 2002).
Its security is based on the intractability of integer factorisation.
It is conceptually very simple, and founded on strong,
mathematical properties.
It can be used for encryption and for digital signatures.
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RSA encryption in a nutshell
Alice wants to securely communicate with Bob, using RSA. First Bob
generates a key-pair as follows:

Bob picks two large, random prime numbers p,q. Let n = pq.
Bob picks a number e that is relatively prime to Φ(n).
Bob computes the inverse of e, modulo Φ(n), i.e.
d = e−1 mod Φ(n)

Bob’s public key is (e,n). He publishes this key, e.g. on the web.
Bob’s private key is d .

Now, Alice can use Bob’s public key as follows:
Alice encrypts the plaintext M, using Bob’s public key, by
computing C = E(e,n)(M) = Me mod n.
Note: Encryption amounts to a single, modular exponentiation.
Alice sends the ciphertext C to Bob.
Bob decrypts the ciphertext C, using his private key, by computing
Dd(C) = Cd mod n.
Note: Decryption amounts to a single, modular exponentiation.
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RSA: Why does this work?

Theorem (RSA Correctness)

Forall e,d ,p,q,n,m, if n = pq ∧ e⊥Φ(n) ∧ d = e−1 mod Φ(n)
then Dd (Ee(M)) = M

In other words, if we pick the appropriate domain parameters and
generate a public-/private-key pair (e,d) out of them, then we can
obtain the original message by decrypting the cipher-text, generated
by the encryption function.
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RSA: Why does this work?
Proof.
Assume, M is relatively prime to n = pq:

Cd mod n = (Me)d mod n def. of D and E
= Med mod n arithm.
= Med mod Φ(n) mod n Euler’s Theorem
= M1 mod n def. of d
= M

Assume, without loss of generality, there is an i such that M = ip (1)
Since ed = 1 mod Φ(n), we know ed = kΦ(n) + 1 for some k (2)
Since Φ(n) = Φ(p)Φ(q), we know MΦ(n) mod q = MΦ(p)Φ(q) mod q = 1.
Therefore, MkΦ(n) mod q = 1, and we can write MkΦ(n) = 1 + hq (3)

Cd mod n = Med mod n def. of D and E, arithm.
= MkΦ(n)+1 mod n by (2)
= (M + Mhq) mod n by (3) and arithm.
= (M + iphq) mod n by (1)
= (M + (ih)pq) mod n by assoc. and comm.
= (M + (ih)n) mod n def. of n
= M arithm.
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RSA Remarks
RSA is an example of a reversible public-key encryption scheme.
This is because e and d are symmetric in the definition. RSA
digital signatures make use of this.
RSA is a deterministic algorithm, i.e. if messages M1 = M2 then
the cipher texts C1 = C2. Thus, RSA is often used with
randomisation (e.g., salting with random appendix) to prevent
chosen-plaintext and other attacks.
RSA is the most popular and cryptanalysed public-key algorithm.
Largest modulus factored in the (now defunct) RSA challenge is
768 bits (232 digits), factored using the Number Field Sieve (NFS)
on 12 December 2009.

I It took the equivalent of 2000 years of computing on a single core
2.2GHz AMD Opteron. On the order of 267 instructions were
carried out.

I Factoring a 1024 bit modulus would take about 1000 times more
work (and would be achievable in less than 5 years from now).

I Thus, key lengths of at least 2048 bits are recommended.
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RSA remarks (cont’d)

In practice, RSA is used to encrypt symmetric keys (session
keys), not messages
Like most public key algorithms, the RSA key size is larger, and
the computations are more expensive (compared to AES, for
example)
This is believed to be a necessary result of the key being publicly
available
With regard to attack complexity based upon an n-bit key

I A worst-case attack algorithm on a symmetric cipher would take
O(2n) work (exponential).

I A worst-case attack algorithm for RSA is dependent upon the
complexity of factoring, and thus would take O(eo(n))
(sub-exponential)
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Security of RSA

The security of RSA is based on the difficulty of finding the private
key d , from the public key (e,n).
If an attacker knew Φ(n) it would be easy to compute d, because
d = e−1 mod Φ(n) which can be computed using the extended
Euclidean algorithm.
Note: p,q, with n = pq, and therefore Φ(pq) are only needed in
the key generation. They can, and should, be destroyed thereafter.
But, if the attacker can factor Φ(pq), he can compute p − 1 and
q − 1, and from that d .
Thus, conceptually the security of RSA is tied to the complexity of
factoring a large integer number.
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Cryptographic Reference Problems

FACTORING Integer factorisation. Given positive n, find its prime
factorisation, i.e., distinct pi such that

n = pe1
1 · · · p

en
n for some ei ≥ 1

SQRROOT Given a such that a = x2 mod n, find x .
RSAP RSA inversion. Given n such that n = pq for some odd

primes p 6= q, and e such that gcd(e, (p − 1)(q − 1)) = 1,
and c, find m such that me = c mod n.

DLP Discrete logarithm problem. Given prime p, a generator g
of Zp, and an element a ∈ Zp, find the integer x , with
0 ≤ x ≤ p − 2 such that gx = a mod p.

Note: SQRROOT =P FACTORING and RSAP ≤P FACTORING
A ≤P B means there is a polynomial time (efficient) reduction from
problem A to problem B. A =P B means A ≤P B and B ≤P A
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Efficient implementation of RSA

Efficient implementation of RSA needs efficient algorithms for
Primality testing is needed during key generation, when picking
p and q.
GCD computation: computing the greatest common divisor
(GCD) is needed during key generation, when picking e relatively
prime to Φ(n).
Modular inverse computation is needed during key generation,
when computing d = e−1 mod Φ(n).
Modular exponentiation is needed during encryption and
decryption.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2014/15 54 / 68

Further Reading on Efficient Implementations

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,
Handbook of Applied Cryptography,
CRC Press, 2001. ISBN 0-8493-8523-7.
Chapter 14: Efficient Implementation
Very detailed discussion of implementation issues of all cryptosystems
presented here.

Nigel Smart, Cryptography: An Introduction,
Chapter 15: Implementation Issues
Good general discussion of the main implementation issues.

Donald Knuth, The Art of Computer Programming: Volume 2:
Seminumerical Algorithms,
Addison-Wesley, 1975.
The foundations for most of the efficient algorithms.
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Further Reading on Efficient Implementations
R.L. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,
In Communications of the ACM, Vol 21, No 2, Feb 1978, pp. 120-126.
The original paper discussing the RSA public-key cryptosystem.

W. Diffie, M.E. Hellman, New Directions in Cryptography,
In IEEE Transactions on Information Theory, Vol 22, Nov 1976, pp.
644-654.
The original paper discussing public-key infrastructures and secure key
exchange.

P.L. Montgomery, Modular Multiplication without Trial Division,
In Mathematics of Computation, Vol 44, No 170, April 1985, pp. 519-521.
The original paper describing efficient multiplication in a modular domain.

C.K. Koc, T. Acar, B.S. Kaliski, Analyzing and Comparing Montgomery
Multiplication Algorithms, In IEEE Micro, Vol 16, No 3, 1996, pp 26-33.
Survey of different ways to perform multiplication in a modular domain,
and thus how to perform exponentiation (the core of RSA en-cryption).
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http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/


Rabin public-key encryption

Rabin encryption is a provably secure public-key encryption scheme
in the sense that it has been formally proven that recovering the
plaintext from the ciphertext is computationally equivalent to factoring.

Key generation:
Generate two large prime numbers p,q.
Compute n = pq.
The public key is n.
The private keys is (p,q).
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Rabin public-key encryption
Encryption:

Obtain the recipient’s public key n.
Represent the message as an integer m in the range of
{0,1, . . . ,n − 1}.
Compute: c = m2 mod n
Send the cipher text c.
In summary: the encryption function is En(m) = m2 mod n

Decryption:
Find the four square roots m1,m2,m3,m4 of c modulo n.
The plain text message is one of m1,m2,m3,m4.
In summary: the decryption function is
Dn(m) = select(

√
c mod n).

For details on the Rabin cryptosystem, see HAC, Section 8.3 or
Smart, Section 11.3
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ElGamal Cryptosystem

ElGamal is a public-key cryptosystem, which uses randomisation
so that independent encryptions of the same plain-text give
different cipher-texts.
Blocks of input text are considered as numbers.
En-/De-cryption is done by performing arithmetic on these
numbers.
Bob chooses a prime number p such that we can easily find a
generator g for Zp.
Bob chooses a number between x between 1 and p − 2, and
computes y = gx mod p.
Bob’s private key is x .
Bob’s public key is (p,g, y).
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Elgamal Cryptosystem (cont’d)
To encrypt a message m, Alice chooses a number k between 1
and p − 2, and performs this operation:

E(p,g,y)(M) = (gk mod p,Myk mod p)

To decrypt a cipher-text, which is a pair of the form (a,b), Bob
performs this operation:

Dx (a,b) = b(ax )−1 mod p

Note, that gkx does not need to be transmitted. It acts as a
random, one-time pad.
Note, that, as in any public-key cryptosystem, Alice does not need
to know Bob’s secret key.
Pragmatically, the security of the Elgamal cryptosystem depends
on choosing a new random number k for every transmission.
Fundamentally, the security of the Elgamal cryptosystem depends
on the difficulty of the discrete logarithm problem.
A similar method can be used for secure key exchange, as
defined by the Diffie-Hellman key exchange protocol.
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Correctness of ElGamal Cryptosystem

Theorem (Correctness of ElGamal)
For all p ∈ Z,p is prime,g ∈ Zp,g is a generator of Zp, y = gx

mod p, x ∈ Zp,1 ≤ x ≤ p− 2, messages M ∈M,Dx (E(p,g,y)(M)) = M.

Proof.

b(ax )−1 mod p = Myk ((gk )x )−1 mod p def. of a and b
= M(gx )k (g−kx ) mod p def. of y & arithm.
= Mgkx (g−kx ) mod p arithm.
= M mod p arithm.
= M
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Diffie-Hellman key exchange protocol

Problem: In order to use a symmetric cipher, how is the shared key
exchanged in the first place?

Definition (Key Exchange Protocol)
A Key Exchange Protocol is a cryptographic approach to establishing a
shared secret key by communicating solely over an insecure channel,
without any previous private communication.

The Diffie-Hellman protocol is such a key exchange protocol that is
secure against passive adversaries.
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Diffie-Hellman key exchange protocol
The Diffie-Hellman protocol is based on an ElGamal (asymmetric)
cipher, using the public parameters are (p,g).

1 Alice chooses a random number x in Zp and sends:

X = gx mod p

2 Bob chooses a random number y in Zp and sends:

Y = gy mod p

3 Alice computes the secret key as

K1 = Y x mod p

4 Bob computes the secret key as

K2 = X y mod p

5 Note, that both Alice and Bob now have the same, secret key gxy :

K1 = Y x mod p = (gy )x mod p = (gx )y mod p = X y mod p = K2
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Diffie-Hellman key exchange protocol

The Diffie-Hellman protocol is secure against passive adversaries,
because it is infeasible to compute the secret values x and y from the
public parameters (p,g) and the messages X = gx and Y = gy .

An attacker would have to compute x , y from gxy mod p
=⇒ discrete logarithm problem.

The Diffie-Hellman protocol is vulnerable against man-in-the-middle
attacks (active adversaries):

The attacker chooses s, t in Zp

The attacker uses s for a key exchange with Alice
The attacker uses t for a key exchange with Bob
Now, the attacker can decode all intercepted messages (using s
or t) and re-encode them with his own fake key (t or s)
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Suggested Exercises (optional)

Exercise
Modular arithmetic:

Generate a multiplication table for Z7. What are the inverses of
3,5,6?
How can you find the inverse for 6 without producing (part of) this
table?
Argue, based on this table, that multiplication in Z7 is commutative.
Using this table, compute 35. Explain the steps, and explain why
this is better than computing 35 mod 7.
Describe an algorithm, that performs exponentiation in Zp.
What is the complexity of this algorithm?
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Exercises

Exercise
RSA encryption:

1 Perform RSA encryption of the message 4, using the public key
(5,91).

2 In order to, crack the public key (5,91), which concrete
computation do you have to perform.

3 Use the cracked private key to decrypt the message produced in
(1).
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Summary

We can distinguish between
I stream ciphers, that encrypt character-by-character, and
I block ciphers, that encrypt block-wise.

For block ciphers, we can distinguish between
I symmetric (private-key) encryption, that uses the same key for

en- and de-cryption, and
I asymmetric (public-key) encryption, that uses separate keys for

en- and de-cryption.

Private-key encryption, e.g. DES or AES, is typically faster.
Public-key encryption, e.g. RSA or ElGamal, is easier to manage.
In practice, a combination of both is used for secure network
communication:

I Public-key encryption is used to encode a session key.
I Private-key encryption is used with this session to encrypt the data.
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