DEPARTMENT OF COMPUTER SCIENCE

TY OF COPENHAGEN

Faculty of Science

Eden: Parallel Processes, Patterns and Skeletons

Jost Berthold

berthold@diku.dk
Department of Computer Science

Heriot-Watt University, March 2013
Slide 1/36

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER ¢

Contents

@ The Language Eden (in a nutshell)

@® Skeleton-Based Programming

© Small-Scale Skeletons: Map and Reduce

@ Process Topologies as Skeletons

@ Algorithm-Oriented Skeletons: Two Classics

@ Summary

Slide 2/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Contents

@ The Language Eden (in a nutshell)

@® Skeleton-Based Programming

© Small-Scale Skeletons: Map and Reduce

@ Process Topologies as Skeletons

@ Algorithm-Oriented Skeletons: Two Classics

@ Summary

Learning Goals:
e Writing programs in the parallel Haskell dialect Eden
e Reasoning about the behaviour of Eden programs.

e Applying and implementing parallel skeletons in Eden @

Slide 2/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Eden Constructs in a Nutshell

e Developed since 1996 in Marburg and Madrid
e Haskell, extended by communicating processes for coordination

Slide 3/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Eden Constructs in a Nutshell
e Developed since 1996 in Marburg and Madrid

e Haskell, extended by communicating processes for coordination

Eden constructs for Process abstraction and instantiation

process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

e Distributed Memory (Processes do not share data)

e Data sent through (hidden) 1:1 channels

e Type class Trans: e stream communication for lists
e concurrent evaluation of tuple components

Full evaluation of process output (if any result demanded)

e Non-functional features: explicit communication, n: 1 channels

Slide 3/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Quick Sidestep: WHNF, NFData and Evaluation

e Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor

Slide 4/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

Quick Sidestep: WHNF, NFData and Evaluation

e Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor

e Normal Form (NF):
Full evaluation (recursively in sub-structures)

From Control.DeepSeq

class NFData a where
rnf :: a > () -- This was a _Strategy_ in 1998
rnf a = a ‘seq‘ () -- returning unit ()

instance NFData Int
instance NFData Double

instance (NFData a) => NFData [a] where
rmf [1 = QO

rnf (x:xs) = rnf x ‘seq‘ rnf xs

instance (NFData a, NFData b) => NFData (a,b) where
rnf (a,b) = rnf a ‘seq‘ rnf b

Slide 4/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [xxk | k <- [1,2..]1])

Slide 5/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [xxk | k <- [1,2..]1])

Process Instantiation:) :: Process a b -> a -> b
multipleb = multproc # 5 5
Carem | mitprog
[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
e Stream communication for lists

Slide 5/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [xxk | k <- [1,2..]1])

Process Instantiation:) :: Process a b -> a -> b

multipleb = multproc # 5 5

parent |1 mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
e Stream communication for lists

Spawning multlple processes:. spawn :: [Process a bl -> [a] -> [b]
multiples = spawn (replicate 10 multproc) [1..10]

par ent
7090000000‘0‘

[1,2,3..]
//(2,4,6,_] '\M30..]

lnultproc@‘ lrmltproc@‘ ccococoo lrmltproc@ lrmltproc

Slide 5/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

!(compiled with option -parcp or -parmpi) o

Slide 6/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

... which will not produce any speedup!

!(compiled with option -parcp or -parmpi) o

Slide 6/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

... which will not produce any speedup!

simpleeden2. hs

main = do args <- getArgs
let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args
putStrln (show first_stuff ++ ’\n’:show other_stuff)

e Processes are created when there is demand for the result!
e Spawn both processes at the same time using special function.

!(compiled with option -parcp or -parmpi)

Slide 6/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT

OF COMPUTER SCIENCE

Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31'-5k | i,j,keN}

Slide 7/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31'-5k | i,j,keN}
Dijkstra:

The first Hammng number is 1. Each following Hamming
number H can be written as H = 2K, H = 3K, or H = 5K;
with a suitable smaller Hamming number K.

Slide 7/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT

Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31-5k | i,j,keN}
Dijkstra:

The first Hammng number is 1. Each following Hamming
number H can be written as H = 2K, H = 3K, or H = 5K;
with a suitable smaller Hamming number K.

e Write an Eden program that produces
Hamming numbers using parallel processes.
The program should take one argument n
and produce the numbers up to position n.

e Observe the parallel behaviour of your
program using EdenTV.

OF COMPUTER SCIENCE

hamming

Slide 7/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

OF COMPUTER ¢

UNIVERSITY OF COPENHAGEN DEPARTMENT

Non-Functional Eden Constructs for Optimisation

Location-Awareness: noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a bl -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b ->a ->I0b

Slide 8/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

Non-Functional Eden Constructs for Optimisation

Location-Awareness: noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a bl -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b ->a ->I0b

Explicit communication using primitive operations (monadic)

data ChanName = Comm (Channel a -> a -> I0 ())
createC :: I0 (Channel a , a)

class NFData a => Trans a where

write :: a -> I0 ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: I0 (ChanName a, a)

createComm = do (cx,x) <- createC
return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[al] -> [al
Hidden inside a Haskell module, only for the library implementation.

Slide 8/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Outline

@ Skeleton-Based Programming

Slide 9/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The ldea of Skeleton-Basked Parallelism

You have already seen one example:

e Divide and Conquer, as a higher-order function

divCongB :: (a -> b) -> a -- base case fct., input
-> (a -> Bool) -- parallel threshold
-> (b => b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> Db

divCongB baseF input doSeq combine divide = ...
(type will be modified later)
e Parallel structure (binary tree) exploited for parallelism

e Abstracted from concrete problem

Slide 10/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

The ldea of Skeleton-Basked Parallelism

You have already seen one example:

e Divide and Conquer, as a higher-order function

divCongB :: (a -> b) -> a -- base case fct., input
-> (a -> Bool) -- parallel threshold
-> (b => b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> Db

divCongB baseF input doSeq combine divide = ...
(type will be modified later)
e Parallel structure (binary tree) exploited for parallelism

e Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]

Slide 10/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Algorithmic Skeletons for Parallel Programming

Iteration: divide& conquer (fixed degree):

cogrdinate

Tnput | (stjate) | |Output
deci deEn

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function

Slide 11/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Algorithmic Skeletons for Parallel Programming

Iteration: divide& conquer (fixed degree):

cogrdinate

Tnput | (stjate) | |Output
deci deEn

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function
e Embedded “worker” functions (by application programmer)

e Hidden parallel library implementation (by system programmer)

Slide 11/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN

Algorithmic Skeletons for Parallel Programming

DEPARTMENT OF COMPUTER SCIENCE

Master-Worker: Google Map-Reduce:

intermediate
data groups output data

input data

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function
e Embedded “worker” functions (by application programmer)
e Hidden parallel library implementation (by system programmer)

e Different kinds of skeletons: topological, small-scale, algorithmic

Slide 11/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Algorithmic Skeletons for Parallel Programming

Iteration:

cogrdinate

Tnput | (stjate) | |Output
deci deEn

divide& conquer (fixed degree):

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function

e Embedded “worker” functions (by application programmer)

e Hidden parallel library implementation (by system programmer)
e Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good setting

to implement and use skeletons for parallel programming.

Slide 11/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Types of Skeletons

Common Small-scale Skeletons

e encapsulate common parallelisable operations or patterns

e parallel behaviour (concrete parallelisation) hidden
Structure-oriented: Topology Skeletons

e describe interaction between execution units

e explicitly model parallelism
Proper Algorithmic Skeletons

e capture a more complex algorithm-specific structure

e sometimes domain-specific

Slide 12/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Outline

©® Small-Scale Skeletons: Map and Reduce

Slide 13/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Basic Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent elementwise transformation

... probably the most common example of parallel functional
programming (called "embarassingly parallel")

Slide 14/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Basic Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent elementwise transformation

... probably the most common example of parallel functional
programming (called "embarassingly parallel")

e Parallel Reduction: Fold
fold :: (a -> a -> a) -> [a] -> a

with commutative and associative operation.

e Parallel Scan:
parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.

e Parallel Map-Reduce:
combining transformation and groupwise reduction. @

Slide 14/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

parmap :: (Trans a, Trans b) => (a -> b) -> [a]l -> [b]
parmap = spawn . repeat . process
-- parmap f xs = spawn (repeat (process f)) xs

Slide 15/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

parmap :: (Trans a, Trans b) => (a -> b) -> [a]l -> [b]
parmap = spawn . repeat . process
-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!

Slide 15/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

parmap :: (Trans a, Trans b) => (a -> b) -> [a]l -> [b]
parmap = spawn . repeat . process
-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!

e Group-wise processing: Farm of processes

farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results
where results = spawn (repeat (process (map f))) parts

parts = distribute noPe xs -- noPe, so use all nodes
join = ...
distribute n = ... -- join . distribute n == id

Slide 15/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

DEPARTMENT OF COMPUTER SCIEN

UNIVERSITY OF COPENHAGEN

Example

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...np..s..

Slide 16/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF COPENHAGEN

Example / Exercise

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...np..s.. -- you define it

Exercise:
o Implement parMap in 2 different ways

e Run the Mandelbrot program with both
versions, compare the behaviour.

Framework programs can be found on the course pages. ..

Slide 16/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

DEPARTMENT OF COMPUTER SCIEN

UNIVERSITY OF COPENHAGEN

Example / Exercise: Chunked Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ..using chunks..

Slide 17/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example / Exercise: Chunked Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ..using chunks..

T3 T2 0 Bs (7 %o z % T3 : 5o 2)

Simple chunking leads to load imbalance (task complexities differ) .@

Slide 17/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example / Exercise: Round-robin Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..

parMap = ..distributing round-robin..

B0 LU MR A T O | RO
UL L] TIWORARRIRT (INTNTRITIT Wi

Better: round-robin distribution, but still not well-balanced. @

Slide 18/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result
Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a] -> [b]
mw np prefetch f tasks =

Parameters: no. of workers, prefetch
e Master sends a new task each time a result is returned
(needs many-to-one communication)
e Initial workload of prefetch tasks for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance

Slide 19/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result
Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a] -> [b]
mw np prefetch f tasks =

Parameters: no. of workers, prefetch

e Master sends a new task each time a result is returned
(needs many-to-one communication)

e Initial workload of prefetch tasks for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance

e Result order needs to be reestablished!

Slide 19/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests

o Workers tag results with their ID (between 1 and np).

Slide 20/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..npl]
toWorkers = distribute tasks requests

(newRegs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newRegs
initialRegs = concat (replicate prefetch [1..np])

o Workers tag results with their ID (between 1 and np).
e Result streams are non-deterministically merged into one stream.

Slide 20/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..npl]
toWorkers = distribute tasks requests

(newRegs, results) = (unzip . merge) fromWorkers
requests = initialReqgs ++ newRegs
initialRegs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe
taskList _ = [

o Workers tag results with their ID (between 1 and np).

e Result streams are non-deterministically merged into one stream.
e The distribute function supplies new tasks according to requests. g

Slide 20/36 — J.Berthold — Eden — Heriot-Watt, 03/2013 hd

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Parallel Reduction, Map-Reduce

Reduction (fo1a) usually has a direction

® foldl :: (b->a ->b) >b ->[al] > b
foldr :: (a ->b ->b) =>b ->[al] > Db

Starting from the left or right, implying different reduction
function.
e To parallelise: break into sublists and pre-reduce in parallel.

e Better options if order does not matter.

Slide 21/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Parallel Reduction, Map-Reduce

Reduction (fo1a) usually has a direction

® foldl :: (b->a ->b) >b ->[al] > b
foldr :: (a ->b ->b) =>b ->[al] > Db

Starting from the left or right, implying different reduction
function.
e To parallelise: break into sublists and pre-reduce in parallel.

e Better options if order does not matter.

Example: S, (k) = Yy 1j < k | ged(k,j) =1} (Euler Phi)

sumEuler

result = foldl (+) O (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)]1)

Slide 21/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Parallel Map-Reduce: Restrictions

® parmapReduceStream :: Int ->
(a->b) > (b ->b->b) >b ->
[al] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list
subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

Slide 22/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

Parallel Map-Reduce: Restrictions

® parmapReduceStream :: Int ->
(a->b) > (b ->b->b) >b ->
[al] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list
subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

e Associativity and neutral element (essential).
e commutativity (desired, more liberal distribution)
e need to narrow type of the reduce parameter function!

e ...Alternative fold type: redF’ :: [b] -> b
redF’ [1 = neutral
redF’ (x:xs) = foldl’ redF x xs

Slide 22/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map k1 vl -> Map k2 v3 -- input / output
intermediate
data groups output data

reduceF k(l)—‘©

input data

@ Input: key-value pairs (k1,v1), many or no outputs (k2,v2)

reduceF k(j)—©
reduceF k(nf——C________>

® Intermediate grouping by key k2
©® Reduction per (intermediate) key k2 (maybe without result)
O Input and output: Finite mappings

Slide 23/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SC

Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map ki1 vl -> Map k2 v3 -- input / output
intermediate
data groups output data
reducer k()——C_______>
input data
reduceF k(z)_.©
mapF .
reduceF k()f—>_____>
reduceF k(n)—~©
Document -> [(word,1)] -> word,count

Word Occurrence

mapF :: URL -> String -> [(String,Int)]

mapF _ content = [(word,1) | word <- words content]

reduceF :: String -> [Int] -> Maybe Int

reduceF word counts = Just (sum counts) @
o

Slide 24/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

’ OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Google Map-Reduce (parallel)

input partitioned distributed
data input m Mapper intermediate
data Processes data (groups)
[T}
= | N Reducer distributed
m]a-p Processes output data

R.Lammel, gMapRed :: Int -> (k2->Int) -> Int -> (vi->Int) -- parameters
ﬁ]‘mg'ssd (k1 -> v1 -> [(k2,v2)]) -- mapper

ap-Reduce

Pm’;ram_u -> (k2 -> [v2] -> Maybe v3) -- pre-reducer
ming Model -> (k2 -> [v3] -> Maybe v4) -- final reducer @
Revisited. - - —_—
I eCP 2008 > Map k1 vl -> Map k2 v4 input / output ®

'Y
Slide 25/36 — J.Berthold — Eden — Heriot-Watt, 03/2013 hd

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Outline

O Process Topologies as Skeletons

Slide 26/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Process Topologies as Skeletons: Explicit Parallelism

e describe typical patterns of parallel interaction structure
e (where node behaviour is the function argument)

e to structure parallel computations

Examples:
Pipeline/Ring: Master /Worker: Hypercube:

Slide 27/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Process Topologies as Skeletons: Explicit Parallelism

e describe typical patterns of parallel interaction structure
e (where node behaviour is the function argument)

e to structure parallel computations

Examples:
Pipeline/Ring: Master /Worker: Hypercube:

= well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.

Slide 27/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Process Topologies as Skeletons: Ring

RlngSk§I J—"0

R

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a, [r]) > (b,[r])) > i >0

ring size makeInput processOutput ringWorker input = ...

e Good for exchanging (updated) global data between nodes

e All ring processes connect to parent to receive input/send output
e Parameters: functions for

e decomposing input, combining output, ring worker @

Slide 28/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIE

Outline

@ Algorithm-Oriented Skeletons: Two Classics

Slide 29/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Two Algorithm-oriented Skeletons

e Divide and conquer

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) —> ([b] -> b) -- split / combine
->a->b -- input / result

e lteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init function
(t -> State ws r) -> -- worker function
([r] -> State ms (Either out [t])) -- manager function

-> inp -> out

. coardinate
Tnput | (stlate) | |OUtPUt

deci deEn

AN

Slide 30/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Divide and Conquer Skeletons

e General version: no assumptions on problem characteristics

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> ([b] -> b) -- split / combine
->a->b -- input / result

divCon trivial solve split combine = ...

e Implementation will make (parallel?) recursive calls to itself (with
same parameters as the initial call).

Slide 31/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Divide and Conquer Skeletons

e General version: no assumptions on problem characteristics

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> ([b] -> b) -- split / combine
->a->b -- input / result

divCon trivial solve split combine = ... -- you write one

e Implementation will make (parallel?) recursive calls to itself (with
same parameters as the initial call).

Exercise:

e Implement this general divide-and-conquer version.
Write a sequential version first, then make recursive calls parallel.
Add one 1nt parameter to limit the parallel depth.

Slide 31/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN

[teration Skeleton

e Fixed set of workers

e Lock-step execution,
solving a set of tasks

e Manager decides end

iterateUntil :: (inp -> ([ws],[t],ms)) ->
(t -> State ws r) ->

DEPARTMENT OF COMPUTER SCIEN

coardinate =Tt
input | (stlat e) out pu
deC|deEn

-- split/init function
-- worker function

([r] -> State ms (Either out [t])) -- manager function

-> inp -> out

Worker: computes result r from task t

using and updating a local state ws

Manager: decides whether to continue,
based on master state ms and all worker results.

produce tasks for all workers

Slide 32/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

TY OF COPENHA £ D MPUTER

Outline

® Summary

Slide 33/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

e Eden: Explicit parallel processes, mostly functional face
e Two levels of Eden: Skeleton implementation and skeleton use

o Skeletons: High-level specification exposes parallel structure
e and enables programmers to think in parallel patterns.

e Different skeleton categories (increasing abstraction)

e Small-scale skeletons (map, fold, map-reduce, ...)
o Process topology skeletons (ring, ...)
o Algorithmic skeletons (divide & conquer, iteration)

Slide 34/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summary

Eden: Explicit parallel processes, mostly functional face

Two levels of Eden: Skeleton implementation and skeleton use

o Skeletons: High-level specification exposes parallel structure
e and enables programmers to think in parallel patterns.

Different skeleton categories (increasing abstraction)

e Small-scale skeletons (map, fold, map-reduce, ...)
o Process topology skeletons (ring, ...)
o Algorithmic skeletons (divide & conquer, iteration)

More information on Eden:

http://www.mathematik.uni-marburg.de/~eden
(http://hackage.haskell.org/package/edenskel/)
(http://hackage.haskell.org/package/edenmodules/)

Slide 34/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/edenskel/
http://hackage.haskell.org/package/edenmodules/

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Exercises for the Lab

@ Complete the Hamming number program

File: hamming-.hs

Execute the program and look at an execution trace using EdenTV
® Implement two versions of parMap which increase granularity

Files: ParMap.hs, mandel.hs

Test your versions using the Mandelbrot program.

©® Implement the Divide-And-Conquer skeleton
Files: DC.hs, mergesort.hs
Test your skeleton implementation using the provided mergesort
program.

@ (Bonus) Implement a simple quicksort program using the skeleton

Slide 35/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Usage example:

Compile example, (with tracing -eventlog):

berthold@bwlf01$ COMPILER -parcp -eventlog -02 -rtsopts --make mandel.hs
[1 of 2] Compiling ParMap (ParMap.hs, ParMap.o)

[2 of 2] Compiling Main (mandel.hs, mandel.o)

Linking mandel ...

Run, second run with tracing:

berthold@bwlf01$./mandel O 200 1 -out +RTS -gp4 > out.ppm
==== Starting parallel execution on 4 processors ...
berthold@bwlf01$./mandel O 50 1 +RTS -gp4 -1
==== Starting parallel execution on 4 processors ...
Done (no output)
Trace post-processing...

adding: berthold=mandel#1.eventlog (deflated 65)

adding: berthold=mandel#2.eventlog (deflated 59%)

adding: berthold=mandel#3.eventlog (deflated 58Y%)

adding: berthold=mandel#4.eventlog (deflated 58Y%)
berthold@bwlf01$ edentv berthold\=mandel_0_50_1_+RTS_-qp4_-1.parevents

Slide 36/36 — J.Berthold — Eden — Heriot-Watt, 03/2013

	The Language Eden (in a nutshell)
	Skeleton-Based Programming
	Small-Scale Skeletons: Map and Reduce
	Process Topologies as Skeletons
	Algorithm-Oriented Skeletons: Two Classics
	Summary
	Exercises for the Lab

