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What Is Datacenter (Warehouse) Computing

A datacenter is
a server farm — a room/floor/warehouse full of servers.
underpinning the much wider area of Cloud Computing.

Datacenter requirements:
Massive storage and compute power
Scalability to a large number of processors
High availability — 24/7 operation, no downtimes acceptable
High security against intrusion (both physical and electronic)
Homogeneous hardware and software architecture
Recently: Low power consumption and low carbon emissions

Who uses datacenters / cloud computing platforms?
Every big name on the internet: Google, Amazon, Facebook, ...
Lots of other companies

▶ to provide services over the internet and/or
▶ to manage their business processes
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Datacenter Computing — Architecture
web servers

app servers

ISP2ISP1

firewall

Architecture stack:
replicated web servers, connected to multiple ISPs
firewall (often also replicated)
1000s of application servers, each with large disk

▶ app servers run application software
▶ data stored on app servers (via distributed FS/DB)

⋆ no dedicated file server/data base servers
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Datacenter Computing — Application Programming

Problems:
Distributed resources:

▶ Often data distributed over 1000s of machines
Performance:

▶ Scalability of applications is paramount
Availability:

▶ Apps must cope with compute/network component downtimes
▶ Apps must re-configure dynamically when cluster is upgraded

Solution: Distributed execution engine
Offers skeleton-based programming model
Hides most performance issues from programmer

▶ Automatic parallelisation, controllable by few parameters
Hides all distribution and availability issues from programmer
Some particular engines:

▶ MapReduce (Google; Apache Hadoop)
▶ Dryad and DryadLINQ (Microsoft)
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Applications for MapReduce/Hadoop Work

All kinds of “Big Data” applications:
Log-file processing and systems monitoring
Scientific computng as in Large Hadron Collider etc
Health informatics (with strong requirements on security/privacy)
User behaviour analytics in e-commerce
many more . . .
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MapReduce — Overview

Observation
Many applications conceptually simple (e.g. triv. data-parallel)
Reliably dist. even simple apps on 1000s of nodes is a nightmare.

▶ Skeletons could help!

MapReduce programming model
MapReduce skeleton

▶ Programmer writes only map and reduce functions.
▶ Runtime system takes care of parallel execution and fault tolerance.

Implementation requires
Distributed file system (Google: GFS, Hadoop: HDFS)
For DB apps: dist. data base (Google: BigTable, Hadoop: HBase)
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MapReduce — For Functional Programmers

What func programmers think when they hear “map/reduce”

-- map followed by reduce (= fold of associative m with identity e)
fp_map_reduce :: (a -> b)

-> (b -> b -> b) -> b
-> [a] -> b

fp_map_reduce f m e = foldr m e . map f

-- map followed by group followed by groupwise reduce
fp_map_group_reduce :: (a -> b)

-> ([b] -> [[b]])
-> ([b] -> b)
-> [a] -> [b]

fp_map_group_reduce f g r = map r . g . map f

-- list-valued map then group then groupwise list-valued reduce
fp_map_group_reduce’ :: (a -> [b])

-> ([b] -> [[b]])
-> ([b] -> [b])
-> [a] -> [[b]]

fp_map_group_reduce’ f g r = map r . g . (concat . map f)
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MapReduce — For Functional Programmers

Google’s MapReduce (sequential semantics)

-- list-valued map then fixed group stage then list-valued reduce
map_reduce :: Ord c => ((a,b) -> [(c,d)])

-> (c -> [d] -> [d])
-> [(a,b)] -> [(c,[d])]

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .
(group . sort) .
(concat . map f)

where sort :: Ord c => [(c,d)] -> [(c,d)]
sort = sortBy (\ (k1,_) (k2,_) -> compare k1 k2)
group :: Eq c => [(c,d)] -> [(c,[d])]
group = map (\ ((k,v):kvs) -> (k, v : map snd kvs)) .

groupBy (\ (k1,_) (k2,_) -> k1 == k2)

Specialised for processing key/value pairs.
▶ Group by keys
▶ Reduction may depend on key and values

Not restricted to lists — applicable to any container data type
▶ Reduction should be associative+commutative in 2nd argument

0Compare this with the Hadoop Tutorial for the usage of types
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MapReduce — Applications
TotientRange

-- Euler phi function
euler :: Int -> Int
euler n = length (filter (relprime n) [1 .. n-1])
where relprime x y = hcf x y == 1

hcf x 0 = x
hcf x y = hcf y (rem x y)

-- Summing over the phi functions in the interval [lower .. upper]
sumTotient :: Int -> Int -> Int
sumTotient lower upper = head (snd (head (map_reduce f r input)))

where input :: [((),Int)]
input = zip (repeat ()) [lower, lower+1 .. upper]
f :: ((),Int) -> [((),Int)]
f (k,v) = [(k, euler v)]
r :: () -> [Int] -> [Int]
r _ vs = [sum vs] -- reduction assoc+comm in 2nd arg

Degenerate example: only single key
Still exhibits useful parallelism

▶ but would not perform well on Google’s implementation
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MapReduce — Applications
URL count
isURL :: String -> Bool
isURL word = "http://" ‘isPrefixOf‘ word

-- input: lines of log file
-- output: frequency of URLs in input
countURL :: [String] -> [(String,[Int])]
countURL lines = map_reduce f r input
where input :: [((),String)]

input = zip (repeat ()) lines
f :: ((),String) -> [(String,Int)]
f (_,line) = zip (filter isURL (words line)) (repeat 1)
r :: String -> [Int] -> [Int]
r url ones = [length ones]

Map phase
1 breaks line into words
2 filters words that are URLs
3 zips URLs (which become keys) with value 1

Group phase groups URLs with values (which = 1)
Reduction phase counts #values
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MapReduce — How To Parallelise

Sequential code

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .
(group . sort) .
(concat . map f)

suggests 3-stage pipeline
1 map phase

▶ data parallel task farm
2 parallel sorting and grouping

▶ parallel mergesort
3 groupwise reduce phase

▶ data parallel task farm

Note: This is not how Google do it.
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Google MapReduce — Execution Overview
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J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters, Commun. ACM 51(1):107–113, 2008
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Google MapReduce — Execution Overview

Execution steps:
1 User program forks master, M map workers, R reduce workers.
2 Master assigns map/reduce tasks to map/reduce workers.

▶ Map task = 16–64 MB chunk of input
▶ Reduce task = range of keys + names of M intermediate files

3 Map worker reads input from GFS and processes it.
4 Map worker writes output to local disk.

▶ Output partitioned into R files (grouped by key)
5 Reduce worker gathers files from map workers and reduces them.

1 Merge M intermediate files together, grouping by key.
2 Reduce values groupwise.

6 Reduce worker writes output to GFS.
7 Master returns control to user program after all task completed.
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Main Selling Points of MapReduce

Easy to use for non-experts in parallel programming (details are
hidden in the MapReduce implementation)
Fault tolerance is integrated in the implementation
Good modularity: many problems can be implemented as
sequences of MapReduce
Flexibility: many problems are instances of MapReduce
Good scalability : using 1000s of machines at the moment
Tuned for large data volumes: several TB of data
Highly tuned parallel implementation to achieve e.g. good load
balance
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Similar Datacenter Frameworks

Apache Hadoop
MapReduce programming model
Open source Java implementation

▶ http://hadoop.apache.org/

Dryad (Microsoft)
More general skeleton:

▶ Programmer specifies directed acyclic dataflow graph:
⋆ vertex = sequential program
⋆ edge = unidirectional communication channel

▶ Generalises Unix paradigm of “piping” apps together
High-level languages building on Dryad

▶ Nebula scripting language
▶ DryadLINQ: database query compiler

Closed source C++ implementation
M. Isard et al. Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks, EuroSys 2007
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How MapReduce/Hadoop Work

Components:
Distributed file system

▶ We’ll have a look at HDFS (Apache Hadoop)

D. Borthakur. HDFS Architecture.
http://hadoop.apache.org/common/docs/current/
hdfs_design.html

▶ GFS (Google) is quite similar (but pre-dates MapReduce)

S. Ghemawat, H. Gobioff, S. Leung. The Google File System.
SOSP 2003

Fault-tolerant task scheduling system
▶ Can take advantage of distributed file system.
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Hadoop comes with a rich eco-system

Several software components make work with Hadoop easier:
HDFS: the Hadoop distributed file system, for fast and reliable
data access;
Hbase: a database layer based on Google’s Big Table design,
running on Hadoop instances (see https://hbase.apache.org/);
Pig: a high-level language for data analysis on Hadoop instances
(see https://pig.apache.org/;
Hive: a high-level language (based on SQL) and a distributed,
fault-tolerant data warehouse system on Hadoop instances (see
https://hive.apache.org/);
several components for monitoring and re-launching jobs
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Hadoop HDFS — Architecture

Design goals:
Fault-tolerance

▶ HDFS runs on large clusters. Hardware failures are common.
Large files

▶ Up to terabytes per file.
Performance

▶ Exploiting network locality where possible.

Portable across heterogeneous hardware and software platforms.

Some design choices:
Emphasis on high throughput rather than low latency

▶ Optimise for streaming access rather than random access.
Simple coherency model: 1 streaming writer / many readers.

▶ Lock-free reading and writing.
Processing facilities near the data.

▶ Moving computations cheaper than moving large data sets.
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Hadoop HDFS — Datacenter Network Topology

node

node

node

rack rack rack

cluster

Cluster consists of multiple racks.
Inter-rack traffic needs to cross (at least) 2 more switches than
intra-rack traffic.

▶ inter-rack latency > intra-rack latency
▶ aggregate intra-rack bandwidth ≫ inter-rack bandwidth

HDFS must optimise for parallel intra-rack access where possible.
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Hadoop HDFS — Logical Architecture

NameNode

DataNodeDataNode DataNode

Client Client

...

...

HDFS Server

Client/Server architecture (with distributed server)
HDFS server implements master/worker pattern:

▶ 1 master: NameNode (stores HDFS meta-data on local FS)
▶ Many workers: DataNodes (store HDFS data on local FS)

Client applications may run on DataNodes (rather than on
separate machines).
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Hadoop HDFS — File Organisation

Metadata (on NameNode)
Hierarchical namespace (file/directory tree)
Limited access control

▶ File system access control not important if clients are trusted.

Data (on DataNodes)
Files stored in large blocks spread over the whole cluster.

▶ Block size up to 64 MB (configurable per file)
▶ Each block stored as a file on DataNode’s local FS

Each block replicated n times.
▶ Replication factor n configurable per file (default n = 3)
▶ Replicas spread over the cluster

1 to achieve high availability, and
2 to increase performance.

Replication strategy crucial for both objectives.
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Hadoop HDFS — Replication Strategies

Two simple replication strategies:
1 Spread all replicas evenly over racks of cluster.

+ Optimises availability.
– Performance may suffer if clients have to fall back on off-rack

replicas.
2 Retain one replica on same rack as primary replica, spread

remaining replicas over other racks.
+ Optimises performance (even primary replica unavailable).
– Availability almost as high as with strategy 1.

⋆ Single node failures more common than full rack failures.

Many more strategies are possible.
Finding good (high availability + high performance) strategies is a
hot research topic in distributed file systems / data bases.
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Hadoop HDFS — Writing to a File

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

3

3

3

56

6 5

4

7

2

1 Request to write to block i in file F
2 Return block handle and locations
3 Data transfer/forwarding

▶ Client sends data to nearest replica.
▶ Replicas form forwarding pipeline.

4 Initiate write on primary replica
5 Initiate replication
6 Commit secondary replica
7 Commit write

▶ Commit only if writing successful on
all replicas.

▶ Otherwise return error msg to client.

Note: Minimal interaction with NameNode (to avoid bottleneck).
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Hadoop HDFS — Reading from a File

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

4 23

1 Request to read from block i in file F
2 Return block handle and locations

▶ Client may cache handle and
locations.

⋆ Only cache for short time: location
data becomes invalid quickly.

3 Request data
▶ Client requests data from nearest

replica.
4 Transfer data

Note: Minimal interaction with NameNode.
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Hadoop HDFS — Reading from a Dead Node

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

23

5 6

1 Request to read from block i in file F
2 Return block handle and locations
3 Request data

▶ Client requests data from nearest
replica.

4 Request times out because
▶ network down,
▶ DataNode dead or
▶ DataNode overloaded.

5 Re-request data
▶ Client requests data from another

replica.
6 Transfer data

Note: No additional interaction with NameNode.
NameNode will detect and deal with failure independently.
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Hadoop HDFS — Reading from a Corrupt File

DataNode

replica 1
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4
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1 Request to read from block i in file F
2 Return block handle and locations
3 Request data
4 Signal corruption

▶ Inform both Client and NameNode.
5 Re-request data

▶ Client requests data from another
replica.

6 Transfer data

Note: No additional Client/NameNode interaction.
NameNode will deal with failure independently.
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Hadoop HDFS — Fault Tolerance

Fast recovery from NameNode failure
Snapshot of NameNode’s state regularly dumped to disk and
replicated off-rack.
State updates between snapshots journaled.
Note: No automatic NameNode failure detection.

Recovery from DataNode failure or network partition
Failure detection: NameNode listens to DataNodes’ heartbeats.
Fast recovery:

1 Clients timeout and fall back on other replicas.
2 NameNode initiates re-replication of blocks residing on dead nodes.

Recovery from data corruption
Failure detection: DataNode compares checksums.
Fast recovery:

1 Clients timeout and fall back on other replicas.
2 DataNode notifies NameNode, which initiates re-replication of

corrupt block.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2023/24 Hadoop 27 / 38



How MapReduce Piggybacks on HDFS
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How MapReduce Piggybacks on HDFS

Fault-tolerance:
MapReduce worker heartbeat monitoring done by HDFS.

▶ DataNodes run Map or Reduce workers as applications.
▶ NameNode runs MapReduce master as application.

⋆ If DataNode dead, re-replicate its data and re-execute its Map or
Reduce tasks somewhere else.

Performance:
Select Map workers optimising for local reads.

▶ Prefer DataNodes with blocks of input file on disk.
▶ Failing that, prefer DataNodes with blocks of the input file on the

same rack.
Have Reduce worker write primary replica to same DataNode.

▶ Replication strategy distributes output file evenly over other racks.
Select Reduce optimising access to all Map workers.

▶ Prefer grouping Reduce workers on same rack as Map workers.
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Hadoop case study: word count

Some basics first
Hadoop is usually programmed in Java, but other, higher-level
languages such as Pig or Hive can be used as well
For Input/Output, Hadoop works on <key, value> pairs
This means Key
These classes need to be Serializable, because their data is being
transfered over a cluster
Input and Output types of a MapReduce job:

▶ map :: <k1, v1> -> <k2, v2>
▶ shuffle :: <k2, v2> -> -> <k2, v2>
▶ reduce :: <k2, v2> -> <k3, v3>

We now look into a simple example: WordCount is a simple application
that counts the number of occurrences of each word in a given input
set.

0shuffle is sometimes called combine
0See https://hadoop.apache.org/docs/stable/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html
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The Input

We use two files as input, containing one line each.
First input file:

Hello World Bye World

Second input file:

Hello Hadoop Goodbye Hadoop
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The Mapper implementation
The Mapper implementation, via the map method, processes one line
at a time, as provided by the specified TextInputFormat. It then splits
the line into tokens separated by whitespaces, via the StringTokenizer,
and emits a key-value pair of < <word>, 1>

public void map(Object key,
Text value,
Context context
) throws IOException,

InterruptedException {
StringTokenizer itr =

new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}
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Output after Map stage

For the given sample input the first map emits:

< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

The second map emits:

< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>
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The Shuffle/Combine phase

WordCount also specifies a combiner (shuffle). Hence, the output of
each map is passed through the local combiner (which is same as the
Reducer as per the job configuration) for local aggregation, after being
sorted on the keys.

job.setCombinerClass(IntSumReducer.class);
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Output after Shuffle stage

The output of the first map:

< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:

< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>
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The Reducer implementation

The Reducer implementation, via the reduce method just sums up the
values, which are the occurrence counts for each key (i.e. words in this
example).

public void reduce(Text key,
Iterable<IntWritable> values,
Context context
) throws IOException,

InterruptedException {
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
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The final output

Thus the output of the job is:

< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>
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Further Reading:

Tom White, “Hadoop: The Definitive Guide”. O’Reilly Media,
Fourth edition, May 2015. ISBN13: 9781491901632
Hadoop documentation: http://hadoop.apache.org/
See also the links on Hadoop-level “scripting” languages such as
Pig and Hive.
D. Borthakur, “HDFS Architecture”.
http://hadoop.apache.org/common/docs/current/hdfs_

design.html
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