Distributed and Parallel Technology

Parallel Performance Tuning

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

HERIOT
GEWAT]

UNIVERSITY

%No proprietary software has been used in producing these slides %‘i\ﬂ?{

9Based on earlier versions by Greg Michaelson and Patrick Maier
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 1/16

Measuring Execution Time — Whole-program profiling
We want to find out: where is time taken in program?
gprof is a Linux profiling tool

gcc -pg -0 m3 matrix3.c

#./m3 2MAT_2000_10_65536

2000 * 2000; SEQUENTIAL; 58.890000 secs
gprof m3 gmon.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
100.16 53.47 53.47 4000000 0.00 0.00 dotProd
0.16 53.56 0.09 1 0.09 53.56 matrixProd
0.12 53.62 0.07 1 0.07 0.07 transpose
0.02 53.63 0.01 2 0.01 0.01 readMatrix
0.00 53.63 0.00 8000 0.00 0.00 allocVector
0.00 53.63 0.00 4 0.00 0.00 allocMamalx
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 3/16

Techniques for Parallel Performance Tuning

To achieve good parallel performance, you need to
@ know basics about the sequential performance

@ predict the asymptotic complexity of computation and
communication

@ measure the performance of the application
@ possibly, restructure the program to enhance parallel performance

HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 2/16
Measuring Execution Time — Cache profiling
We want to find out how efficiently the cache is used.
cachegrind, a component of the valgrind suite, gives this
information.
valgrind —tool=cachegrind m2 2MAT_2000_10_65536 |
2000 = 2000; SEQUENTIAL; 1452.630000 secs
I refs: 87,822,991, 690
I1 misses: 1,294
L21 misses: 1,285
I1 miss rate: 0.00%
L21 miss rate: 0.00%
D refs: 51,234,059,144 (49,989,145,968 rd + 1,244,913,176 wr)
D1 misses: 9,508,333,358 (9,507,571,877 rd + 761,481 wr)
12d misses: 502,269,132 (501,509,253 rd + 759,879 wr)
Dl miss rate: 18.5% (19.0% + 0.0%)
L2d miss rate: 0.9% (1.0% + 0.0%)
L2 refs: 9,508,334,652 (9,507,573,171 rd + 761,481 wr)
L2 misses: 502,270,417 501,510,538 rd + 759,87%@(&?}1
L2 miss rate: 0.3% (0.3% + 0. B¥entvsgrms

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 C+MPI 4/16

http://www.macs.hw.ac.uk/~hwloidl

Measuring Execution Time — Sequential C

#include <time.h>

/* global variable x/
clock_t start_time;

/* start timer x/
start_time = clock();

/+ do something */

/* take time */

printf ("Elapsed time: %f secs", (clock() - start_time) / CLOCKS_PER_SEC);
HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 5/16

What To Measure

Measure runtime of
@ whole program

» too pessimistic
» system artefacts (eg., /O, MPI startup) distort timings

@ whole program without system artefacts

» exclude time spent on I/O (or suppress 1/O)
» exclude time spent on MPI startup/shutdown
» Do measure whole program, not only parallel parts!

@ whole program without system artefacts and without inherently
sequential parts
» only measure performance of code that does run in parallel
» disreputable — see Amdahl’s Law

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 7/16

Measuring Execution Time — C with MPI

/* global variable x/
double elapsed_time;

/* start timer x/
MPI_Barrier (MPI_COMM_WORLD) ;
elapsed_time = - MPI_Wtime () ;

/+ do something =/

/* take time =*/
elapsed_time += MPI_Wtime () ;
printf ("Elapsed time: $f secs", elapsed_time);

Useful MPI functions:
@ double MPI_Wtime (void)

» current time in seconds; use MPI_Wtick () to enquire precision
@ int MPI_Barrier (MPI_Comm comm)

» synchronizes all processors in communicator comm HERIOT
» use only for timing the whole system oWl
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 6/16

Speedup

Speedup is a measure of how much effect adding extra processors
has on runtime.

@ absolute speedup
= sequential time on 1 processor / parallel time on n processors

@ relative speedup
= parallel time on 1 processor / parallel time on n processors
» Typically, parallel execution on 1 processor is slightly slower than
sequential execution due to MPI overhead.
» Typically, absolute speedup < relative speedup.

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 8/16

Speedup — Amdahl’s Law Measuring Parallel Runtime — matrix8.c

int main(int argc, char x* argv)

@ Assumption: Parallel program can be divided into a sequential (
part (which must be executed by 1 processor only) and a parallel /+ timers for profiling */

0 double t_total, t_sort, t_ e_ , Tt . 7
part (which may be executed by many processors). e e Sorty fomergecomt, tmerge-comp
MPI_Init (&argc, &argv); MPI_Comm_size (MPI_COMM_WORLD, &p); MPI_Comm_rank (MPI

@ /deal runtime on nprocessors Tp, = Ts+ Tp/n E i = 0) 1 o meeb o)
» Ts = execution time of sequential part .-
» T, = execution time of parallel part on 1 processor /i giseide e Ehase @)
Tt T MPI_Barrier (MPI_COMM_WORLD) ;
@ /deal speedup on n processors = Tsi—ijn elapsed_time = - MPI_Wtime();
int xx M2T = transpose (M2, n, m);
Amdah|’S LaW int xx M3 = mgtrixProdMaster(Ml, M2T, m, n, p-1);
/* stop the timer */
Let f = Ts/(Ts+ Tp) = Ts/ T4 be the sequential fraction of a program. elapreel e = 2L Welas ()
0 . . /x write matrix to /dev/null »*/
The maximum achievable speedup on n processors is bounded by FILE * fout — fopen("/dev/null", "w");
1 writeMatrix (fout, M3, m, m);
B printf ("%d » %d; %2d processors; %f secs", m,n,p,elapsed_time);
f+(1 —f)/n } else { /* worker =/

. HERIOT trixProdWork 0 , p-1, id); HERIOT
Corollary: For n — oo, speedups are bounded by 1/f = T1/Ts. csart | rerEEredioskesm n ey 24 BB WALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 9/16 Hans-Wolfgang Loidl (I—jeriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 10/16

return 0;
}
Tutorial: Parallel Matrix Multiplication — Setup Tutorial: Parallel Matrix Multiplication — Sample Runs
download the sequential as baseline for comparison # sequential run
> wget -qg http://www.macs.hw.ac.uk/ hwloidl/Courses/F21DP/srcs/matrix3.c > ./matrix3 2MAT_2000_10_65536
download input data 2000 + 2000; SEQUENTIAL; 12.240000 secs
> wget -qg http://www.macs.hw.ac.uk/ hwloidl/Courses/F21DP/srcs/2MAT_2000_10_65536
compile sequential version (with optimisation!) # now you can run the parallel MPI program, using 1 worker and 1 master
> gcc -Wall -O -o matrix3 matrix3.c > mpirun -np 2 matrix8 2MAT_2000_10_65536
run sequential version 2000 = 2000; 2 processors; 12.554089 secs
> ./matrix3 2MAT_2000_10_65536 # run it on 2 workers
2000 2000; SEQUENTIAL; 12.240000 secs > mpirun -np 3 matrix8 2MAT_2000_10_65536
2000 = 2000; 3 processors; 6.468304 secs
download parallel version # NB: speedup of almost 2, good!
> wget -q http://www.macs.hw.ac.uk/ hwloidl/Courses/F21DP/srcs/matrix8.c # run it on 4 workers
compile parallel version > mpirun —np 5 matrix8 2MAT_2000_10_65536
> mpicc -Wall -O -o matrix8 matrix8.c 2000 = 2000; 5 processors; 3.260149 secs
run it on 1 worker (and 1 master) # run it on a network of 4 nodes (listed in mpi4) with 40 workers in total
> mpirun -np 40 -f mpi4 matrix8 2MAT_2000_10_65536
2000 = 2000; 40 processors; 5.672003 secs
HERIOT HERIOT
PWALT PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 11/16 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 12/16

Tutorial: Parallel Matrix Multiplication — Sample Runs

Batch job of executions on 1 to 16 workers (put this into a shell script!):

> echo "Workers 1">LOG ; ./matrix3 2MAT_2000_10_65536 >> LOG ; for ((i=1;1i
> cat LOG | sed —-e ’/secs/a\X’ | sed —e 's/”.xnp \([0-9]%\).x$/\1/;/PEs/d;s/"
> cat LOG | sed -e ’/secs/a\X’ | sed -e "s/?.*np \([0-9]1*\).x$/\1/;/PEs/d;s/"
> echo "set term x11; plot \"rt.dat\" with lines; pause 10 " | gnuplot

Check the F21DP FAQ page for details: http:
//www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faqg.html

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 13/16

Parallel Performance — Matrix Multiplication

Observations:
@ good “near linear” speedups only up to 6-8 processors
@ speedups peak and then decline
@ larger problem size delays peak

Analysis:

@ Processing cost per processor decreases linearly with
#processors.
@ Communication cost per processor is roughly independent of
#processors.
» This statement is only true for workers (but they dominate).
» Communication cost of worker dominated by cost of receiving full
matrix M2.

@ More processors ~ decreasing ratio computation/communication

@ Beyond peak speedup, communication overwhelms processin }z\lggi}:

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 15/16

Parallel Performance — Matrix Multiplication

1000 x 1000 2000 x 2000
\‘\‘ ‘\\
15 \‘ \\
runtime [s] 1X \
rel speedup . . . e
’ L 10T,
ey T
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C+MPI 14/16
Some Profiling Tips
How to instrument your code:
@ Total parallel runtime: Start timer after a barrier.
@ Communication: Time receives (including collectives).
» Includes time for synchronisation. A barrier before receive will
measure only communication but will massively distort algorithm.
@ Other program parts: Avoid distorting timing by 1/0 or comm.
» Postpone I/O or measure and subtract I/0 time.
» Printing profile is 1/0: Do it at the end (after a barrier).
» Don’t comment out /0! Compiler may optimise your program away.
@ Note: Instrumenting changes your code (cache behaviour, ...)
How to run your experiments:
@ Profile on lightly loaded machines.
» Check load on nodes (eg. upt ime) before running experiments.
» Don’t use many nodes for a long time.
@ Take the median of several profiles (for a given problem size).
» Fix some random input (if any) of the given problem size.
» Pick the profile with median total runtime. HERIOT

* Don’t mix data across runs and don’t average.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C+MPI 16/16

10 "Wo
:N; $!'b
;N; St

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faq.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faq.html

	Example: Parallel Sorting
	Sequential Profiling
	Speedups

