
Distributed and Parallel Technology
Parallel Performance Tuning

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

0No proprietary software has been used in producing these slides
0Based on earlier versions by Greg Michaelson and Patrick Maier

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 1 / 16

http://www.macs.hw.ac.uk/~hwloidl

Techniques for Parallel Performance Tuning

To achieve good parallel performance, you need to
know basics about the sequential performance
predict the asymptotic complexity of computation and
communication
measure the performance of the application
possibly, restructure the program to enhance parallel performance

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 2 / 16

Measuring Execution Time — Whole-program profiling
We want to find out: where is time taken in program?
gprof is a Linux profiling tool

gcc -pg -o m3 matrix3.c
./m3 2MAT_2000_10_65536
2000 * 2000; SEQUENTIAL; 58.890000 secs
gprof m3 gmon.out

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
100.16 53.47 53.47 4000000 0.00 0.00 dotProd

0.16 53.56 0.09 1 0.09 53.56 matrixProd
0.12 53.62 0.07 1 0.07 0.07 transpose
0.02 53.63 0.01 2 0.01 0.01 readMatrix
0.00 53.63 0.00 8000 0.00 0.00 allocVector
0.00 53.63 0.00 4 0.00 0.00 allocMatrix

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 3 / 16

Measuring Execution Time — Cache profiling
We want to find out how efficiently the cache is used.
cachegrind, a component of the valgrind suite, gives this
information.

valgrind –tool=cachegrind m2 2MAT_2000_10_65536

2000 * 2000; SEQUENTIAL; 1452.630000 secs

I refs: 87,822,991,690
I1 misses: 1,294
L2i misses: 1,285
I1 miss rate: 0.00%
L2i miss rate: 0.00%

D refs: 51,234,059,144 (49,989,145,968 rd + 1,244,913,176 wr)
D1 misses: 9,508,333,358 (9,507,571,877 rd + 761,481 wr)
L2d misses: 502,269,132 (501,509,253 rd + 759,879 wr)
D1 miss rate: 18.5% (19.0% + 0.0%)
L2d miss rate: 0.9% (1.0% + 0.0%)

L2 refs: 9,508,334,652 (9,507,573,171 rd + 761,481 wr)
L2 misses: 502,270,417 (501,510,538 rd + 759,879 wr)
L2 miss rate: 0.3% (0.3% + 0.0%)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 4 / 16

Measuring Execution Time — Sequential C

#include <time.h>

. . .

/* global variable */
clock_t start_time;

. . .

/* start timer */
start_time = clock();

/* do something */
. . .

/* take time */
printf("Elapsed time: %f secs", (clock() - start_time) / CLOCKS_PER_SEC);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 5 / 16

Measuring Execution Time — C with MPI
/* global variable */
double elapsed_time;

. . .

/* start timer */
MPI_Barrier(MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();

/* do something */
. . .

/* take time */
elapsed_time += MPI_Wtime();
printf("Elapsed time: %f secs", elapsed_time);

Useful MPI functions:
double MPI_Wtime(void)

▶ current time in seconds; use MPI_Wtick() to enquire precision
int MPI_Barrier(MPI_Comm comm)

▶ synchronizes all processors in communicator comm
▶ use only for timing the whole system

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 6 / 16

What To Measure

Measure runtime of
whole program

▶ too pessimistic
▶ system artefacts (eg., I/O, MPI startup) distort timings

whole program without system artefacts
▶ exclude time spent on I/O (or suppress I/O)
▶ exclude time spent on MPI startup/shutdown
▶ Do measure whole program, not only parallel parts!

whole program without system artefacts and without inherently
sequential parts

▶ only measure performance of code that does run in parallel
▶ disreputable — see Amdahl’s Law

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 7 / 16

Speedup

Speedup is a measure of how much effect adding extra processors
has on runtime.

absolute speedup
= sequential time on 1 processor / parallel time on n processors

relative speedup
= parallel time on 1 processor / parallel time on n processors

▶ Typically, parallel execution on 1 processor is slightly slower than
sequential execution due to MPI overhead.

▶ Typically, absolute speedup < relative speedup.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 8 / 16

Speedup — Amdahl’s Law

Assumption: Parallel program can be divided into a sequential
part (which must be executed by 1 processor only) and a parallel
part (which may be executed by many processors).

Ideal runtime on n processors Tn = Ts + Tp/n
▶ Ts = execution time of sequential part
▶ Tp = execution time of parallel part on 1 processor

Ideal speedup on n processors = Ts+Tp
Ts+Tp/n

Amdahl’s Law
Let f = Ts/(Ts + Tp) = Ts/T1 be the sequential fraction of a program.
The maximum achievable speedup on n processors is bounded by

1
f + (1 − f)/n

Corollary: For n → ∞, speedups are bounded by 1/f = T1/Ts.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 9 / 16

Measuring Parallel Runtime — matrix8.c
int main(int argc, char ** argv)
{
/* timers for profiling */
double t_total, t_sort, t_merge_comm, t_merge_comp;
. . .
MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &p); MPI_Comm_rank(MPI_COMM_WORLD, &id);
if (id == 0) { /* master */

. . .
/* start the timer */
MPI_Barrier(MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();
. . .
int ** M2T = transpose(M2, n, m);
int ** M3 = matrixProdMaster(M1, M2T, m, n, p-1);
/* stop the timer */
elapsed_time += MPI_Wtime();
/* write matrix to /dev/null */
FILE * fout = fopen("/dev/null", "w");
writeMatrix(fout, M3, m, m);
printf("%d * %d; %2d processors; %f secs", m,n,p,elapsed_time);

} else { /* worker */
. . .
matrixProdWorker(m, n, p-1, id);

}
. . .
MPI_Finalize();
return 0;

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 10 / 16

Tutorial: Parallel Matrix Multiplication — Setup

download the sequential as baseline for comparison
> wget -q http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21DP/srcs/matrix3.c
download input data
> wget -q http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21DP/srcs/2MAT_2000_10_65536
compile sequential version (with optimisation!)
> gcc -Wall -O -o matrix3 matrix3.c
run sequential version
> ./matrix3 2MAT_2000_10_65536
2000 * 2000; SEQUENTIAL; 12.240000 secs

download parallel version
> wget -q http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21DP/srcs/matrix8.c
compile parallel version
> mpicc -Wall -O -o matrix8 matrix8.c
run it on 1 worker (and 1 master)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 11 / 16

Tutorial: Parallel Matrix Multiplication — Sample Runs

sequential run
> ./matrix3 2MAT_2000_10_65536
2000 * 2000; SEQUENTIAL; 12.240000 secs

now you can run the parallel MPI program, using 1 worker and 1 master
> mpirun -np 2 matrix8 2MAT_2000_10_65536
2000 * 2000; 2 processors; 12.554089 secs
run it on 2 workers
> mpirun -np 3 matrix8 2MAT_2000_10_65536
2000 * 2000; 3 processors; 6.468304 secs
NB: speedup of almost 2, good!
run it on 4 workers
> mpirun -np 5 matrix8 2MAT_2000_10_65536
2000 * 2000; 5 processors; 3.260149 secs
run it on a network of 4 nodes (listed in mpi4) with 40 workers in total
> mpirun -np 40 -f mpi4 matrix8 2MAT_2000_10_65536
2000 * 2000; 40 processors; 5.672003 secs

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 12 / 16

Tutorial: Parallel Matrix Multiplication — Sample Runs

Batch job of executions on 1 to 16 workers (put this into a shell script!):

> echo "Workers 1">LOG ; ./matrix3 2MAT_2000_10_65536 >> LOG ; for ((i=1;i<17;i++)) ; do w=$[2*i] ; p=$[$w + 1] ; echo "PEs $p" >>LOG; echo "Workers $w" >> LOG ; mpirun -np $p matrix8 2MAT_2000_10_65536 >> LOG ; done
> cat LOG | sed -e ’/secs/a\X’ | sed -e ’s/^.*np \([0-9]*\).*$/\1/;/PEs/d;s/^.*Workers \([0-9]\).*$/\1/;s/^.* \([.0-9]*\) secs.*$/\1/’ | sed ’:a;N;$!ba;s/\n/ /g’ | sed ’s/X/\n/g’ >rt.dat
> cat LOG | sed -e ’/secs/a\X’ | sed -e ’s/^.*np \([0-9]*\).*$/\1/;/PEs/d;s/^.*Workers \([0-9]*\).*$/\1/;s/^.* \([.0-9]*\) secs.*$/\1/’ | sed ’:a;N;$!ba;s/\n/ /g’ | sed ’s/X/\n/g’ >rt.dat
> echo "set term x11; plot \"rt.dat\" with lines; pause 10 " | gnuplot

Check the F21DP FAQ page for details: http:
//www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faq.html

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 13 / 16

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faq.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/faq.html

Parallel Performance — Matrix Multiplication

runtime [s]

rel speedup

1000 × 1000 2000 × 2000

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 14 / 16

Parallel Performance — Matrix Multiplication
Observations:

good “near linear” speedups only up to 6–8 processors
speedups peak and then decline
larger problem size delays peak

Analysis:
Processing cost per processor decreases linearly with
#processors.
Communication cost per processor is roughly independent of
#processors.

▶ This statement is only true for workers (but they dominate).
▶ Communication cost of worker dominated by cost of receiving full

matrix M2.

More processors⇝ decreasing ratio computation/communication
Beyond peak speedup, communication overwhelms processing.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 15 / 16

Some Profiling Tips
How to instrument your code:

Total parallel runtime: Start timer after a barrier.
Communication: Time receives (including collectives).

▶ Includes time for synchronisation. A barrier before receive will
measure only communication but will massively distort algorithm.

Other program parts: Avoid distorting timing by I/O or comm.
▶ Postpone I/O or measure and subtract I/O time.
▶ Printing profile is I/O: Do it at the end (after a barrier).
▶ Don’t comment out I/O! Compiler may optimise your program away.

Note: Instrumenting changes your code (cache behaviour, ...)
How to run your experiments:

Profile on lightly loaded machines.
▶ Check load on nodes (eg. uptime) before running experiments.
▶ Don’t use many nodes for a long time.

Take the median of several profiles (for a given problem size).
▶ Fix some random input (if any) of the given problem size.
▶ Pick the profile with median total runtime.

⋆ Don’t mix data across runs and don’t average.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2023/2024 C+MPI 16 / 16

	Example: Parallel Sorting
	Sequential Profiling
	Speedups

