
Heterogeneous	Computing
using	openCL
lecture	4

F21DP	Distributed	and	Parallel	
Technology

Sven-Bodo	Scholz



The	Big	Picture

• Introduction	to	Heterogeneous	Systems
• OpenCL Basics
• Memory	Issues
• Scheduling

1



Memory	Banks
• Memory	is	made	up	of	banks	

– Memory	banks	are	the	hardware	units	that	actually	store	
data

• The	memory	banks	targeted	by	a	memory	access	
depend	on	the	address	of	the	data	to	be	read/written
– Note	that	on	current	GPUs,	there	are	more	memory	banks	
than	can	be	addressed	at	once	by	the	global	memory	bus,	
so	it	is	possible	for	different	accesses	to	target	different	
banks

• Bank	response	time,	not	access	requests,	is	the	bottleneck
• Successive	data	are	stored	in	successive	banks	(strides	
of	32-bit	words	on	GPUs)	so	that	a	group	of	threads	
accessing	successive	elements	will	produce	no	bank	
conflicts

2



Bank	Conflicts	– Local	
Memory

• Bank	conflicts	have	the	largest	negative	effect	
on	local	memory	operations
– Local	memory	does	not	require	that	accesses	are	
to	sequentially	increasing	elements

• Accesses	from	successive	threads	should	
target	different	memory	banks
– Threads	accessing	sequentially	increasing	data	will	
fall	into	this	category

3



Bank	Conflicts	– Local	
Memory

• On	AMD,	a	wavefront that	generates	bank	
conflicts	stalls	until	all	local	memory	
operations	complete
– The	hardware	does	not	hide	the	stall	by	switching	
to	another	wavefront

• The	following	examples	show	local	memory	
access	patterns	and	whether	conflicts	are	
generated
– For	readability,	only	8	memory	banks	are	shown

4



Bank	Conflicts	– Local	
Memory

• If	there	are	no	bank	conflicts,	each	bank	can	
return	an	element	without	any	delays
– Both	of	the	following	patterns	will	complete	without	
stalls	on	current	GPU	hardware

5

0
1
2
3
4
5
6
7

Memory Bank

0
1
2
3

4
5
6
7

Thread

0
1
2
3
4
5
6
7

Memory Bank

0
1
2
3

4
5
6
7

Thread



Bank	Conflicts	– Local	
Memory

• If	multiple	accesses	occur	to	the	same	bank,	then	the	
bank	with	the	most	conflicts	will	determine	the	latency
– The	following	pattern	will	take	3	times	the	access	latency	
to	complete

6

0
1
2
3
4
5
6
7

Memory Bank

0
1
2
3

4
5
6
7

Thread

2
1

3

1
1

Conflicts



Bank	Conflicts	– Local	
Memory

• If	all	accesses	are	to	the	same	address,	then	the	bank	
can	perform	a	broadcast	and	no	delay	is	incurred
– The	following	will	only	take	one	access	to	complete	
assuming	the	same	data	element	is	accessed

7

0
1
2
3
4
5
6
7

Memory Bank

0
1
2
3

4
5
6
7

Thread



Bank	Conflicts	– Global	
Memory

• Bank	conflicts	in	global	memory	rely	on	the	same	
principles,	however	the	global	memory	bus	makes	the	
impact	of	conflicts	more	subtle	
– Since	accessing	data	in	global	memory	requires	that	an	
entire	bus-line	be	read,	bank	conflicts	within	a	work-group	
have	a	similar	effect	as	non-coalesced	accesses

• If	threads	reading	from	global	memory	had	a	bank	conflict	then	by	
definition	it	manifest	as	a	non-coalesced	access

• Not	all	non-coalesced	accesses	are	bank	conflicts,	however

• The	ideal	case	for	global	memory	is	when	different	
work-groups	read	from	different	banks
– In	reality,	this	is	a	very	low-level	optimization	and	should	
not	be	prioritized	when	first	writing	a	program

8



Summary
• GPU	memory	is	different	than	CPU	memory

– The	goal	is	high	throughput	instead	of	low-latency
• Memory	access	patterns	have	a	huge	impact	on	bus	
utilization
– Low	utilization	means	low	performance

• Having	coalesced	memory	accesses	and	avoiding	bank	
conflicts	are	required	for	high	performance	code

• Specific	hardware	information	(such	as	bus	width,	
number	of	memory	banks,	and	number	of	threads	that	
coalesce	memory	requests)	is	GPU-specific	and	can	be	
found	in	vendor	documentation

9



The	Big	Picture

• Introduction	to	Heterogeneous	Systems
• OpenCL Basics
• Memory	Issues
• Optimisations

10



Thread	Mapping
• Consider	a	serial	matrix	multiplication	algorithm

• This	algorithm	is	suited	for	output	data	
decomposition
– We	will	create	NM	threads	

• Effectively	removing	the	outer	two	loops
– Each	thread	will	perform	P calculations

• The	inner	loop	will	remain	as	part	of	the	kernel
• Should	the	index	space	be	MxN or	NxM?

11



Thread	Mapping
• Thread	mapping	1:	with	an	MxN index	space,	the	
kernel	would	be:

• Thread	mapping	2:	with	an	NxM index	space,	the	
kernel	would	be:

• Both	mappings	produce	functionally	equivalent	
versions	of	the	program

12



Thread	Mapping
• This	figure	shows	the	execution	of	the	two	thread	

mappings	on	NVIDIA	GeForce 285	and	8800	GPUs

• Notice	that	mapping	2	is	far	superior	in	performance	for	
both	GPUs

13



Thread	Mapping

• In	mapping	1,	consecutive	threads	(tx)	are	
mapped	to	different	rows	of	Matrix	C,	and	
non-consecutive	threads	(ty)	are	mapped	to	
columns	of	Matrix	B
– The	mapping	causes	inefficient	memory	accesses

14



Thread	Mapping

• In	mapping	2,	consecutive	threads	(tx)	are	
mapped	to	consecutive	elements	in	Matrices	B	
and	C
– Accesses	to	both	of	these	matrices	will	be	coalesced	

• Degree	of	coalescence	depends	on	the	workgroup	and	data	
sizes

15



Thread	Mapping

• In	mapping	2,	consecutive	threads	(tx)	are	
mapped	to	consecutive	elements	in	Matrices	
B	and	C
– Accesses	to	both	of	these	matrices	will	be	
coalesced	

• Degree	of	coalescence	depends	on	the	workgroup	and	
data	sizes

16



Matrix	Transpose

• A	matrix	transpose	is	a	straightforward	technique
– Out(x,y)	=	In(y,x)

• No	matter	which	thread	mapping	is	chosen,	one	operation	
(read/write)	will	produce	coalesced	accesses	while	the	
other	(write/read)	produces	uncoalesced accesses
– Note	that	data	must	be	read	to	a	temporary	location	(such	as	a	

register)	before	being	written	to	a	new	location

17

In Out

0 1 2 3

coalesced uncoalesced

0 1 2 3

uncoalesced coalesced

Threads

In Out



Matrix	Transpose

• If	local	memory	is	used	to	buffer	the	data	between	reading	and	
writing,	we	can	rearrange	the	thread	mapping	to	provide	coalesced	
accesses	in	both	directions
– Note	that	the	work	group	must	be	square

18

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

In Out

coalesced

0 1 2 3

coalesced

0 1 2 3

0 1 2 3

Threads
global mem index
local mem index

0 1 2 3

0 1 2 3

0 4 8 12

Local memory



Matrix	Transpose

• The	following	figure	shows	a	performance	comparison	
of	the	two	transpose	kernels	for	matrices	of	size	NxM
on	an	AMD	5870	GPU
– “Optimized”	uses	local	memory	and	thread	remapping

19

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

1024 2048 3072 4096

Ti
m
e	
(s
)

Matrix	Order

Naive

Optimized



Runtimes	on	Fermi

20

CR CW SH-no SH-all

16x16 21 23 34 18

32x32 57 44 110 46

1x256 101 98

1x512 221 113

1x1024 289 117

256x1 100 160

512x1 112 208

1024x1 117 298

HOST:	302/683	!!!

All	times	in	msec.
Matrix	size:	4096x4096	



What	happened?

21

0 1 2 3

uncoalesced coalesced

Threads

In Out

Thread	0	issues		read	 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache (local memory)
Thread	1	issues		read	
Thread	2	issues		read	
Thread	3	issues		read	



What	happened?

22

0 1 2 3

uncoalesced coalesced

Threads

In Out

Coalesced	write! 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cache (local memory)
Coalesced	read	from	cache!
Coalesced	write!
Coalesced	read	from	cache!
…



Summary

• When	it	comes	to	performance,	memory	
throughput	and	latency	hiding	are	key!

• Main	Tools	are:
– Memory	choice	(global/local/	private)
– Memory	layout	(coalescing	&	indexing)
– Thread	Mapping
– Workgroup	size	(synchronisation &latency	hiding)

23


