Advanced C# Constructs

Hans-Wolfgang Loidl
<hwloidl®@macs.hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
WATT

UNIVERSITY

Semester 1 2017/18

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 1/27

Collections

e Collections provide a general framework for putting
objects of the same type together.

e Examples are arrays, or pre-defined classes Stack, List,
Queue, Dictionary.

@ Constructs are available to iterate over all elements of a
collection.

@ A user-defined class can be made a collection by
implementing certain interfaces such as IEnumerable or
ICollection.

Ohttp://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/container.cs

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 3/27

Advanced C# Features

We will cover the following advanced C# features:

Collections

Indexers
Generics
Exceptions
Delegates

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 2/27

Indexers

o Indexers make it possible to treat a class as if it were an
array.

e An indexer is a special kind of property.

o It defines get and set methods, which are parametrised
by an index argument.

@ Read and write uses of the class in array notation are
then translated into calls to these get and set methods.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 4/27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/container.cs

Indexer Example

1 public class ListBox {
private string[] strings;
private int ctr = 0;

strings = new String[256];

2
5]
4
5 public ListBox (params string[] initStrs) {
6
7 foreach (string s in initStrs) {

8

9

strings [ctr++] = s;

}
10 }
11 public void Add (string s) {
12 if (ctr >= strings.Length) {
13 // ToDo: handle overflow
14 } else {
15 strings[ctr++] = s;
s } 3}

H-W. Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2017/18

Advanced C# Constructs 5/27

Using the Indexer

We can now treat the ListBox class like an array of strings,
eg.

1 for (int i = 0; i<lbt.GetNumEntries(); i++) {
2 Console.WriteLine("1bt [{0}]: {1}", i, 1bt[il);
3 }

Ohttp://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/indexersl.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 7/27

Indexer Example (cont’d)

1 // indexer
> public string this[int index] {

3 get {

4 if (index<0 || index>=strings.Length) {
5 // handle error case

6 } else {

7 return strings[index];
8 }

9 }

10 set {

11 if (index >= ctr) {

12 // handle error case

13 } else {

14 strings [index] = value;
15 }

16 } 3}

17 public int GetNumEntries() { return ctr; } }

H-W. Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2017/18

Advanced C# Constructs

Generics

@ So far we always had to specify the concrete element
type of a collection.

@ Generics offer the possibility to /eave the type of an
element undefined.

e To this end a type-variable is specified.

@ An example is the pre-defined List class:
public class List<T> { ... }

6 /27

e T is a type-variable, which stands for the element type of

the list.

@ The methods in the class work over any basis type T,

they are polymorphic.
@ When using the list you specify the element type, eg.
List<int> myList = new List<int>();

. Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2017/18

Advanced C# Constructs

i.e.

8 /27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/indexers1.cs

1

12

Generic Classes

o Other pre-defined generic classes are:
» List<T>
» Stack<T>
» Queue<T>
» Dictionary<K,V>

o It is possible to restrict the type variable:

1 public class Node<T> where T:IComparable

o It can only be instantiated for a type that implements
the IComparable interface.

H-W. Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2017/18

Advanced C# Constructs 9 /27

Generic Interface Example

public class ListBox IEnumerable<String> {
private string[] strings;
private int ctr = O0;

// enumerator
public IEnumerator<string> GetEnumerator () {
foreach (string s in strings) {
yield return s;
}
// required to fulfill IEnumerable
System.Collections.IEnumerator System.Collections.
IEnumerable.GetEnumerator () {
throw new NotImplementedException();

}

H-W. Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2017/18

Advanced C# Constructs 11 /27

Generic Interfaces

e Several generic interfaces can be implemented to make
iteration over collections simpler.

e With an implementation of the IEnumerable<T> interface
it is possible to use a foreach loop on the collection.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 10 / 27

Using the Enumerator

Now we can use a foreach loop on a ListBox 1bt:

1 foreach (string s in 1lbt) {
2 Console.WriteLine ("Value: ,{0}", s);

3 }

F20SC/F21SC — 2017/18

H-W. Loidl (Heriot-Watt Univ) Advanced C# Constructs 12 /27

Exceptions Exceptions Example

e Exceptions provide language constructs to deal with
foreseen error cases in the code. Checking for array bounds in ListBox:
o For example when accessing an array an exception should | public string this[int index] {

get {

. . . B £ q if (index <0 || index>=strings.Length) {
@ An exception is an object that contains information throw new OutOfBoundsException();

be thrown if the index is out of range. 2
8]
4

about the error. . b ooflee
6
7
8

return strings[index];

An exception handler then deals with the error case.)
The handler can be defined in the method itself, or in

any of the calling methods.

No exception should be unhandled.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 13 /27 H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 14 / 27

Exceptions Example Delegates

A concrete exception class must inherit from the Exception

class: o Delegates are the objected-oriented technique for

defining higher-order functions, i.e. functions that can

1 public class OutOfBoundsException : System.Exception { K her fi .
2 public OutOfBoundsException(string msg) { take other functions as arguments.
3 base (msg) ; @ A delegate refers to a method.
!) b o To declare a delegate the type of a method is specified,
5)
e.g.
An exception is caught by attaching an exception handler to . public delegate int FindResult (object ol, object
the code, eg. 02);
L try { A hod be i iated for the del if
) x = 1bt[il; // dangerous code ° : concrete.met od can be Instantiated for the delegate |
5 } catch (OutOfBoundsException e) { it matches its result and parameter types.
4 Console.WriteLine ("Indexyout,of bounds;umsg:,{0}", e Anonymous methods or lambda abstractions can also be
e.Message) ; . q
. instantiated for a delegate.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 15 /27 H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 16 / 27

Delegates Example Delegates Discussion

@ In the ReportResult method the playerDelegate is

W2 CEEED & ERES HeT eiteriing enel [2Epig mselt, 63 called, which refers to a concrete method without fixing

1 public class MediaStorage { it in the code.

> public delegate int PlayMedia(); .

3 public void ReportResult(PlayMedia playerDelegate) { o At compile time only the type of the delegate needs to
4 if (playerDelegate() == 0) { be known.

° ; Cin“te .WriteLine(*Media playedusuccessfully“); @ At run-time the delegate must be instantiated with one
6 else

7 Console.WritelLine ("Error,in,playing, media."); concrete method.

8 } e This is the same abstraction step as it is done for data
9} when using an (abstract) class as base type, and

instantiating it with a sub-class at run-time.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 17 / 27 . Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 18 / 27

Delegates Example (cont’d) Using Delegates

To use the delegate we instantiate it to a concrete player.
Now the ReportResult method can be applied for different | MediaStorage ms = new MediaStorage () ;

kinds of players, eg. > AudioPlayer aPlayer = new AudioPlayer ();
W ihiG closs AncRepneyon o 5 VideoPlayer vPlayer = new VideoPlayer ();

2 private int audioPlayerStatus; « // ?nstantiate the délegate
9 public int PlayAudioFile() { 5 MediaStorage.PlayMedia aDelegate =
6 new MediaStorage.PlayMedia(aPlayer.PlayAudioFile);

7 MediaStorage.PlayMedia vDelegate =

IS

Console.WriteLine("Playing,audioyfile");

5 audioPlayerStatus = O0;

. return audioPlayerStatus; 8 new MediaStorage.PlayMedia(vPlayer.PlayVideoFile);
, } 9o // provide instances to the method using the delegate
. 10 ms.ReportResult (aDelegate) ;

11 ms.ReportResult (vDelegate);

%http: //www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegatesl.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 19 / 27 H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 20 /27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegates1.cs

Delegates and GUIs Another Delegate Example

We want to implement a way to apply a function twice.

1 class TestClass {
2 public static int Double(int wval) {

e One frequent application of delegates is in GUI 3 return val*2;
programming, when handling events. o}
- . b)
° An event is for example a mouse click. 6 public static void Main(string [largs) {
@ In the GUI code a delegate is used to refer to the 7 ce
method that will handle the mouse click. 8 Console.WriteLine ("Applying, double onceyon,; {0},
L. .) givesy{1}",
@ In the application code an instance for the delegate is . =, Tes:mass _Double (x));
provided to perform the actual work. 10 Console.WriteLine ("Applying,double twice on {0},
e This achieves a separation of concerns between the GUI g”e_Su{i}" R
. . 11 x, Twice.twice(Double, x));
and the application. b }
13 }
14 }

How can we implement a class Twice with a method twice?
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 21 /27 H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 22 /27

Anonymous Methods

1 // simple higher-order example, using delegates
> // this class takes an int -> int function and applies
e BELE0 e When instantiating a delegate with a very short method

ublic class Twice - . .
* B {) : it is cumbersome to define a method only to provide an
4 // delegate, specifying the type of the function .
instance to the delegate.

argument
5 public delegate int Worker(int i); @ In these cases anonymous methods can be used, e.g. for
increasing its argument:

7 // the higher-order function twice applies the .
< = delegate(ref int counter) { counter++; }

8 // worker function twice

o public static int twice(Worker worker, int x) { @ This form can be used instead of the name of a concrete
10 return worker (worker (x)); method.

11 }

12 }

%http: //www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegates2.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 23 /27 -W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 24 /27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegates2.cs

Lambda Expressions Summary

@ These advanced features provide powerful tools of

e Lambda expressions are a generalisation of anonymous abstraction, to generate re-usable code.
methods. @ They enable structured control over collections, adapting

o They behave like (unnamed) functions in a functional language features such as foreach loops to user-defined
language, e.g. double a value: (int i) => { 2%i }; classes.

@ or just: i => 2xi e They enable the abstraction over types, through generics.

® Whereas anonymous methods can only be used in the e They enable the abstraction over methods, through
context of delegates, lambda expressions can be used delegates, in a way similar to abstracting data through
wherever a method is expected. class hierarchies.

o This is used for example in the Language Integrated e Be aware of these language concepts when you design
Query (LINQ) engine of C# for accessing databases. your application: their use can save a lot of code and

programming effort.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 25 /27 -W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 26 / 27

Exercises

e Modify the binary search tree example, using generics
over the element type. Implement an indexer, for direct
access to the i-th element, and an enumerator, to enable
foreach loops.

@ Use delegates to define a method that applies a method
to every element of a tree.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2017/18 Advanced C# Constructs 27 /27

	Overview
	Collections
	Indexers
	Generics
	Exceptions
	Delegates
	Summary
	Exercises

