
C# Data Manipulation

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 — 2021/22

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 1 / 12

The Stream Programming Model

File streams can be used to access stored data.
A stream is an object that represents a generic sequence
of bytes.
Any type of data, marked Serializable, can be
transformed into a stream. This is called serialisation
Streams can then be used to:

I Read/Write data from/to disk.
I Move data between machines.

Although streams work at the byte level, programmers
don’t need to work with bytes.
Reader and Writer objects are usually used to ease the
use of streams.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 2 / 12

Manual serialisation

Writing your own serialisation function is easy, and useful
in many different contexts, eg. implementing ToString().
To serialise an object of class A:

I Serialise all value type attributes, by directly writing the
data into the result buffer

I Serialise all reference types attributes by recursively
calling serialisation on them.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 3 / 12

Naive serialisation

We implement ToString() for our Person/Student example
as one special case of serialisation:

1 public string ToString0 () {
2 return String.Format(
3 "Name:␣{0}␣{1}\ tAddress:␣{2}\ nMatricNo:␣{3}\

tDegree:␣{4}",
4 this.GetfName (),
5 this.GetlName (),
6 this.GetAddress (),
7 this.matricNo ,
8 this.degree);
9 }

What’s the disadvantage with this implementation?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 4 / 12



An example of serialisation

This is a better implementation of serialisation:
1 public override string ToString () {
2 string base_str = base.ToString ();
3 string this_str = String.Format(
4 "MatricNo:␣{0}\ tDegree:␣{1}",
5 this.matricNo , this.degree);
6 return base_str+"\n"+this_str;
7 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 5 / 12

Accessing files using streams

Generate a Reader/Writer object
This internal generates a stream object
This object directly interacts with the file
Closing the Reader/Writer object, also closes the internal
stream object

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 6 / 12

C# Support for File Streams

C# provides a number of abstract classes in the
System.IO namespace to access data in files including
Stream, TextWriter and TextReader.
The stream class is used to access data at the byte level.
TextWriter and TextReader support access to readable
text through using

I Write() and WriteLine() of TextWriter.
I Read() and ReadLine() of TextReader.

Several classes derive from these abstract classes, and
implement customised versions of reading and writing:

I StreamReader and StreamWriter for text data
I BinaryReader and BinaryWriter for binary data

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 7 / 12

Example: Accessing a File

1 using System;
2 using System.IO;
3

4 public class FileReadWrite{
5 public static void Main(){
6 // Write to a file
7 StreamWriter sw = new StreamWriter("test.txt");
8 sw.Write("Hello␣World!");
9 sw.Close();

10

11 // Reading from a file
12 StreamReader sr = new StreamReader("test.txt");
13 Console.WriteLine(sr.ReadLine ());
14 sr.Close();
15 }
16 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 8 / 12



More on File Access

Reading from a file line-by-line:
1 StreamReader sr = new StreamReader("test.txt");
2 string inValue = "";
3 while (( inValue = sr.ReadLine ()) != null)
4 Console.WriteLine(inValue);

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 9 / 12

Handling file access problems with
exceptions

1 try {
2 StreamWriter sw = new StreamWriter("test.txt");
3 sw.Write("Hello␣World!");
4 sw.Close();
5 } catch(IOException ex) {
6 Console.WriteLine(ex.Message);
7 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 10 / 12

Body that is executed

Catch block, executed if IOException was raised

Another common pattern
1 using (StreamReader sr = new StreamReader(infile)) {

// open file
2 using (StreamWriter sw = new StreamWriter(outfile))

{
3 string str = "";
4 string str0 = "";
5 while ((str = sr.ReadLine ()) != null)// iterate

over lines
6 {
7 str0 = "";
8 foreach (char c in str) {
9 if (Char.IsPunctuation(c)) {

10 // nothing
11 } else {
12 str0 += c;
13 }
14 }
15 sw.WriteLine(str0.ToLower ());
16 }
17 }
18 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 11 / 12

Read line-by-line

Remove punctuation

Write to different file

Summary

Stream programming in general deals with serialising and
transfering data
One example is reading/writing from/to files
Other examples are transfering data over a network or a
persistent storage
The basic interface for file access is provide by hte
System.IO namespace through StreamReader and
StreamWriter

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 C# Data Manipulation 12 / 12


	C# Data Manipulation

