
Advanced C# Constructs

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 2018/19

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 1 / 27

Advanced C# Features

We will cover the following advanced C# features:
Collections
Indexers
Generics
Exceptions
Delegates

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 2 / 27

Collections

Collections provide a general framework for putting
objects of the same type together.
Examples are arrays, or pre-defined classes Stack, List,
Queue, Dictionary.
Constructs are available to iterate over all elements of a
collection.
A user-defined class can be made a collection by
implementing certain interfaces such as IEnumerable or
ICollection.

0http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/Samples/container.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 3 / 27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/container.cs

Indexers

Indexers make it possible to treat a class as if it were an
array.
An indexer is a special kind of property.
It defines get and set methods, which are parametrised
by an index argument.
Read and write uses of the class in array notation are
then translated into calls to these get and set methods.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 4 / 27

Indexer Example

1 public class ListBox {
2 private string [] strings;
3 private int ctr = 0;
4

5 public ListBox (params string [] initStrs) {
6 strings = new String [256];
7 foreach (string s in initStrs) {
8 strings[ctr ++] = s;
9 }

10 }
11 public void Add (string s) {
12 if (ctr >= strings.Length) {
13 // ToDo: handle overflow
14 } else {
15 strings[ctr ++] = s;
16 } }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 5 / 27

Indexer Example (cont’d)
1 // indexer
2 public string this[int index] {
3 get {
4 if (index <0 || index >= strings.Length) {
5 // handle error case
6 } else {
7 return strings[index];
8 }
9 }

10 set {
11 if (index >= ctr) {
12 // handle error case
13 } else {
14 strings[index] = value;
15 }
16 } }
17 public int GetNumEntries () { return ctr; } }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 6 / 27

Using the Indexer

We can now treat the ListBox class like an array of strings,
eg.

1 for (int i = 0; i<lbt.GetNumEntries (); i++) {
2 Console.WriteLine("lbt [{0}]:␣{1}", i, lbt[i]);
3 }

0http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/Samples/indexers1.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 7 / 27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/indexers1.cs

Using the Indexer

We can now treat the ListBox class like an array of strings,
eg.

1 for (int i = 0; i<lbt.GetNumEntries (); i++) {
2 Console.WriteLine("lbt [{0}]:␣{1}", i, lbt[i]);
3 }

0http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/Samples/indexers1.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 7 / 27

Object lbt is treated like an array

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/indexers1.cs

Generics
So far we always had to specify the concrete element
type of a collection.
Generics offer the possibility to leave the type of an
element undefined .
To this end a type-variable is specified.
An example is the pre-defined List class:
public class List<T> { . . . }
T is a type-variable, which stands for the element type of
the list.
The methods in the class work over any basis type T, i.e.
they are polymorphic.
When using the list you specify the element type, eg.
List<int> myList = new List<int>();

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 8 / 27

Generic Classes

Other pre-defined generic classes are:
I List<T>
I Stack<T>
I Queue<T>
I Dictionary<K,V>

It is possible to restrict the type variable:
1 public class Node <T> where T:IComparable

It can only be instantiated for a type that implements
the IComparable interface.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 9 / 27

Generic Interfaces

Several generic interfaces can be implemented to make
iteration over collections simpler.
With an implementation of the IEnumerable<T> interface
it is possible to use a foreach loop on the collection.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 10 / 27

Generic Interface Example

1 public class ListBox : IEnumerable <String > {
2 private string [] strings;
3 private int ctr = 0;
4

5 // enumerator
6 public IEnumerator <string > GetEnumerator () {
7 foreach (string s in strings) {
8 yield return s;
9 }

10 // required to fulfill IEnumerable
11 System.Collections.IEnumerator System.Collections.

IEnumerable.GetEnumerator (){
12 throw new NotImplementedException ();
13 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 11 / 27

Using the Enumerator

Now we can use a foreach loop on a ListBox lbt:

1 foreach (string s in lbt) {
2 Console.WriteLine("Value:␣{0}", s);
3 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 12 / 27

Using the Enumerator

Now we can use a foreach loop on a ListBox lbt:

1 foreach (string s in lbt) {
2 Console.WriteLine("Value:␣{0}", s);
3 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 12 / 27

Object lbt is used as a container

Exceptions

Exceptions provide language constructs to deal with
foreseen error cases in the code.
For example when accessing an array an exception should
be thrown if the index is out of range.
An exception is an object that contains information
about the error.
An exception handler then deals with the error case.
The handler can be defined in the method itself, or in
any of the calling methods.
No exception should be unhandled.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 13 / 27

Exceptions Example

Checking for array bounds in ListBox:
1 public string this[int index] {
2 get {
3 if (index <0 || index >= strings.Length) {
4 throw new OutOfBoundsException ();
5 } else {
6 return strings[index];
7 }
8 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 14 / 27

Exceptions Example
A concrete exception class must inherit from the Exception
class:

1 public class OutOfBoundsException : System.Exception {
2 public OutOfBoundsException(string msg) {
3 base(msg);
4 }
5 }

An exception is caught by attaching an exception handler to
the code, eg.

1 try {
2 x = lbt[i]; // dangerous code
3 } catch (OutOfBoundsException e) {
4 Console.WriteLine("Index␣out␣of␣bounds;␣msg:␣{0}",

e.Message);
5 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 15 / 27

Delegates

Delegates are the objected-oriented technique for
defining higher-order functions, i.e. functions that can
take other functions as arguments.
A delegate refers to a method.
To declare a delegate the type of a method is specified,
e.g.

1 public delegate int FindResult(object o1 , object
o2);

A concrete method can be instantiated for the delegate if
it matches its result and parameter types.
Anonymous methods or lambda abstractions can also be
instantiated for a delegate.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 16 / 27

Delegates Example

We design a class for storing and playing media, eg.
1 public class MediaStorage {
2 public delegate int PlayMedia ();
3 public void ReportResult(PlayMedia playerDelegate) {
4 if (playerDelegate () == 0) {
5 Console.WriteLine("Media␣played␣successfully");
6 } else {
7 Console.WriteLine("Error␣in␣playing␣media.");
8 }
9 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 17 / 27

Delegates Discussion

In the ReportResult method the playerDelegate is
called, which refers to a concrete method without fixing
it in the code.
At compile time only the type of the delegate needs to
be known.
At run-time the delegate must be instantiated with one
concrete method.
This is the same abstraction step as it is done for data
when using an (abstract) class as base type, and
instantiating it with a sub-class at run-time.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 18 / 27

Delegates Example (cont’d)

Now the ReportResult method can be applied for different
kinds of players, eg.

1 public class AudioPlayer {
2 private int audioPlayerStatus;
3 public int PlayAudioFile () {
4 Console.WriteLine("Playing␣audio␣file");
5 audioPlayerStatus = 0;
6 return audioPlayerStatus;
7 }
8 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 19 / 27

Using Delegates

To use the delegate we instantiate it to a concrete player.
1 MediaStorage ms = new MediaStorage ();
2 AudioPlayer aPlayer = new AudioPlayer ();
3 VideoPlayer vPlayer = new VideoPlayer ();
4 // instantiate the delegate
5 MediaStorage.PlayMedia aDelegate =
6 new MediaStorage.PlayMedia(aPlayer.PlayAudioFile);
7 MediaStorage.PlayMedia vDelegate =
8 new MediaStorage.PlayMedia(vPlayer.PlayVideoFile);
9 // provide instances to the method using the delegate

10 ms.ReportResult(aDelegate);
11 ms.ReportResult(vDelegate);

0http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/Samples/delegates1.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 20 / 27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegates1.cs

Delegates and GUIs

One frequent application of delegates is in GUI
programming, when handling events.
An event is for example a mouse click.
In the GUI code a delegate is used to refer to the
method that will handle the mouse click.
In the application code an instance for the delegate is
provided to perform the actual work.
This achieves a separation of concerns between the GUI
and the application.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 21 / 27

Another Delegate Example
We want to implement a way to apply a function twice.

1 class TestClass {
2 public static int Double(int val) {
3 return val *2;
4 }
5

6 public static void Main(string []args) {
7 ...
8 Console.WriteLine("Applying␣double␣once␣on␣{0}␣

gives␣{1}",
9 x, TestClass.Double(x));

10 Console.WriteLine("Applying␣double␣twice␣on␣{0}␣
gives␣{1}",

11 x, Twice.twice(Double , x));
12 }
13 }
14 }

How can we implement a class Twice with a method twice?
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 22 / 27

1 // simple higher -order example , using delegates
2 // this class takes an int -> int function and applies

it twice
3 public class Twice {
4 // delegate , specifying the type of the function

argument
5 public delegate int Worker(int i);
6

7 // the higher -order function twice applies the
8 // worker function twice
9 public static int twice(Worker worker , int x) {

10 return worker(worker(x));
11 }
12 }

0http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/Samples/delegates2.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 23 / 27

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/delegates2.cs

Anonymous Methods

When instantiating a delegate with a very short method
it is cumbersome to define a method only to provide an
instance to the delegate.
In these cases anonymous methods can be used, e.g. for
increasing its argument:
delegate(ref int counter) { counter++; }
This form can be used instead of the name of a concrete
method.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 24 / 27

Lambda Expressions

Lambda expressions are a generalisation of anonymous
methods.
They behave like (unnamed) functions in a functional
language, e.g. double a value: (int i) => { 2*i };
or just: i => 2*i
Whereas anonymous methods can only be used in the
context of delegates, lambda expressions can be used
wherever a method is expected.
This is used for example in the Language Integrated
Query (LINQ) engine of C# for accessing databases.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 25 / 27

Summary

These advanced features provide powerful tools of
abstraction, to generate re-usable code.
They enable structured control over collections, adapting
language features such as foreach loops to user-defined
classes.
They enable the abstraction over types, through generics.
They enable the abstraction over methods, through
delegates, in a way similar to abstracting data through
class hierarchies.
Be aware of these language concepts when you design
your application: their use can save a lot of code and
programming effort.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 26 / 27

Exercises

Modify the binary search tree example, using generics
over the element type. Implement an indexer, for direct
access to the i-th element, and an enumerator, to enable
foreach loops.
Use delegates to define a method that applies a method
to every element of a tree.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Advanced C# Constructs 27 / 27

	Overview
	Collections
	Indexers
	Generics
	Exceptions
	Delegates
	Summary
	Exercises

