
F20SC/F21SC Overview

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 — 2018/19

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 1 / 30

Welcome to Heriot-Watt University

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 2 / 30

Overview of F20SC/F21SC
“Industrial Programming”

Key course characteristics:
This course is about the programming skills
We will cover:

I Systems languages: C#
I Scripting languages: Python

It assumes solid prior knowledge of an object-oriented
language, eg. Java.

I It is about quickly picking up a new language of a familiar
paradigm.

I It is not a gentle introduction to programming.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 3 / 30

Learning Outcomes

Appreciation of role of different programming paradigms
in configuring/managing systems:

I Object-oriented: good at structuring large code
I Imperative: good at performance
I Functional: good at abstraction
I Logic: good at reasoning

Autonomous problem analysis/solution:
I Really understand the problem to pick the right
paradigm/approach for producing a solution

Understanding of core characteristics of contemporary
operating systems: make good use of available resources

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 4 / 30

Learning Outcomes

Appreciation of role of “language as glue wear” in
configuring/maintaining systems:

I Scripting languages combine existing code
Knowledge of key abstractions across programming
languages:

I Write reusable and maintainable code
Technical proficiency in advanced techniques in different
programming paradigms:

I Learn the Best of all Worlds

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 5 / 30

Topics to cover

Overview & Linux introduction (1 week)
Core C# programming (3 weeks)
Advanced C# programming (3 weeks)
Python programming (4 weeks)
Revision (1 week)
Planned: Guest lecture on systematic testing

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 6 / 30

Lecture Plan

Week 1: Overview, Linux Introduction (with shell
scripting)
Week 2: .Net and C# Introduction, C# Fundamentals
Week 3: C# Objects & Classes, C# Concurrency
Week 4: C# Data Manipulation, Database access in C#
and LINQ, C# GUI development
Week 5: Threading in C#, C# Systems Programming
Week 6: Advanced C# Features, C# Revision

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 7 / 30

Lecture Plan (cont’d)

Week 7: Parallel Programming in C#
Week 8: Python Introduction and Data Types
Week 9: Python Control Structures and Functions
Week 10: Python Classes and Advanced Language
Constructs
Week 11: Python Libraries and Tools
Week 12: Revision

Course material is available via the Vision system:
http://vision.hw.ac.uk/
Main course information page:
http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21SC/

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 8 / 30

http://vision.hw.ac.uk/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/

Main course information page

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 9 / 30

Assessment

Assessed Coursework: 100%
Demonstration (mandatory) of the coursework
if you don’t do a demo you’ll get 0 points on the CW!
There is no exam for this module

Coursework:
Project 1: C# programming project (50%)
Handout: Week 3; Deadline: Week 6
Project 2: Python programming project (50%)
Handout: Week 9; Deadline: Week 12

There will be no individual deadline extensions. If you have a
case you must fill in a “Mitigating Circumstances” form.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 10 / 30

Skills tested in the Coursework

Composing bigger applications out of existing
components
Rapid prototyping
Resource conscious programming
GUI programming
Concurrency

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 11 / 30

Software Infrastructure

Visual Studio 2015 with C# (Windows)
Alternatively, stand-alone C# compiler with libraries
needed for GUI etc programming
sh or bash scripting languages (Unix)
Python interpreter
Overall: heavy use of libraries!

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 12 / 30

Reading List
C#

Douglas Bell, Mike Parr, “C# for Students”, Addison
Wesley, 2009.
Jesse Liberty, Brian MacDonald, “Learning C# 3.0”,
O’Reilly, 2009.
Joseph Albahari, Ben Albahari, “C# 6.0 in a Nutshell:
The Definitive Reference”, O’Reilly, 2015.
Kurt Normark, “Object-oriented Programming in C# for
C and Java Programmers”, 2010. on-line
Eric Gunnerson, “A programmer’s Introduction to C#
5.0”, Springer, 2012
Andrew Birrell, “An Introduction to programming with
C# Threads”, Microsoft, 2005.
Arnold Robbins, “Classic Shell Scripting: Hidden
Commands that Unlock the Power of Unix”, O’Reilly,
2005.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 13 / 30

http://www.cs.aau.dk/~normark/oop-csharp/html/notes/theme-index.html

Characteristics of Systems Languages

Build algorithms and data structures from scratch
Use strong typing to help manage complexity of large
pieces of software
Focus is often on speed of execution
Easy access to low-level operating system is crucial
Examples: C, C#

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 14 / 30

Characteristics of Scripting Language

Their main purpose is to glue software together
Focus is on rapid-prototyping
Safety aspects are of a lesser concern
Thus, scripting languages are often type-less
Modern scripting languages incorporate features of
general purpose programming languages, especially
object-oriented (o-o) features, higher- order functions
Easier to learn for casual programming
Examples: sh, php, python, perl, ruby, lua

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 15 / 30

A Short History of Scripting Languages

Developed as an abstraction over assembler programs
They are higher-level by introducing abstraction
mechanisms to manage large pieces of code.
They are safe by using strong typing to more easily
detect mistakes in the program
They delegate some control of the underlying machine to
libraries and operating system
Together this drastically increases programmer
productivity

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 16 / 30

Classifying Scripting Languages

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 17 / 30

A Short History of Scripting Languages

First Generation: simple composition of command-line
jobs (espec. Unix systems); also called batch-languages
Very little language abstraction
Slightly different syntax in different languages
Rich libraries for low-level coordination with the
operating-system (OS)
Examples: sh, bash, tcsh ...

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 18 / 30

A Short History of Scripting Languages

Second Generation: Trying to combine many different
language features into one language
Addresses the problem that different batch languages do
the same thing slightly differently
Thus, the language becomes huge
The mixture of concepts makes it hard to read
third-party code.
Also, extended support for graphical user interfaces
(GUIs)
Examples: perl, tcl

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 19 / 30

A Short History of Scripting Languages

Third Generation: increasingly use modern programming
language abstractions to make programming simpler
In particular, heavy use of o-o concepts
Also, concepts from other programming paradigms such
as higher-order functions and polymorphism
Examples: php, python, ruby, lua, go, dart

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 20 / 30

Relevance of Scripting Languages

Increasing speed of processor makes the application of
interpreted languages viable
Existence of large libraries makes the development of new
software from scratch less common-place
Heterogeneous environment make a write- once
run-everywhere approach appealing
New technologies, such as the internet, make the issue of
composing services even more important

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 21 / 30

Common Features of Scripting Languages

Scripting languages are usually typeless: no (type)
restrictions on the use of the input/output to/from
existing components are imposed
This enhances the flexibility of the language but reduces
the safety
Example from Unix shells: pipeline mechanism:
select | grep scripting | wc
This reads the text currently selected in a window, passes
it to a search for the word “scripting” and counts the
number of lines in the output

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 22 / 30

Modern scripting languages provide a limited amount of
type information to re-gain type safety
To avoid frequent conversion functions between types,
class hierarchies and implicit type conversions are used
In contrast to systems languages, some type checks are
performed at run-time rather than compile-time (dynamic
typing)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 23 / 30

Scripting languages are usually interpreted rather than
compiled
This gains rapid turnaround time in writing and testing
code
It increases flexibility, since the program can generate
strings that are in themselves programs
It loses performance compared to executing compiled
code; but typically the amount of code in the scripting
language is small and performance is dominated by the
code in the components

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 24 / 30

Scripting languages are often higher-level than system
languages, espec. for the latest generation
For example many scripting languages have powerful,
built-in mechanisms for regular expression substitution
In the latest generation high-level concepts such as class
hierarchies are included, too.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 25 / 30

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 26 / 30

When to use Scripting Languages

Is the application’s main task to connect pre- existing
components?
Will the application manipulate a variety of different
kinds of things?
Does the application involve a GUI?
Does the application do a lot of string manipulation?
Will the application’s functions evolve rapidly over time?
Does the application need to be extensible?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 27 / 30

When to use Systems Languages

Does the application implement complex algorithms or
data structures?
Does the application manipulate large data sets?
Are the application’s functions well-defined and changing
slowly?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 28 / 30

Application Domains for Scripting

Graphical User Interfaces
I Fundamentally “gluing” nature
I Large percentage of code in modern apps

Internet
I Main role: connecting a huge number of existing
computations and data (see success of perl)

I Web services as the next level of gluing
Component Frameworks

I A flexible method of assembling components into
applications

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 29 / 30

Summary

Be aware of the characteristics of systems and scripting
languages

I Decide early on in a project which class of language to use
I Today’s trends in programming languages will be
tomorrow’s features in scripting languages

Main reference:
“Scripting: Higher Level Programming in the 21 st
Century”, John K. Ousterhout, IEEE Computer, March
1998. URL:
http://home.pacbell.net/ouster/scripting.html

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Course Overview 30 / 30

http://home.pacbell.net/ouster/scripting.html

	Overview

