
Code Contracts in C#

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 — 2018/19

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 1 / 25



Motivation

Debugging programs is time-consuming and therefore
expensive:

As a tester you need to make sure to cover all
control-flow paths
You should test the program with a wide range of input
data
You need to test the behaviour with corner cases, e.g.
empty string

Systematic testing can help with that (see the guest lecture
on “Systematic Testing” by Murray Crease from ScottLogic
later in the course)
But still, you can’t be sure to cover all possible cases.
For that, methods of program verification are superior.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 2 / 25



Motivation

Debugging programs is time-consuming and therefore
expensive:

As a tester you need to make sure to cover all
control-flow paths
You should test the program with a wide range of input
data
You need to test the behaviour with corner cases, e.g.
empty string

Systematic testing can help with that (see the guest lecture
on “Systematic Testing” by Murray Crease from ScottLogic
later in the course)
But still, you can’t be sure to cover all possible cases.
For that, methods of program verification are superior.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 2 / 25



Motivation

Debugging programs is time-consuming and therefore
expensive:

As a tester you need to make sure to cover all
control-flow paths
You should test the program with a wide range of input
data
You need to test the behaviour with corner cases, e.g.
empty string

Systematic testing can help with that (see the guest lecture
on “Systematic Testing” by Murray Crease from ScottLogic
later in the course)
But still, you can’t be sure to cover all possible cases.
For that, methods of program verification are superior.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 2 / 25



Motivation

Debugging programs is time-consuming and therefore
expensive:

As a tester you need to make sure to cover all
control-flow paths
You should test the program with a wide range of input
data
You need to test the behaviour with corner cases, e.g.
empty string

Systematic testing can help with that (see the guest lecture
on “Systematic Testing” by Murray Crease from ScottLogic
later in the course)
But still, you can’t be sure to cover all possible cases.
For that, methods of program verification are superior.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 2 / 25



Code Contracts

Code Contracts are a set of libraries, together with tools to
establish properties of your program.
Code Contracts allow you to express

preconditions
postconditions
object invariants

in your code for
runtime checking
static analysis
documentation

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 3 / 25



A Simple Example
1 class Rational {
2 int numerator; int denominator;
3

4 public Rational (int numerator , int denominator) {
5 Contract.Requires( denominator != 0 ); // pre -

condition!
6 this.numerator = numerator;
7 this.denominator = denominator;
8 }
9

10 public int Denominator {
11 get {
12 Contract.Ensures( Contract.Result <int >() != 0 );

// post -condition
13 return this.denominator;
14 }
15 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 4 / 25



A Simple Example (cont’d)

1 [ContractInvariantMethod]
2 void ObjectInvariant () { // invariant
3 Contract.Invariant ( this.denominator != 0 );
4 }

With static checking enabled, the IDE will report an error for
the call below:
Rational badRat = new Rational(3,0);

0See RationalsWithCodeContracts.cs
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 5 / 25

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/RationalsWithCodeContracts.cs


Discussion

The code defines a class for rational numbers.
Semantic side-condition: the denominator must be
non-zero.
We express this as a precondition in the constructor
using Contract.Requires (line 5).
Every Rational object must have a non-zero denominator.
We express this by an ObjectInvariant method tagged
with a [ContractInvariantMethod] attribute.
It uses the method call Contract.Invariant to check for
a non-zero denominator (line 3).
Contract.Ensures expresss a postcondition: the getter
Denominator always returns non-zero.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 6 / 25



Preconditions

Definition (Precondition)
Preconditions are contracts on the state of the world when a
method is invoked.

Preconditions are expressed using Contract.Requires
(...).
They generally are used to specify valid parameter values.
All members mentioned in preconditions must be at least
as accessible as the method itself
Otherwise, the precondition cannot be understood (and
thus satisfied) by all callers of a method.
The condition should also be side-effect free

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 7 / 25



Precondition Example

1 Contract.Requires( x != null );

The above precondition expresses that parameter x must
be non-null.
If your code must throw a particular exception on failure
of a particular precondition, you can use the generic
overloaded form below.

1 Contract.Requires <ArgumentNullException >( x != null ,
"x" );

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 8 / 25



Postconditions

Definition (Postcondition)
Postconditions are contracts on the state of a method when
it terminates.

The condition is checked just prior to exiting a method.
Unlike preconditions, members with less visibility may be
mentioned in a postcondition.
A client may not be able to understand or make use of
some of the information expressed by a postcondition
using private state, but it doesn’t affect the client’s
ability to use the API correctly.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 9 / 25



Postcondition Example
1 Contract.Ensures( this.F > 0 );

Normal postconditions are expressed using
Contract.Ensures (...).
They express a condition that must hold on normal
termination of the method.

1 Contract.EnsuresOnThrow <T>( this.F > 0 );

Postconditions that should hold when particular
exceptions escape from a method, are specified using
Contract.EnsuresOnThrow.
The condition must hold whenever an exception is
thrown that is a subtype of T.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 10 / 25



Postcondition Example
1 Contract.Ensures( this.F > 0 );

Normal postconditions are expressed using
Contract.Ensures (...).
They express a condition that must hold on normal
termination of the method.

1 Contract.EnsuresOnThrow <T>( this.F > 0 );

Postconditions that should hold when particular
exceptions escape from a method, are specified using
Contract.EnsuresOnThrow.
The condition must hold whenever an exception is
thrown that is a subtype of T.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 10 / 25



Special Methods within Postconditions

Method Return Values: Within postconditions the
method’s return value can be referred as
Contract.Result<T>() (T . . . return type)
Pre-state Values (OldValue): Within a postcondition, an
old expression refers to the value of an expression from
the pre-state, using Contract.OldValue<T>(e) (T . . . type
of e).
Out Parameters: Because contracts appear before the
body of the method, most compilers do not allow
references to out parameters in postconditions. To get
around this issue, the library provides the method
Contract.ValueAtReturn<T>(out T t) which will not
require that the parameter is already defined.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 11 / 25



Object Invariants
Definition (Invariants)
Object invariants are conditions that should hold on each
instance of a class whenever that object is visible to a client.

They express the conditions under which the object is in
a “good” state.
All object’s invariants must be in one private nullary
instance method containing only Contract.Invariant
These methods are identified by being marked with the
attribute [ContractInvariantMethod]

1 [ContractInvariantMethod]
2 private void ObjectInvariant () {
3 Contract.Invariant(this.y >= 0);
4 Contract.Invariant(this.x > this.y);
5 ...
6 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 12 / 25



Assertions

Definition (Assertions)
Assertions are contracts on the state of the world at an
arbitrary point in the program.

Assertions are specified using Contract.Assert.
They are used to state a condition that must hold at that
program point.

1 Contract.Assert(this.privateField > 0);
2 Contract.Assert(this.x == 3, "Why␣isn’t␣the␣value␣of␣

x␣3?");

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 13 / 25



Assume

Definition (Assumptions)
Assumptions are properties that are expected to be true.

Assumptions are specified using Contract.Assume.
These are properties that are expected to be true
without checking them.

1 Contract.Assume(this.privateField > 0);
2 Contract.Assume(this.x == 3, "Static␣checker␣assumed␣

this");

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 14 / 25



Quantifiers

Code contracts support a limited form of quantifiers:
I the mathematical ∀ quantifier as Contract.ForAll
I the mathematical ∃ quantifier as Contract.Exists

The usage of these is limited to what can be computed
efficiently.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 15 / 25



Quantifier Examples
1 public int Foo <T>( IEnumerable <T> xs){
2 Contract.Requires(
3 Contract.ForAll(xs , x => x != null) );
4 foreach (var x in xs)
5 ...
6 }

This example of a contract says that all elements contained
in the parameter xs must be non-null.

1 public int[] Bar(){
2 ...
3 Contract.Ensures(
4 Contract.ForAll(0, Contract.Result <int[]>().

Length ,
5 index => Contract.Result <int[]>()

[index] > 0));

This method has a postcondition that all returned values in
the array must be positive (could use LINQ’s Enumerable.All
instead.)H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 16 / 25



Quantifier Examples
1 public int Foo <T>( IEnumerable <T> xs){
2 Contract.Requires(
3 Contract.ForAll(xs , x => x != null) );
4 foreach (var x in xs)
5 ...
6 }

This example of a contract says that all elements contained
in the parameter xs must be non-null.

1 public int[] Bar(){
2 ...
3 Contract.Ensures(
4 Contract.ForAll(0, Contract.Result <int[]>().

Length ,
5 index => Contract.Result <int[]>()

[index] > 0));

This method has a postcondition that all returned values in
the array must be positive (could use LINQ’s Enumerable.All
instead.)H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 16 / 25



Enabling Code Contracts in Visual Studio

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 17 / 25



Another Example: index lookup
Our early Get example of a function for returning the n-th
element of a data-structure with an indexer only works if the
index is less than the array length, now specified as a
pre-condition using a code contract:

1 static int Get(int[] arr , int n) {
2 Contract.Requires(n < arr.Length);
3 return arr[n];
4 }

If we define data structures in the main code like this:
1 static void Main() {
2 int[] arr = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
3 int good_n = 3; /* OK index */
4 int bad_n = 15; /* illegal index */

the following call will generate an error in the IDE (if static
checking is enabled): Get(arr, bad_n)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 18 / 25



Summary

Code Contracts are a systematic way to test properties
of your program, either at compile-time or at run-time.
If enabled, the properties will be checked at run-time,
raising an exception if it’s wrong.
If enabled, some properties can be checked at
compile-time, giving an error message in the IDE .
If none of the above is enabled, there is no performance
penalty for having code contracts in your code.
You should use in particular pre- and post-conditions for
methods to specify correct behaviour.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 19 / 25



Appendix: Basics of Program Logics

A Hoare-style logic is a formalism to reason about the
correctness of programs.
In Hoare-style logics we write: {P}e{Q}
This should be read as “if the property P holds before the
execution of the program e, then the property Q holds after
executing e”
Example: Specification of an exponential function

{0 ≤ y ∧ x = X ∧ y = Y } exp(x , y) {r = X Y }

Note: X , Y are auxiliary variables and must not appear in e

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 20 / 25



A Simple while-language
Language:

e ::= skip
| x := t
| e1;e2
| if b then e1 else e2
| while b do e
| call

A judgement has this form (for now!)

` {P} e {Q}

A judgement is valid if the following holds

∀z s t. s e t ⇒ P z s ⇒ Q z t

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 21 / 25



A Simple while-language
Language:

e ::= skip
| x := t
| e1;e2
| if b then e1 else e2
| while b do e
| call

A judgement has this form (for now!)

` {P} e {Q}

A judgement is valid if the following holds

∀z s t. s e t ⇒ P z s ⇒ Q z t

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 21 / 25



A Simple Hoare-style Logic

` {P} skip {P}
(skip)

` {λz s. P z s[t/x ]} x := t {P}
(assign)

` {P} e1 {R} {R} e2 {Q}
` {P} e1;e2 {Q}

(comp)

` {λz s. P z s ∧ b s} e1 {Q} ` {λz s. P z s ∧ ¬(b s)} e2 {Q}
` {P} if b then e1 else e2{Q}

(if)

` {λz s. P z s ∧ b s} e {P}
` {P} while b do e{λz s. P z s ∧ ¬(b s)}

(while)

` {P} body {Q}
` {P} CALL {Q}

(call)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 22 / 25



A Simple Hoare-style Logic (structural rules)

The consequence rule allows us to weaken the pre-condition
and to strengthen the post-condition:

∀s t. (∀z . P ′ z s ⇒ P z s) ` {P ′} e {Q′} ∀s t. (∀z . Q z s ⇒ Q′ z s)
` {P} e {Q}

(conseq)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 23 / 25



Recursive Functions

In order to deal with recursive functions, we need to collect
the knowledge about the behaviour of the functions.

We extend the judgement with a context Γ, mapping
expressions to Hoare-Triples:

Γ ` {P} e {Q}

where Γ has the form {. . . , (P ′, e ′, Q′), . . .}.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 24 / 25



Recursive Functions

Now, the call rule for recursive, parameter-less functions
looks like this:

Γ ∪ {(P, CALL,Q)} ` {P} body {Q}
Γ ` {P} CALL {Q}

(call)

We collect the knowledge about the (one) function in the
context, and prove the body.

Note: This is a rule for partial correctness: for total
correctness we need some form of measure.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 Code Contracts in C# 25 / 25


	Motivation
	Example
	Forms of Contracts
	Preconditions
	Postconditions
	Invariants
	Assertions
	Assumptions
	Quantifiers

	Summary
	Appendix
	Appendix: Basic Concepts of Program Verification
	Program Logics



