C# Data Manipulation

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
PWALT

Semester 1 — 2018/19

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 1/12



The Stream Programming Model

o File streams can be used to access stored data.
e A stream is an object that represents a generic sequence
of bytes.
e Any type of data, marked Serializable, can be
transformed into a stream. This is called serialisation
e Streams can then be used to:
» Read/Write data from/to disk.
» Move data between machines.
o Although streams work at the byte level, programmers
don’t need to work with bytes.

@ Reader and Writer objects are usually used to ease the
use of streams.

. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation



Manual serialisation

e Writing your own serialisation function is easy, and useful
in many different contexts, eg. implementing ToString().

e To serialise an object of class A:
» Serialise all value type attributes, by directly writing the
data into the result buffer
» Serialise all reference types attributes by recursively
calling serialisation on them.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 3/12



Naive serialisation

We implement ToString() for our Person/Student example
as one special case of serialisation:

1 public string ToString0() {
return String.Format (
"Name: {0}, {1}\tAddress: {2} \nMatricNo: {3}\
tDegree:{4}",

2
3

this

this
this

this.GetfName (),

.Get1lName (),
this.

GetAddress (),

.matricNo,
.degree) ;

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 4/12



Naive serialisation

We implement ToString() for our Person/Student example
as one special case of serialisation:

1 public string ToString0() {
return String.Format (
"Name: {0}, {1}\tAddress: {2} \nMatricNo: {3}\
tDegree:{4}",

2
3

9

this

this
this
}

this.GetfName (),

.Get1lName (),
this.

GetAddress () ,

.matricNo,
.degree) ;

What's the disadvantage with this implementation?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 4/12



An example of serialisation

This is a better implementation of serialisation:

1 public override string ToString() {

> string base_str = base.ToString();
3 string this_str = String.Format(

4 "MatricNo:,{0}\tDegree: {1}",

5 this.matricNo, this.degree);

¢ return base_str+"\n"+this_str;

7}

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 5 /12



Accessing files using streams

o Generate a Reader/Writer object
e This internal generates a stream object
e This object directly interacts with the file

e Closing the Reader/Writer object, also closes the internal
stream object

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 6 /12



C+# Support for File Streams

o C+# provides a number of abstract classes in the
System.I0 namespace to access data in files including
Stream, TextWriter and TextReader.

@ The stream class is used to access data at the byte level.

@ TextWriter and TextReader support access to readable
text through using

» Write() and WriteLine() of TextWriter.
» Read() and ReadLine() of TextReader.

@ Several classes derive from these abstract classes, and

implement customised versions of reading and writing:

» StreamReader and StreamWriter for text data
» BinaryReader and BinaryWriter for binary data

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 7/12



Example: Accessing a File

1 using System;
2 using System.IO;

3

4 public class FileReadWrited{

public static void Main () {

// Write to a file

StreamWriter sw = new StreamWriter("test.txt");
sw.Write("Hello_ World!");

sw.Close () ;

// Reading from a file

StreamReader sr = new StreamReader ("test.txt");
Console.WriteLine(sr.ReadLine ());

sr.Close () ;

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 8 /12



More on File Access

Reading from a file line-by-line:

1 StreamReader sr = new StreamReader ("test.txt");
2 string inValue = "";
3 while((inValue = sr.ReadLine()) != null)

4 Console.WriteLine(inValue) ;

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 9 /12



Handling file access problems with
exceptions

1 try {

2 StreamWriter sw = new StreamWriter ("test.txt");
3 sw.Write("Hello World!");

4 sw.Close () ;

5 } catch(IOException ex) {

6 Console.WriteLine (ex.Message);

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 10 / 12



Another common pattern

1 using (StreamReader sr = new StreamReader (infile)) {
// open file
2 using (StreamWriter sw = new StreamWriter (outfile))
{
3 string str = "";
4 string str0 = "";
5 while ((str = sr.ReadLine()) != null)// iterate
over lines
6 {
7 str0 = "";
8 foreach (char c in str) {
9 if (Char.IsPunctuation(c)) {
10 // nothing
11 } else {
12 str0 += c;
13 }
14 }
15 sw.WriteLine (str0.ToLower ()); q
16 } L1

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation 11 /12



Summary

@ Stream programming in general deals with serialising and
transfering data

e One example is reading/writing from/to files

@ Other examples are transfering data over a network or a
persistent storage

e The basic interface for file access is provide by hte
System.I0 namespace through StreamReader and
StreamWriter

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Data Manipulation



	C# Data Manipulation

