
Systematic Testing

Murray Crease
Scott Logic

>About Scott Logic

>What is Testing?

>Unit Testing

>Integration Testing

>System Testing

>User Acceptance Testing

>Performance Testing

>Usability Testing

Introduction

Scott Logic

>Bespoke Software Development
• Clients across the world

• Work primarily out of Scott Logic offices

>Range of Services
• Development

• UX

• Project Management

• Testing

>All about the technology
• A software house not an IT department

• Smart people, varied technologies

Scott Logic in Edinburgh

>Central location
• Castle view (ish)!

>38 staff
• 31 Developers

• 4 UX

• 3 Management & Admin

>Range of Technologies
• Java, C# .NET, JavaScript/HTML5

>Range of Social Activities
• Squash, Badminton, Running

• Xbox, board games, pub quiz

• Karting, Go Ape, white water rafting.

What Is Testing?

>It involves the execution of a software component or system to
evaluate one or more properties of interest. In general, these
properties indicate the extent to which the component or
system under test:

• meets the requirements that guided its design and development,

• responds correctly to all kinds of inputs,

• performs its functions within an acceptable time,

• is sufficiently usable,

• can be installed and run in its intended environments, and

• achieves the general result its stakeholders desire.

http://en.wikipedia.org/wiki/Software_testing

Meets Requirements

>Users / Business Owners know what they want and can
enumerate

>Testers check software meets these requirements

>List of requirements -> list of tests -> list of passed/failed

>Users rarely know what they want
• And even more rarely are able to enumerate

Can Be Installed and Run

>Makes sense … need to build it first

Responds Correctly To Inputs

>Know what the possible inputs are
• Test them all

>Could be a large number of inputs

>In arbitrary combinations

>Almost an infinite set

Runs in An Acceptable Time

>Where acceptable = ???

>For what inputs?

>Scalability

Sufficiently Usable & Desired
Functionality

>Hmmmm??

Why is Testing Actually Good?

>Money
• Software bugs cost global economy $312 Billion annually (CU)

> ~10% UK GDP

>Functionality
• Software needs to perform

>Reputation
• Buggy software impacts reputation

When Should Software Be Tested?

>Earlier is better
• Avoid building on top of bugs

>Earlier Detection is Cheaper (Boehm)
• Resolving bug after delivery 100x more expensive than before

> 5x for simple systems

> Good design mitigates this cost

>Cost of correcting bugs during coding is (Type Mock)
• 10% the cost of correcting bugs during QA which is

• 50% the cost of correcting bugs after release

Aside – Agile not Waterfall

>Waterfall
• Build system then test it

• Whole system could be built on false premise

• Users no visibility until completion

>Agile
• Testing built in from start

• Short iterations of coding AND testing

• Users have early & frequent visibility of solution

Creating ‘Test’ Environments

>Typical enterprise setup has three different environments:
• Development

• Beta/Stage/UAT

• Production

>All environments should be the same
• Resources/Dependencies

• Only differences in configuration (e.g. DB connection strings)

• Promotions should be reproducable

>All changes progress through environments in order
• Dev -> Beta -> Production

>Data can be copied in reverse direction
• Typically Production -> Beta

Development Environment

>Volatile
• Developers continuously changing

• Can be updated automatically via build server

>Latest changes
• Partial functionality

• Shouldn’t be (but maybe) broken

>This is different from the developer machines
• A 4th, personal environment

Beta Environment

>Typically has release candidates
• System Testing

>Managed promotions
• Usually by developers

• Dry run of production release

>Occasionally a separate environment for User Testing

>Code / DB changes promoted from Dev

>Data can be copied from Production
• Issues around changes in DB promoted from Dev

Production Environment

>The live system

>Managed releases
• Little/no developer involvement

• Rollback

• Typically outside working hours

Levels of Testing

>Unit Testing

>Integration Testing

>System Testing

>Acceptance Testing

Unit Testing

>Written by developers on units of code
• Considers correctness only of isolated code

>Drives design of code
• Decoupling

• Modularity

>Automated

>Tools & Frameworks

Unit Testing – Code Design

public List<Person> getPeople(String surnamePrefix)

{

Connection connection = new DatabaseConnection("MyDatabase");

connection.execute("select * from People where surname.Like('%' + surnamePrefix);

List<Person> people = new ArrayList<Person>();

for(String[] components : connection.GetResults())

{

Person person = new Person();

person.firstName = components[0];

...

people.Add(person);

}

return people;

}

Unit Testing – Code Design

public List<Person> getPeople(String surnamePrefix)

{

Connection connection = new DatabaseConnection("MyDatabase");

connection.execute("select * from People where surname.Like('%' + surnamePrefix);

List<Person> people = new ArrayList<Person>();

for(String[] components : connection.GetResults())

{

Person person = new Person();

person.firstName = components[0];

...

people.Add(person);

}

return people;

}

Unit Testing – Code Design

public List<Person> getPeople(String surnamePrefix)

{

DatabaseWrapper db = GetDatabaseWrapper();

PersonFactory factory = GetPersonFactory();

List<Person> people = new ArrayList<Person>();

for(String[] components : db.getPeople(surnamePrefix))

{

people.Add(factory.CreatePerson(components);

}

return people;

}

Unit Testing – Code Design

public List<Person> getPeople(String surnamePrefix)

{

DatabaseWrapper db = GetDatabaseWrapper();

PersonFactory factory = GetPersonFactory();

List<Person> people = new ArrayList<Person>();

for(String[] components : db.getPeople(surnamePrefix))

{

people.Add(factory.CreatePerson(components);

}

return people;

}

Tightly coupled

Unit Testing – Isolating Code

To Test Method A => i * j * k tests

Method A

i Paths

Method B

j Paths

Method C

k Paths

Relies on

Unit Testing – Code Design

public List<Person> getPeople(String surnamePrefix, DatabaseWrapper db,

PersonFactory factory)

{

List<Person> people = new ArrayList<Person>();

for(String[] components : db.getPeople(surnamePrefix))

{

people.Add(factory.CreatePerson(components);

}

return people;

}

Interfaces

Unit Testing – Isolating Code

To Test Method A => i + j + k tests

Method A

i Paths

Method B

j Paths

Method C

k Paths

Uses

Unit Testing – Code Design

private DatabaseWrapper db

private PersonFactory factory

public List<Person> getPeople(String surnamePrefix)

{

List<Person> people = new ArrayList<Person>();

for(String[] components : db.getPeople(surnamePrefix))

{

people.Add(factory.CreatePerson(components);

}

return people;

}

Injected

Dependency Injection

>Separates creation of dependencies from behaviour
• Classes specify dependencies required

• Framework instantiates & injects services

>Classes have no knowledge of service implementation

>Services can be changed via configuration
• Theoretically

>E.g. Spring in Java

Unit Tests – Writing the Tests

>Arrange
• Set up the context for the tests

>Act
• Call the method being tested

>Assert
• Check the result of the test

Unit Tests - Arrange

>Instantiate class

>Set context
• Inject dependencies

• State of test class

• Behaviour of dependencies

Unit Testing - Mocking

>Behaviour of Dependencies
• E.g. Database returns empty list

>Could create/populate DB table
• Slow & complicated

>Mock object
• Dummy object that implements interface

• Can specify behaviour

• Can verify interaction with mock

>E.g Mockito

Unit Tests - Act

>Test context should be in place

>Call the method to be tested and capture response

Unit Tests - Assert

>Check state of context after test matches expectations
• Value returned by method being tested

• Class containing method being tested

• Dependencies interacted with (called / not called)

Unit Testing – Writing The Tests

@Before

public void testSetup()

{

underTest = new PeopleManager();

db = mock(DatabaseWrapper.class);

factory = mock(PersonFactory.class);

}

@Test

public void testGetPeople_DatabaseReturnsEmptyList_ReturnsEmptyList()

{

when(db.getPeople("Smith")).thenReturn(new ArrayList<Person>());

List<People> people = underTest.getPeople("Smith", db, factory);

verify(db, times(1)).getPeople("Smith");

verify(factory, never()).createPerson(Any);

assertThat(people.size(), 0);

}

Unit Testing – Gotcha’s

>Code coverage trap

>No point – code always changing

>Unit tested – don’t need to run app

>Need to run tests
• Run before checking in

• Run as part of build … broken tests break build

Integration Testing

>Typically performed by developers
• On local machine

• Good developers test their own code

>Test interaction between components in system
• Or a subset of components

>Scale up from unit tests
• Modules not units

• ‘Simulate’ dependencies

Smoke Tests

>Check application runs in new environment
• As fundamental as making sure it starts

• Check new features are present as expected

>Typically performed by test team
• Run series of scripted tests to cover functionality

>Can be automated
• Based on standard scripts

• Augmented as new functionality added

System Testing

>Test a system from end to end
• Expensive and time consuming (i * j * k * l * ….)

• Should be scripted (vs. requirements)

> i.e. reproducable

>Regression testing for specific changes

>Typically a specific test team
• Specialised skills

Interacting With Testers

>They are on your side
• Hard to believe sometimes … but should be

>Get them on board with changes
• Communicate how functionality works

• Highlight shortcomings / work-arounds

>Let them help
• Don’t be defensive

• They will often (typically) no more about the system

Interacting With Developers

>Don’t play the blame game
• Build constructive relationships

>Provide details
• “It’s broken” doesn’t help

>Listen to the Developers
• They know how the system is built

(User) Acceptance Testing

>System Test Complete
• i.e. testers and developers happy

>Users test application
• Should not be the first time seen functionality!

• Verify behaviour as expected

• Should be scripted

>Less likely to find bugs
• Functionality issues

Performance Testing

>Load testing/Stress Testing/Scalability Testing
• How system performs under different loads

>Real-time testing
• Ensure time constraints are met

Usability Testing

>Test ease of use of application
• Specialist expertise

• Many forms

> Ask people / timings / error tracking

>C.f. User Experience Design
• Consider ease of use at start

>Accessibility Testing
• E.g compliance with disability standards

Testing as a Career

>Detail oriented, methodical

>Need to understand domain
• Often better than developer!

A good developer tests their code

Testing – Case Study

>Complex system
• Many components

• Fixed API – messages stored as text

>Extreme Programming
• Pair-programming, Test Driven Development

• Continuous Integration

>Continuous running of integration tests
• Design enabled this

• Production release < 10 minutes

Scott Logic

>We are looking for graduate applications

>Also looking for interns
• Need to have completed penultimate year when doing internship

>Blogs
• More on a range of technical subjects

http://www.scottlogic.com

References

> Cambridge University -
http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_
States_Software_Bugs_Cost_Economy_$312_Billion_Per_Year

> Boehm - http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

> Type Mock - http://www.codeguru.com/blog/category/programming/the-cost-of-bugs.html

http://markets.financialcontent.com/stocks/news/read/23147130/Cambridge_University_Study_States_Software_Bugs_Cost_Economy_$312_Billion_Per_Year
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

